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We propose a nonlinear, wavelet-based signal representation that is translation invariant and robust to
both additive noise and random dilations. Motivated by the multi-reference alignment problem and
generalizations thereof, we analyze the statistical properties of this representation given a large number of
independent corruptions of a target signal. We prove the nonlinear wavelet-based representation uniquely
defines the power spectrum but allows for an unbiasing procedure that cannot be directly applied to the
power spectrum. After unbiasing the representation to remove the effects of the additive noise and random
dilations, we recover an approximation of the power spectrum by solving a convex optimization problem,
and thus reduce to a phase retrieval problem. Extensive numerical experiments demonstrate the statistical
robustness of this approximation procedure.

Keywords: multi-reference alignment; method of invariants; wavelets; signal processing; wavelet
scattering transform.

1. Introduction

The goal in classic multi-reference alignment (MRA) is to recover a hidden signal f : R — R from a
collection of noisy measurements. Specifically, the following data model is assumed.

MobEL 1 (Classic MRA). The classic MRA data model consists of M independent observations of a
compactly supported, real-valued signal fe L*(R):

Y@ =fa—1) + g, 1<j<M, (L.1)

where:
(i) supp(y) S[—3.5]for1 <j< M.

(i) {tj}jﬁi | are independent samples of a random variable 7 € R.
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2 M. HIRN AND A. LITTLE

(iii) {8j(x) }in | are independent white noise processes on [ - %, %] with variance o2.

The signal is thus subjected to both random translation and additive noise. The MRA problem
arises in numerous applications, including structural biology [32,64,65,70,71,79], single cell genomic
sequencing [51], radar [43,85], crystalline simulations [76], image registration [18,40,69] and signal
processing [85]. It is a simplified model relevant for cryo-electron microscopy (cryo-EM), an imaging
technique for molecules that achieves near atomic resolution [11,14,75]. In this application one seeks
to recover a three-dimensional reconstruction of the molecule from many noisy two-dimensional
images/projections [41]. Although MRA ignores the tomographic projection of cryo-EM, investigation
of the simplified model provides important insights. For example, [5,66] investigate the optimal sample
complexity for MRA and demonstrate that M = © (o%) is required to fully recover f in the low signal-
to-noise regime when the translation distribution is periodic; this optimal sample complexity is the
same for cryo-EM [7,82]. Recent work has established an improved sample complexity of M = @ (o%)
for MRA when the translation distribution is aperiodic [1], and this rate has been shown to also hold
in the more complicated setting of cryo-EM, if the viewing angles are non-uniformly distributed [72].
Problems closely related to Model 1 include the heterogenous MRA problem, where the unknown signal
f is replaced with a template of k unknown signals f{, ..., f; [16,54,66,77], as well as multi-reference
factor analysis, where the underlying (random) signal follows a low-rank factor model and one seeks to
recover its covariance matrix [50].

Approaches for solving MRA generally fall into two categories: synchronization methods and
methods that estimate the signal directly, i.e. without estimating nuisance parameters. Synchronization
methods attempt to recover the signal by aligning the translations and then averaging. They include
methods based on angular synchronization [8,15,24,67,73,84], where for each pair of signals the best
pairwise shift is computed and then the translations are estimated from this pairwise information [6], and
semi-definite programming [4,9,10,25], which approximates the quasi-maximum likelihood estimator of
the shifts by relaxing a non-convex rank constraint. However, these methods fail in the low signal-to-
noise regime. Methods that estimate the signal directly include both the method of moments [44,48,72]
and expectation maximization, or EM-type, algorithms [1,30]; a number of EM-type algorithms have
also been developed for the more complicated cryo-EM problem [33,68]. An important special case of
the method of moments is the method of invariants, which seeks to recover f by computing translation
invariant features, and thus avoids aligning the translations. However, the task is a difficult one, as a
complete representation is needed to recover the signal, and yet the representation may be difficult
to invert and corrupted by statistical bias. Generally, the signal is recovered from translation invariant
moments, which are estimated in the Fourier domain [29,44]. Recent work [5,14] utilizes such Fourier
invariants (mean, power spectrum and bispectrum) and recovers]?by solving a non-convex optimization
problem on the manifold of phases.

Classic MRA however fails to capture many of the biological phenomena arising in molecular
imaging, such as the random rotations of the molecules and the tomographic projection associated with
the imaging of three-dimensional objects. Another shortcoming is that the model fails to capture the
dynamics that arise from flexible regions in macromolecular structures. These flexible regions are very
important in structural biology, for example in understanding molecular interactions [36,39,52,53] and
molecular recognition of epigenetic regulators of histone tails [17,31,58]. The large-scale dynamics of
these regions makes imaging challenging [81], and thus sample preparation in cryo-EM generally seeks
to minimize these dynamics by focusing on well-folded macromolecules frozen in vitreous ice [63].
However, this ‘may severely impact... the nature of the intrinsic dynamics and interactions displayed
by macromolecules’ [63]. Although modern cryo-EM is making great strides in understanding flexible
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WAVELET INVARIANTS FOR MRA 3

(a) Molecule with flexible side chain. (b) Diffeomorphism of Figure 1a.

FiG. 1. Dynamics arising from flexible regions in macromolecular structures [63].

systems [3,37,38,59], formulating models that are more capable of capturing the motions associated
with the flexible regions of macromolecules could open the door to applying cryo-EM more broadly,
i.e. to less well-folded macromolecules. Mathematically, the motion of the flexible region can be
modeled as a diffeomorphism. See Fig. 1, which shows a molecule with a flexible side chain (1(a))
and a diffeomorphism resulting from movement of the flexible region (1(b)). Figure 1(a) is taken from
[63], and Fig. 1(b) was obtained by deforming it.

This article thus generalizes the classic MRA problem to include a random diffeomorphism.
Specifically, we consider recovering a hidden signal f : R — R from

Y =Lfx—1) +g) . 1<j<M,

where L, is a dilation operator that dilates by a factor of (1 — 7). The dilation operator L, is a simplified
model for more general diffeomorphisms Lifx) = fEx), since in the simplest case when ¢ (x) is
affine, L, simply translates and dilates f (see Section 2.1). Dilations are also relevant for the analysis
of time-warped audio signals, which can arise from the Doppler effect and in speech processing and
bioacoustics. For example, [60—62] consider a stationary random signal f(x), which is time-warped, i.e.
D, f(x) = VT (X)f (¢ (x)), and use a maximum likelihood approach to estimate ¢. In [27,28], a similar
stochastic time warping model is analyzed using wavelet based techniques. The noisy dilation MRA
model considered here corresponds to the simplest case of time-warping, when ¢ is an affine function.
This special case is in fact very important in imaging applications [22,23,46,57,69,80], where it is critical
to compute features which are scale invariant, as objects are naturally dilated by the ‘zoom’ of an image.

A new approach is needed to solve this more general MRA problem, as Fourier invariants will
fail, being unstable to the action of diffeomorphisms, including dilations. The instability occurs in the
high frequencies, where even a small diffeomorphism can significantly alter the Fourier modes. We
instead propose L%(R) wavelet coefficient norms as invariants, using a continuous wavelet transform.
This approach is inspired by the invariant scattering representation of [56], which is provably stable
to the actions of small diffeomorphisms. However, here we replace local averages of the modulus of
the wavelet coefficients with global averages (i.e. integrations) of the modulus squared, thus providing
rigid invariants that can be statistically unbiased. Similar invariant coefficients have been utilized in
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4 M. HIRN AND A. LITTLE

a number of applications including predicting molecular properties [34,35] and quantum chemical
energies [45], and in microcanonical ensemble models for texture synthesis [19]. Recent work [42]
has also generalized such coefficients to graphs.

1.1 Notation

The Fourier transform of a signal f € L' (R) is
flo) = / Fe™™ dx.

We remind the reader that compactly supported L?(R) functions are in L' (R). The power spectrum is
the nonlinear transform P : L2(R) — L!(R) that maps f to

(Pf)(w) = |f(@)?, weR.

We denote f(x) < Cg(x) for some absolute constant C by f(x) < g(x). We also write f(x) = O(g(x))
if [f(x)| < Cg(x) for all x > x, for some constants x,, C > 0; f(x) = o(g(x)) denotes f(x)/g(x) — 0
as x — oo; f(x) = ©(g(x)) denotes Cg(x) < |[f(x)] < C,og(x) for all x > x, for some constants
Xg, C1, C; > 0. The minimum of a and b is denoted a A b, and the maximum by a Vv b.

2. MRA models and the method of invariants

Standard MRA models are generalized to models that include deformations of the underlying signal in
Section 2.1. Section 2.2 reviews power spectrum invariants and introduces L?(R) wavelet coefficient
invariants. Theorem 2.4 proves wavelet coefficient invariants computed with a continuous wavelet
transform and a suitable mother wavelet are equivalent to the power spectrum, showing there is no
information loss in the transition from one representation to the other.

2.1 MRA data models

A standard MRA scenario considers the problem of recovering a signal f € L?(R) in which one
observes random translations of the signal, each of which is corrupted by additive noise. The problem
is particularly difficult when the signal-to-noise ratio (SNR) is low, as registration methods become
intractable. In [5,13,14,16,54,74] the authors propose a method using Fourier-based invariants, which
are invariant to translations and thus eliminate the need to register signals.

A more general MRA scenario incorporates random deformations of the signal f, which could be
used to model underlying physical variability that is not captured by rigid transformations and additive
noise models. For example [4,7] consider a discrete signal f corrupted by an arbitrary group action,
[47,85] consider random deformations arising in RADAR and [2] considers a generalization of MRA
where signals are rescaled by random constants. Another natural mathematical model is small, random
diffeomorphisms, which leads to observations of the form

Vi) =Lfe—1) +g, 1<j<M, 2.1)
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WAVELET INVARIANTS FOR MRA 5

where ¢; € C'(R) is a random diffeomorphism, t; € R is a random translation and the signals ¢;(x) are
independent white noise random processes. The transform L, is the action of the diffeomorphism ¢ on f,

Lef(x) =f(x).

If ||(§”1)’||C>Q < 00, then one can verify L;: L2(R) — L%(R).

One of the keys to the Fourier invariant approach of [5,13,14,16,54,74] is the authors can unbias
the Fourier invariants of the noisy signals, thus allowing them to devise an unbiased estimator of the
Fourier invariants of the signal f (or a mixture of signals in the heterogeneous MRA case). For the
diffeomorphism model (2.1) this would require developing a procedure for unbiasing the (Fourier)
invariants of {yj}j"i | against both additive noise and random diffeomorphisms.

In order to get a handle on the difficulties associated with the proposed diffeomorphism model,
in this paper we consider random dilations of the signal f, which corresponds to restricting the
diffeomorphism to be of the form

;(x>=1i, 7] < 172.
— 7T

Specifically, we assume the following noisy dilation MRA model.

MobpEL 2 (Noisy dilation MRA data model). The noisy dilation MRA data model consists of M
independent observations of a compactly supported, real-valued signal fe L?(R):

where L is an L' (R) normalized dilation operator,

Lfw=0-07'f(1-07").

In addition, we assume the following:
(i) supp(y) [ — 3. 3]for1 <j< M.
(i) {tj}j"i | are independent samples of a random variable # € R.

(iii) {g}jﬂi | are independent samples of a bounded, symmetric random variable T satisfying

teR , E@x) =0 , Var(x)=1n> , |1|<1/2.

(iv) {e;(x)}™ | are independent white noise processes on | — 1, 1] with variance o2
j M j=1 p p 202

REMARK 2.1 The interval [— % %] is arbitrary and can be replaced with any interval of length 1. In

addition, the spatial box size is arbitrary, i.e. [— % %] can be replaced with [— %’ %] All results still
hold with o +/N replacing o wherever it appears.

Thus, the hidden signal f is supported on an interval of length 1, and we observe M independent
instances of the signal that have been randomly translated, randomly dilated and corrupted by additive
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6 M. HIRN AND A. LITTLE

white noise. We assume the hidden signal is real, but the proposed methods can also handle complex
valued signals with minor modifications. Recall ¢(x) is a white noise process if €(x) = dB,, i.e. it is the
derivative of a Brownian motion with variance o-2.

While the noisy dilation MRA model does not capture the full richness of the diffeomorphism
model, it already presents significant mathematical difficulties. Indeed, as we show in Section 5, Fourier
invariants, specifically the power spectrum, cannot be used to form accurate estimators under the action
of dilations and random additive noise. The reason is that Fourier measurements are not stable to the
action of small dilations (measured here by |t|), since the displacement of l/,r? (w) relative to f(a))
depends on |w|. Intuitively, high-frequency modes are unstable, and yet high frequencies are often
critical; for example removing high frequencies increases the sample complexity needed to distinguish
between signals in a heterogeneous MRA model [5]. We thus replace Fourier-based invariants with
wavelet coefficient invariants, which are defined in Section 2.2. As we show the wavelet invariants of
the signal f can be accurately estimated from wavelet invariants of the noisy signals {yj}j"i {» with no
information loss relative to the power spectrum of f.

For future reference we also define the following dilation MRA model, which includes random
translations and random dilations but no additive noise. Thus, Models 1 and 3 are both special cases of
Model 2.

MopEL 3 (Dilation MRA data model). The dilation MRA data model consists of M independent
observations of a compactly supported, real-valued signal fe L?(R):

YW =Lfa—1). 1<j<M, 2.3)

where L, is an L' (R) normalized dilation operator,

L =1 -7 (1-07"x).
In addition, we assume (i)—(iii) of Model 2.

2.2 Method of invariants

We now discuss how invariant representations can be used to solve MRA data models and introduce the
wavelet invariants used in this article.

2.2.1 Motivation and related work Let T,f(x) = f(x — t) denote the operator that translates by ¢
acting on a signal f. Invariant measurement models seek a representation @ (f) € % in a Banach space
4 such that

O([Tf)=d(f), VieR. 2.4)

In MRA problems, one additionally requires that
D(f) = P(g) <= g =T,f forsomet eR. 2.5)

The first condition (2.4) removes the need to align random translations of the signal f, whereas the
second condition (2.5) ensures that if one can estimate @ (f) from the collection {@ (yj)}in |» then one
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WAVELET INVARIANTS FOR MRA 7

can recover an estimate of f (up to translation) by solving

f*= arginf |@(g) -2 ()l 4, (2.6)
geLINL2(R)

where || - || g is the Banach space norm.
When the observed signals {y;} =1 are corrupted by more than just a random translation, though, as

in Model 2, estimating @ (f) from {@(yj)}jﬁi | is not always straightforward. Indeed, one would like to
compute

_ 1 U
Pyf) =12 20, 2.7)
j=1

but the quantity @ ,(f) is not always an unbiased estimator of @ (f), meaning that lim,, , . @,,(f) #
@(f). In order to circumvent this issue, one must select a representation ¢ such that

E®(y) = D) + by (F..40), (2.8)

where by, (f, .#) is a bias term depending on the choice of @, f, and the signal corruption model .#. If
(2.8) holds and if we can compute a b such that Eby, (y;, #) = by (f, #) + & for |bg (f, #)| > 131,
then one can amend (2.7) to reduce the bias

- 14 5
Py () = 57 (PO — by Oy, ).
j=1

Jj=

in which case
lim &,,(f) = D(f) + 8
M— o0

almost surely by the law of large numbers. The main difficulty therefore is twofold. On the one hand,
one must design a representation @ that satisfies (2.4), (2.5) and (2.8) with a bias b that can be estimated;
on the other hand, the optimization (2.6) must be tractable. For random translation plus additive noise
models (i.e., Model 1), the authors of [5,14] describe a representation @ based on Fourier invariants
that satisfies the outlined requirements and for which one can solve (2.6) despite the optimization being
non-convex. The Fourier invariants include ?(0) (i.e. the integral of f), the power spectrum of f and the
bispectrum of f. Each invariant captures successively more information in f. While f(O) carries limited
information, the power spectrum recovers the magnitude of the Fourier transform, namely it recovers the
non-negative, real-valued function p(w) such thatf(a)) = ,o(a))ei@(‘*’), but the phase information 0 (w) is
lost. Since ]":f(a)) = e‘iw’? (w), the power spectrum is invariant to translations as the Fourier modulus
kills the phase factor induced by a translation ¢ of f. However, it is in general not possible to recover a
signal from its power spectrum, although in certain special cases the phase information can be resolved;
results along these lines are in the field of phase retrieval [26,78]. The bispectrum is also translation
invariant and invertible so long asf(a)) # 0 [66].

