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Abstract

We extend the quark mean-field (QMF) model for nuclear matter and study the possible presence of quark matter
inside the cores of neutron stars. A sharp first-order hadron-quark phase transition is implemented combining the
QMF for the hadronic phase with “constant-speed-of-sound” parameterization for the high-density quark phase.
The interplay of the nuclear symmetry energy slope parameter, L, and the dimensionless phase transition
parameters (the transition density ntrans/n0, the transition strength Δε/εtrans, and the sound speed squared in quark
matter cQM

2 ) are then systematically explored for the hybrid star properties, especially the maximum mass Mmax and
the radius and the tidal deformability of a typical 1.4Me star. We show the strong correlation between the
symmetry energy slope L and the typical stellar radius R1.4, similar to that previously found for neutron stars
without a phase transition. With the inclusion of phase transition, we obtain robust limits on the maximum mass
(Mmax<3.6Me) and the radius of 1.4Me stars (R1.49.6 km), and we find that a phase transition that is too
weak (Δε/εtrans0.2) taking place at low densities 1.3–1.5 n0 is strongly disfavored. We also demonstrate that
future measurements of the radius and tidal deformability of ∼1.4Me stars, as well as the mass measurement of
very massive pulsars, can help reveal the presence and amount of quark matter in compact objects.

Unified Astronomy Thesaurus concepts: Neutron star cores (1107); Neutron stars (1108)

1. Introduction

The nature of matter under extreme conditions of density,
pressure (gravity), isospin, and magnetic field accessible only in
the dense cores of neutron stars still remains an open question. In
particular, the mass and radius of neutron stars encode unique
information on the equation of state (EOS) at supranuclear
densities. Several massive pulsars with a mass of about two-solar
masses detected during the last decade set stringent constraints
on EOS of neutron star matter: PSR J1614-2230 (M=
1.908±0.016Me) (Demorest et al. 2010; Fonseca et al.
2016; Arzoumanian et al. 2018), PSR J0348+0432 (M=
2.01±0.04Me)(Antoniadis et al. 2013), and MSP J0740
+6620 ( = -

+M M2.14 0.09
0.10 )(Cromartie et al. 2020), for which

masses are reported with 68.3% credibility intervals, respec-
tively. There has been a simultaneous estimation of the mass and
radius of neutron stars by the NASA Neutron Star Interior
Composition ExploreR (NICER) mission from pulse-profile
modeling of accretion hot spots of the isolated millisecond
pulsar PSR J0030+0451(Miller et al. 2019; Raaijmakers et al.
2019; Riley et al. 2019), = -

+M M1.44 0.14
0.15 , = -

+R 13.02 km1.06
1.24

(Miller et al. 2019) and = -
+M M1.34 0.16
0.15 , = -

+R 12.71 km1.19
1.14

(Riley et al. 2019), to the 68.3% credibility interval. The
detection of the GW170817 binary neutron star merger
event(Abbott et al. 2017) with its electromagnetic counterpart
has also greatly advanced the study of dense matter at extreme
densities(e.g., Bauswein et al. 2017; Margalit & Metzger
2017; Abbott et al. 2018; Annala et al. 2018; Radice et al. 2018;
Rezzolla et al. 2018; Ruiz et al. 2018; Zhou et al. 2018;
Zhu et al. 2018; Abbott et al. 2019; Baiotti 2019; Fasano et al.
2019; Guerra Chaves & Hinderer 2019; Motta et al. 2019;

Shibata et al. 2019; Weih et al. 2019; Zhou et al. 2019; Ai et al.
2020; Bauswein et al. 2020; Capano et al. 2020; Essick et al.
2020; Jiang et al. 2020; Otto et al. 2020; Raaijmakers et al. 2020;
Wang et al. 2020; Zhu et al. 2020). By constructing the neutron
star EOS using the chiral effective field theory of neutron
matter and combining with multimessenger observations of
GW170817, Capano et al. (2020) found that the radius of
a 1.4Me neutron star is = -

+R 11.0 km1.4 0.6
0.9 (90% credible

interval) assuming that a description in terms of nucleonic
degrees of freedom remains valid up to 2 n0, where
= -n 0.16 fm0

3 is the nuclear saturation density.
In recent years much attention has been paid to one of the

main features of the EOS, i.e., the symmetry energy(e.g., Li
et al. 2014; Baldo & Burgio 2016; Oertel et al. 2017). The
behavior of the nuclear symmetry energy as a function of
density is crucial for interpreting many astrophysical observa-
tions related to compact objects, including the overall structure
of neutron stars(e.g., Zhu et al. 2018; Krastev & Li 2019; Perot
et al. 2019; Xie & Li 2019; Raithel & Özel 2019; Zhu et al.
2019; Drischler et al. 2020). It has been shown that it is
possible to use the observation of the global properties of
neutron stars to put constraints on the symmetry energy
(especially its slope with respect to the density) at saturation
(e.g., Lattimer & Prakash 2001; Li & Steiner 2006; Hebeler
et al. 2013; Lattimer & Steiner 2014).
At high densities reached in the interiors of massive neutron stars

(possibly up to ≈8–10 n0), quark degrees of freedom may start
appearing and play a role. The possible appearance of quark matter
and deconfinement phase transition is one of the unresolved puzzles
of neutron star matter and could largely affect the underlying EOS.
At present, since the quark matter EOS is poorly known at zero
temperature and the high density appropriate for neutron stars, one
possible way of tackling the problem is to perform the calculations
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with certain quark matter models in sufficient large parameter space
and then compare the predictions with observations of neutron star
static and dynamical properties, which has been of special interest
in the present era of gravitational-wave astronomy(e.g., Burgio
et al. 2018; Nandi & Char 2018; Paschalidis et al. 2018; Aloy et al.
2019; Bauswein et al. 2019; Christian et al. 2019; Gomes et al.
2019; Han & Steiner 2019; Han et al. 2019; Montaña et al. 2019;
Most et al. 2019; Orsaria et al. 2019; Sieniawska et al. 2019;
Chatziioannou & Han 2020; Chen et al. 2020; Essick et al.
2020; Marczenko et al. 2020; Nunna et al. 2020; Pereira et al.
2020; Tonetto & Lugones 2020; Weih et al. 2020).

