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Abstract

We prove quantitative convergence rates at which

discrete Langevin-like processes converge to the

invariant distribution of a related stochastic dif-

ferential equation. We study the setup where

the additive noise can be non-Gaussian and state-

dependent and the potential function can be non-

convex. We show that the key properties of these

processes depend on the potential function and

the second moment of the additive noise. We

apply our theoretical findings to studying the con-

vergence of Stochastic Gradient Descent (SGD)

for non-convex problems and corroborate them

with experiments using SGD to train deep neural

networks on the CIFAR-10 dataset.

1. Introduction
Stochastic Gradient Descent (SGD) is one of the workhorses

of modern machine learning. In many nonconvex optimiza-

tion problems, such as training deep neural networks, SGD

is able to produce solutions with good generalization error;

indeed, there is evidence that the generalization error of an

SGD solution can be significantly better than that of Gra-

dient Descent (GD) (Keskar et al., 2016; Jastrzębski et al.,

2017; He et al., 2019). This suggests that, to understand the

behavior of SGD, it is not enough to consider the limiting

cases such as small step size or large batch size where it

degenerates to GD. In this paper, we take an alternate view

of SGD as a sampling algorithm, and aim to understand its

convergence to an appropriate stationary distribution.

There has been rapid recent progress in understanding the

finite-time behavior of MCMC methods, by comparing

them to stochastic differential equations (SDEs), such as the

Langevin diffusion. It is natural in this context to think of

SGD as a discrete-time approximation of an SDE. There

are, however, two significant barriers to extending previous

analyses to the case of SGD. First, these analysis are often
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restricted to isotropic Gaussian noise, whereas the noise in

SGD can be far from Gaussian. Second, the noise depends

significantly on the current state (the optimization variable).

For instance, if the objective is an average over training data

with a nonnegative loss, as the objective approaches zero

the variance of minibatch SGD goes to zero. Any attempt

to cast SGD as an SDE must be able to handle this kind of

noise.

This motivates the study of Langevin MCMC-like methods

that have a state-dependent noise term:

w(k+1)δ = wkδ − δ∇U(wkδ) +
√
δξ(wkδ, ηk), (1)

where wt ∈ R
d is the state variable at time t, δ is the step

size, U : R
d → R is a (possibly nonconvex) potential,

ξ : Rd × Ω → R
d is the noise function, and ηk are sampled

i.i.d. according to some distribution over Ω (for example,

in minibatch SGD, Ω is the set of subsets of indices in the

training sample).

Throughout this paper, we assume that Eη [ξ(x, η)] = 0 for

all x. We define a matrix-valued function M(·) : Rd →
R

d×d to be the square root of the covariance matrix of ξ;

i.e., for all x, M(x) :=
√

Eη [ξ(x, η)ξ(x, η)T ], where for

a positive semidefinite matrix G, A =
√
G is the unique

positive semidefinite matrix such that A2 = G.

In studying the generalization behavior of SGD, earlier

work (Jastrzębski et al., 2017; He et al., 2019) propose that

(1) be approximated by the stochastic process y(k+1)δ =

ykδ − δ∇U(ykδ) +
√
δM(ykδ)θk where θk ∼ N (0, I), or,

equivalently:

dyt = −∇U(ykδ)dt+M(ykδ)dBt (2)

for t ∈ [kδ, (k + 1)δ],

with Bt denoting standard Brownian motion (Karatzas &

Shreve, 1998). Specifically, the non-Gaussian noise ξ(·, η)
is approximated by a Gaussian variable M(·)θ with the

same covariance, via an assumption that the minibatch size

is large and an appeal to the central limit theorem.

The process in (2) can be seen as the Euler-Murayama dis-

cretization of the following SDE:

dxt = −∇U(xt)dt+M(xt)dBt. (3)
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We let p∗ denote the invariant distribution of (3).

We prove quantitative bounds on the discretization error

between (2), (1) and (3), as well as convergence rates of

(2) and (1) to p∗. Our bounds are in Wasserstein-1 dis-

tance (denoted by W1(·, ·) in the following). We present the

full theorem statements in Section 5, and summarize our

contributions below:

1. In Theorem 1, we bound the discretization error between

(2) and (3). Informally, Theorem 1 states:

1. If x0 = y0, then for all k, W1(xkδ, ykδ) = O(
√
δ) ;

2. For n ≥ Õ

(

1

δ

)

, W1(p
∗, Law(ynδ)) = O(

√
δ),

where Law(·) denotes the distribution of a random vec-

tor. This is a crucial intermediate result that allows us

to prove the convergence of (1) to (3). We highlight that

the variable diffusion matrix: 1) leads to a very large dis-

cretization error, due to the scaling factor of
√
δ in the

M(ykδ)θk noise term, and 2) makes the stochastic process

non-contractive (this is further compounded by the non-

convex drift). Our convergence proof relies on a carefully

constructed Lyapunov function together with a specific

coupling. Remarkably, the ǫ dependence in our iteration

complexity is the same as that in Langevin MCMC with

constant isotropic diffusion (Durmus & Moulines, 2016).

2. In Theorem 2, we bound the discretization error between

(1) and (3). Informally, Theorem 2 states:

1. If x0 = w0, then for all k, W1(xkδ, wkδ) = O(δ1/8) ;

2. For n ≥ Õ

(

1

δ

)

, W1(p
∗, Law(wnδ)) = O(δ1/8).