In Section 5 we show that it is impossible to significantly reduce the power spectrum bias for
Model 2, which includes translations, dilations and additive noise. We thus propose replacing the power
spectrum with the L?(R) norms of the wavelet coefficients of the signal f. These invariants satisfy
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8 M. HIRN AND A. LITTLE

(2.4) and (2.8) for Model 2 and yield a convex formulation of (2.6). They do not satisfy (2.5) for general
f € L2(R), but Theorem 2.4 in Section 2.2.2 shows that knowing the wavelet invariants of f is equivalent
to knowing the power spectrum of f, which means that any phase retrieval setting in which recovery is
possible will also be possible with the specified wavelet invariants. For example if the signal lives in a
spline or shift invariant space in addition to being realvalued, then it can be recovered from its phaseless
measurements [26,78].

2.2.2  Wavelet invariants We now define the wavelet invariants used in this article. A wavelet ¢ €
L2(R) is a waveform that is localized in both space and frequency and has zero average,

/I[I(x)dx=0.

Note throughout this article v will always denote a wavelet in L' N L?(R) with zero average, satisfying

T 2
I 1l, = 1 as well as the classic admissability condition f W dw < oo. A dilation of the wavelet by
a factor A € (0, 00) is denoted,

¥, () = A2y (),

where the normalization guarantees that ||/, |, = [[¥|l, = 1. The continuous wavelet transform W
computes

Wf = {f %, (%) : A € (0,00), x € R}.

The parameter A corresponds to a frequency variable. Indeed, if & is the central frequency of v, the
wavelet coefficients f * v, recover the frequencies of f in a band of size proportional to A centered
at A&,. Thus, high frequencies are grouped into larger packets, which we shall use to obtain a stable,
invariant representation of f.

The wavelet transform Wf is equivariant to translations but not invariant. Integrating the wavelet
coefficients over x yields translation invariant coefficients, but they are trivial since [, = 0. We
therefore compute L?(R) norms in the x variable, yielding the following nonlinear wavelet invariants:

DEFINITION 2.1 (Wavelet invariants). The L2 wavelet invariants of a real-valued signal f € L' NL2(R)
are given by

SHG) = IIf % ¥, 15, * € (0,00), (2.9)
where V¥, (x) = 21724 (Ax) are dilations of a mother wavelet .

Throughout this article 1 can be taken as a Morlet wavelet, in which case i is constructed to have
frequency centered at £ by ¥ (x) = Cén_1/4e_x2/2(ei5)‘ - 6_52/2) for C.=01- P 26_3$2/4)_1/2,
but results hold more generally for what we refer to as k-admissible wavelets, where k > 0 is an even
integer. See Appendix A for a precise description of this admissibility criteria. The wavelet invariants
can be expressed in the frequency domain as

1 ~ —~
(SHO) = 7 / F(@) 19, (@) * do,

which motivates the following definition of ‘wavelet invariant derivatives’.
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WAVELET INVARIANTS FOR MRA 9

DEFINITION 2.2 (Wavelet invariant derivatives). The n-th derivative of (Sf)(A) is defined as

1V, (@)]? do.

Y L N
(SH ) ~=E/lf(w)| o

REMARK 2.2 Definition 2.1 assumes f: R — R, which allows the wavelet ¥ to be either real or
complex. Our results can easily be extended to complex f, but a strictly complex wavelet would be
needed, with Sf (1) computed for all 1 € (—o0,00) \ 0.

REMARK 2.3 For a discrete signal of length n, computing the wavelet invariants via a continuous wavelet
transform is O(n?), while computing the power spectrum is O(n log ). Thus, one pays a computational
cost to achieve greater stability with no loss of information. On the other hand, if wavelet invariants are
computed for a dyadic wavelet transform (i.e. only for O(logn) X’s), the computational cost is the same
and stability is maintained, but more information is lost.

REMARK 2.4 When (Pf)(w) = [}‘\(a))|2 is continuous, Definition 2.2 reduces to a normal derivative,
i.e. one can check that (Sf)(") ) = d;,, (Sf)(A). However, when Pf is not continuous, in general
(SH™ (1) ;é i (Sf) (1), and (Sf)? (1) is more convenient for controlling the error of the estimators
proposed in this article. Throughout this article, the notation (Sf) M) (%) will thus denote the derivative
of Definition 2.2 and 7 A 7 (8f) (1) will denote the standard derivative.

Under mild conditions, one can show that S : L2(R) — L' N C(0, 00). The values A = 2 forj € Z
correspond to rigid versions of first-order L?(R) wavelet scattering invariants [56]. The continuous
wavelet transform Wf is extremely redundant; indeed, for suitably chosen mother wavelets, the dyadic
wavelet transform with A = 2/ for j € Z is a complete representation of f. However, the corresponding
operator S restricted to A = 2/ is not invertible. When one utilizes every frequency A € (0, 00), though,
the resulting L2(R) norms (Sf)(A) = ||f vy, ||% uniquely determine the power spectrum of f, so long as
the wavelet ¢ satisfies a type of independence condition.

ConpiITION 2.3  Define
195 @F = (10 @F + [, (-o)) 1@ > 0).

If for any finite sequence {w;}’_, of distinct positive frequencies, the collection {@; (a)i)|2};‘=1 is
linearly independent functions of X, we say the wavelet i satisfies the linear independence condition.

REMARK 2.5 Condition 2.3 i is stated in terms of |1/fk +(w)|? to avoid assumptions on whether w is real or

complex. When ¢ (x) € R, [ (@) = 2|1//)L(a))|2 fora) 0. When v is complex analytic, |1/’ NOIES

W;\ ()|?. When ¢ € C but not complex analytic, |y b4 () |2 simply incorporates a reflection of |1ﬁk (w)|?

about the or1g1n Since we assume f(x) € R, [, (o) 2 uniquely defines (Sf)(A), since (Sf)(X) =
ln ([f|2, |¢A | > by the Plancherel and Fourier convolution theorems.

THEOREM 2.4 Letf, g € L' NL?(R) and assume v satisfies Condition 2.3 and @ has compact support.
Then,

Sf = Sg <= Pf = Pg.
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10 M. HIRN AND A. LITTLE

Proof. First assume Pf = Pg, which means [}‘\(a))|2 = [g(w)|? for almost every @ € R. Using the
Plancheral and Fourier convolution theorems,

DU
(Sf)(“:/'f*“’k(x)'zdxzZ/V(wn%wwn?dw
1 _
= E/ |/g\(60)|2|1//)\(60)|2 dw = (Sg)(A), YA € (0,00).

Now suppose Sf = Sg. Since Sf and Sg are continuous in A, we have
1 FooN2 _raroni2) 17 2
0=(HR) - SR = o (lf(w)l — [g(w)] ) ¥ (@)|"dw, Y2 € (0,00).

Since f € L' N L2(R) we have f € L2 N L®(R) and thus Pf € L! N L®(R). By interpolation
we have Pf € L2(R), and the same for Pg. By applying Lemma 2.1 (stated below) with p(w) =
(Pf)(w) — (Pg)(w) (note p is continuous since f,g € L!(R)), we conclude Pf = Pg for almost
every w. d

LEMMA 2.1 Let p € L2(R) be continuous and assume p(w) = p(—w), IZ has compact support and
Condition 2.3. Then,

/p(a))@(wnzdw:ovx >0 = p=0ae.

The proof of Lemma 2.1 is in Appendix C. We remark that many wavelets satisfy Condition 2.3
and have compactly supported Fourier transform, so Theorem 2.4 is broadly applicable. For example,
Proposition 2.1 below proves that any complex analytic wavelet with compactly supported Fourier trans-
form satisfies Condition 2.3. Morlet wavelets satisfy Condition 2.3 (see Lemma C.1 in Appendix C) but
do not have compactly supported Fourier transform; however, $ does have fast decay for a Morlet
wavelet and numerically we observe no issues. We also note, the assumption that 1}\ has compact
support in Theorem 2.4 can be removed if f, g are bandlimited. The following Proposition, proved in
Appendix C, gives some sufficient conditions guaranteeing Condition 2.3.

ProposiTION 2.1 The following are sufficient to guarantee Condition 2.3:

@) |1’/7 (w)|* has a compact support contained in the interval [a, b], where a and b have the same
sign, e.g. complex analytic wavelets with compactly supported Fourier transform.

(i) |$ (w) |2 € C®(R) and there exists an N such that all derivatives of order at least N are non-zero
at w = 0, e.g. the Morlet wavelet.

REMARK 2.6 In practice, Pf, Sf are implemented as discrete vectors, and Sf is obtained from Pf via
matrix multiplication, i.e. Sf = F(Pf) for some real matrix F with FTF strictly positive definite.
Thus, ||Pf — Pgll, < a];iLHSf — Sgll,, where o,,;, > 0 is the smallest singular value of the matrix
F, and the spectral decay of F, which can be explicitly computed, thus determines the stability of the
representation. The smoother the wavelet, the more rapidly the spectrum decays, since when Py € CP,
FTF is defined by a C? kernel and thus has eigenvalues that decay like o(l/nl’“) [20]. There is thus
a tradeoff between smoothness and stability. In this article we choose smoothness over stability, since

smoothness is required for unbiasing noisy dilation MRA, and in our experiments the Morlet wavelet
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WAVELET INVARIANTS FOR MRA 11

yielded the best results. We therefore invert the representation by solving an optimization problem that
is initialized to be close to the desired solution (see Section 6.5), and we avoid computing the pseudo-
inverse of F, which is unstable for our smooth wavelet.

3. Unbiasing for classic MRA

In this section we consider the classic MRA model (Model 1). We discuss unbiasing results for both the
power spectrum and wavelet invariants, as well as simulation results comparing the two methods. In the
following proposition we establish unbiasing results for the power spectrum by rederiving some results
from [14], extended to the continuum setting. The proposition is proved in Appendix D.

ProposiTION 3.1 Assume Model 1. Define the following estimator of (Pf)(w):

_ 1y
PhH@) = 2 > (Py)(@) = o,

j=1

Then with probability at least 1 — 1/72,

(P (@) — (Pf)(@)] < (Ilf||1 +0). (3.1

m

We obtain an identical result for wavelet invariants (Proposition 3.2) when signals are corrupted by
additive noise only. See Appendix D for the proof.

ProposiTION 3.2 Assume Model 1. Define the following estimator of (Sf)(X):

~ 1 ¥
SHM) = [V Z(Syj)()») — o2,

J=1

Then with probability at least 1 — 1/72,

~ 2t
1(SH ) = (SH M) < J—%(IVII1 +0). (3.2)

As M — oo, the error of both the power spectrum and wavelet invariant estimators decays to zero
at the same rate, and one can perfectly unbias both representations. As demonstrated in Section 5, this
is not possible for noisy dilation MRA (Model 2), as there is a non-vanishing bias term. However, a
nonlinear unbiasing procedure on the wavelet invariants can significantly reduce the bias.

We illustrate and compare additive noise unbiasing for power spectrum estimation using (Pf), the
power spectrum method of Proposition 3.1 and (Sf), the wavelet invariant method of Proposition 3.2.
To approximate (Pf) from the wavelet invariants (S’}‘) we apply the convex optimization algorithm
described in Section 6.5 to obtain (Psf) the power spectrum approximation that best matches the
wavelet invariants (Sf ). Thus, throughout this article, (Psf ) denotes a power spectrum estimator obtained
by first unbiasing wavelet invariants and then running an optimization procedure, while (Pf) denotes an
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12 M. HIRN AND A. LITTLE
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—— Target PS
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(a) Noisy PS (SNR = 0.56) (b) L2 error (SNR = 0.56) (c) L? error (M = 500)
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log,(M)
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FiG. 2. Simulation results for additive noise model for medium frequency Gabor f(x) = e cos(16x).

estimator computed by directly unbiasing the power spectrum. Our simulations compare the L? error of
both of these estimators, i.e. we compare ||Pf — 13}"||2 and ||Pf — F;fllz.

Figure 2(a) shows the uncorrupted power spectrum (red curve) of a medium frequency Gabor
function (f(x) = eS¢ cos(16x)), and the power spectrum after the signal is corrupted by additive noise
with level o = 273 (blue curve); the SNR of the experiment is 0.56 (see Section 6.1). Figure 2(b) shows
the L? error of the power spectrum estimation for the two methods as a function of log, (M) for a fixed
SNR, and Fig. 2(c) shows the L2 error as a function of log, (o) for a fixed M. The L2 errors for the two
methods are similar; however, estimation via wavelet invariants is advantageous when the sample size
M is small or the additive noise level o is large. As M becomes very large or o very small, the power
spectrum method is preferable as the smoothing procedure of the wavelet invariants may numerically
erase some extremely small scale features of the original power spectrum.

4. Unbiasing for dilation MRA

In this section we analyze the dilation MRA model (Model 3). We thus assume the signals have been
randomly translated and dilated but there is no additive noise.

In fact there is a simple algorithm to recover f under this model. Since ”fr,-”% = |[f||% /(1 — l'j),
1%/1 Z]Ai 1/ |[ij ||% is an unbiased estimator of 1/ |[f||%, and so |[f||% can be accurately approximated. Once
|[f||% is recovered, one can take any signal Vi and dilate it so that ||yj||% = |[f||%, and the result will be
an accurate approximation of the hidden signal f for M large. However, this approach collapses in the
presence of even a small amount of additive noise. In the presence of additive noise, an alternative is
to attempt a synchronization by centering each signal. The center ¢, of signal f can be defined in the
classical way by

1 2
= — dx.
I = U /x F)l

Since the signals y;(x — (¢; + 1;)) are perfectly aligned, one can thus attempt an alignment by defining
ij(x) = yj(x — Cy,-)- However ¢ ; (cf + tj) = O(o Vv o? + n), so significant errors arise in the
synchronization that cannot be resolved by averaging. As our goal is ultimately to produce a method
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WAVELET INVARIANTS FOR MRA 13

that can be extended to the noisy dilation MRA model, we abandon both the trivial solution (which
cannot be extended to noisy dilation MRA) and the synchronization approach (which produces large
errors) and explore a method based on empirical averages.

