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Abstract—It is infeasible to test many different chemotherapy drugs on actual patients in large clinical trials, which motivates
computational methods with the ability to learn and exploit associations between drug effectiveness and patient characteristics. This
work proposes a machine learning approach to infer robust predictors of drug responses from patient genomic information. Rather than
predicting the exact drug response on a given cell line, we introduce an elastic-net regression methodology to compare a drug-cell
line pair against an alternative pair. Using predicted pairwise comparisons we rank the effectiveness of different drugs on the same
cell line. A total of 173 cell lines and 100 drug responses were used in various settings for training and testing the proposed models.
By comparing our approach against twelve baseline methods, we demonstrate that it outperforms the state-of-the-art methods in the
literature. In contrast to most other methods, the algorithm is able to maintain its high performance even when we use a large number

of drugs and few cell lines.

Index Terms—Drug sensitivity prediction, personalized medicine, elastic net regression, cancer, ranking, score function.

1 INTRODUCTION

ERFORMING drug screening and selecting appropriate
P personalized treatment based on individual genomic or
proteomic profiles is one of the paramount goals of precision
medicine.

Since the effectiveness of each drug can be varied among
patients, finding the right drug for each cancer patient
is quite a challenging task [1]. One possible option is to
assess the efficacy of drugs using large clinical trials. This
path makes it possible to capture most of the pertinent
biological features of a patient [2]. However, this approach
is impractical for several reasons: (i) large clinical trials are
time-consuming and expensive; (i) a clinical trial typically
evaluates one (or very few drugs) at a time; and (ii7) even a
large clinical trial may not include enough patients to cover
all cancer genomic variations.

Cell lines contain a large number of the molecular fea-
tures of tumors; as a result, they are expected to reflect the
properties (mutation status, gene expression, drug sensitiv-
ity, and so on) of the original cancer type from which they
were cultured [3]. Thus, they provide practical preclinical
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models in order to analyze strategies for predictive marker
development [4]. Consequently, an alternative to clinical
trials is drug response prediction using large-scale screen-
ings of cancer cell lines against libraries of pharmacological
compounds [5]. This can lead to genomic predictors of drug
responses from large panels of cancer cell lines [3], [6].

Hansch et al. [7] were among the first who revealed the
existence of mathematical relations between the biological
activity of a chemical compound and its physicochemical
properties. Pan-cancer repositories (e.g., the molecular anal-
ysis for a therapy choice trial at the National Cancer Insti-
tute, the Cancer Genome Atlas) provide the foundation for
joint analysis of cancer cell lines and their drug responses.
Furthermore, over the past few years, two important stud-
ies, namely the cancer cell line encyclopedia [3], and the
genomics of drug sensitivity projects [8] revealed the appli-
cability of machine learning algorithms in predicting drug
response based on panels of cancer cell lines.

Different methodologies have been utilized in the litera-
ture for drug sensitivity prediction based on genomic data.
Barretina et al. [3] employed elastic net regression [9] to
predict drug sensitivity for the Cancer Cell Line Encyclopedia
(CCLE). Geeleher et al. [10] used pre-treatment baseline gene
expression data to predict the chemotherapeutic response in
patients. They applied a ridge regression model to predict
drug response for breast cancer cell lines using baseline
gene expression data. This method was compared against
several methods, such as nearest shrunken centroids, prin-
cipal component regression, Least Absolute Shrinkage and
Selection Operator (LASSO) regression [11], elastic net regres-
sion, and random forests [12]. They observed that ridge
regression yielded the best performance. However, other
studies comparing multiple algorithms on a drug sensitivity
database have observed that random forests perform better
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than ridge regression or other regularized linear regression
approaches [13]. Undoubtedly, the random forest algorithm
has been one of the top-performing algorithms in drug
sensitivity prediction, and this has been proven in multiple
other drug sensitivity studies [14], [15], [16], [17]. Never-
theless, in all of these studies, the authors did not consider
the effect of molecular feature data, the type of drug used,
the sensitivity of the response (discrete or continuous), and
methods for summarizing compound sensitivity values.

In a comprehensive comparative study in drug sensi-
tivity prediction, Jang et al. [6] considered these modeling
factors to compare various machine learning algorithms, in-
cluding principal component regression, partial least square
regression, least squares support vector machine regression
with linear kernels, random forests, LASSO, ridge regres-
sion, and elastic net regression. They considered more than
110,000 various models based on a multifactor experimental
design. Their analysis suggested that elastic net or ridge re-
gression will most likely yield the most accurate predictors.
However, some studies argue that the existing regression-
based methods for drug selection may sacrifice performance
on very few but sensitive drugs to achieve better perfor-
mance on the majority of insensitive drugs [18]. Therefore,
when using the regression-based models to predict how a
cell line responds to sensitive drugs, the prediction could
lead to incorrect drug selection or prioritization [18].