When extracting dense matter properties from observations,
it is difficult to eliminate the model dependence considering a
large sample of nuclear matter EOS models, since there can be
more than one physical quantity from the theoretical input that
the neutron star observables are sensitive to. Alternatively, one
can construct theoretical EOSs that satisfy the same criterion
for other quantities with, for instance, other saturation proper-
ties fixed, and decouple the dependence on nuclear symmetry
energy slope explicitly(see, e.g., Zhu et al. 2018, 2019; Li
et al. 2020). In this paper, we discuss the previously proposed
quark mean-field (QMF) model(Toki et al. 1998), which
allows one to tune the density dependence of the symmetry
energy in a self-consistent way(Zhu & Li 2018; Zhu et al.
2018, 2019), in combination with the constant-speed-of-sound
(CSS) parameterization for high-density quark matter EOS
(Alford et al. 2013). We perform calculations of the mass–
radius relation and tidal deformability for normal hadronic and
hybrid star configurations, using various choices of the
symmetry energy slope parameter and the hadron-quark phase
transition parameters. Moreover, we examine possible correla-
tions among the symmetry energy slope, the neutron star
maximum mass, and the radius of a canonical 1.4Me star, and
the tidal deformabilities deduced from GW170817-like events.

This paper is organized as follows. In Section 2 we discuss
the EOS for the hadronic phase of neutron stars, i.e., the QMF
model. In Section 3 we apply the CSS parameterization to
describe the quark phase. In Section 4 we mainly discuss
effects from the symmetry energy slope on the mass, radius,
and tidal deformability of hybrid stars, and then contrast the
results of our calculations with multimessenger observations in
Section 5. We summarize in Section 6.

2. Nuclear Matter within the QMF

The EOS of nuclear matter obtained within the QMF model
has been amply discussed in previous works(e.g., Zhu &
Li 2018; Zhu et al. 2018, 2019). For a review see Li et al.
(2020). We first adopt a harmonic oscillator potential to confine
quarks in a nucleon, with its parameters determined by the
mass and radius of the free nucleon, and then connect the
nucleon in the medium with a system of many nucleons
that interact through exchanging σ, ω, and ρ mesons. The
Lagrangian in the mean-field approximation can be written as
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where wg N and rg N are the nucleon coupling constants for ω and
ρ mesons, sg q, wg q, and rg q are the coupling constants of σ,
ω, and ρ mesons with quarks, respectively. mσ=510MeV,
mω=783MeV, and mρ=770MeV are the meson masses.
From the quark counting rule, we obtain =w wg g3N q and
gρN=gρq. The calculation of the confined quarks in a nucleon
gives rise to the effective quark mass s= - sm m gq q q* , as well

as the relation of the effective nucleon mass MN* as a function of
the σ field, s= -¶ ¶sg MN N* (e.g., Toki et al. 1998; Shen &
Toki 2000). It is noteworthy that, compared to the constant
coupling in the standard Walecka model, the coupling treatment
in QMF is consistently generated from the confined quark
description. This difference in σ-nucleon coupling results in the
main distinction of QMF from other mean-field models. The
cross coupling from the ω meson and ρ meson, r wLr wg gN v N

1

2
2 2 2 2,

can largely improve the descriptions on the symmetry energy
Esym(n) and give a reasonable value of the symmetry energy
slope L(e.g., Horowitz & Piekarewicz 2001; Zhu & Li 2018).
The energy density ε of nuclear matter is generated from the

energy-momentum tensor related to the QMF Lagrangian
[Equation (1)], as a function of the relevant partial densities
ni (i=n, p). The parabolic approximation is usually
applicable, and the energy per nucleon can be written as
[ ( ) ]b º -n n nn p

( ) ( ) ( ) ( )b b b» = +E A n E A n E n, , 0 , 1sym
2

and E/A (n, β=0) can be expanded around the saturation
density n0:

( ) ( ) ( )= +
-

E A n E A n K
n n

n
, 0

1

18
, 20

0

0

with K the incompressibility at the saturation point. The
symmetry energy Esym(n) is expressed in terms of the
difference of the energy per particle between pure neutron
(β=1) matter and symmetric (β=0) nuclear matter,

( ) ( ) ( )» -E n E A n E A n, 1 , 0sym . In order to characterize its
density dependence, Esym(n) can be expanded around the
saturation density n0 as follows:

( ) ( ) ( ) ( )= + - +E n E n
dE

dn
n n ... 3sym sym 0

sym
0

and the following parameters can be defined (both having an
energy dimension (MeV))

⎛
⎝⎜

⎞
⎠⎟( ) ( )= =E E n L n

dE

dn
, 3 . 4

n
sym sym 0 0

sym

0

Other thermodynamical quantities can also be obtained,
including the chemical potential and pressure

( )m
e

=
¶
¶n

, 5i
i

( ) ( )e e
e m e= = - = -p n n

d

dn n
n
d

dn
n . 6B

2

In the present study, we employ the parameter sets
( Ls w rg g g g g, , , , ,q q q v2 3 ) previously fitted in Zhu et al. (2018)
from reproducing the empirical saturation properties of nuclear
matter: the saturation density n0 and corresponding values at