We first observe that random dilations cause Al,l Z]Ai 1(Pyj)(a)) and 1\%1 Z]Ai | (Syj)(k) to be biased
estimators of (Pf)(w) and (Sf)(X), and the bias for both is 0(172), where n2 is the variance of the
dilation distribution. However, if the moments of the dilation distribution are known and Pf, Sf are
sufficiently smooth, one can apply an unbiasing procedure to the above estimators so that the resulting
bias is 0(nk+2), where k > 2 is an even integer.

Throughout this section, we assume k > 2 is an even integer, and define the constants C; from the
first k/2 even moments of T by E[ti] = Cini fori = 2,4,...,k. Note since we assume E[Tz] = nz,
C, = 1. We define the constants B,, By, ..., B, by solving

C. B,C._ B,_,C
b 2mi2 272 po— 4.1)
i! (i—2)! 2!
fori = 2,4,...,k; these constants are deterministic functions of the moments of 7. A non-recursive
formula related to the Euler numbers can be derived, which defines B; explicitly in terms of C,, ..., C};

however, the recursive formula (4.1) is easier to implement numerically.
We introduce two additional moment-based constants that are defined by the C;, B; constants:

1

T := max Cf 4.2)
i=0,2,...
T/ o
E = max max (,—|Bi|) , 4.3)
i=0,2,....k j=0,...k+2—i \_j!

where Cy, |By| = 1, and when i = j = 0 in (4.3), (jT.—{|Bi|)m is replaced with 1.

REMARK 4.1 Since the distribution of t is bounded, we are guaranteed that T < oo, and in general
can consider{both T and E to be O(1) constants. For example for the uniform distribution, 7 < /3 and
|B;| < w < 1, which gives E < /3.

We utilize the following two lemmas, which are proved in Appendix E, to derive results for both the
power spectrum and wavelet invariants.

LemmaA 4.1 Let F,(r) = L((1 — 7)A) for some function L € CK+2(0, 00) and a random variable t
satisfying the assumptions of Section 2.1, and let k > 2 be an even integer. Assume there exist functions
A; R — R,R:R — Rsuch that

Apa (1= 1)2)

WLO0W)| < A for0<i<k+2
’ A2 (M)

<R,

and define the following estimator of L()):

4 k
G, (1) := F, (1) — Byn*F} () — Byn* FP (t) — ... = B F® (o).
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14 M. HIRN AND A. LITTLE
Then G, (7) satisfies

IE G, (1) — L] < kR(W) Agpn (W) REn) T2

Var G, (1) < KPR(MV)ZA()?
where

A= > AWA)QENT
0< iy <k+2,i+22
and E is the absolute constant defined in (4.3).

LEMMA 4.2 Let the assumptions and notation of Lemma 4.1 hold, and let 7, ..., 7}, be independent.
Define

| M
Loy =+ Z G, (7).
j=1
Then with probability at least 1 — 1/¢2

IL(L) — L] S kR(L) (Ak+2(?»)(2En)k+2 n fA()»)) .

M

The deviation of the estimator Z(A) from L()) thus depends on two things: (1) the bias of the
estimator that is O(n*t2) and (2) the standard deviation of the estimator that is O(UM_%), since

AA) = O0).
4.1 Power spectrum results for dilation MRA

We now show how this unbiasing procedure based on both the moments of 7 and the even derivatives
of Py can be used to obtain an estimator of Pf.

ProrosiTION 4.1 Assume Model 3 and Pf € CK2(R). Define the following estimator of (Pf)(w):
_ 1o
DIOEEDS [(Py,-)(w) — By a?(Py) (@) — ... — B Ak (Pyp® (w)]

j=1

where the constants B; satisfy (4.1). Let

2;() = o' (Pf) ()| for0 <i<k+2 , R(w)=max $2ip(d — D))
T 2110 (w)
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WAVELET INVARIANTS FOR MRA 15

Then for all @ # 0, with probability at least 1 — 1/¢2,

- 12
(B (@) — (PP @)] < kR(w) (9k+2<w> QEn* + %) , (4.4)

where

) = Z () 2;(w) 2En)"™ .
0<iy<k+2,i+>2

Proof. Since Pf is a translation invariant representation, we can ignore the translation factors {tk}i’[: 1
and consider the model V= erf . In addition since yj(x) e R, (Pyj) (w) = (Pyj)(—a)) and it is sufficient
to consider w € (0, 00). Proposition 4.1 then follows directly from Lemma 4.2 with A = w, L = Pf
since (Py;)(w) = (P))((1 — 1))w) = F (1), A; = £2;,and A = £2. O

We postpone a discussion of the shortcomings of Proposition 4.1 to Section 4.3, where we compare
the power spectrum and wavelet invariant results for dilation MRA.

4.2 Wavelet invariant results for dilation MRA

We now apply the same unbiasing procedure to the wavelet invariants. Unlike for the power spectrum,
where the error may depend on the frequency w (see (4.4) and Section 4.3), the wavelet invariant
error can be uniformly bounded independently of A with high probability. The following two Lemmas
establish bounds on the derivatives of (Sf)(X) and are needed to prove Proposition 4.2; they are proved
in Appendix B.

LEMMA 4.3 (Low-frequency bound). Assume Py € C™(R) and f € L'(R). Then the quantity
[A7(SF)™ (1)| can be bounded uniformly over all . Specifically:

IASH™ )] < 717

for ¥,, defined in (A1).

LEMMA 4.4 (High-frequency bound for differentiable functions). Assume Py € C™(R), and f €
L'(R). Then the quantity |A"”(Sf)"™ (1)| can be bounded by

®
I (SH™ ()] < ng”f/”%

for ®,, defined in (A2).

When i is a Morlet wavelet or more generally when v is (k + 2)-admissible as described in
Appendix A, these lemmas allow one to bound the error of the order k wavelet invariant estimator for
dilation MRA in terms of the following quantities:

®. .
AW =YIFT A SWIE . A = 3 AGWAMWQEN™,  (45)
0<iy<k+2,i4j>2
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16 M. HIRN AND A. LITTLE

where ¥;, ®; are defined in (A1), (A2) and E is defined in (4.3).

ProposITION 4.2 Assume Model 3, the notation in (4.5), and that v is (k + 2)-admissible. Define the
following estimator of (Sf)()1):

_ 1o
SHR) =+ Zl [(Sy,-)(x) — ByrPa2(8y)" (W) — ... — By ak(syp® m]
J=

where the constants B; satisfy (4.1). Then with probability at least 1 — 1/ 2,

g tA())
SHO) — SHOI S k (Ak+2<x)<2En>"+2 + W) .

Proof. Since Sf is a translation invariant representation, we can ignore the translation factors {z; }Q”: | and
consider the model Vi = L,/f . Since ¥ is k + 2-admissible, 1} € Ck+2(R), which guarantees (Sf)(}) €
C2(0, 00). We note that since f € LI(R), Pf is continuous, and the Leibniz integral rule guarantees
that (SH)™ (L) = d;n (Sf)(k) for 1 < n < k + 2. By applying Lemma 4.3, we have [A/(Sf)?(1)| <
v, |[f||2 forall 0 < i < k + 2, so that Lemma 4.2 holds for L(A) = (S/)(1), A;(A) = Wi|[f||2, and
R(») = 1. Now by applylng Lemma 4.4, we have [A/(SH)? ()] < O;lf'2/2% forall 0 < i < k+ 2, s0
that Lemma 4.2 also holds for L(1) = (Sf)(A), A;(A) = &,I|f'[|2/*%, and R(%) = 4 (note since || < 1

Ap (1= 1)) /Ap o (&) < 4). Thus, Lemma 4.2 in fact holds with A;(A) = (llli|[f||% A %Hf’”%);
since (Syj)(k) = SHA - rj)k) =F, (‘L'j), we obtain Proposition 4.2.

Since A;(A) < l1/,~|[f||2, Proposition 4.2 guarantees that the error can be uniformly bounded
independent of A. In addition, if the signal is smooth, the error for high-frequency A will have the
favorable scaling A ~>. An important question in practice is how to choose &, i.e. what order wavelet
invariant estimator minimizes the bias. Consider for example when ' ¢ L!(R), and Ap,(M) =
Yo |[f||%. By using a second-order estimator, we can decrease the bias from 0(n?) to O(n*), and we can
further decrease the bias to O(n®) by choosing k = 4. However, ¥, increases very rapidly in k. Indeed,
as can be seen from (Al) Ll/k increases like k!. Thus, one possible heuristic (assuming 7 is known) is to
choose k = k where k minimizes the bias upper bound k¥, ,, (2En)**2. Since ¥, increases factorially,

~ (Ck)* for some constant C, and k + 2 will be inversely proportional to 5, that is (k +2)~n -1
The following corollary of Proposition 4.2 then holds for any k& < k.

COROLLARY 4.1 Under the assumptions of Proposition 4.2, if lIJi(ZEn)i is decreasing for i < k+ 2, then
with probability at least 1 — 1/7%:

_ k2
1SHO) — (SHWI S IFIR (kwk+2(2En>k+2 + ;—A_Z) : (4.6)

Similarly, if @;(2En)" is decreasing for i < k + 2, then with probability at least 1 — 1/ 1

2
1(SHR) — (SHM)| < ”f "

2
(k()k S QEM? 4 tjﬁn) . 4.7
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WAVELET INVARIANTS FOR MRA 17

REMARK 4.2 We observe that for a discrete lattice I of A values, we can define the discrete l—n_orm
by llgllLigy = > er lg)| AL, Assume the lattice has cardinality n, and that ¥;(2En)’, ©;(2En)" are
decreasing for i < k + 2. Applying Proposition 4.2 with ¢t = /s and a union bound over the lattice
gives

sy/nk*n

157 = Sy S k(1 ¥ + 1 130) EnY 2 4 =

(113 + 1713

with probability at least 1 — 1/ s2. When n < M, which is the context for MRA, the 1-norm of the error
is O(n**t?) as M — oo.

4.3  Comparison

Although Propositions 4.2 and 4.1 at first glance appear quite similar, the wavelet invariant method has
several important advantages over the power spectrum method, which we enumerate in the following
remarks.

REMARK 4.3 Proposition 4.2 (wavelet invariants) applies to any signal satisfying f € L!(R), but
Proposition 4.1 requires Pf € CH2(R). Thus, as k is increased, the power spectrum results apply to
an increasingly restrictive function class. Furthermore, as discussed in Section 5, if the signal contains
any additive noise, Py; is not even C', which means the unbiasing procedure of Proposition 4.1 cannot
be applied. On the other hand, by choosing Pyr € C*(R), Sf will inherit the smoothness of the wavelet,
and the wavelet invariant results will hold for any f € L!(R) and any k.

REMARK 4.4 Since (Pf;)(§) = (Pf)((1 — 1)&), dilation will transport the frequency content at £ to
(1 — 7)&, so that the displacement is &. Thus, when & is very large, |(Pf)(§) — (Pf,)(£)]| can be large
even for t small. Because the wavelet invariants bin the frequency content, and these bins become
increasingly large in the high frequencies, this does not occur for wavelet invariants. More specifically,
there is always a signal f and frequency & for which |(Pf)(§) — (Pf) ()| is large regardless of k. Consider
for example when (Pf)(w) = ¢~ @6’ Then §£2,(&) ~ gk and |(Pf)(§) — (Pf) (&)| = 1. However, for
M large enough, the order k wavelet invariant estimator satisfies |(Sf)(A) — (Sf) M) = Oy, +2nk+2)
for all A. The wavelet invariants are thus stable for high-frequency signals, where the power spectrum
fails.

REMARK 4.5 For the wavelet invariants there will be a unique k that minimizes kWi, (REn)**+2, and
k does not depend on A. Furthermore, k can be explicitly computed given the wavelet {» and moment
constant E. On the other hand, the minimum of k§2; ,, (w) (2Ew)**+? with respect to k will depend on
both the frequency w and the signal f, so that k = k(w,f), and it becomes unclear how to choose the
unbiasing order.

4.4 Simulation results for dilation MRA

We first illustrate the unbiasing procedure of Propositions 4.1 and 4.2 for the high-frequency signal
fx) = e_s’C cos(32x). Figure 3 shows the power spectrum estimator Pf and the wavelet invariant
estimator PSf for k = 0,2, 4 for both small and large dilations, where PSf denotes the combined wavelet
invariant unbiasing plus optimization procedure (see Section 6.5). Higher order unbiasing is beneficial
for both methods for small dilations but fails for the power spectrum for large dilations. Both methods
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FI1G. 3. Order k = 0, 2,4 power spectrum estimators Pf (first two figures) and wavelet invariant estimators F;f (last two figures)

—5x2

for the signal f3(x) = e cos(32x). Figures 3(a) and 3(c) show small dilations and Figs 3(b) and 3(d) show large dilations.

will of course fail for  large enough, but for high-frequency signals the power spectrum fails much
sooner.

Next we compare ||Pf — 13)‘ I, and ||Pf — @Hz, the L2 error of estimating the power spectrum
of the target signal via the power spectrum estimators of Proposition 4.1 and via the wavelet invariant
estimators of Proposition 4.2, followed by a convex optimization procedure. We consider order k =
0,2, 4 estimators for both the power spectrum and wavelet invariants on the following Gabor atoms of
increasing frequency:

£, = e cos(8x)
H = e cos(16x)

F3(x) = e cos(32).

These functions satisfy f = Real(h) where (Ph)(w) = (/5)e~ @910 for £ = 8,16,32, and thus
exhibit the behavior described in Remark 4.4.

Simulation results are shown in Fig. 4; the horizontal axis shows log, (M) while the vertical axis
shows log, (Error). For each value of M, the error was calculated for 10 independent simulations and
then averaged. The unbiasing procedure of Propositions 4.1 and 4.2 requires knowledge of the moments
of the dilation distribution, but in practice these are unknown. Thus, the first two even moments of the
dilation distribution (2, C4774) were estimated empirically with the fourth-order estimators described
in Section 6.3 (see Definition 6.1). For the low-frequency signal, the fourth-order power spectrum
estimator was best for both small and large dilations and is preferable due to the lower computational
cost (see Remark 2.3). For the high-frequency signal, the fourth-order wavelet invariant estimator was
best for large dilations and WSC k = 2 and k = 4 were best and equivalent for small dilations.
For the medium-frequency signal, the higher order power spectrum estimators were best for small
dilations while the higher order wavelet invariant estimators were best for large dilations. Thus, the
simulation results confirm that the wavelet invariants will have an advantage over Fourier invariants
when the signals are either high frequency or corrupted by large dilations. We remark that one obtains
nearly identical error plots with oracle knowledge of the dilation moments, indicating that the empirical
moment estimation procedure is highly accurate in the absence of additive noise, even for small M
values.
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Fic. 4. L? error with standard error bars for dilation model (empirical moment estimation). Top row shows results for small
dilations (n = 0.06) and bottom row shows results for large dilations (n = 0.12). First, second, third column shows results for
low, medium, high frequency Gabor signals. All plots have the same axis limits.

5. Noisy dilation MRA model

Finally, we consider the noisy dilation MRA model (Model 2) where signals are randomly translated
and dilated and corrupted by additive noise. Section 5.1 gives unbiasing results for wavelet invariants
and Section 5.2 reports relevant simulations.