Motivated by the high performance of regression-based
methods in drug sensitivity prediction, we propose a novel
elastic-net-based regression that utilizes gene expression
features and drug sensitivity data to build a predictor. Most
of the conventional regression methods learn a vector of
coefficients for each cell line or drug and use these vectors
to predict the sensitivity values. We believe this is the main
reason that may lead to sacrificing performance on very few
but sensitive drugs to achieve better performance on the
majority of insensitive drugs. Moreover, because the number
of cell lines is significantly less than the number of features,
these approaches usually lead to “overfitting.” In addition,
they fail to capture the drug-cell line relation across various
cell lines. As a result, they are unable to effectively prioritize
sensitive drugs over insensitive drugs.

Our method uses regularized regression to model the
difference in sensitivity of a given drug acting on different
cell lines or different drugs acting on the same cell line.
Specifically, we do not predict the exact drug response for
each drug, but rather develop a model that estimates the
difference in sensitivity obtained by comparing two differ-
ent drug-cell line pairs. This score function can compare
drug sensitivities for a given cell line and then use these
pairwise comparisons to rank the drugs. Using this model,
we can rank the sensitivity of different drugs acting on
a novel cell line. The use of regularization as part of the
regression is motivated by the earlier work we reviewed
and recent results on the connection between regularization
and robustness to the potential presence of outliers [19], [20].

The remainder of this paper is organized as follows.
Section 2 outlines our method, presents the data we used,
and discusses model training and performance evaluation.
Section 3 presents our main results and how our method
compares to alternatives. Section 4 discusses the results and
draws some conclusions.

Notational conventions: We use boldfaced lowercase
letters to denote vectors, ordinary lowercase letters to de-
note scalars, boldfaced uppercase letters to denote matrices,
and calligraphic capital letters to denote sets. All vectors
are column vectors. For space saving reasons, we write
x = (x1,...,Ty,) to denote the column vector x € R". For
any matrix A, we let a;; denote its (7, j) element, a; the ith
row and, with some abuse of our conventions, A; the jth
column. I denotes the identity matrix. We use prime to de-
note the transpose of a vector, and ||x||, = (31, |z:|?)/?
for the £, norm, where p > 1. For any matrix A € R™*™,
|A||, will denote the £, norm of a vectorized form of the
matrix, ie., [|[All, = (32, X7, la;j|P)L/P. We also use e;
to denote the ¢th unit vector, a vector of all zeros except the
ith element which is set to 1.

2 MATERIALS AND METHODS

2.1 Model description

We are given a matrix S € RNe*Né¢  where each row
corresponds to one of N¢ cell lines (patients). Each cell line
is characterized by a gene expression vector containing Ng
features. We are also given a matrix R € [0, 1]Ne*"p of
drug responses to Np different drugs; each row corresponds
to a cell line and each column lists the response of a specific
drug to all cell lines. Drug responses are in [0, 1] and a higher
response implies higher sensitivity of the cell line to the
drug (i.e., a more effective drug). Our ultimate goal is to
rank the Np drugs based on their response, so that the most
effective ones are ranked on top. Importantly, we care about
the relative ordering of the most effective drugs; predicting
the exact value of the drug response is of no consequence.

In our specific application, we do not have any infor-
mation about the drugs (e.g., their mechanism of action,
physical and chemical properties, metabolism, therapeutics,
and toxicity). We just know the name of each drug, which
makes the prediction even more difficult. Therefore, we use
so-called “one-hot” encoding to represent drugs; i.e., for
each of the Np drugs we create an indicator variable taking
values in {0,1}. Application of the ith drug will simply be
represented by the ith unit vector. If we had access to the
drug-specific features, we can easily substitute the one-hot
encoding vector with such features.

Define now the (Np + N¢)-dimensional vector p;; =
(ei;sj), @ = 1,...,Np, j = 1,...,N¢, formed as the
concatenation of the one-hot vector representing drug
and the j row vector of S containing the gene expression
for cell line j. Per our notational conventions, r;; denotes
the (i,7) element of the response matrix R, that is, the
response of drug j in cell line ¢. Denote by N = N¢cNp
the number of all possible combinations of a drug with a
cell line. Define the matrix X € RVN*X(No+Na) with rows
Pi1,P21,--.,PnN corresponding to drug-cell line pairs and
let y = (r11,721,...,7n5) be the vector of corresponding
responses. For any ¢ = 1,..., N, (x;,y;) will consist of the
ith row of X and the ith element of y.