2
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saturation point for the binding energy E/A, the incompressi-
bility K, the symmetry energy Esym, the symmetry energy slope
L, and the effective mass MN*. The values employed together
with corresponding empirical ones are collected in Table 1.
While the EOS of symmetric nuclear matter has been relatively
well-constrained(Danielewicz et al. 2002), matter with non-
zero isospin asymmetry remains unknown, largely due to the
uncertainty in the symmetry energy(e.g., Li et al. 2014). The
symmetry energy slope L characterizes the density dependence
of Esym, and is one of the key nuclear parameters that dominate
the ambiguity and stiffness of EOS for dense matter at higher
densities in the absence of phase transition with strangeness.
Therefore, as shown in Table 1, we choose values of L in its
empirical range(e.g., Lattimer & Lim 2013; Li & Han 2013;
Danielewicz & Lee 2014; Oertel et al. 2017) as input for the
parameter fitting, and study its effect on the properties of
(binary) neutron stars. The upper bound of ≈60MeV is also
consistent with a prediction from the unitary gas conjecture
(Tews et al. 2017), with Esym at saturation being set to its
preferred value of 31 MeV(e.g., Li & Han 2013; Danielewicz
& Lee 2014; Oertel et al. 2017). This independent constraint on
L is to ensure that neutron matter energy is larger than the
unitary gas energy at low densities 1.5 n0. We mention here
that the present study has neglected higher-order expansion
terms in the energy densities (Equations (1)–(3)), which may
become important for dense neutron-rich matter(see, e.g.,
Malik et al. 2018, 2020; Zhang & Li 2019b, 2019a; Li &
Magno 2020; Zimmerman et al. 2020 for some recent
discussions on higher-order terms); however, it is not
guaranteed that at high enough densities nucleonic degrees of
freedom will still dominate.

3. High-density Matter with the CSS Parameterization

For the high-density quark phase we utilize the CSS
parameterization(Alford et al. 2013), making use of the
feature that for a considerable class of microscopic quark
matter models the speed of sound turns out weakly density-
dependent, as seen in, for example; the Nambu-Jona–Lasinio
(NJL) model(Agrawal 2010; Zdunik & Haensel 2013; Ranea-
Sandoval et al. 2016), field correlator method(Alford et al.
2015), variations of the MIT bag model(Baym & Chin 1976),
etc. Assuming the sound speed in quark matter is density-
independent from the first-order transition onset up to the
maximum central pressure of a star, the CSS parameterization
is applicable to high-density EOSs for which there is a
sharp interface (Maxwell construction) between bulk hadronic
matter and quark matter, i.e., the quark-hadron surface tension
is high enough to disfavor mixed phases (Gibbs construction).
It has been shown that strong first-order phase transition with
a sharp interface is the most promising scenario to be
tested or distinguished from pure hadronic matter by future

observations(Han et al. 2019; Han & Steiner 2019;
Chatziioannou & Han 2020). One can also formulate EOSs
that model quark-hadron interfaces that are mixed(e.g., Li
et al. 2008; Burgio et al. 2011; Li et al. 2015; Ferreira et al.
2020; Marczenko et al. 2020) or feature a smooth crossover(e.g.,
Baym et al. 2019), given current uncertainties regarding the
nature of the phase transition.
The dimensionless CSS parameters are the squared speed of

sound in the high-density phase cQM
2 (we work in units where

= = c 1), the hadron-quark phase transition density ntrans/n0,
and the discontinuity in the energy density at the transition
e eD trans where ( )ºn n ptrans HM trans and ( )e eº ptrans HM trans .

For a given hadronic matter EOS εHM(p), the full EOS is

⎪
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The high-pressure CSS EOS can be written as (Alford et al.
2013; Zdunik & Haensel 2013),

( ) ( )m m= -+p A B, 7B B
c1 1 QM
2

( ) [( ) ] ( )( )m = + +p p B A , 8B
c c1QM
2

QM
2

( ) ( ) ( )m m= +n c A1 1 , 9B B
c

QM
2 1 QM

2

where A is a parameter with energy dimension - -c3 QM
2 and

( ) ( )e e= + D - +- -B c p c1trans QM
2

trans QM
2 . To construct a

first-order transition from some low-pressure EOS to a high-
pressure EOS of Equation (7), A is chosen such that the
pressure is monotonically increasing with μB and the baryon
number density does not decrease at the transition.
We perform calculations by varying cQM

2 from the causality
limit =c 1QM

2 to the conformal limit =c 1 3QM
2 (the value for

systems with conformal symmetry that may be applicable to
relativistic quarks). It is worth mentioning that perturbative
QCD calculations exhibit quark matter with cQM

2 around 0.2 to
0.3(Kurkela et al. 2010; see the detailed analysis of the sound
speed behavior in dense matterin, e.g., Bedaque & Steiner
2015; Xia et al. 2019).
We illustrate in Figure 1 the EOSs P(ε) for dense matter with

sharp first-order phase transitions applying the generic CSS
parameterization for quark matter, specified by the three CSS
parameters ntrans, Δε, and cQM

2 . For comparison, we also show
the causality limit P=ε (thin straight line) together with
baseline EOSs (shaded background) from the maximal model
(Tews et al. 2019). The latter may represent the widest possible
domain for respective neutron star observables to be consistent
with the low-density input from modern calculations of
neutron-rich matter based on chiral effective field theory, and

Table 1
Saturation Properties Used for the Fitting of Meson Coupling Parameters ( Ls w rg g g g g, , , , ,q q q v2 3 ) in the QMF Lagrangian (Equation (1))

ρ0 E/A K Esym L M MN N*
( )-fm 3 (MeV) (MeV) (MeV) (MeV) /

QMF 0.16 −16.0 240 31 30–60 0.77
Exp. 0.16±0.01 −16.0±1.0 240±20 31.7±3.2 ≈30–86 ≈0.6–1

Note. The saturation properties are: the saturation density n0 (in fm−3) and corresponding values at the saturation point for the binding energy E/A (in MeV), the
incompressibility K (in MeV), the symmetry energy Esym (in MeV), the symmetry energy slope L (in MeV), and the ratio between the effective mass and free nucleon
mass /*M MN N . The corresponding empirical data(Shlomo et al. 2006; Lattimer & Lim 2013; Oertel et al. 2017) are also collected.

3
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also include strong phase transitions that could lead to a drastic
change in the stiffness of EOSs.