5.1 Wavelet inariant results for noisy dilation MRA

To state Proposition 5.1 as succinctly as possible, we also define the following quantity

Y= Z v (En™, (5.1)

m=0,2,....k

where E is defined in (4.3) and ¥, is defined in (Al).
PropPOSITION 5.1 Assume Model 2 and that v is (k + 2)-admissible. Define the following estimator of

(SHR):

M

~ 1
SHO = 2> [(Sijx) — By 22 (Sy)" () — ... — B ak(Sy® (A)] pe
j=1
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20 M. HIRN AND A. LITTLE

where the constants B; satisfy (4.1). Then with probability at least 1 — 1/ 1

(D) = S| £ kA2 IRED S + o [KAG) +¥0” 4+ FTAG0) + AGDo | (52)

where E, A()\), ¥ are as defined in (4.3), (4.5), (5.1).
The following corollary is an immediate consequence of Proposition 5.1.

COROLLARY 5.1 Let the assumptions of Proposition 5.1 hold, and in addition assume W¥;(2En) is
decreasing for i < k 4 2. Then with probability at least 1 — 1/

~ tk
(GG = SN S K CEDN 2 + = [Bnlf I+ oWl +02] . 6

We remark that there are two components to the estimation error bounded by the right-hand side
of (5.3): the first two terms are the error due to dilation, as in Corollary 4.1 of Proposition 4.2, and
the last two terms are the error due to additive noise, as given in Proposition 3.2. Thus, the wavelet
invariant representation allows for a decomposition of the error of the noisy dilation MRA model into
the sum of the errors of the random dilation model and the additive noise model. This is possible because
the representation inherits the differentiability of the wavelet and is not possible when Py ¢ CK(R),
in which case the dilation unbiasing procedure has a more complicated effect on the additive noise.
A result equivalent to Proposition 5.1 cannot be made for the power spectrum, because the nonlinear
unbiasing procedure of Proposition 4.1 cannot be applied to the power spectra of signals from the noisy
dilation MRA corruption model, since they are not differentiable in the presence of additive noise.

Proof of Proposition 5.1.  Since Sf is a translation invariant representation, we can ignore the translation
factors {t }M | and consider the model Vi = f,j +¢;. For notational convenience, we define the following
order k derlvatlve ‘unbiasing’ operator:

d
(M) — ... = Bfak

242 d
A;8(00) = g(1) — Byn*h 8

38 (), (5.4)

which is defined on any function of A, so that we can express our estimator by
~ 1
=12 [ JE AT dw}

[ T N2 LT (o T ()% §@)) 4,19 @) ’
_ Z[E/(Vq(wﬂ + /3, (@& (@) + [, (0)E;(@) + [;()] )AA|1//A(CU)| da):| -0,
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We can thus decompose the error as follows:

_ 1Y S - N
GH() — (SHGI < MZ‘E / (7, @7 @) + T, @(@) 4,17, @) do

Cross Term Error

LR Y PSP ORI R S PO 2
" Mggfvfj(wn AT @ do = ()| + Mj_zlg/wj(wn AT @I do — 02|

j=

Dilation Error Additive Noise Error

To bound the above terms we utilize the following two Lemmas, which are proved in Appendix F.

LEmMA 5.1 Let the notation and assumptions of Proposition 5.1 hold, and let A, be the operator defined
in (5.4). Then with probability at least 1 — 1/¢2

M 2
- — | B do —o?| < 7
i 2 5e [ B@PAIT@F do—o -

J=1

LEMMA 5.2 Let the notation and assumptions of Proposition 5.1 hold, and let A, be the operator defined
in (5.4). Then with probability at least 1 — 1/7

&y e o = N t
174;15 / (7, @5 @) + 1, @35(@) A4, 1, @) do| TV M) F Ao

Applying Proposition 4.2 to bound the dilation error, Lemma 5.1 to bound the additive noise error,
and Lemma 5.2 to bound the cross term error gives (5.2). U

5.2 Simulation results for noisy dilation MRA

We once again consider the Gabor atoms of varying frequency introduced in Section 4.4, and compare
the L? error of estimating the power spectrum by (1) averaging the power spectra of the noisy signals,
and applying additive noise unbiasing; this is the zero-order power spectrum method (PS k£ = 0),
defined in Proposition 3.1, and (2) by approximating the wavelet invariants by the estimators given in
Proposition 5.1 for k = 0, 2,4, and then applying the optimization procedure described in Section 6.5;
we refer to these methods as WSC k = i for i = 0,2, 4. We emphasize that for the noisy dilation MRA
model, it is impossible to define higher order methods for the power spectrum.

We first consider the errors obtained given oracle knowledge of the noise moments, both additive
and dilation. Results are shown in Fig. 5 for all parameter combinations resulting from ¢ = 274 273
(giving SNR = 2.2,0.56) and n = 0.06,0.12. The horizontal axis shows log, (M) and the vertical axis
shows log, (Error); for each value of M, the error was calculated for 10 independent simulations and then
averaged. For all simulations T was given a uniform distribution, a challenging regime for dilations, and
the sample size ranged over 16 < M < 131, 072. For the medium- and high-frequency signals, for large
enough M, WSC k = 2 and WSC k = 4 have significantly smaller error than the order zero estimators,
indicating that the nonlinear unbiasing procedure of Proposition 5.1 contributes a definitive advantage.

120z @unp g1 uo Jasn yeln Jo ANsIonun Aq £ 181.686/910EERI/IBIBWYEE0 L 0 L/1I0P/SI0IIE-20UBAPE/IBIEWI/WO0"dNO OIS PEDE//:SARY WO, PAPEOjUMOC



22 M. HIRN AND A. LITTLE
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Fic. 5. L2 error with standard error bars for noisy dilation MRA model (oracle moment estimation). First, second and third
column shows results for low-, medium- and high-frequency Gabor signals. All plots have the same axis limits.
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2
FIG. 6. Signal recovery results for f3(x) = % cos(32x) with M = 20,000, n = 0.12, SNR = 2.2.

For the high-frequency signal and large M, the error using WSC k = 4 is decreased by a factor of about 3
from the PS k = 0 error. For small dilations ( = 0.06), there is not much of a difference in performance
between WSC k = 2 and WSC k = 4, but the gap between these estimators widens for large dilations
(n = 0.12), as the fourth-order correction becomes more important. For the low-frequency signal under
small dilations, PS k = 0 achieves the smallest error for large M. However, when M is small or the
dilations are large, the WSC estimators have the advantage for the low-frequency signal as well, and
WSC k = 4 is once again the best estimator for large M.

We note that although in general recovering the power spectrum is insufficient for recovering the
signal, the signal can be recovered whenf(a)) eR and?(a)) > 0 by taking the inverse Fourier transform
of the root power spectrum. Figure 6 shows the approximate signals recovered by this procedure from
PS k = 0 (Fig. 6(c)) and WSC k = 4 (Fig. 6(b)) for the high-frequency Gabor signal f;(x) (Fig. 6(a)).
The WSC-recovered signal is a much better approximation of the target signal. The recovered power
spectra are shown in Fig. 6(d); PS k = 0 is much flatter than the target power spectrum, while WSC
k = 4 is a good approximation of both the shape and height of the target power spectrum.

Appendix G outlines an empirical procedure for estimating the moments of t in the special case
when ¢ = 0 in the noisy dilation MRA model (i.e. no random translations). All simulations reported in
Fig. 5 are repeated (with minor modifications) with empirical additive and dilation moment estimation,
and the results are reported in Fig. G7 of Appendix G.

Appendix H contains additional simulation results for a variety of high-frequency signals.

REMARK 5.1 One could also solve noisy dilation MRA with an EM algorithm. Appendix I describes
how the method proposed in [1] can be extended to solve Model 2. Although EM algorithms provide a
flexible tool for accurate parameter estimation in a variety of MRA models, the primary disadvantage
is the high computational cost of each iteration. Each iteration costs O(Mn?), while wavelet invariant
estimators can be computed in O(Mn?). In addition the statistical priors chosen may bias the signal
reconstruction [12], and the algorithm will generally only converge to a local maximum. In this article
we thus explore whether it is possible to solve noisy dilation MRA more efficiently and accurately by
nonlinear unbiasing procedures.

6. Numerical implementation

In this section we describe the numerical implementation of the proposed method used to generate
the results reported in Sections 3, 4.4 and 5.2. Section 6.1 describes how signals were generated, and
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Sections 6.2 and 6.3 describe empirical procedures for estimating the additive noise level and the
moments of the dilation distribution 7. Finally, Section 6.4 discusses how the derivatives used for
unbiasing were computed, and Section 6.5 describes the convex optimization algorithm used to recover
Pf from Sf. All simulations used a Morlet wavelet constructed with & = 37 /4.

6.1 Signal generation and SNR

All signals were defined on [—-N/4,N /4] and then padded with zeros to obtain a signal defined on
[—N/2,N/2]; the additive noise was also defined on [-N/2,N/2]. Signals were sampled at a rate of
1/2¢, thus resolving frequencies in the interval [—2¢7,2¢7] with a frequency sampling rate of 277 /N.
We used N = 2> and ¢ = 5 in all experiments, keeping the box size and resolution fixed. For each

experiment with hidden signal f, the SNR was calculated by SNR = ( Jo Ny 22 f(x)? dx ) Jo2.

6.2  Empirical estimation of additive noise level

The additive noise level o2 can be estimated from the mean vertical shift of the mean power spectrum
Ald Zjﬂil |’y\j(a))|2 in the tails of the distribution. Specifically, for ¥ = [—2¢r, 271\ [-2¢ 17,20 1n),
we define

|m§: ern

weX

If we choose ¢ large enough so that the target signal frequencies are essentially contained in the interval
[—20 1, 267 1], [’\(a))|2 |8 (w)|? for @ € ¥, and this is a robust and unbiased estimation procedure

since IEJ[A/(a))|2 = 02 by Lemma D.1.

6.3 Empirical moment estimation for dilation MRA

Given the additive noise level, the moments of the dilation distribution 7 for dilation MRA (Model 3)
can be empirically estimated from the mean and variance of the random variables «,, (y;) defined by

2t
%wz/ ") do (6.1)
0
for integer m > 0. More specifically, we define the order m squared coefficient of variation by

Var[a, (y;)]
= 6.2
" |Ele, )12 ©2

The following proposition guarantees that for M large the second and fourth moments of the dilation
distribution can be recovered from CV,), CV;. In fact one could continue this procedure for higher m
values, i.e. {CV, }k/ >~1 will define estimators of the first % even moments of t, accurate up to 0(nk+2),
but for brevity we omlt the general case.
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PropPosITION 6.1 Assume Model 3 and CV,), CV, defined by (6.1) and (6.2). Then

CVy=n*+(3C, —3n* + 0%
CV, = 4n* + (25C, — 33)n* + 0(n°%).

Proof. Since yj = Ltf(x — 1),

20y
o, () = / o"[f((1 = 7))* do
0

2€n(1—rj) %-m . ) df
-/ Tl Or G

=1 -1 "V, (),

where we assume we have chosen £ large enough so that the target signal frequencies are essentially
supported in [—2¢- 17,261 7]. Thus,

Ele,, ()] — (Ela,,0pD?  E[(1 — 7)) ~20m+ D)
cv, = _ - L

When m = 0, we have

_ El-57

07 (EI( - 1)~ 1))?
_ E[1+27 4372 +47° + 5t + 0(«9)] B
B+ Tt+r+ 4+ 0]

_1L+37 +5Cn* +00%)
(1492 + Cyn* + 0(n))?

_ 1432 +5Ct +om®)
C 14202+ 2C, + Dt + 0(n°)

= (1437 +5C,1* + 0(®) (1 — 21> + (3 — 2C)1* + 0(n®)) — 1
="+ (3C, =3 +0mn®).
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When m = 1, we have

_ Ea-5™

'TEI - )22
_ E[1 + 4t + 1072 +207° + 357% + O(1Y)]
T (B[l 42t 4+ 312 + 413 + 514 + 0(t9)])?

_ 1410n? +35C,n* + 0(n°)
T (14372 +5C* 4+ 0(n®))?

1+ 1092 +35C* + 0(n®)
T (14602 + 9+ 10CHn* + 0(n°))

= (14 107> +35C,n* + 0(®)) (1 — 692 4+ 27 — 10CHn* + 0(n®)) — 1
=4n% + (25C, — 33)* + 0(n°).

O

We cannot compute CV,, exactly, but by replacing Var, E with their finite sample estimators, we
obtain an approximate CV,, — CV, as M — oo. Motivated by Proposition G.1, we thus use CV,, CV,
to define estimators of n? and C,n*.

DEFINITION 6.1 Assume Model 3 and let 6‘70, cv 1 be the empirical versions of (6.2). Define the
second-order estimator of n2~by 7 =C V- Define the fourth-order estimators of (n?, C4n4) by the
unique positive solution (72, C,) of

CV, =4n* + (25C, — 33)n*.

For noisy dilation MRA (Model 2), estimating the dilation moments is more difficult. We give a
procedure for estimating the moments in the special case + = 0 in Appendix G. Empirical moment
estimation procedures that are simultaneously robust to translations, dilations and additive noise are an
important area of future research.

6.4 Derivatives

All derivatives were approximated numerically using finite difference calculations. A sixth-order
finite difference approximation was used for second derivatives, and a fourth-order finite difference
approximation was used for fourth derivatives. This procedure was done on the empirical mean for
each representation, not the individual signals. In fact since the wavelet is known, é% |{EA (w)|?* could be
computed analytically, and (Syj)(”) (1) computed using Definition 2.2. Thus error due to finite difference
approximations could be avoided for wavelet invariant derivatives.

6.5 Optimization

In this section we describe the convex optimization algorithm for computing (ﬁ;’f), the power spectrum
approximation that best matches the wavelet invariants (Sf). Since the wavelet invariants are only
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computed for A > 0, we also incorporate zero frequency information into the loss function via
(Pf)(0), an approximation of the power spectrum at frequency zero. For all of the examples reported
in this article, the quasi-newton algorithm was used to solve an unconstrained optimization problem
minimizing the following convex loss function:

toss(2) = X ([ 19712) - F0)” + (202 - @n0)

A
where
175 @ = (W@ + [ (o)) - 1@ > 0).
Letting g* denote the minimizer of the above loss function, we then define (F;f) = §*(w)2.

Theorem 2.4 ensures that when the loss function is defined with the exact wavelet invariants Sf, it
has a unique minimizer corresponding to Pf. Whenever f(x) € R, the symmetry of (Pf)(w) ensures that
SHN) = (mz, |g’ﬁ\;’ |2), and thus it is sufficient to optimize over the non-negative frequencies and then
symmetrically extend the solution. Such a procedure ensures the output of the optimization algorithm
is symmetric while avoiding adding constraints to the optimization. The algorithm was initialized using
the mean power spectrum with additive noise unbiasing only, i.e. PS k& = 0. The optimization output
does depend on various numerical tolerance parameters, which were held fixed for all examples.

REMARK 6.1 Alternatively, one can invert the representation by applying a pseudo-inverse with
Tikhonov regularization. Specifically, if F is the matrix defining the wavelet invariants, so that Sy =
F(Py), then one can define (P¢f) = (F TE + A~ 'F T(Sf). This procedure however requires careful
selection of the hyper-parameter A and did not work as well as inverting via optimization in our
experiments.