We will view {(x;,¥;); ¢ = 1,...,N} as a training set
and we are interested in training a model that predicts the
difference in sensitivity between two different drug-cell line
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combinations x;, x;. We start by defining appropriate labels.
Define:

aijzfij(yi_yj)X1007 i,j:]-,"'aNa

where

o1,

when i and j refer to same drug in
different cell lines,
flj = ¢27

when i an j refer to different drugs (1)
in the same cell line,
0, otherwise,

and ¢1, ¢ are positive constants. Let also

1, when ¢ and j refer to the same drug in
different cell lines or different drugs in

Vi; =

the same cell line,
0, otherwise.

The training problem amounts to finding a matrix W
that solves the following optimization problem

N
L1
min — D Wi (KWx; —ai) P+ A [WE+ X2 [ W], (2)
ij=1
i
where Z = N(Np + N¢ —2) and A1, A2 > 0 are regulariza-
tion parameters.
Having solved the regression problem in (2), we can
rank the drugs on how they affect a new cell line using

the following procedure. Let s be the gene expression vector

of the new cell line. For any ¢ = 1,..., Np, we compare
the drug-cell line pairs g; = (e;, s) against themselves and
other pairs x,,, n = 1,..., N, already seen in the training

set. Specifically, the score T; of drug ¢ = 1,..., Np, on the
cell line s is obtained by:

! N S
L= N D) ;giwg] ’ n;q)mginn
JFi
®)
Ranking these scores T; provides a ranking of the effective-
ness of the drugs on the new cell line s.

We present an example to illustrate the scoring process.
Suppose that we have 3 drugs D;, D>, and D3 and 4 cell
lines C, C, C3, and Cy. The structure of the training matrix
X is shown in Figure 1. The arrows in this figure depict
the comparisons our model performs during training for
D in C;. To rank the drugs in a new cell line Cres, use
(3) to compute T;, i = 1,2, 3. Figure 2 demonstrates the

comparisons (3) performs to evaluate the score for D;.

2.2 Data sets

We designed, evaluated, and trained our method using the
cell line data and drug sensitivity data from the Cancer Cell
Line Encyclopedia (CCLE) [21] and the Cancer Therapeutics
Response Portal (CTRP v2) [22]. We used the “Act Area” (the
area above the fitted dose-response curve) to quantify drug
sensitivity. With this metric, lower response indicates higher
drug sensitivity. It worth mentioning that approximately
20% of the drug responses are missing; this portion of the
data were excluded from our analysis.

Cy X1
Cy X2
Cy X3
Cy X4
C; Xs
Cz Xg
C3 X7
C3 Xg
C3 X9
Cy X10
Cy X11
[ X12

Fig. 1: The structure of X and the comparisons our model
will carry out for D; in Cj.
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Crest t3
Crest ey
Crest e
Crest e
Cy ey
Cy es
[ €
C; e7
C; eg
Cz €9
C3 €1
C3 €11
C3 ez
Cq €13
Cy €14
Cy e1s

Fig. 2: The process of calculating the score for D; in a new
cell line.

2.3 Gene selection scheme

Each gene in our data set has approximately 20,000 features.
A snapshot of all the transcriptional activity in a cell line can
be obtained by gene expression microarrays. Please refer
to Appendix A and [23] for more information. Since the
number of features is significantly higher than the number
of training samples, using all these features may result in
overfitting. Instead, we selected an appropriate subset of
features to use for all our experiments. To that end, and
consistent with the discussion in Section 1, we used LASSO
regression to select a subset of features.

Specifically, consider the matrix X and the response
vector y defined in Section 2.1. For the rows (e;,s;),
i = 1,...,Np, 7 = 1,...,N¢g, of X define a common
coefficient vector B = (B1,82), B1 € RY?, By € RNe. To
develop a regression-based model for predicting y, we solve
the following loss minimization problem:

mﬁinlly—XﬂHQ + AlIB21, 4)

where A > 0 is a scalar that modulates the strength of the
regularizer. Gene features were eliminated using a recursive
feature elimination procedure. In particular, we solve (4) us-
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ing cross-validation to select A. We eliminate 5% of the gene
features whose corresponding coefficient in 3» is among the
5% smaller absolute values. We reformulate (4) using the
remaining gene features and repeat this process while the
validation loss keeps decreasing. Further details of the gene
selection scheme and the list of the selected genes can be
found in Appendix A.