4. Hybrid Star Structure and Tidal Deformability

4.1. Topology of the Mass–Radius Relation

A very important constraint to be fulfilled is the maximum
mass of neutron stars supported by different EOSs, which has
to be compatible with the observational data. We show in
Figure 2 on the ( )e eDp ,trans trans plane the contours of the
maximum mass of hybrid stars Mmax as well as the radius
of the maximum-mass stars Rmax, with L=30–60MeV for
c2QM=1/3 (left panel) and =c 1QM

2 (right panel). The region
inside the =M M2max contours (red solid and red dashed)
corresponds to EOSs for which the maximum mass is below
2Me, and therefore are considered excluded by the observation
of stars with masses ∼2Me (Demorest et al. 2010; Fonseca
et al. 2016; Antoniadis et al. 2013; Arzoumanian et al. 2018;
Cromartie et al. 2020). We also add Mmax=2.14Me contours
(green solid and green dashed) in the right panel ( =c 1QM

2 ),
corresponding to the central value of the heaviest recently
discovered pulsar MSP J0740+6620(Cromartie et al. 2020).
The excluded region would be larger if more massive stars
were to be observed.

For high-density EOSs with =c 1QM
2 , the excluded region is

most limited, which allows a reasonable range of transition
pressures and energy density discontinuities that are compatible
with the observation. However, for high-density matter with
=c 1 3QM

2 , the Mmax�2Me constraint eliminates almost the
entire CSS parameter space. Additionally, decreasing the
stiffness of the nuclear matter EOS from the L=60MeV
(solid curves) to L=30MeV (dashed curves) also enlarges the
excluded region. Nevertheless, differences among nuclear

matter EOSs generally induce less significant effects compared
to those in quark matter EOS.
There exists a critical value for the energy density jump eD

(black solid lines in Figure 2) below which a stable hybrid star
branch connected to the hadronic star branch should be present
(Seidov 1971; Schaeffer et al. 1983; Lindblom 1998),

( )e
e e
D

= +
p1

2

3

2
, 10crit

trans

trans

trans

which was obtained by performing an expansion in powers of
the size of the core of the high-density phase, in the presence of
a sharp discontinuity in the energy density. For energy density
discontinuities above the critical value, the sequence of stars
will become unstable immediately after the central pressure
reaches above ptrans. Figure 2 also shows that regions enclosed
by the black dashed curves where the disconnected hybrid star
branch exists are insensitive to the details of the nuclear matter
EOS, but depend significantly on the value of c ;QM

2 see, e.g.,
Alford et al. (2013).
Following the radius contours for the maximum-mass star

Rmax (blue solid and blue dashed) one can search for the
minimum radius for a given EOS, as the smallest hybrid star is
typically the heaviest one. The border of the Mmax�2Me
allowed region excludes those contours with Rmax greater than
11.5 km for =c 1 3QM

2 , and greater than 9 km for =c 1QM
2 ,

respectively. The most compact stars with radii as small as
9 km occur when the high-density phase has the largest
possible speed of sound =c 1QM

2 , with a low transition pressure
(ntrans�2 n0) and a fairly large energy density discontinuity
Δεεtrans.

4.2. Symmetry Energy Effects

In Figure 3, we explicitly show the mass–radius relation for
hybrid stars with various transition densities ntrans/n0=1.5,
2.5 and energy density discontinuities Δε/εtrans=0.2, 0.5, 1,
for =c 1QM

2 , and 1/3, respectively. We confirm that increasing
the transition density and/or the energy density discontinuity
decreases the stellar mass, and thus heavy hybrid stars can be
achieved by applying low transition density with small energy
density discontinuity. Since the QMF EOS for hadronic matter
is relatively soft, a large region of the ( e eDn n ,trans 0 trans)
parameter space should be considered eliminated by ∼2Me
pulsar observations, especially for the soft =c 1 3QM

2 case; see
Figure 2.
In the same figure, we also illustrate how the mass–radius

relation would be modified by varying the symmetry energy
slope parameter L from 30 to 60MeV. As previously studied in
the QMF model without hadron-quark phase transition(Zhu
et al. 2018), the radius of the maximum-mass star Rmax is only
slightly affected by the L value(e.g., Lattimer & Prakash 2001;
Li & Steiner 2006); we find that the conclusion still holds true
in the presence of phase transition. This is mainly because the
primary factor that determines maximum-mass star properties
is the stiffness in the high-density quark phase. Nevertheless, a
change in the radius of the maximum-mass star due to variation
in L is relatively more evident for lower transition density ntrans
and smaller energy density discontinuity Δε.
From Zhu et al. (2018), the radii of a 1.4Me hadronic star

in QMF models are R1.4=11.76 km and R1.4=12.17 km,
for L=30MeV and L=60MeV, respectively, with central
density ≈3.1 n0 and a relative difference of ≈3.5%. For hybrid

Figure 1. Exemplary hybrid EOSs (colored curves) with a sharp first-order
phase transition from hadronic matter (QMF, L=60 MeV) to quark matter
(CSS), at different transition densities ntrans/n0=1.5, 2.5 with different
transition strengths Δε/εtrans=0.2, 0.5, 1. Two groups of colored curves
represent the causality limit =c 1QM

2 and the conformal limit =c 1 3QM
2 ,

respectively, in the high-density phase. The QMF results for normal neutron
stars with L=30, 40, 50 MeV are also shown for comparison (black curves).
The shaded background is the generic family from the maximal model (Tews
et al. 2019) constrained at low densities by state-of-the-art calculations of
neutron-rich matter from chiral effective field theory, allowing the complete
parameter space for a speed of sound above n=n0 that is compatible with
the LIGO/Virgo constraint from GW170817 ( L̃ 70 720)(Abbott
et al. 2019). Extreme causal EOS is also shown with the straight solid line.
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stars with ntrans/n0=1.5 and Δε/εtrans=0.2, the corresp-
onding values are R1.4=11.83 km and R1.4=12.31 km for
=c 1 3QM