7. Conclusion

This article considers a generalization of classic MRA, which incorporates random dilations in addition
to random translations and additive noise and proposes solving the problem with a wavelet invariant
representation. These wavelet invariants have several desirable properties over Fourier invariants, which
allow for the construction of unbiasing procedures that cannot be constructed for Fourier invariants.
Unbiasing the representation is critical for high-frequency signals, where even small diffeomorphisms
cause a large perturbation. After unbiasing, the power spectrum of the target signal can be recovered
from a convex optimization procedure.

Several directions remain for further investigation, including extending results to higher dimensions
and considering rigid transformations instead of translations. Such extensions could be especially
relevant to image processing, where variations in the size of an object can be modeled as dilations.
Incorporating the effect of tomographic projection would also lead to results more directly relevant to
problems such as cryo-EM. The tools of the present article, although significantly reducing the bias,
do not allow for a completely unbiased estimator for noisy dilation MRA due to the bad scaling of
certain intrinsic constants. Thus, an important open question is whether it is possible to define unbiased
estimators for noisy dilation MRA using a different approach. The noisy dilation MRA model of this
article corresponds to linear diffeomorphisms, and constructing unbiasing procedures that apply to more
general diffeomorphisms is also an important future direction. In addition, one can construct wavelet
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invariants that characterize higher order auto-correlation functions such as the bispectrum, and future
work will investigate full signal recovery with such invariants.
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A. Wavelet admissibility conditions

This appendix describes the wavelet admissibility conditions that are needed for the main results in
this article, namely Propositions 4.2 and 5.1. The wavelet v is k-admissible if ¥ € CKR) and ¥, <
00, ®), < oo where

1< Do 4
V=5 Z( ) ' P V@l (AD)
i=0 :
O, = —— k (k)k—!||w"—2<Pw>“>(w>|| (A2)
ko ~\i) il I '

For w to be k-admissible, it is sufficient for 1/f e CKR), (Plﬁ)(’) to decay faster than w*!, and
J W(w)‘ dw < oo (see Lemma B.1 in Appendix B). The condition | 'Ww)l dw < oois slightly stronger

than the classic admissability condition C,, := Ik de < 00 [55, Theorem 4.4]. When 1// is
continuously differentiable, 17/\ (0) = 0 is sufficient to guarantee C,, < oo; but here we need a (w) ~

1 . .
®?27T€ for some € > 0 as w — 0. If this condition is removed, we are not guaranteed ©, < oo, but all

results in fact still hold, with A, (L) = ¥, |[f||% replacing A, (L) = ¥, |[f||% Ok“f Ol in Propositions 4.2
and 5.1. Any wavelet with fast decay satisfies this stronger admissibility condmon and it ensures that a
smooth signal will enjoy a fast decay of wavelet invariants.

REMARK A.1 The Morle/:{ wavelet ¥ (x) = g(x)(e®* — C) is k—admissikle for any £, since 1:/; € C*(R),
P has fast decay, and ¥ (w) ~ @ as w — 0. One can also choose ¥ to be an order k + 1-spline of
compact support.

B. Properties of wavelet invariants

This appendix establishes several important properties of wavelet invariants. Lemma B.1 gives sufficient
conditions guaranteeing that a wavelet is k-admissible. Lemmas 4.3 and 4.4 bound wavelet invariant
derivatives. Lemma B.2 bounds terms that arise in the dilation unbiasing procedure of Sections 4.2
and 5.

LemMa B.1 (k-admissible). If € CK(R), (Py)® decays fast than wi*!, and [ "”L—“y'z dw < oo, then
Y is k-admissible.

Proof. We first note that 1’/7 e CK®) guarantees Py € CK(R). Since (Py)® decays faster than o't
and Py € CX(R), o'(PY)?(w) € L'(R) for 0 < i < k, so ¥ < oc. Also Py € CK(R) and
o' (PY)® e LIY(R) implies o' 2(Py)? € LY(R) for 2 < i < k. In addition, 0 ~2(Py)(w) € L'(R) by
assumption. Thus, to conclude ®, < oo, it only remains to show a)_l(Plp)’(a)) e L'(R). Since (PW)/
is continuous and decays faster than w?, only the integrability around the origin needs to be verified. We

7 2
note that [ W’i}—(‘z})l dw < oo and Py continuous implies Py ~ '€ for some € > 0 as w — 0. Thus,

(PY) ~ € as € — 0, so that w! Pyr) ~ ¢ L; the function is thus integrable around the origin since
€e—1>—1. O
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LEmMMA 4.3 (Low frequency bound). Assume Py € C™(R) and f € L!'(R). Then the quantity
[A(Sf)"™ (1)| can be bounded uniformly over all A. Specifically,

ASH™ )] < 12
for ¥,, defined in (A.1).
Proof. Let g(w) = (PY)(w) = |1/ﬁ\(a))|2, and let
1 —~
8@ =g () = @0

Utilizing Definition 2.2 we obtain

m (m) 2
AHSHT ) = /lf( )| [ d)»mgk( )}

Expanding the derivative gives
m

W82 (@) = G0 8,(0) + Gy 083() + Gy 028 (@) + . G,y "8 (@)

m\ m!
Cus =0 () 5
i L

Utilizing || fll.o < I, and g\ (@) = A,.lﬁg“) (2), one obtains

I(SH™ ()| < i

/ IF(@)Plo's” (@) do

l=0

m1| i @
||f||1 / 0g? (@)] do

m’| i (i
= ||f||1 /| ()| do
i=0
||f||%2 il gD @i,
=w,IflIF.

O

LEMMA 4.4 (High frequency bound for differentiable functions). Assume Py € C™(R), and f' €
L' (R). Then the quantity |A"(Sf)" (1)| can be bounded by

©)
IA(SH™ ()] < k—yufn%

for ®,, defined in (A.2).
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Proof. Recall from the proof of Lemma 4.3 that
Gl e
AESH™ ] < D / [f(@) o) (@) do
i=0

where g, (@) = 1 (2) = [, (@) and C,,; = (—1)" (7). Since [|f (@) ]|, < [/']l; and g} (@) =
Mﬂg(’) ( ) we obtain

I SH™ ()] < i 'Z’;"' / jof (@)1 28} ()| do
i=0
<If ||l O /| g (@) dov
IIf || |/| 240 )] do
”f ” o gD ()l
= %nf’n%- -

LEMMA B.2 Assume Pf € CO(R) and v is m-admissible, and let B,,, E, ¥, , ®, be as defined in (4.1),
(4.3), (A.1) (A.2). Then,

1 iy 2
- / Pl
A0 —(Ilfllzw A 1O /”%@m)
m - 1% m )\2 .

Proof. From the proof of Lemma 4.3:

dm

msym
B,n"A _d)J"

@(wnz‘ do < (En)™A,, (1),

where

1 N
o [P WG @) do < w171}
From the proof of Lemma 4.4:
L Wk
§/|f(w)| : md)\'mhﬁx X @m )Lz N

Utilizing |B,,| < E™ gives
/ 2@
— / [f()*- |B 7@ ‘ do < (En)'"(ufn1 AW ﬂ; ”’)

The following Corollary is obtained from Lemma B.2 when f is a dirac-delta function.

B,n"x

dkm
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CoROLLARY B.1 Assume y is m-admissible, and let B,,, E, ¥, be as defined in (4.1), (4.3), (A1). Then,
m

Sl @F| do < En"Y,.

B, n"\"

2

C. Power spectrum and wavelet invariant equivalence

This appendix contains supporting results for demonstrating the equivalence of the power spectrum and
wavelet invariants. Lemma 2.1 establishes that wavelet invariants uniquely determine any bandlimited
L? function, as long as the wavelet satisfies the linear independence Condition 2.3 and a mild
integrability condition. Proposition 2.1 gives two criteria that are sufficient to guarantee Condition 2.3.
Finally, Lemma C.1 establishes that the Morlet wavelet satisfies Condition 2.3.

LEMMA 2.1 Let p €L?(R) be continuous and assumep(w) = p(—w),l/} has compact support and
Condition 2.3. Then

Proof. Since p is continuous, there exists an € > 0 such that on (0, €) one either has p = 0, p > 0,
or p < 0. Claim: one must have p = 0. Suppose not, and without loss of generality assume p > 0 on
(0, €) and that the support of |{E+ (w)|? is contained in the interval [1,2]. Now choose Ao small enough
so that |1’/7;; (w)|? is supported on [€/2, €], i.e. Ao = €/2. Clearly, there must exist a subset .# C [€/2, €]

of positive measure such that |$§) (w)|*> > 0 on .#. Then,

0=/0 p(wmwdw:/zp@)m(wnz dw////p(w)@;(wnz do > 0.

€/

We conclude
//// P (@) do =0,
but this is impossible since the integrand is strictly positive on .#. We thus conclude that p = 0 on

(0,¢€). Thus, itis sufﬁcient to only consider frequencies [€, 00).
Assume [ p(w)|; (@)|* do = 0 for all A. Since p(w) = p(—w),

/p(w)%(wnzdw:/o p(w)@(m)ﬁdw:/ P, (@) do = (p, 19,717, =0 Vi,

€

where I = [¢, 00). We now define |, ()| := A~# |1, (w)|? for some B > 0, and observe that

o0 o0 o0
/0 p@) g (@Pdo=0 Yi = /0 (P, 1,7 12V s 12 d =/0 l(p, 16,7 1%),1* dr = 0.
Note

/O l{p, |$;_|2>1|2 dr = /0 (p, |$;_|2>I<l_7’ |$;-|2>I di
_ /O ( /I P@DIF @) da)l) ( /1 B P dwz) N
- /,P(wz> ( /1P<w1> ( /0 |$;(w1>|2|¢?:<w2>|2dx) dwl) do, .
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We now apply the change of variable w; = 1/§;, and let g(§;) = p(1/§;). We obtain

1/€ 1/€ 00
— o(E) 2
o= [ ([ e ([ o @) () 0) ) e e

Now consider the kernel
o 1
k(g &) = Zda.
G152 /o £2¢2 28 (él) 2 (sz)

Note that k is a strictly positive definite kernel function if for any finite sequence {&;}?_; in [0, 1/€], the
n by n matrix A defined by

Ay = k(E. &)
is strictly positive definite [83]. Viewing 5,. A = $i_2|$r(l / 51»)|2 as functions of A, we see that
Ay = E0,EW)ge

and A is thus a Gram matrix. Slnce the E (1) are linearly independent if and only if the |1pk (w; )2 are
linearly independent, and the Wx (o; )|? are linearly independent by assumption, we can conclude that
A and thus k are strictly positive definite. Now consider the corresponding integral operator on [0, 1/€]:

1/e
Ke(,) = /0 Gk (L&) dE, .

Since ¢ € L'(R), |1Z;' | and thus |$}'\"|2 are continuous, and k will thus be continuous as long as it
remains bounded. To check boundedness we observe that k(& 52)2 < k(§1,5))k(,,8,) [21], and

ke .s)—/ooi $+(1)
R I S M ¥

o0 1 +
=/0 g4kz+2,s 4 ( )
—~ dw
= /0 §—4(ws>2+2ﬁ|w+(w>|457
=52‘973/m 17 ()| do

0

o0
<367 [T do
0

<3e¥3 PPy 3.

4 dx

4 an

Since 1} has a compact support, clearly [|w? Py ||% < 00, and k is thus bounded on the compact interval
[0, 1/€] as long as B > 3/2. Since k is continuous and [0, 1 /€] is compact, K : L2[0, 1/€] — L2[0, 1/¢€]
is a compact, self-adjoint operator and by Mercer’s Theorem K is also strictly positive definite [83].
Since (Kg, g)[0.1/¢) = 0 by (C.1), we conclude g = 0 in L?[0, 1/€]. Thus, p(1/&) = 0 for almost every
& € (0, 1/€], which implies p(w) = 0 for almost every w € [€, 00). Since p(w) = p(—w) and p = 0 on
(0,€), p = 0 for almost every w € R. O
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ProposITION 2.1 The following are sufficient to guarantee Condition 2.3:

@) |1//} (w)|? has a compact support contained in the interval [a, b], where a and b have the same
sign, e.g. complex analytic wavelets with compactly supported Fourier transform.

(ii) |$ (w)|? € C*°(R) and there exists an N such that all derivatives of order at least N are non-zero
at w = 0, e.g. the Morlet wavelet.

Proof. Let {w;}]_, be a finite sequence of distinct positive frequencies, and let »;(A) = |w+ (%) 12
denote the corresponding functions of A.

First assume (i). Without loss of generality we assume that [g, b] is a positive interval and that
|1ﬂ(a))|2 > 0 on (a,a + €) for some € > 0. Clearly, |1ﬂ"‘(a))|2 |1ﬁ(a))|2 A simple calculation shows
that the support of @;(1) is contained in the interval [ Yi ] and ;(A) > 0 in a neighborhood of “;.
Assume we have ordered the w; sothatw; > ... > w, > O. Now suppose

Note @, (1) is the only function in the above collection with support in a neighborhood of %; thus, we
must have ¢; = 0, so that

Czd')z()\.) + e + Cn(’?)n()‘) = 0.

But now @, () is the only function in the above collection with support in a neighborhood of ‘”2 , SO we

must have ¢, = 0, and proceeding iteratively we conclude that c; = ... = ¢, = 0. Thus, {®; (A)} _ s
a linearly independent set, and Condition 2.3 holds.
Now assume (ii). Since -2 (¥ (0)[?) o = = 2L (I ()?) | —o» [V T (@)[? is C*(R) and all

derivatives of order at least N are non-zero at @ = 0. Note {&;(A)}}_; = {|A|” ]|1/f+(a) /0)|? yi, are
linearly independent if and only if {|1p+(a) /0P }ir_, are linearly independent. Defining % = 1/, this
holds if and only if {W*(w,k)l Y = {g(colk)};‘:1 are linearly independent as functions of X, where
we define g(w) = | T (w)|*. Assume

clg(a)l):) + czg(a)z):) + -4 cng(wni) =0.
Differentiating m times for N < m < N + n — 1, we obtain

clwllvg(N)(wl):) +--+c, wN (N)(a) X)) =0

Clw11V+n—1g(N+i1—1)(w1X) 4ot annN+n—1g(N+i1—1)(wnX) —0.
The above holds for all . We now take the limit as A4 — 0 to obtain
g™V (0 e; +@Ney +...0le,) =0

(N+1)(O)( N+1 N+]C + N+1 ) O

c] + wy

g(N+n 1)(0)( N+n— lC] +a)N+n 1 2+..'wnN+n—lcn) = 0.
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Since g™ (0) # 0, we obtain

oy of ITel [07
a)llv'H a)flv"'1 c) 0
N+n—1 N+n—1
w; Wl 1Len | 0|
1 1 a)llv 0 ... 07 _cl_ 0]
w; ... W, 0 a)ZN ... 0 Cy 0
(n—1) (—1) : TN ' :
ON .. oy 0 0 ... w |Lc¢ | 0 |
=A =B

Since A is a Vandermonde matrix constructed from distinct w;, det(A) # 0. Since the w; are non-zero,
det(B) # 0. Thus, det(AB) = det(A) det(B) # 0. We conclude AB is invertible and so all ¢; = 0, which
gives Condition 2.3. g

LemMmA C.1 Suppose we construct a Morlet wavelet with parameter &, that is Y (x) =
an_l/“e_xzﬂ(eifx — e E12) for C = (1 - e~ — 2738 /4)=1/2 Then, for almost all £ € R*,
the wavelet satisfies Condition 2.3.