2.4 Converting the model to elastic net regression

The following Lemma is almost immediate; hence, we skip
the proof. It establishes that Problem (2) can be reformulated
as a standard elastic net regression.

Lemma 2.1 Formulation (2) can be converted to the following
elastic net regression problem:

N
1 /
min — 'Zl[q)ij(vijw —ai)* + Mllwlz + Xefwli, ©5)
i,j=
i#£]
where v is the vectorization of xix;», and w is the vectorization
of W.

25

Regularizing with the /;-norm is known to induce sparsity
in the coefficient vector w. To reduce the complexity of
our model, we can set to zero some elements of w that
appear less important in making a prediction; this has also
the effect of reducing running time and providing a higher
level of interpretability [24] to the model. To that end, we
used an iterative procedure similar to the one mentioned in
Section 2.3.

More specifically, in each iteration, we use cross-
validation to select A;, A2 in (5) that minimize the loss on
the validation set. Then, we select 10% of the elements of
w with the smallest absolute value and set them to zero.
We continue iterating in this fashion until we do not see
any considerable decrease in the (validation) performance
of our model. The end result will be a parameter vector w
with much less non-zero elements than the total number of
(Np+ N¢)? elements. In this way, we not only prevent over
fitting, but also decrease the complexity of the model.

Iterative thresholding for complexity reduction

2.6 Closed form solution

After fixing a number of elements of w to zero us-
ing the approach described in Section 2.5, we remove
the ¢;-norm penalty from the problem formulation (5).
The resulting problem is equivalent to ridge regression.
Let V. e RVWN-Dx(No+N6)® pe the matrix with rows
{Wijvij; 4,5 = 1,...,N, i # j}. Define also the vector
a = (byai; i,j = 1,...,N, i # j) € RO>TNG)® Then,
Problem (5), with A\ = 0, is written as:

.1
min —[|Vw — a3 + A [ w3 Q)

The following lemma provides a closed-form solution to
Problem (6). A proof is provided in Appendix B.

Lemma 2.2 The closed form solution for Problem (6) can be
written as follows:

w=(VV+A\ZI)'Va. )

Notice that the matrix V'V is positive semi-definite
and, for large enough A;, V'V + A\ Z1 is positive defi-
nite and thus invertible. When w is dense, the asymptotic
time complexity of the closed form solution would be
O((Np + Ng)® + N(N — 1)(Np + Ng)*). However, as
we discussed in Section 2.5, we can greatly decrease the
number of non-zero elements of w and instead solve for
the remaining non-zero elements of w, where the matrix to
be inverted has dimension n x n with n being the number of
non-zero elements of w. A schematic of the proposed model
is summarized in Figure 3.

2.7 Experimental Setting

The data were standardized so that variables lie between
zero and one. The dataset was further split into a training
and a test set. Details of the pre-processing steps can be
found in Appendix C.

We applied iterative thresholding on the training set
and found the non-zero elements of w. Performance was
evaluated on the test set. To calculate some of the metrics we
classified each drug into two classes — sensitive/insensitive
— for each cell line. Specifically, a fixed percentile of all drug
response values in the training set for each cell line was used
as a threshold to determine drug sensitivity in that cell line.

2.8 Performance metrics

To evaluate the accuracy of our approach, we used two
ranking metrics, namely AH@k, and CI°. The first metric
is the average-hit at k, which is the average number of
sensitive drugs that are ranked among the top k of a ranking
list [25], [26]. This metric is important because in this specific
application we care more about sensitive drugs. It evaluates
the ability of a model to place sensitive drugs on top of
insensitive drugs. However, a high value for AH@Fk does
not necessarily guarantee that the ordering among the top-
ranked drugs is correct. For that purpose, we consider the
concordance index CI. The concordance index measures
the ratio of correctly ordered drug pairs among all possible
pairs [25]. In other words, it measures whether the ordering
structure of a ranking list is close to its ground truth or not.
Since we care more about the sensitive drugs, we use CI to
evaluate the ranking structures among only sensitive drugs
and denote it by C'I°. If we use d,, > d,, to represent that
drug d,, is more sensitive, and thus ranked higher than drug
d,,, CI? can be defined as follows:

1

oI — Udy, = dy),

—
‘dm - dn| dm>dn

where d,, >T- d,, represents that drug d,, is ranked higher

than drug d,, based on the ground truth ranking, d,, -
d, represents that drug d,, is ranked higher than drug d,,
based on the predicted ranking list of sensitive grants, I is
the indicator function, and | - | denotes the cardinality of a
set [18].
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Fig. 3: Schematic overview of the proposed method. In the first step (Data preparation), the model creates the pairwise
drug-cell line comparison matrix using one-hot vectors of drugs and the gene expressions for training cell lines. Then, the
proposed model converts the problem to an elastic net regression by changing and expanding the pairwise drug-cell line
comparison matrix. Finally, iterative thresholding reduces the complexity and running time of the model. In the training
step, w will be learned using Equation (7). Finally, in the last step, the scores of drugs for a new cell line are calculated
using Equation (3). Eventually, the ranking of the drugs in that cell line is obtained as a permutation ™ which sorts the

drugs in the decreasing order of their score.

2.9 Baseline methods

We compared the proposed method against twelve state-
of-the-art approaches for drug sensitivity prediction includ-
ing Elastic Net (EN) [9], Kernel Ridge Regression (KRR) [27],
Bayesian Multitask Multiple Kernel Learning (BMTMKL) [28],
Partial Least Square regression (PLS) [29], Principal Compo-
nent Regression (PCR) [24], Sparse Principal Component Re-
gression (SPCR) [30], Gaussian Process Regression (GPR) [31],
LASSO [11], Robust Support Vector Regression (RSVM) [32],
LambdaMART [33], Neural Network Regression (NNR) [34]
and Deep neural network (DNN) [35]. For more information
about these algorithms, please refer to the above-mentioned
references. Furthermore, the details of LambdaMART and
NNR can be found in the supplementary materials. In gen-
eral, the typical practice for regression models is to design
supervised predictive models for each drug based on the
gene expression profiles of cell lines. Then, the ranking of
the drugs in a specific cell line is obtained as a permutation,
sorting the drugs in the decreasing order of predicted drug
response values.

2.10 Hyper-parameter optimization

There are three hyper-parameters in our model, namely ¢,
@2 (cf. (1)) and Ay (cf. (2)). We tuned these hyper-parameters
with a grid search on the training set, using cross-validation.
To that end, we tried different values to find the best values
of these hyper-parameters. Similarly, we conducted a grid
search for each of the parameters of the baseline methods.
The details of the parameter-tuning procedure can be found
in Appendix D.

3 RESULTS

We consider three case studies for ranking cancer drugs
acting on cancer cell lines: (i) lung cancer cell lines, (i)
blood cancer cell lines, and (ii¢) myeloma and lymphoma
cell lines. In each case, we compare the performance of the
proposed method on ranking drugs with baseline methods

introduced in Sec. 2.9. The source code is provided on
GitHub. !

In most of the prior work in the literature, all the cell
lines and drugs in CCLE and CTRP v2 (see Sec. 2.2) were
used for ranking. In this work, we elected to develop sepa-
rate drug lists for each of the cancer cases studies outlined
above. One reason is that cancer care remains specialized to
the type of tissue where the primary cancer developed. The
drawback is that the ranking problem is more challenging,
since, in each case, we work with fewer cell lines. As a result,
part of the goal is to assess whether the proposed model is
able to overcome this challenge. From a histological angle
perspective, there are six broad categories of cancers based
on tissue type: carcinoma, sarcoma, myeloma, leukemia,
lymphoma, and mixed types [36]. Moreover, depending on
the primary site of origin, cancers may be of specific types
such as lung cancer, liver cancer, breast cancer, etc.

In Case Study 1, we used the cell lines which were
derived from the lung cancer tumors (carcinoma group).
After removing missing data, we have 51 cell lines and
100 drugs. According to our gene selection results, 88 genes
are selected as a minimal subset of all genes. The details
of the gene selection scheme and the list of the selected
genes can be found in Appendix A. We present two different
experiments, one involving the ranking of 50 drugs, and the
other involving 100 drugs. In all experiments, we set the
sensitivity threshold so that the number of sensitive drugs
in that experiment is exactly 10 drugs. Therefore, even when
we have 100 drugs, we would have 10 sensitive drugs and
we will measure the ability of the models to rank these
sensitive drugs at the very top of the ranking list. It worth
mentioning that in the second experiment, we added 50 new
drugs to the existing drugs in the first experiment. However,
the sensitive drugs in the first experiment are not exactly
the same as the sensitive drugs in the second experiment
because in each experiment, the threshold is defined based
on a different set of drugs.

In Table 1, we compare the proposed method with the
baseline methods for 50 and 100 drugs. In this and the tables

1. https:/ / github.com/noc-lab/Drug-Response-Prediction.
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TABLE 1: Performance Comparison of Ranking Methods for 50 and 100 Drugs (Lung Cancer Cell Lines).