2 with central density ≈2.3 n0, and R1.4=12.43 km
and R1.4=12.85 km for =c 1QM

2 with central density ≈1.7 n0,
and a similar relative difference. Normally, a strong correlation
between L and R1.4 has been observed for standard extrapola-
tion of the EOS from saturation (where L is defined) to higher
densities (e.g., 2–3 n0 reached by the center of 1.4Me stars).
Nevertheless, given many parameters to tune and adjust in
different models, sometimes the correlation breaks down,
especially when effective masses are varied in different
contexts. Such possibilities have been discussed in Hornick
et al. (2018) and Han et al. (2019).
In contrast, it is worth mentioning that the role of L is studied

in a unified and consistent manner in the present work with all
other saturation properties, such as the saturation density, the
binding energy, the incompressibility, nucleon effective mass,
and the symmetry energy at saturation, fixed at their empirical
values. Consequently, the differences among the nuclear matter
EOSs are dominated by the differences in their symmetry
energy slope values. Future radius measurements of canonical-
mass stars ~ M1.4 with better accuracy that might distinguish
these relative differences would help improve the uncertainty
analysis of nuclear matter parameters such as variations in L.
Along this line, a recent study extended symmetry expansion to
higher densities, and pointed out that the radii of heavy stars
might carry important information on the high-density behavior
of nuclear symmetry energy(Xie & Li 2020).

The representative mass–radius relations shown in Figure 3
demonstrate the topology of a hybrid branch connected or
disconnected to the normal hadronic branch, as depicted in
details in Alford et al. (2013). With sufficiently high transition

density and large energy density discontinuity (i.e., upper right
corners of the contour plots in Figure 2), no stable hybrid star
branch exists; see also in Figure 4 for Δε/εtrans=0.5,1. In
such cases, the effect from the slope parameter L is rather
limited because only hadronic stars are stable. We find that
if the hadron-quark phase transition takes place above
ntrans4 n0, it is in general difficult to derive further reliable
constraints on the nuclear matter parameters. In fact, a recent
analysis using the NJL model for the quark matter found that
the transition should occur for small values ntrans�4 n0 in
order to sustain a considerable quark core size(Ferreira et al.
2020).

4.3. Tidal Deformability

In a coalescing neutron star binary, changes in the orbital
phasing due to the components’ mutual tidal interaction leave a
detectable imprint on the gravitational-wave signal, and the
measured tidal deformabilities can then inform constraints on
the neutron star EOS. How easily the bulk matter in a star is
deformed by an external tidal field is encoded in the tidal Love
number k2, the ratio of the induced quadruple moment Qij to the
applied tidal field Eij(Damour & Nagar 2009; Damour et al.
1992; Hinderer 2008), = -Q k Eij

R

G ij2
2

3

5

, where R is the neutron
star radius. The dimensionless tidal deformability Λ is related
to the compactness M/R and the Love number k2 through

( )L = -k M R2

3 2
5. Note that the computation on the tidal

deformability requires additional treatment for sharp phase
transitions with a finite discontinuity in the energy density
(Damour & Nagar 2009; Hinderer et al. 2010; Postnikov et al.
2010). We have checked that the tidal deformability results for
hybrid stars within the QMF model obey the I-Love-Q

Figure 2. Contour plots for the maximum mass of hybrid stars Mmax (red) and the radius of maximum-mass stars Rmax (blue) as a function of the CSS parameters in
high-density phase. Each panel shows the dependence on the CSS parameters ( e eDn n ,trans 0 trans) at fixed quark matter sound speed =c 1 3QM

2 (left) and =c 1QM
2

(right). Both results with L=30 MeV (dashed curves) and L=60 MeV (solid curves) are shown. Low-pressure/low-density regions where ntrans<n0 are excluded,
with the (leftmost) gray-shaded band showing the L=30 MeV case (for L = 60 MeV the band is slightly extended to the right); the highest pressure/density reached
in the center of the heaviest hadronic star within QMF is pcent/εcent;0.43. The hatched regions inside the 2 Me contours are excluded by 2 Me pulsars
observed(Demorest et al. 2010; Antoniadis et al. 2013; Fonseca et al. 2016; Arzoumanian et al. 2018; Cromartie et al. 2020). 2.14 Me contours (green) are also shown
in the right panel, reflecting the intermediate value of the heaviest pulsar recently discovered MSP J0740+6620(Cromartie et al. 2020). The solid black line denotes
the threshold value Δεcrit [Equation (10)] below which there is always a stable hybrid star branch connected to the hadronic branch. The dashed black lines mark the
border of regions where the disconnected hybrid star branch exists.
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universal relation(Yagi & Yunes 2013, 2017) reasonably well,
with errors of less than 2%, which is in agreement with
previous works (see, e.g., Carson et al. 2019a). The mass-
weighed tidal deformability L̃ of a binary system

˜ ( )
( )

( ) ( )L =
+
+

L + «
m m m

m m

16

13

12
1 2 , 111 2 1

4

1 2
5 1

as a function of the chirp mass ( ) ( )= + m m m m1 2
3 5

1 2
1 5,

can be accurately measured during the inspiral, and is relatively
insensitive to the unknown mass ratio q=m2/m1 (m1 and m2

are the masses of the components; e.g., Radice et al. 2018;
Raithel et al. 2018; Carson et al. 2019b).
We show the effects of the symmetry energy slope L on the

tidal Love number k2 and the tidal deformability Λ in Figures 5
and 6, respectively. We mainly discuss the effect of L since k2 and
Λ have been found to be essentially independent of the symmetry
energy Esym itself(e.g., Malik et al. 2018; Perot et al. 2019;

Raithel & Özel 2019). Figure 5 shows that a larger L leads to a
smaller k2 for hybrid stars, which is similar to that found in normal
hadronic stars(Zhu et al. 2018; Dexheimer et al. 2019), and the L
effects are more evident for light stars than massive stars close to
the maximum mass. The conclusions remain valid for a large
variation of the phase transition parameters, i.e., transition density
ntrans, the energy density discontinuity Δε, and the quark matter
speed of sound cQM. Also, the symmetry energy slope tends to
have smaller influence when the phase transition appears at higher
density. The dependence of Λ on L is less sensitive than that of k2,
as can be seen in Figure 6, mainly due to the competitive role
played by the factor of R5: the increase of R with L finally
weakens the decrease of k2 with L. As a result, the tidal
deformability overall is not subject to the symmetry energy effects
with its slope in the range of 30–60MeV. Similar conclusions
have been drawn in Krastev & Li (2019) with EOSs constrained
by heavy-ion collision data; measuring Λ alone may not
completely determine the density dependence of the symmetry
energy.