Proof. The Fourier transform 1//} has form
{p\(a)) = 6§e—w2/2(e§w -1
for some constant 6& depending on &, so that
g(@) =G @) = (5 — )2
From direct calculation or a computer algebra system, one obtains

H,(&)—-2H,&/2) n odd

(n) — n
s 0= H, (§) —2H,(§/2) + (—(1%))2!;1! n even

where H, (&) is the n't degree physicist’s Hermite polynomial. We have ¢’(0) = 0, but for n > 1,
g™ (0) = 0 only when & is a root of the above polynomial. Since the set of roots of the polynomials
{g™ (0)}72, is countable, if & is selected at random from R, it is not a root of any of these polynomials
with probability 1, and g (0) # O for all n. Thus, the wavelet satisfies criterion (ii) of Proposition 2.1,
and thus the linear independence Condition 2.3. O

D. Supporting results: classic MRA

This appendix contains supporting results for Section 3. The first two lemmas (Lemmas D.1 and
Lemma D.2) establish additive noise bounds for the power spectrum and are needed to prove
Proposition 3.1. The next two lemmas (Lemmas D.3 and Lemma D.4) establish additive noise bounds
for wavelet invariants and are needed to prove Proposition 3.2.
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LeEMmA D.1 Let g(x) be a white noise processes on [— 2] with variance o2. Then, for all frequencies
w,§,

E[|§(w)|2] =2 D.1)

E [ |’5(w)|4] <364 (D.2)

E[I2@PE@)P] < 30*. (D3)

Proof. By Proposition J.1,

E[I5@] =E[#@F®)]

1 /2 12
—l(u.X dB ) (/ el&).x dB )}
|: X _1 X
which shows (D.1). By Proposition J.2,

—\2
E[[f@]=E [?(w)z (F@) }
12 2 12 2
=E ( / e 't de) ( / et de)
—-1/2 —-1/2
172 2 1/2 172
— 20,4 (/ dx) + 0'4 (/ ef2ia)x dx) (/ e2ia)x dx)
-1/2 —-1/2 —-1/2
1/2 1/2
g 20_4 + 0_4 (/ |e—2in| dx) (/ |€2ia)X| dx)
-1/2 -1/2

= 304,

which shows (D.2). Finally, by Proposition J.3, we have

12 12 12 12
E[|§(w)|2|§(§)|2]:E[( / e’w"de) ( / erBx) ( / el‘?Xde) ( / e’5Xde)]
~12 —12 ~12 —1/2
12 172
— 04 [(/ e—i(a)+$)x dx) (/ ei(w+§)x dx)i|
~12 ~1/2
12 12 12 12
e (e (e« (), o) (/,, )]
~12 ~1/2 ~1/2 ~12
1/2 172
< B3, ) (], )]
~1/2 ~12

= 304,

which gives (D.3). O
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40 M. HIRN AND A. LITTLE

LemMMA D.2 Let e(x) be a white noise processes on [—%, %] with variance o2, Then, for any signal
feL!®),

E[(P(f + &) (@)] = (Pf) () + o>
Var [(P(f + €)) ()] < 402(Pf)(w) + 20*.

Proof. Since E[3(w)] = E [’m] = 0 and E [[F(w)[?] = 0> by Lemma D.1,
E[(P(f +)@)] = E[ (@) +5@) (F@) +7w))|
= B[ 7@ +7(@7F@) + 2@ + 5@’

= (Pf)(w) + 0.

We now control Var[(P(f + ¢))(w)]. Note that:

2 S N NS o a2}
[P(f + @] = (1@ +](@)5w) +E@]@ + 2@

12 12 1z
E [|§(w)|2§(w)] —E [( / emiox de) ( / s dBS) ( / emiop dBp)}
—1/2 —1/2 —1/2

=0,

and that

since even when x = s = p, IE[(ABX)3] = 0. Ignoring the terms with zero expectation, we thus get
I N SERNT NG S R TR~ e VAP F e
E[(P(f +eN (@) T=E|If(@)]" +4f(@)|"[e@)]” + [e@)]|" + f(®) (@) +E(@) f(w)

<E (@I + 67 @PIE@P + 5@l
= [(Pf)(@)]* + 66%(Pf)(w) + 30*
where the last line follows from Lemma D.1. Thus,

Var[(P(f + ))(@)] = E[(P(f + &))(®)*] — (E[(P(f + &))(@)])*
< [(PH(@)? + 602 (Pf) (@) + 30* — (Pf) (@) + o)
= 462 (Pf)(w) + 20*.

PropPosITION 3.1 Assume Model 1. Define the following estimator of (Pf)(w):

_ 1o
PhH@) = 2 > (Py)(@) — .

J=1
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Then, with probability at least 1 — 1/,

~ 2to
[(Pf)(@) — (P(@)] < ﬁ(l|f||1+0)~ (3.1

Proof. Let f(x) = f(x — ;) so that y; = f¥ + &;. We first note since ﬁf(a)) = ¢~ f(w), the power
spectrum is translation invariant, that is (Pf%)(w) = (Pf)(w) for all w, ;. Thus, by Lemma D.2,

E[(Py;)(@)] = E[(P(f + £))(@)] = (Pf1) (@) + 0 = (P)(w) + o~
and
Var[(Py;)(w)] = Var[(P(f¥ + &) ()] < 40°(Pf¥)(w) + 20* = 40> (Pf)(w) + 20

Since the y; are independent,
1< 1
Var |+ ;(Pyj)(w) < (402(Pf)(a)) + 204) .
j=

Applying Chebyshev’s inequality to the random variable X = Al,l Zf‘i 1 (Py;)(w), we obtain

| < 20 /(PN (@) + /20> 1
P( LS eypo — (n +02)| > VD@ EV20D])

J=1

i S
Observing that /(P (@) = |f(@)| < ], gives (3.1). O
LemMA D.3 Let ¢(x) be a white noise processes on [—%, %] with variance o2, Then,
E[(Se)(2)] = o®
E [(Se)(2)*] < 30*.
Proof. Since E[ | §(w)|?] = 02 by Lemma D.1, we have

EI(S2)0)] = E [l v, 3]

E| ¢ v 13
= e — £ -
2T a2

=E_i/|’a‘(w)|2|$ @P dw}
| 2 A

_02 7 2d
—E/mw|w

2 2
=0 ||1/fx||2

20'2.

120z @unp g1 uo Jasn yeln Jo ANsIonun Aq £ 181.686/910EERI/IBIBWYEE0 L 0 L/1I0P/SI0IIE-20UBAPE/IBIEWI/WO0"dNO OIS PEDE//:SARY WO, PAPEOjUMOC



42 M. HIRN AND A. LITTLE

Since by Lemma D.1, E [ | 2(w)[?|2(§)]*] < 30, we also have

E[(S2)0 =E [le » %IIQ]

=F (2 )2 18-, 151 WA||2]

=E e )2//|8(0))| BEE |1/fx(w)| |1//;L(§)|2 dwd$:|

< (Zn)z//lﬁ(w)lzl%@lzdwd&

= 30* (I, 8)’

=30,
O

LEmMA D4 Let e(x) be a white noise processes on [—%, %] with variance o2. Then, for any signal
fell®),

E[(S(f 4+ &)(M)] = (SH(A) + o2
Var[(S(f + £))(M)] < 402 (S)(2) + 20*.

Proof. Utilizing E[e] = E [€] = 0 and Lemma D.3, we have

E[S(f+e)M] =E [/ I(f + &) %y ] du}

=/|f*t/fx(u)|2+E[/ le % ¥y ()| du]

= (S/)(M) + E[(Se)(M)]
= (/)X + o>

To bound E[(S(f + €))(2)?], note that

[(S(f + &)W

= (/ L 3 05 )P+ (& 9, @) (F o ) + (F 5 9, () 8 5 9, () + e s 9 ()P dul)

: ( / Lf %, ) |> 4 (& 5% 9, () (F % U (1)) 4 (f % Wy (102)) (€ % W, (1)) + |& % ¥, (un))]? duz) :
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When we take expectation, any term involving one or three & terms disappears, so that

ELS(f + ) () =E[ [ [ 175 w1, i d
b [ 1Pl )P
+//(e*mwoxﬁmxe*wk(um(f*W) duy duy
+//<e* U ) T ) 501, () E 5 05, 1))y duty
N AT AT AT AT L
+ / / (F 5 1 () 8 5 B Q) (f 5 11, 102)) 8 % 5 () dty
+//|e*m(u1>>|2|f*m(uznzdul du,
+ / / &5 91 ) Ple 5 01, () dt du2:|

<E[//|f*m(u1>|2|f*m(u2)|2 du; duy

+6//|f*m<u1)|2|s*m(u2>>|2 du; duy

+//|s*m(u1>>|2|e*m(uz))ﬁdul d“z]

=E[[(5)0)P +6HMS)() + [(SMIP]
= [(SHRN)?] + 602(SH() + 304,
where the last line follows from Lemma D.3. Thus,
Var[(S(f + £)) (W] = ELS(f + £)(M)*] — BISf + &) ()]

< USHO)P? +602(SHR) + 30* = [(SHR) + o2
=407 (SH(M) + 20*.

ProOPOSITION 3.2 Assume Model 1. Define the following estimator of (Sf)(A):

~ T
SHO) 1= 2= D Sy — o,

=1
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44 M. HIRN AND A. LITTLE

Then, with probability at least 1 — 1/72,

27 1£1, + o) (D4)
e g). .
N7hek

Proof. Letfi(x) =f(x— ;) 50 that Vi = [+ & We first note that the wavelet invariants are translation
invariant, that is Sf% = Sf for all t. ‘We now compute the mean and variance of the coefficients (Syj)(k).
By Lemma D 4,

I(SH(X) — (SHW)| <

E[(Sy) ()] = BI(S(f¥ + )M = (SFHM) + 0 = (SH(A) + o7
and
Var[(Sy,) (W)] = Var[(S(f¥ + £)) (V)] < 40 (SF)(R) + 20 = 40*(SH(M) +20*.

Since the yj are independent,
g 1
2 4
Var MZI:(Syj)(,\) <o [40 (SF)() + 20 ]
j:

Applying Chebyshev’s inequality to the random variable X = % jﬂil Sy (%) gives

120 /SH) + v/20?) <1
N 2

M
P (| > oo - [snm +07] >

j=1

By Young’s convolution inequality, (Sf)(A) = || f * ¥, |13 < [IF1I311¥, 113 = [ £112, which gives (D.4). O

E. Supporting results: dilation MRA

This appendix contains the technical details of the dilation unbiasing procedure that is central to
Propositions 4.1, 4.2 and 5.1. Lemma 4.1 bounds the bias and variance of the estimator, and Lemma 4.2
bounds the error of the estimator given M independent samples.

LemMA 4.1 Let F, () = L((1 — t)A) for some function L € Ck+2(0, 00) and a random variable t
satisfying the assumptions of Section 2.1, and let k > 2 be an even integer. Assume there exist functions
A;: R— R,R: R — Rsuch that

Apn (1 = T)R)

WMLO) < A;(0) for 0<i<k+2 < RO,
A2 ()
and define the following estimator of L()):
4 k
G, (1) := F, () — By’ Fl () = Byn*F\V (t) — ... = B FP (1),

Then G, (7) satisfies
IE G, (1) — L] < kR(W) Agpn (W) REn) T2

Var G, (1) < KPRV A()?
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WAVELET INVARIANTS FOR MRA 45

where

AQ)? = > A;00A;(\)QEn)™
0<iy<k+2,i4>2

and E is the absolute constant defined in (4.3).

Proof. We Taylor expand F, (t) about t =0

F (k+1) (k+2)
()2 E 0 /TFA Q) k+1
F F, (0 F,(0)t et (1t —t dr .
(1) = F,(0) + F, (0)T + 3 (k+1)!r + A (k+1)!(r )
=Ry (T,1)
‘We note
”(0) n? (0)

E[F, (D] =F,0) + 2—=n* + ...+ 2—=C* + E[Ry(z. V)],

which motivates an unbiasing with the first k/2 even derivatives, and thus a Taylor expansion of these
derivatives

(r —Ft ar

(k+1) (k+2)
F 0 TF t
F, (1) = F,(0) + Fj(0)t + ... + B O g +/ 7O
0

(k+ 1! (k+1)!

:=Ro(t,A)

k+1 k+2
L () S o el ()

F'(7) = F'(0) + F® (0 T S i _pklgy
1O = FO+F O+ + vt | e -
=Ry (t,1)
(k+1) r pk+2)
F ) . F ® _
4) _ % (5 A k-3 A k=3
F,7 (1) =F,7(0) + Fy (O)T+...+—(k_3)! T —1—/0 —(k_S)!(T 1) dt
=Ry (t,})

T
FP ) = FP ) + F** P 0)r + / FM* 2y (x -1y dr .
0

=Ry (t,))

120z @unp g1 uo Jasn yeln Jo ANsIonun Aq £ 181.686/910EERI/IBIBWYEE0 L 0 L/1I0P/SI0IIE-20UBAPE/IBIEWI/WO0"dNO OIS PEDE//:SARY WO, PAPEOjUMOC
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Multiplication of the i even derivative by Bini gives

k+1
F( + )(0) k+]

F, (1) = F,(0) + F,.(0)t +... + =2 G + Ry(t, 1)
3) (k+l)( )
By F}(t) = Byn*FJ(0) + Byn?F) (0)T + ... + Byn? 2" = 1 4 BynRy (1, 1)
FD (o) .

4 4 5
B*F® () = Byp*FY 0) + By FO (0) + ... + Byt + By*R, (T, )

(k—3)!

B F® () = Bt F® (0) + B FETP (0)t + B Ry (1, ) .
‘We want an estimator that targets F, (0) = L(1). We thus consider the following variable as an estimator:
G, (1) == F, (1) — By’ Fl(t) = By ' FP (1) — ... = B FP (1)
and show that E [Gx(r)] =F,(0) + O(n**2) for constants B; chosen according to (4.1). We have
C ... C
E[F,(r)] = F,(0) + FX(O)Tan .+ F )(0)—fnk +E[Ry(t,1)]
B,C.
E[ Byl (0)] = F{ By’ + FP 0 220" +...+ FP0) (kz kz)z, 1+ E [ByRy(z, )]

BByt FY 0] = FOOB* + FOO 2 44 100 (k4 ’°4)4, 1 +E [ByrRy (. )]

e _ B B, ,C B
E[Bk,znk 2pk 2)('[)] =208, it 2+F§k)(0)%n"+1E[Bk,2nk 2Rk,2(r,)\)]

E [BknkFS‘)(r)] = FO0)Buk +E [BknkRk(t,k)] .