Methods Parameters AH@5 AHe@10
RSVM Q=01 v = 100 Kernel= polynomial 3.7 6.4
LASSO A=10 3.6 6

KRR A =10° o2 =10 Kernel= RBF 3.6 6

EN a=0.1 A =100 3.6 6
BMTMKL ap = 10710 By = 1010 3.3 6.1
PLS PLScomp = 28 3.4 5.2

50 Drugs PCR Pcomp = 32 3.4 54
SPCR Pcomp =29 Card =25 34 6.4

GPR Kernel= Matern 5/2 3.7 6.1

NNR Epochs= 50 Batch size= 5 3.6 6.4
LambdaMART 7 =0.01 np = 100 Dimaz =5 Sub = 0.7 3.8 6.4
DNN Epochs=100 Batchsize=5 Drop=0.3 {2 =0.001 3.6 6.4
Proposed Model $1 =25 P2 =1 NonZ= 5010 A =1 3.8 6.6
RSVM Q=01 y=1 Kernel= polynomial 3.4 5.4
LASSO A =100 3.4 5
KRR A=10 o? =10 Kernel= RBF 3.4 5.2

EN a=0.1 A=10 34 5.4
BMTMKL ap = 10710 By = 1010 3.2 5.2
PLS PLScomp = 26 3 4.5

100 Drugs PCR Pcomp = 22 3.2 49
SPCR Pcomp =28 Card =75 3.5 49

GPR Kernel= exponential 3.5 5

NNR Epochs= 100 Batch size= 5 3.4 5.1
LambdaMART 7 =0.01 n = 1000 Daz =5 Sub=1 3.2 5.3
DNN Epochs=100 Batchsize=5 Drop=0.1 {3 =0.01 3.2 49
Proposed Model ¢ =4 2 =1 NonZ= 2694 Ar=1 3.8 5.5

corresponding to the other two case studies, the last two
columns report the average AH@5 and AH@10 for testing
data that correspond to the best parameter combinations.
Bold and underlined numbers indicate the best performance
among all methods for each metric. Bold numbers demon-
strate the second-best performance among all methods for
each metric. In all tables, {2 denotes the kernel parameter for
RSVM, NPComp is the number of principle components,
PLScomp is the number of PLS components, Pcomp is
the number of principle components, Card is the desired
number of non-sparse components (cardinality) of output
for each principal component, 7 is the learning rate, Dqx
is the maximum depth of a tree, Sub refers to the subsample
ratio of the training instances, and nr is the number of trees
in the model. Additionally, Drop refers to hidden dropout
ratio, and /5 is the parameter of the /5-norm penalty for the
DNN method.

In general, the predictive performance obtained by our
model for both scenarios is significantly higher than the
baseline methods. As mentioned earlier, only the top few
most sensitive drugs will be of great interest in practice.
Clearly, the proposed method performs considerably well
in this aspect. Evidently, the difference between the best
and the second-best AH@5 for 100 drugs, is greater than
what we find for 50 drugs. In our experiment on lung
cancer cell lines, RSVM shows a reasonably good overall
performance and it is the second-best methods. Moreover,
LambdaMART, DNN, and NNR which perform well in
terms of AH@5 and AH@10 for 50 drugs, performed poorly
for 100 drugs. As can be seen, due to the limited number of

samples available for training and testing, the performance
of the baseline methods decreases significantly when we
increase the number of drugs. Nevertheless, the proposed
method is able to maintain its high performance. The data
augmentation step (i.e., comparing each drug with other
drugs in the same cell line and comparing that drug with
itself in other cell lines) and predicting scores instead of
the exact drug responses are two main reasons behind this
superior performance.

In Case Study 2, we used the cell lines which were
derived from the blood cancer tumors (leukemia group).
After removing missing data, we retain 63 cell lines and
100 drugs. Based on our gene selection results, 134 genes
are selected as a minimal subset of all genes. The details of
the gene selection scheme and the list of the selected genes
can be found in Appendix A. The performance comparison
of ranking methods for both 50 and 100 drugs is presented
in Table 2. The experimental setting for these experiments is
exactly like Case Study 1.

For 50 drugs, the proposed method consistently outper-
forms all baseline methods across all performance metrics
except AH@5 where it is tied with several methods (RSVM,
LASSO, KRR, EN, SPCR, GPR, and NNR). However, these
methods do not have a comparable performance in other
metrics. As we can see, AH@10 is the highest for the pro-
posed method and the difference between the best and the
second-best AH@10 is considerably high. For 100 drugs, the
performance of the proposed method is even better. Most
of baseline methods demonstrate equal performance, to
which our model compares favorably. In these experiments,
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TABLE 2: Performance Comparison of Ranking Methods for 50 and 100 Drugs (Blood Cancer Cell Lines).