5. Confronting Multimessenger Observations onMmax, R1.4,
Λ, and L̃

Systematically, we carry on with calculations for the mass–
radius of hybrid stars spanning the whole parameter space of
the speed of sound, with the transition density up to
ntrans=6 n0 and the energy density discontinuity up to
Δε=1.5 εtrans. The calculations are performed using two
values of the symmetry energy slope parameter L=30MeV
and L=60MeV, and the results are shown in Figures 7–11.
Figure 7 displays the correlation of the radius of a 1.4Me

hybrid star R1.4 with the transition density ntrans/n0 (left panel)
and with the maximum mass Mmax (right panel). In general,
there exists an anticorrelation between R1.4 and ntrans/n0, and
a correlation between R1.4 and Mmax. A conservative upper
limit of 13.6 km for R1.4 can be obtained with different

Figure 3. Mass–radius relations for hybrid stars (colored curves) with
transition density ntrans/n0=1.5, 2.5 and different transition strengths Δε/
εtrans=0.2, 0.5, 1. Hereafter, results with the symmetry energy slope
L=60 MeV are represented by solid curves and those with L=30 MeV by
dashed curves. The squared sound speed in quark matter is fixed to be
c2QM=1/3 (left panels) or =c 1QM

2 (right panels). Purely hadronic stars are
also shown for comparison (black curves). The horizontal lines in each panel
indicate =M M1.4, 2.0 .

Figure 4. Mass–radius relations for hybrid stars (colored curves) with fixed
transition density ntrans/n0=4.5 and symmetry energy slope values
L=30 MeV (dashed), 60 MeV (solid). The squared sound speed in quark
matter is fixed to be =c 1QM

2 . Purely hadronic stars are also shown for
comparison (black curves).
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analyses(e.g., Fortin et al. 2016; Bauswein et al. 2017; Abbott
et al. 2018; Annala et al. 2018; Burgio et al. 2018; De et al.
2018; Most et al. 2018; Tews et al. 2018; Montaña et al. 2019;
Raaijmakers et al. 2020), and since our hadronic EoSs tend
to have a 1.4Me hadronic star well suited for this bound
( »R 121.4

had km), we primarily apply this condition to hybrid
stars with 1.4Me and constrain phase transition parameters
accordingly.5

In the left panel, the upper limit of 13.6 km for R1.4 indicates
that a very weak phase transition (i.e., small energy
discontinuity Δε) taking place at densities that are too
low (ntrans1.31 n0 for L=30MeV or ntrans1.46 n0 for
L=60 MeV) is strongly disfavored. To illustrate, we depict in
detail in Figure 8 the decreasing trend of R1.4 with Δε/εtrans,
with two cases of transition densities around ntrans=1.31 n0
for L=30MeV (the trend for L= 60MeV is similar). On the

other hand, given mass measurements of heavy pulsars, one
can set lower limits on R1.4 by making use of the -R M1.4 max

correlation in the right panel: Mmax�2Me infers a similar
lower limit of ≈9.6 km on R1.4, and with the more stringent
2.14Me constraint, this limit is raised slightly to ≈9.7 km.
These values are in good agreement with other analyses in the
literature based on x-ray observations or LIGO/Virgo
measurements(e.g., Steiner et al. 2016; Bauswein et al.
2017; Abbott et al. 2018; Most et al. 2018; Tews et al. 2018;
Köppel et al. 2019; Montaña et al. 2019; Ofengeim 2020;
Raaijmakers et al. 2020), as well as theoretical predictions by
previous studies of stable hybrid stars(Alford & Han 2016).
Recent analysis of NICER x-ray timing data on PSR J0030
+0451 suggests R≈13 km for a ∼1.4Me star(Miller et al.
2019; Raaijmakers et al. 2019; Riley et al. 2019) based on
EOSs without a phase transition, while confronting binary
neutron star simulations with gravitational-wave observations
obtains R1.4≈11 km (Capano et al. 2020) assuming the
description in terms of nuclear degrees of freedom remains
valid up to 2 n0. Due to the relatively small hadronic R realized

Figure 5. Love number k2 vs. mass for hybrid stars (colored curves) with fixed
transition density ntrans/n0=1.5, 2.5 and different transition strengths
e eD = 0.2, 0.5, 1;trans the symmetry energy slope values are L=60 MeV

(solid curves) and L=30 MeV (dashed curves). The squared sound speed
in quark matter is fixed to be =c 1 3QM

2 (upper panels) or =c 1QM
2 (lower

panels). Purely hadronic star results are also shown for comparison (black
curves).

Figure 6. Same as Figure 5, but showing the dimensionless tidal deformability
Λ. Also displayed is the LIGO/Virgo constraint(Abbott et al. 2018) from
GW170817 on the tidal deformability for 1.4 Me stars ( )L = -

+1901.4 120
390 , using

the PhenomPNRT waveform model at a 90% confidence level. Note that this
constraint was derived without taking into account possible phase transitions.

5 Note that certain disconnected hybrid configurations can have the hadronic
branch violating <R 13.61.4

had km, which our QMF model does not present.
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in QMF models, our results do not account for the specific
“third-family” scenario that PSR J0030+0451 measured by
NICER is a hadronic star with a radius much larger than the
more compact hybrid stars when a strong phase transition
occurs above its measured mass, leading to an upper limit on
the onset density ∼1.7 n0 subject to the hadronic models
employed(Christian & Schaffner-Bielich 2020).