That is,
E[G,(1)] = F,(0) + F; (0) (% ) +F(4>(o>( X Bzz!cz —34) n*
+F%(0) ( - BZ—!C“ - B‘;—'CZ —Bﬁ) 6
F® (o) ( iszz—)z! Bk—zz'cz Bk) ok + H, ()
where

H() =E [RO(,\, ) = ByiPRy(t. 1) — ... — B Ry (A, r)] .
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Since (4.1) guarantees that

C2

g% _(& :
T 21

2
g % G4 (G (G )&
67 6l 2141 4! 21 21

B _G_BGn  _BG
F7 0 k=2 T 21

the coefficients of 172, n4, R nk vanish, and we obtain
E[G,(1)] = F,(0) + H|(}).

First we bound the bias H;(A). In the remainder of the proof we let B, = —1 to simplify notation,
so that

—BR,(x, 7)1’ .

Hy(A) = Z

i=0,2,....k

We first obtain a bound for |B;R;(A, 7)n'|. Note
. . T k 2 .
(k+1—i)! n'Ry(A, 1) = n’/ FMD0y(c =} s
0
T
— nt/ kk+2L(k+2)((1 — DMt — t)k-i-l—t dr.
0

We observe that

(= D29 (1 = )

< Agga (=02

1 A ((=0n)

|Ak+2L(k+2)((1 —D1)| < =0 A0 Apin(X)
- k+2
|Ak+2L(k+2)((l — | < Rii)f_i;(i(?)
so that
CRI)A ) o k42 R Ao (R)
A <AL ((1—=0nn) < A
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48 M. HIRN AND A. LITTLE

Now assume first of all that 7 is positive. We have

(k+1—0)! 7iR.(h, )| < HROY AL ) Te ot
s TG A, S k+2 o (I— t)k+2

k+1 i
<RW A0 [ G a

ikl ! ( v )
=0T TR0 A2 ) ey e !

2k+2R()\.) . .
< ﬁnltk—‘rz [Ak+2()\.)
where the last line follows since = )k -+ <2 2k+1z for 7 € [0, %]. A similar argument can be applied

when t is negative, and we can conclude

2k+2R()\.)
(k+Dk+1-0!

R0 7)| < A GBI 2427, E1)

which gives

2k+2R A .

( ) - Ak+2()‘-)Tk+2_l|Bi|nk+2

(k+1D(k+1-10)!

22k +2 — HR(V) Tk

= Ao W ———=——IB;In"*?.
k+1 (k+2—1)!
We thus obtain

R AL ()

[E[G, (D] — LW = IH, )] < QED? T (k+2-1i)

k+1 i=0,2,....k

S ROVkA (M) (2En)*2,

which establishes the bound on the bias. We now bound the variance. We note

—B: (ivi i
G (= > > j_‘lF;Jr/)(o)nrJ—k > -BROLTI .

i=02,....k j=0,1,... k+1—i 7~ i=0,2,...k

=) :=(II)
Thus,
Var[G, ()] =E[G,(0)*] - E[G, ()]’
=E[M{M] +2E[MHAD] + E[ADAD] — F, (0)* — 2F, (0)H; (1) — H, (A)*

< (ELO®]1 - F;(02) + 2E(DAD] - 2F, 0H, () +E[ADAD)

=(A) :=(B) =)
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and we proceed to bound each term.
k+1—ik+1 Z
(I) (I) _ F)L (0)2 — Z Z Z Z 'l e‘@ F(H‘j) (O)F(Z-I—S) (0) nl+l .L.]+s 1

i=0,2,...,k £=0,2,....k j=0 s=0

where 1 is an indicator function indicating that i,j, £, s are not all zero. We have

BBy s o e+ o irejes|  1BiBil s

E ‘ j'lg‘eF)(f+j) (0)};}(L +s5) (0)7’}l+£1’j+s g '6' CerAl+j()\')Al+s(A‘)nt+£+j+S
IB.B,| . o

< j‘lgf T]TSAj+j()‘4)A[+S()‘1)nl+e+]+s
< Ei+jEz+SAi+j()")A[+s()\')ni+z+j+s

= (A,.H(A)(E,,)Hj) (AHS()L)(EU)ZH) .

Noting that only terms where j + s is even survive expectation, and letting i = i + j and £ = £ + 5, we
obtain

E[(D(D)] — F, (0)*
k+1—ik+1—¢

Z Z Z Z A AT ™M A (AT 151G + 5 even)

i=0,2,...,k£=0.2,...k j=0 s=0

k+1 k+1 . i
=D D" G (M (EnY Az (En)'

i=0 =0
for coefficients C;j such that CO’O =0, CZ,Z =0ifi+£is odd, and C;j < k2. Thus,
E[OD]-F02<KE > AGWAMEDH <A
2+ 2k+2
;—5—[7 even

Next we bound E [(IT) (II)].

DAn = > > BBR,(DORM TN

i=0,2,...k £=02,..k
Utilizing Equation (E.1), we have

22k+4R()")2|BiBZ |

2 i+ 2k+4—i—L
Gt DG 1= k1= o1 Wl ,

B.B,R, (., TR, (A, r)n'“‘ <
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50 M. HIRN AND A. LITTLE
which gives

E |B.B,R,(1, TR, (A, r)n’”‘

22k+4R()\)2T2k+4_i_£ |BIB€|
Sk D2k+1—D)k+1—20)!
_ ROV} (k42— i)k+2—0) ( T+2-11B,| ) ( TH+2-¢B,|

Ak+2()»)2712k+4

2 2k+4
h (k—l—l)2 k+2—10)! (k+2_£)!)Ak+2O‘) (277)

R(k) k+2—i)k+2—10)

< TESIE A2 O QEn)* 4
so that
2
E[(ID)(ID] < (k( )) Aa O @EDP D" > (k+1—i)k+2-0)

i=0,2,....k £=0,2,...k
SR A () QE
<KRMWZAM)?.

Finally we bound the cross term 2E [(I)(ID)] — 2F, (0)H, ().

k+1—i
Oap= > > Z ’F(’+/) ©)n't/B,R, (A, T)n" (E2)
i=0,2,....k j=0 ¢=0,2,...,
) L k2 _
Since ‘F)(fﬂ)(O)‘ I+J(A) and |[B,R, (A, ' < %AH_Z(A)nE?:’H'2 ¢ from (E.1), we have

2M2R(0)|B;B, |
SGrniGr1 o

B
‘ ] lF(l"r]) (0)7) thZR( ()\‘ .[)n ()")Ak+2()")nl+£ k+2+j—C

so that
E B; i+ OVviig/ ¢
j—!FA O)n't/ByR, (A, T)n

2k+2R()\,) Tk+2+j—¢ |BiB[ |
(k4 1Dt (k+1—0)! Aty
_ 2R (k+2 —¢) (TV|B] T"2-4|B,|
(k+1) ]! (k+2—20)!

_RMK+2 -0 1 i _ a2
Tkt D [(E”) 1Ai+j()‘)] [(ZEU) Am(/\)].

()\) Ak+2 (}\) nl+]+k+2

) l+j()‘v)Ak+2()\')nl+j+k+2
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The same bound holds for the terms of F, (0)H, (1), which arise from i = 0,j = 0 in (E.2), so that

2E[(HAD] = 2F; (0)H, ()

k+1—i

L RA(k+2—¢
> Y Entagm )| S MEEE2Z0 om0

1
i=0,2,..k j=0 £=02,...k (k+1)

AN

k+1 .
K> A ED | (kROIQEN A, ,0)
i=0

N

k1 i
SKRO) D A;00) Agyn (1) (2En) HH2
i=0
< KPRO) A2
Thus, Var[G, (v)] S kZR()\)zA()»)2 and the lemma is proved. [l

LEMMA 4.2 Let the assumptions and notation of Lemma 4.1 hold, and let 7, ..., T}, be independent.
Define

- 1o
L) =+ > G.@).
j=1

Then, with probability at least 1 — 1/2,

- tA(N)
IL(W) — L) S KRV (Ak+2(>»)(2En>"+2 + W) :

Proof. By Lemma 4.1 and the independence of the 7;, we have
IL(3) = ELQ)| S kRO Ay yp () EN)H?
~ 1
Var L(x) < —k*A(r)?
ar L) 5 k2 AQ)

so by Chebyshev’s inequality we can conclude that with probability at least 1 — 1/72, we have

L) — BT < FROAR)
N

which gives

IL(A) — L)| < IL(A) — E[LG)]| + [E[L(A)] — L))
thkR(V) A(N)

S KR Ay () QEn) + N
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F. Supporting results: noisy dilation MRA

This appendix contains supporting results needed to prove Proposition 5.1, which defines a wavelet
invariant estimator for noisy dilation MRA. Lemma 5.1 controls the additive noise error and Lemma 5.2
controls the cross-term error. Lemma F.1 guarantees that the dilation unbiasing procedure applied to the
additive noise still has mean o2, which is needed to prove Lemma 5.1.

LEMMA 5.1 Let the notation and assumptions of Proposition 5.1 hold, and let A, be the operator defined
in (5.4). Then, with probability at least 1 — 1/,

20k o2

iii/mw)m V. (@))* do — o?| <
27T j ALY A = m

Proof. Let
NPT (2
Dy i) i= o [ 1§@PAT, @ do.

By Lemma D.1, E, [|é}(w)|2] = 02, and we thus obtain

E, [D(e; )] = E, [% / |é;<w)|2Ak|@<w>|2dw}
=E5[ [ @R, @P do - 5 [ G@PBati o T @F do-
—% / |€,»(w)|23kn"x"m|%<w)|2 dw]
=0’ (%/anzdw—%—f/ﬂ dzm(wnz do —.
—ik—f/x"%%wz dw)

=02(1-=0—...—0)

=0,

where we have used Lemma F.1 to conclude f Am (%“ﬁx (a))|2) dw =0 form =2,...,k. Also since

(a+...+a )2 n(a* + T .+ a%) by the Cauchy—Schwarz inequality, we obtain

2
E, [De %] <E, [k 3 ('"” /| HP 1 @) dw)

m=0,2,...k

120z @unp g1 uo Jasn yeln Jo ANsIonun Aq £ 181.686/910EERI/IBIBWYEE0 L 0 L/1I0P/SI0IIE-20UBAPE/IBIEWI/WO0"dNO OIS PEDE//:SARY WO, PAPEOjUMOC



WAVELET INVARIANTS FOR MRA 53

where we let ﬁh’/;,\(w)l2 denote |{5,\(a))|2 and By = 1. By LemmaD.1, we have E, [|8j(co)|2|8j(é)|2] <

304 for all frequencies w, &, so that

2
[( " /|e( >|2A’"dkm|wk(w)|2dw)]
2 2m
e [52]
§304 (i/ B
2

< 3ot (En,

II/fx N II/fx

axm

dw d
d)J" @ E]

) 2
where the last line follows from Corollary B.1 in Appendix B. We thus obtain

2
E, [De, 0| <k X E, [( ' [ g 2 P dw)}

m=0,2,...k

mr] |1p-)L

dkm

<3kt DT wrED™ =D

=02,k
so that
E, [D(ej, A — 02] =0
Var, [D(sj, A — 02] = Var, [D(sj, x)] <E, [(D(gj, A))Z] <.
Thus,

M
1 3 @
j=1

so that by Chebyshev’s inequality with probability at least 1 — 1/

M 2 2
1 t/(I) o o
— 2 D(e,, M) — 02| < = < t/3k z v (En" | —= = 2tvk¥ — .
M = / VM m—ta. VM VM
O

LEMMA 5.2 Let the notation and assumptions of Proposition 5.1 hold, and let A, be the operator defined
in (5.4). Then, with probability at least 1 — 1/£2,

I R Tt ~ ‘
1‘7,:215 [ (@5 + 7@ ) 4,17, @) do| < 3V Aol + 400
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Proof. We have

I O ~ 1
M%jg [ (7 @8 + T @8 @) 4,7, @) do = 7Pl

M
+
<<

where
1 = ~ ~ 2
V=5 | (B @5@) 4,10 @ do.
The random variable Y; has randomness depending on both ¢; and t;. Note that

IE‘e,r[Yj] = Es,r [Es,r[thj]]

since Y] is integrable. Thus, since Ew[%-(a))] = 0, we obtain Es’r[lerj] = 0, which yields IESJ[YJ-] =0.

We also have

[Y?)

RN

1 — R ~ 2
S B, [(Z/Iffj(w)l [E(@)] - ‘A,\Iwk(w)ﬁ‘ da)) }

l = -~ 1 —~ -~

<E,, [(E/mj(w)ﬁ : ‘Akm(w)ﬁ‘ da)) (E/lej(w)l2 : ’Axlm(w)ﬂ dw)}
1 =~ ~ 1 - ~

=E, [§/|f1j<w>|2'\Aklwwnz\ dw] E, [Z/|sj<w>|2~\m|m(w>|2\ dw} :

Letting B, = 1 and applying Lemma B.2, we have
0

ar . [Yj] =K

1 [ = ~
E, [E / Ty @ - |4, 1, @) dw} <E, Z / @)

m()2 .....

dkm

al s g WaliOn
o2 ETLILIRY, A=

| m=02....k

47130
< > (En)’"(nfu%ww%)

m=0,2,....k

N
=

<4 D EDTA,Q)

m=0,2,....k

S Ap() + AR
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. 1 1
since ||tj||oo < 5 guarantees ||ff/j||1 = IT‘E,'”f/Hl < 2|171l;. Also,

L[
> / @) - do
k

1 = 7 mym "~
E, [E/mj(w)ﬁ.‘kam(w)ﬂ dw} <E | > B3~ 1 @)

m=0,2,...,

1 a"n
_ 2 mym 2
—_ m_g‘ kg/ Byn"A" 9 (@) de
<o? > (Ep",

m=0,2,....k

=gy

where the second line follows from Lemma D.1 in Appendix D and the next to last line from
Corollary B.1 in Appendix B. We thus have

E,.[Y]=0
Var, ([V;] S oW (Ay(A) + AL)

and an identical argument can be applied to the 7] so that by Chebyshev’s inequality with probability at
least 1 — 1/

M M
1 — 1 1 — o
7 - Y, +7Y)| < 2 - Yj+A—L ngtﬁ‘/AO()»)+A()»)\/T/I.
j=1 j=1 j=1
O
LEmMmA F.1  Assume v is k-admissible. Then,
m a" =~ 2
A men do =0 (E.1)

foralll <m < k.
Proof.  We recall that since ¥ is k-admissible, |@ (cu)|2 € Ck(R), and to simplify notation we let
g=1y|*and

1 -~
@ =58(3) = @P.

We first establish that

d d d d
2 (ng)) == (—w)»"‘ e guw)) = (k= DA g, (@) (F2)

The proof is by induction. When k£ = 1, we obtain

LHS of Eqn. (F.2) = A% (%g (%)) = —%g' (%) - %g (%) = —wg} () — g, ()
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and
d
RHS of Eqn. (F.2) = —— (—wg, (@) = —og) (@) — g, (®),

so the base case is established. We now assume that Equation (F.2) holds and show it also holds for £+ 1
replacing k. By the inductive hypothesis

d d L d L, d
Wg)\(w)=% —wA ng(w) — (k—=1Dax ng(a))

4 d L d 4

d d
—(k—1) (rl @) + W&(w)(—ﬂ))

d )
:g(—wk d)\kg)\(a))) (k—l)k kg)\(a))

d ) d -2 d
+ % WA k=1 g (w) )+ (k—Dr k=1 8, (@)

=—x"1 d;\ik g, (w) by inductive hypothesis

d L d
= o —wh ng(w) - dkkgx(w)

so that

N d _d e d ok d
d)»k“g’\(w)_d_a) —wA d)»kgk(w) ng(a)).