Methods Parameters AH@5 AH@10
RSVM Q=01 v=0.1 Kernel= polynomial 3.42 5.50
LASSO A = 1000 3.42 5.50

KRR A = 1000 02 =10 Kernel= RBF 3.42 5.50

EN a=03 A=10 3.42 5.50
BMTMKL ap = 10710 By = 1010 3.17 5.42
PLS PLScomp = 30 3.00 5.00

50 Drugs PCR Pcomp = 26 3.25 5.33
SPCR Pcomp =25 Card =50 3.42 5.50

GPR Kernel= Matern 3/2 3.42 5.50

NNR Epochs= 100 Batch size= 5 3.42 5.50
LambdaMART T=0.1 np = 1000 Dmaz =5 Sub = 0.7 3.33 5.58
DNN Epochs=100 Batchsize=5 Drop=0.3 {2 =0.001 3.33 5.42
Proposed Model ¢1 =5 Po =1 NonZ=2886 )\ = 10° 3.42 5.92
RSVM Q=2 v=0.1 Kernel= polynomial 3.42 5.08
LASSO A =100 3.42 5.08
KRR A =100 % =100 Kernel= RBF 3.42 5.08

EN a=038 A=10 3.42 5.08
BMTMKL ap = 10710 By = 1010 2.83 5.08
PLS PLScomp = 29 2.92 4.83

100 Drugs PCR Pcomp = 27 3.17 5.08
SPCR Pcomp = 25 Card =25 3.42 5.08

GPR Kernel= squared exponential 3.42 5.08

NNR Epochs= 50 Batch size=5 3.42 5.08
LambdaMART T=0.01 np = 100 Diaz =5 Sub = 0.7 3.42 5.17
DNN Epochs= 50 Batch size=5  Drop =0.3 {5 = 0.01 3.42 5.08
Proposed Model $1 =25 2 =1 NonZ= 2664 A1 =10 3.58 5.17

LambdaMART, NNR, RSVM, and EN show a reasonably
good overall performance and are the second-best methods.

In Case Study 3, we used the cell lines which were
derived from myeloma and lymphoma groups. Lymphoma
and myeloma are cancers of the immune system. After
removing missing data, we have 59 cell lines and 100
drugs. According to our gene selection results, 115 genes
are selected as a minimal subset of all genes. The details of
gene selection scheme and the list of the selected genes can
be found in Appendix A. Table 3 shows the performance
comparison for 50, and 100 drugs.

For 50 drugs, the proposed method outperforms all base-
line methods across all performance metrics except AH@5
where it is tied with two methods (PLS and PCR). However,
these methods do not have a comparable AH@10. When we
increase the number of drugs to 100, the predictive perfor-
mance obtained by our method is found to be significantly
higher than the baseline methods. In our experiment for
myeloma and lymphoma cell lines, EN shows a reasonably
good overall performance and it is the second-best method.
Furthermore, LambdaMART and PLS that perform really
well in terms of AH@10 for 50 drugs, demonstrated a poor
performance for 100 drugs.

Even though in personalized medicine and drug selec-
tion, we just care about the top few most sensitive drugs,
knowing the right order of those sensitive drugs will be
of great interest. In this regard, CI° measures whether the
ordering structure of a ranking list for sensitive drugs is
close to its ground truth or not. As demonstrated in Figure 4,
the proposed method has a higher ability to put the sensitive

drugs in the right order compared to the baseline methods.
LambdaMART is the only method that has a comparable or
better CI°. However, when we consider the main evaluation
metrics (AH@5 and AH@10), it does not have a comparable
performance.

In a nutshell, these results suggest that predicting drug
sensitivities with the proposed method leads to superior
predictive performance than the baseline methods across all
performance metrics. Moreover, the proposed method is not
only able to push the most sensitive drugs to the top of the
ranking list, but it can put them in the right order.

4 DISCUSSION AND CONCLUSION

Since the effectiveness of medicines and therapies varies

among patients, a conventional clinical practice is to treat

cancer patients with a variety of therapeutic options. How-
ever, using molecular data, we can use the biological differ-
ences among patients’ cancers to choose precise and indi-

vidualized therapeutic options. To that end, we proposed a

novel elastic-net-based regression that utilizes gene expres-

sion features and drug sensitivity data to build a predictor.