An upper limit on the maximum mass can also be
indicated from R1.4<13.6 km, which is Mmax<3.6Me. We
note here that the maximum mass being almost 4Me from
Tews et al. (2019), or similarly 3.9Me from Kalogera &
Baym (1996), would indicate a transition density as low
as ntrans∼n0. Previously, the extreme causal equation of
P=(ε−4.6×1014)c2+Pm matched smoothly (i.e., without
a sharp discontinuity in ε) to a realistic nuclear matter EOS

(Negele & Vautherin 1973) at about twice saturation density
ntrans=2 n0 (Pm is a constant determined from the matching)
was shown to result in an upper limit of ≈3.2Me on the
maximum mass(Rhoades & Ruffini 1974). Later, by lowering
the matching density to nuclear saturation density n0, the
authors found ≈4.8Me as an upper limit on the maximum
mass(Brecher & Caporaso 1976). Related discussions can also
be found in, e.g., Zhang & Li (2019a).
These high theoretical limits on the maximum mass of

neutron stars around ≈3–4Me are quite beyond the observa-
tional bound of pulsars around 2.2Me (Cromartie et al. 2020);

Figure 7. Left: Radius of a 1.4 Me hybrid star vs. the transition density, with the red dashed (blue solid) curves showing the energy density discontinuity Δε/εtrans
contours for L=30 MeV (60 MeV); the horizontal line indicates an upper bound R=13.6 km consistent with recent observations. Right: radius of a 1.4 Me hybrid
star vs. the maximum mass, with the red dashed (blue solid) curves showing the squared sound speed cQM

2 contours for L=30 MeV (60 MeV). There are cases for
which no 1.4 Me hybrid star is possible shown with breaks in the curves. The vertical line marks the lower bound on the maximum mass 2 Me.

Figure 8. Radius of a 1.4 Me hybrid star vs. the energy density discontinuity
Δε/εtrans, for the transition density ntrans=1, 1.5 n0. Figure 9. Contour plots showing the tidal deformability of a M1.4 hybrid star

Λ1.4 as a function of the CSS parameters of the high-density EOS. The
dependence on the CSS parameters ( e eDn n ,trans 0 trans) are shown with the
quark matter sound speed varying between =c 1 3QM

2 and 1 and the symmetry
energy slope being L=30 MeV (dashed curves) and L=60 MeV (solid
curves).
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observations of accreting black holes, on the other hand, hinted
at a paucity of sources with masses below 5Me (e.g., Bailyn
et al. 1998; Özel et al. 2010; Farr et al. 2011; Kreidberg et al.
2012). However, binary mergers involving one or two
companions with masses that fall into the so-called mass gap
range (≈3–5Me) are hard to distinguish(e.g., Abbott et al.
2020; Tsokaros et al. 2020; Wyrzykowski & Mandel 2020).

In Figure 9 we show contour plots of the tidal deformability
for 1.4Me hybrid stars, Λ1.4, as a function of the CSS
parameters ( e eDn n ,trans 0 trans) of the high-density EOS. The
calculations are done with the quark matter sound speed
varying between =c 1 3QM

2 and 1. There are relatively small
differences between the results with two different symmetry
energy slope values chosen, L=30MeV and 60MeV; see
also Figure 6.

It has been widely discussed in the literature that there exists
an empirical relation between the tidal deformability and radius
for a fixed-mass star(e.g., Yagi & Yunes 2017; De et al. 2018;
Fattoyev et al. 2018; Malik et al. 2018; Raithel et al. 2018;
Perot et al. 2019; Tews et al. 2019; Zhou et al. 2019) which
translates the Λ measurement through gravitational-wave
observations into that of the radius. We show in Figure 10
our results for a 1.4Me hybrid star (when such configurations
exist) with L=30MeV and two exemplary transition densities
ntrans/n0=1.5, 2.5. Increasing cQM

2 leads to larger values of
R1.4 and Λ1.4, while increasing Δε does the opposite. Large
discontinuities in the energy density Δε are located in the
lower left corner of the plot: for ntrans/n0=1.5, Δε>εtrans
indicates that R1.4<10.2 km and Λ1.4<162. It may still be
possible to derive some similar empirical relation for hybrid
EOSs relating Λ1.4 and R1.4, but for a given nuclear matter

model the unknown threshold density ntrans has a nontrivial
effect. Should further information on the phase transition
density in dense matter be learned in the future, possibly from
heavy-ion collision experiments, a better empirical relation can
be evaluated for the use of coherent analyses of the dense
matter EOS.
Finally, Figure 11 illustrates current uncertainties in the

combined tidal deformability L̃ for hybrid stars within the
present QMF + CSS framework, depending on the phase
transition parameters ( e eDn n c, ,trans 0 trans QM

2 ). We show the
results for two mass ratios q=0.7, 1. The L̃ uncertainty is
comparable with the current GW170817 constraint, and tends
to grow with the chirp mass. In addition, very small values of L̃
for high chirp masses – ~ M1.6 1.8 are only possible for
the equal mass ratio q=1, but not allowed for q=0.7. This is
because more symmetric binary systems have higher chances
of both components reaching the more compact branch with
small tidal deformabilities. As previously discussed, first-order
phase transitions (Δε/εtrans0.2) below 1.31 n0 or 1.46 n0,
which are too weak, are strongly disfavored in the present study
considering both heavy pulsar measurements Mmax and radii
constraints R1.4<13.6 km. This is also consistent with our
results for L̃, which indicate that transition densities that are too
small are more likely to break the upper bound on L̃ from
GW170817, as the density ranges probed by measuring tidal
parameters of canonical-mass mergers from gravitational
waves and radius inference of canonical-mass NSs from
x-ray observations are the same. We further illustrate this
point in Figure 12, where the uncertainty bands of L̃ regarding
the squared sound speed cQM

2 are shown as a function of the
mass ratio q. The calculations are done for transition densities

=n n1, 1.5trans 0 and e eD = 0.2, 0.5trans in the case of
L=30 MeV; the chirp mass is fixed to be = M1.186
as in GW170817. The parameter space ruled out by L̃  720 is
consistent with Figure 8 where an upper bound on
R1.4�13.6 km is applied. Future measurements of more
binary neutron star mergers with different chirp masses and
mass ratios, with an accuracy of the extracted tidal deform-
ability comparable to or better than GW170817, hold the
promise of reducing the uncertainties significantly.