Thus, (F.2) is established. We now use integration by parts to show (F.2) implies (F.1) in the Lemma.
The proof of (F.1) is once again by induction. When k = 1, we have already shown

d
A (d/\gx(w)) —wg; (©) — g, (®) . (E3)
Integration by parts gives
/a)g;(w) do = (a)gk(a)))‘ —/gk(w) do = /gk(a)) dw.

Note wg, (w) vanishes at 00 since g € LY(R) guarantees g, € L!(R), and thus g, must decay faster
that w~!. Utilizing (F.3),

/wg;(m—gk(w)dw— — /( gk(a)))da)zo

and the base case is established. We now assume

d
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By integrating Equation (F.2), we obtain

d
/Ak (ng(a))) dow

d 1 d k-1_4d

=0 by induc. hypo.

d _, d _, d
/—a)% (Ak ld)hk_lg,\(w)) da)—/)»k ldkk_lgk(a)) dw

=0 by induc. hypo.

— d (w)oo + [ Akl d () dw
- dkk—lgl . d)»k—lg)L

=0 by induc. hypo.
=0.
We are guaranteed —wr*~! #gk (w) vanishes at +00 since in the proof of Lemma 4.3 we showed
Al #gk (w) = Z}Zol Cjaﬂgf\i) (w), and a/gy) € L' (R) implies wf“gy) vanishes at -00. O
G. Moment estimation for noisy dilation MRA

In this appendix we outline a moment estimation procedure for noisy dilation MRA (Model 2) in the
special case t = 0, i.e. signals are randomly dilated and subjected to additive noise but are not translated.
This procedure is a generalization of the method presented in Section 6.3.

Given the additive noise level, the moments of the dilation distribution 7 can be empirically
estimated from the mean and variance of the random variables B, o)) defined by

2t
B () = /0 "y, (@) do (G.1)

for integer m > 0. To account for the effect of additive noise on the above random variables, we define

tr (2lr 20%M 0" sin(} (E—w))

2
gnt,0)= 0 0 G—w) dw d§ (G.2)

and an order m additive noise adjusted squared coefficient of variation by
CVm — Var[ﬁm(yj)] - gn;(e, U)
IELB,, ()]

REMARK G.1 If the noisy signals are supported in [—%’, %’] instead of [—%, %], (G.2) is replaced with

2y 2l 2em,m in(N g _
gm(N,e,a)z/ / 2078707 sin(3E ~ @) 4 ge
0 0 ¢ —w)

The following proposition mirrors Proposition 6.1 for dilation MRA,; its proof appears at the end of
Appendix G.

(G.3)
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ProposITION G.1 Assume Model 2 with ¢ = 0 and CV,), CV, defined by (G.1), (G.2) and (G.3). Then,

CVy = n* + 3C, — Hn* + 0n®)
CV, = 40> + (25C, — 33)1* + 0(n%).

Once again we cannot compute CV,, exactly, but by replacing Var,E with their finite sample
estimators, we obtain approximations C'V,, that can be used to define estimators of the dilation moments.

DEFINITION G.1  Assume Model 3 with7 = 0 and cv, 0 cv | the empirical counterparts of (G.3). Define
the second-order estimator of 7 byt =C V. Define the fourth-order estimators of %, C 4 n*) by the
unique positive solution (772, C,) of

CVy=n"+(3C, -3’
CV, =4n* + (25C, — 33)n™.

As M — oo, the second-order moment estimator is accurate up to O(n*) and the fourth-order
moment estimators are accurate up to 0(176). However, in the finite sample regime, the g, (¢,0)
appearing in (G.3) will be replaced with g,,(¢,0) & O(c2/~/M), so that the estimators given in
Definition G.1 are subject to an error of order O(c2/+/M). More generally, the additive noise
fluctuations imply that to estimate the first k/2 even moments of 7 up to an O(n**1) error will require
GZ/W < 7,’:’chl, orM > 0.4]772(k+1).

Having established an empirical moment estimation procedure for noisy dilation MRA when ¢ = 0,
we repeat the simulations of Section 5.2 on the restricted model, but estimate the additive and dilation
moments empirically. Since accurately estimating the moments of 7 is difficult for o large, we make
three modifications to the oracle set-up. First, we lower the additive noise level by a factor of 2 from
the oracle simulations, and consider all parameter combinations resulting from o = 275,274 (giving
SNR = 9.0,2.2) and n = 0.06,0.12. Secondly, we take M substantially larger than for the oracle
simulations, with 16,384 < M < 370,727. Thirdly, we compute WSC k = 4 only for large dilations.
For large dilations (12, C 4 n*) are approximated with fourth-order estimators, while for small dilations
n? is approximated with a second-order estimator (see Definition G.1).

Results are shown in Fig. G7, and the same overall behavior observed in the oracle simulations for
large M holds. The additive noise level was estimated empirically as described in Section 6.2. For the
medium- and high-frequency signal, WSC k = 2 has substantially smaller error than both PS k = 0
and WSC k = 0; for the large-frequency signal, the error is decreased by at least a factor of 2 for large
dilations and a factor of 4 for small dilations relative to both zero order estimators. When WSC k = 4
is defined, it has a smaller error than WSC k = 2 for the high-frequency signal, while WSC k = 2 is
preferable for the low- and medium-frequency signal. We observe that for the oracle simulations WSC
k = 4 is preferable for all frequencies, so this is most likely due to error in the moment estimation
degrading the WSC k = 4 estimator. For the low-frequency signal, PS k = 0 once again achieves the
smallest error for small dilations, while for large dilations the higher order wavelet methods appear to
surpass PS k = 0 for M large enough.
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Fic. G7. L2 error with standard error bars for noisy dilation MRA model (¢ = 0, empirical moment estimation). First, second and
third column shows results for low-, medium- and high-frequency signals. All plots have the same axis limits.
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Proof of Proposition G.1. Since Vi = er +¢;, we have

[ 2l
EIB, ()] = E /0 " (F, (@) + (@) dw]

: 2lr
=FE / o™ }; (w) da):|
0

M 2t
=E / o™ (1 — 1)) dw]
0

[ r2tn(1-1) gm . de
=E
/0 T © - r-)}

7

= Bu(DE[(1 =5~V

We now compute the variance. We first establish that

267 2t
gnl,o)=E |:(/ wmé}(w) da)) (/ wm’s}(w) da)):| )
0 0

By Thm 4.5 of [49]
. 1/2 . 1/2 .
E[f@5®]|=E [( [ e dB,) ( [ dB,)}
—-1/2 —1/2
1/2
_ 02/ JE—0) g
—1/2
_ 20%sin(3(5 — )
B ¢ —w)
so that

2l 2lr 2l 2y
E[( /0 () dw)( /0 F@) da)):| - /0 /0 W"EME [ﬁj(w)%] do d&

2ty p2lp 2 in(lies
=/ / memZO’ sin(5(§ — w)) do d
0 0 ¢ —w)

=g, o).
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267 20 -
E |:(/0 wm(ff_, (@) + () da)) (/0 a)’”(frj(a)) +€;(w)) dw):|
2t 26
[( / o" (1 — 7)) da)) ( / o™ f((1 = 7)w) dw)
0 0 ’
2t 2t
+ (/ o™ 's\j(a)) da)) (/ o™ 's\j(a)) da))j|
0 0

=E[(1 =528, (NBLD] + 8t )

We thus obtain

(18,01

E

= 1BuDPE [ =52V ] g, b 0).
Thus,
VarlB,, ()1 = £,(¢,0) =E [18,06)F | = g,t.0) = [E [ 8,0 |
= 1BuPPE [t = 1))~ 18, (p2 (B[ - 5= ])”
Dividing by |E [,Bm(yj)] 2 gives

E[(l _ .L.j)—Z(m-H)]

= B — -z

and the remainder of the proof is identical to the proof of Proposition 6.1. (]

H. Additional simulations for noisy dilation MRA

We investigate the L2 error of estimating the power spectrum using PS (k = 0) and WSC (k = 0,2,4)
for three additional high-frequency functions:

f,(x) = 1.175 cos(32x) - 1(x € [—0.2,0.2])

f5(x) = 0.299 exp~ 004 cos(30x + 1.5x2)
fo(@) = (2.304/7) cos(35x)sinc(3x) .

The multiplicative constants were chosen so that the L? norms of fa-f5.fs are comparable with the
L? norms of the Gabor signals fi-/2.1; defined in Section 4.4. The signal f; is not continuous and
has compact support, with a slowly decaying, oscillating Fourier transform given by ]?4(@) /047 =
sinc (0.2(w — 32)) + sinc (0.2(—w — 32)). The signal f5 is a linear chirp with a constantly varying
instantaneous frequency. The signal f¢ is slowly decaying in space, with a discontinuous Fourier
transform of compact support given by fy(@)/0.384 = 1(w € [—38, —=32]) 4+ 1(w € [32, 38]).
Implementation details were as described in Section 6, and simulations were run with oracle moment
estimation on the full model (parameter values as described in Section 5.2). Figure H8 shows the L?
error. As for the high-frequency Gabor in Section 5.2, WSC (k = 2) and WSC (k = 4) significantly
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columns show results for f4, f5 and fg. All plots for the same signal have the same axis limits.
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outperformed the zero order estimators. In addition for large dilations, the WSC (k = 4) outperformed
WSC (k =2) on f; and f5.

I. Expectation maximization algorithm for noisy dilation MRA

In this appendix we discuss how the expectation-maximization (EM) algorithm proposed in [1] can be
extended to solve noisy dilation MRA. We first summarize the EM framework, which differentiates
between observed data y = {yj ]Ai |» latent variables s = {sj}j"i | and model parameters x. The goal is to
produce the x that maximizes the marginalized likelihood function

pOy|x) = /p(y,SIx) ds.

Maximizing p(y]x) directly is generally not tenable because enumerating the various values for s is
too costly. However, EM algorithms can be used to find local maxima of the above function, by
iterating between estimating the conditional distribution of latent variables given the current estimate of
parameters (E-step) and estimating parameters given the current estimate of the conditional distribution
of latent variables (M-step). Specifically, the iterative procedure updates x*, the current estimate of x, by

Qx|x) = g, i [log p(y. s|0)] E-step (L1)

X+ = arg max Q(x‘xk) M-step. (1.2)
X

Since (under certain conditions) log p(y|x) improves at least as much as Q at each iteration [30], the
algorithm converges to a local maximum of p(y|x). This framework can be applied to noisy dilation
MRA, and explicit formulas for both the E-step and M-step can be derived. Assume for simplicity
that signals have been discretized to have length n and that the translation distribution p, and dilation
distribution p, are unknown and also discrete with n possible values {t“Z}Z:1 and {Tq}Z:p respectively.
Letting x = (f, p;, p,) denote the parameters, s; = (f;, 7;) denote the latent/nuisance variables, and p,
denote conditioning on x, the likelihood function has form

M

PGy sl0) = p6lopo) =[]

1 2
L exp (—mllLro,jf - y,-llz) (1) 0 (T) -
j:

(2ro2)?

Thus (up to a constant), the log likelihood has form

M M M
1 2
0= oS IL T,y B D logpa) + D logp, (5. 13)

logp(y,s

Given the current estimate x* = (f*, ptk , p’f ) of parameters, the E-step is performed by first computing
the conditional distribution of the latent variables
i . 1
whtd = p (rj =iy = rq|xk) =l exp (—EHLT/_T,/_]"‘ - yj||§) pkypkdy,  (14)
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64 M. HIRN AND A. LITTLE

where C{< is a normalizing constant so that » wi’q‘j = 1. These weights are then used to compute Q,
that is, by combining (I1), (I3) and (14):

1
O, pps e |, p,,m_zzz ﬁw( ! 2||L,jlef—y,-||%+logp,(rf>+1ogpf<rq>), (L5)

j=1 t=1 g=1
up to a constant. The M-step is then computed by

(fk+l k+1 ;01—+1) .

ot arg max Q(f. py. P |15 ofs ) (L6)

Since f, p,, p, all appear in distinct sums in (I5), performing the maximization in (I6) is straightforward.
Since ||L, T, f — i3 =2 f - T;lL;ijn%, it is easy to check that
J q

1y w .
Fet ZZZ t) 'Ly, . c=>] Zﬁ (1.7)
j—1z 1g=1 j=1 t=1 g=1 q

Using Lemma 15 in [1], one can also obtain closed form expressions for the updates to ptk, p’r‘ :

k1, Wﬁ 14 £.q4 k+1 Vk L.q4

~ 44 ~ 'y

orti@h) = —; for wy = E E W, ostl(z?) = - for vy = E E w
2 Wy i 4 7 Vk T

Note when a discrete signal defined on some fixed grid is dilated, its dilation is defined on a different
grid. Thus, computing (1.4) and (I.7) will involve off-grid interpolation, a subtlety not arising in classic
MRA, and this interpolation may contribute additional error. We also note that one can always force
the translation distribution to be uniform by retranslating the signals uniformly, and in this case all
sums over ¢ in this section could be eliminated. This would improve the computational complexity of
the algorithm but may be disadvantageous in terms of sample complexity, as in classic MRA a uniform
translation distribution requires a larger sample size for accurate estimation than an aperiodic translation
distribution [1].

J. Supporting results: stochastic calculus

This appendix contains several stochastic calculus results that are used to control the statistics of
the additive noise. Proposition J.1 is a simple generalization of Thm 4.5 of [49]. Proposition J.2
controls the second moment of the stochastic quantity in Proposition J.1 and is in fact a special case
of Proposition J.3. Both Propositions J.2 and J.3 are proved with standard techniques from stochastic
calculus, and for brevity we omit the proofs.

PROPOSITION J.1 Assume fOT f()? dr < oo, fOTm2 dt < oo, and let B, be a Brownian motion with

variance o2, Then,
T T T
E[( /0 f@) dB,) ( /0 0 dBt)} =0’ /0 F@OF @) dt.
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ProOPOSITION J.2 Let f(f) be a bounded and continuous complex deterministic function on [0, 7], and
let B, be a Brownian motion with variance o2. Then, for a fixed non-random time 7T, we have

T 2, .7 2 T 2 T T
IE|:(/O f(t)dB,) (/0 mdBt)i|=264(/o |f(t)|2dt) +a4(/0 f(t)zdt) (/O f(_t)zdt).

COROLLARY J.1 When f(?) is real, the above reduces to

T 4 T 2
_ 2.4 2
E[(/O f(t)dBt) ]_30 (/o f@® dt) .

ProposITION J.3  Let f(f), g(f) be bounded and continuous complex deterministic functions on [0, 7],
and let B, be a Brownian motion with variance o2. Then, for a fixed non-random time T, we have

T T T T

([ o) ([ 700) ([ s00) ([ )]

T T T T
_ ot e oy 7o
=0 [(/0 Sg@) dt) (/0 S@g@) dt)+ (/o S@g(@) dt) (/o Fg@) dt)

T T

2 2
+(/0 If (D] dt) (/0 lg@®)| dt)]
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