In general, this model provides the following considerable

advantages:

o Instead of predicting the exact drug response for each
drug, we calculate a score for each drug and then use
these scores to rank the drugs for a specific cancer cell
line. This approach is able to solve the problem of fitting
on the insensitive drugs that is usually seen in regression-
based models.
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TABLE 3: Performance Comparison of Ranking Methods for 50 and 100 Drugs (Myeloma and Lymphoma Cell Lines).

Methods Parameters AH@5 AH@10
RSVM Q=1 y=1 Kernel= polynomial 4.00 6.82
LASSO A=10 4.00 6.91
KRR A=1 o2=1 Kernel= RBF 4.00 6.91
EN a=0.9 A=10 4.00 6.91
BMTMKL ap = 10710 By = 1010 4.00 6.54
PLS PLScomp = 24 4.09 6.91
50 Drugs PCR Pcomp = 26 4.09 6.82
SPCR Pcomp =24 Card =75 4.00 6.82
GPR Kernel= Matern 3/2 4.00 6.91
NNR Epochs= 100 Batch size= 25 4.00 6.82
LambdaMART 7 =0.01 np = 100 Doz =5 Sub=1 4.00 7.00
DNN Epochs= 50 Batch size=5  Drop =0.3 {5 = 0.01 4.00 6.54
Proposed Model ¢1 =0.1 2 =1 NonZ= 3980 A1 =0.1 4.09 7.00
RSVM Q=1 v=0.1 Kernel= polynomial 3.82 6.64
LASSO A=10 4.00 6.64
KRR A=10 02 =10 Kernel= RBF 4.09 6.64
EN a=0.1 A=10 4.09 6.73
BMTMKL ap = 10710 By = 1010 3.82 6.64
PLS PLScomp = 28 4.00 6.45
100 Drugs PCR Pcomp = 32 3.82 6.45
SPCR Pcomp =28 Card = 100 3.82 6.64
GPR Kernel=exponential 4.00 6.64
NNR Epochs= 100 Batch size= 5 3.82 6.64
LambdaMART T=0.1 np =10 Dpas =10 Sub=0.7 3.64 6.36
DNN Epochs=100 Batchsize=5 Drop=0.3 {2 =0.01 3.82 6.45
Proposed Model ¢$»1 =0.3 2 =1 NonZ= 4180 A1 =50 4.18 6.82
e We learn a coefficient matrix for all the cell lines and model.

drugs, and then define a score function using that matrix
to prioritize drugs within each cell line. In this way, we are
able to capture drug-cell line relations between various
cell lines.

« Since we usually do not have access to enough data, we
need to achieve high performance with a limited amount
of data. The specific structure of this model (comparing
each drug with other drugs in the same cell line and
comparing that drug with itself in other cell lines) sub-
stantially improves the accuracy of the drug prediction
model under limited data.

o The proposed model is able to maintain its high perfor-
mance even when we use a large number of drugs and a
few cell lines. As we saw in Section 3, when we increase
the number of drugs, we increase the complexity of the
problem and predicting the true ranking becomes more
difficult. We observed that when increasing the number
of drugs, the ability of other methods to predict the right
ranking decreases substantially. However, the proposed
method maintains its high performance even when we
run it for 100 drugs.

o A great number of methods in the literature try to learn
either a vector or a matrix for each drug or cell line.
Such methods need to keep a huge amount of information
to find the ranking for new samples. In contrast, the
proposed method maintains one sparse matrix.

e Learning one sparse matrix for all cell lines and drugs
reduces the possibility of over fitting in the proposed

Although our model is quite promising, it also suffers
from some limitations that can be addressed in future work.
First, in the proposed model, we only used gene expression
data. However, one way to increase the prediction accuracy
of this model is to incorporate various genomic informa-
tion, such as epigenomic characterizations and protein level
information. Furthermore, an interesting future direction is
to incorporate the toxicity of drugs in our predictions. Due
to the biological differences among patients, the side effects
of medicines and therapies may vary. However, when we
predict the most effective drugs, we do not consider the side
effects and toxicity of each drug. Therefore, by considering
this factor, we can further optimize our predictions. Finally,
graph neural networks have been shown to yield state-of-
the-art results in some applications compared to other deep
learning-based approaches [37]. It has been demonstrated
that representing compound structures as molecular graphs
can improve the performance of drug response predic-
tion [37]. Thus, in future work, and assuming we have drug
composition information, we can represent drug molecules
as graphs instead of using one-hot encoding vectors.
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