6. Summary

To understand the dependence of neutron star observables on
both the nuclear symmetry energy (primarily its slope L) and
the hadron-quark phase transition parameters, we extend our
previous QMF model for nuclear matter and study hybrid star
EOSs with quark matter in their dense cores. Assuming that the
hadron-quark phase transition is of first order and characterized
by a sharp interface, low-density hadronic matter described by
QMF transforms into a high-density phase of quark matter
modeled by the generic CSS parameterization, in terms of the
critical density at which the transition occurs ntrans, the strength
of the transition e eD trans, and the “stiffness” of the high-
density phase, which we choose to vary between two extreme
cases, =c 1 3QM

2 (the conformal limit in perturbative QCD
matter; soft EOS) and 1 (the causality limit; stiff EOS).
Exploring vastly different combinations of these parameter
values (L, e eDn n c, ,trans 0 trans QM

2 ), we then extensively
study and discuss masses, radii, and tidal deformabilities of
hybrid stars obtained, and confront our results with constraints
from multimessenger observations although possible phase

Figure 10. Tidal deformability vs. radius for a 1.4 Me hybrid star with the
transition density ntrans/n0=1.5, 2.5 and the symmetry energy slope
L=30 MeV. The ntrans/n0=2.5 curve is shorter than the ntrans/n0=1.5
case due to greater softening of the hybrid star EOSs and consequently lower
tidal deformability. The squared sound speed is explicitly indicated to vary
between =c 1 3QM

2 and 1. The energy density discontinuity is calculated up to
e eD = 1.5trans . For different transition densities, there appear universal

relations for a given neutron star mass between Λ and R(e.g., Annala
et al. 2018; Tews et al. 2019) in the case of no phase transitions(e.g., Yagi &
Yunes 2017; De et al. 2018; Fattoyev et al. 2018; Malik et al. 2018; Raithel
et al. 2018; Perot et al. 2019; Zhou et al. 2019). The universal relation for
1.4 Me compact stars from Tews et al. (2019) is also shown for comparison.
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transitions were typically not taken into account in data
analyses of those observations.

While fixing the nuclear symmetry energy at its preferred
value of Esym=31MeV, a variation of its slope within the
empirical range L≈30–60MeV leads to a radius difference
Δ R≈1 km for a 1.4Me star, which holds true for both
normal hadronic stars and hybrid stars in our calculations. We
confirm that in the case of hybrid stars, the lower the transition
threshold density ntrans, the larger the maximum massMmax; the
larger the discontinuity in energy density at the transition Δε,
the smaller the typical radius. PSR J0030+0451 could be either
a normal neutron star or a hybrid star with a quark core, given
the relatively large uncertainties in its radius inference.

Finally, parameter spaces for both the mass and radius are
found to be much more extended for hybrid stars compared to
those of purely hadronic ones. In particular, for normal neutron
stars within QMF the typical radius R1.4 and the maximum
mass Mmax remain close to ∼12 km and ∼2.1Me, respectively,
whereas for hybrid stars, the radius can be in the range of
R1.4≈9.6–13.6 km, while the maximum mass varies between
Mmax≈2–3.6Me. The combination of stiffness in high-
density quark matter (that helps reach high masses) and the
strength of phase transition (that ensures compatibility with
small radius/tidal deformability of intermediate-mass stars), if
suitably chosen, enhances compatibility with data. We also find
that to be consistent with available observational constraints,
primarily from heavy pulsar mass measurements and typical
radius estimates, phase transitions that are too weak happening
at low densities close to nuclear saturation are strongly
disfavored.
We conclude that it is possible to constrain the nuclear

symmetry energy slope and the hadron-quark first-order phase
transition properties coherently from mass–radius and tidal
deformability measurements of neutron stars, in line with major
goals of x-ray missions (e.g., NICER, eXTP) and LIGO/Virgo
gravitational-wave detectors. Detailed information on the
symmetry energy slope L can be extracted from (especially
the radius) measurements of canonical-mass ∼1.4Me stars,
while more massive stars around 2Me probe the density range
in the vicinity of possible quark deconfinement. Future
opportunities to study dense matter EOS from gravitational-
wave signals of binary neutron star mergers are also
quantitatively analyzed. Loud gravitational-wave detection
events and promising multimessenger observations from these
systems in the next decade will provide data with even better
precision and help improve our understanding of the phase
state of cold dense matter, with the prospects of constraining
the onset density and transition strength for possible strong
phase transitions encountered in the neutron star interiors.

Figure 11. Current uncertainties in the combined tidal deformability L̃ for hybrid stars as a function of the chirp mass, depending on phase transition parameters
( e eDn n c, ,trans 0 trans QM

2 ). The transition density ntrans/n0 is explicitly indicated. The calculations are done for the symmetry energy slope L=30 MeV. The mass
ratio is chosen to be q=0.7 (left) and q=1 (right). The chirp mass for GW170817 = M1.186 is also indicated with the constraint of L̃ 70 720 (Abbott
et al. 2019). We note that very small values of L̃  20 for high chirp masses – ~ M1.6 1.8 are only possible for q=1 and not allowed for q=0.7; see the text
for details.

Figure 12. Combined tidal deformability L̃ for hybrid stars as a function
of the mass ratio q, with the transition density =n n 1, 1.5trans 0 ,

( )e eD = 0.2 0.5trans and =c 1 3, 1QM
2 . The chirp mass is fixed to be

= M1.186 as in GW170817, and its upper L̃ constraint is shown with a
horizontal line. The calculations are done for the symmetry energy slope
L=30 MeV.
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