Notably, the noise in each step of (1) may be far from

Gaussian, but for sufficiently small step size, (1) is

nonetheless able to approximate (3). This is a weaker

condition than earlier work, which must assume that the

batch size is sufficiently large so that CLT ensures that the

per-step noise is approximately Gaussian.

3. Based on Theorem 2, we predict that for sufficiently small

δ, two different processes of the form (1) will have similar

distributions if their noise terms ξ have the same covari-

ance matrix, as that leads to the same limiting SDE (3). In

Section 6, we evaluate this claim empirically: we design

a family of SGD-like algorithms and evaluate their test

error at convergence. We observe that the noise covari-

ance alone is a very strong predictor for the test error,

regardless of higher moments of the noise. This corrobo-

rates our theoretical prediction that the noise covariance

approximately determines the distribution of the solution.

This is also in line with, and extends upon, observations

in earlier work that the ratio of batch size to learning rate

correlates with test error (Jastrzębski et al., 2017; He et al.,

2019).

2. Related Work
Previous work has drawn connections between SGD noise

and generalization (Mandt et al., 2016; Jastrzębski et al.,

2017; He et al., 2019; Hoffer et al., 2017; Keskar et al.,

2016). Notably, Mandt et al. (2016); He et al. (2019);

Jastrzębski et al. (2017) analyze favorable properties of

SGD noise by arguing that in the neighborhood of a local

minimum, (2) is roughly the discretization of an Ornstein-

Uhlenbeck (OU) process, and so the distribution of ykδ
approximates is approximately Gaussian. However, empiri-

cal results (Keskar et al., 2016; Hoffer et al., 2017) suggest

that SGD generalizes better by finding better local minima,

which may require us to look beyond the “OU near local min-

imum” assumption to understand the global distributional

properties of SGD. Indeed, Hoffer et al. (2017) suggest

that SGD performs a random walk on a random loss land-

scape, Kleinberg et al. (2018) propose that SGD noise helps

smoooth out “sharp minima.” Jastrzębski et al. (2017) fur-

ther note the similarity between (1) and an Euler-Murayama

approximation of (3). Chaudhari & Soatto (2018) also made

connections between SGD and SDE. Our work tries to make

these connections rigorous, by quantifying the error between

(3), (2) and (1), without any assumptions about (3) being

close to an OU process or being close to a local minimum.

Our work builds on a long line of work establishing the

convergence rate of Langevin MCMC in different settings

(Dalalyan, 2017; Durmus & Moulines, 2016; Ma et al.,

2018; Gorham et al., 2016; Cheng et al., 2018; Erdogdu

et al., 2018; Li et al., 2019). We will discuss our rates in

relation to some of this work in detail following our presenta-

tion of Theorem 1. We note here that some of the techniques

used in this paper were first used by Eberle (2011); Gorham

et al. (2016), who analyzed the convergence of (3) to p∗

without log-concavity assumptions. Erdogdu et al. (2018)

studied processes of the form (2) as an approximation to (3)

under a distant-dissipativity assumption, which is similar

to the assumptions made in this paper. For the sequence

(2), they prove an O(1/ǫ2) iteration complexity to achieve ǫ
integration error for any pseudo-Lipschitz loss f with poly-

nomial growth derivatives up to fourth order. In comparison,

we prove W1 convergence between Law(ykδ) and p∗, which

is equivalent to sup‖∇f‖
∞

≤1 |E [f(ykδ)]− Ey∼p∗ [f(y)]|,
also with rate Õ(1/ǫ2). By smoothing the W1 test function,

we believe that the results by Erdogdu et al. (2018) can

imply a qualitatively similar result to Theorem 1, but with a

worse dimension and ǫ dependence.

In concurrent work by Li et al. (2019), the authors study a

process based on a stochastic Runge-Kutta discretization

scheme of (3). They prove an Õ
(

d
ǫ−2/3

)

iteration complexity

to achieve ǫ error in W2 for an algorithm based on Runge-

Kutta discretization of (3). They make a strong assumption

of uniform dissipativity (essentially assuming that the pro-

cess (3) is uniformly contractive), which is much stronger
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than the assumptions in this paper, and may be violated in

the settings of interest considered in this paper.

There has been a number of work (Chen et al., 2016; Li et al.,

2018; Anastasiou et al., 2019) which establish CLT results

for SGD with very small step size (rescaled to have constant

variance). These work generally focus on the setting of

"OU process near a local minimum", in which the diffusion

matrix is constant.

Finally, a number of authors have studied the setting of

heavy-tailed gradient noise in neural network training.

(Zhang et al., 2019) showed that in some cases, the heavy-

tailed noise can be detrimental to training, and a clipped

version of SGD performs much better. (Simsekli et al.,

2019) argue that when the SGD noise is heavy-tailed, it

should not be modelled as a Gaussian random variable, but

instead as an α-stable random variable, and propose a Gen-

eralized Central Limit Theorem to analyze the convergence

in distribution. Our paper does not handle the setting of

heavy-tailed noise; our theorems require that the norm of

the noise term uniformly bounded, which will be satisfied,

for example, if gradients are explicitly clipped at a threshold,

or if the optimization objective has Lipschitz gradients and

the SGD iterates stay within a bounded region.

3. Motivating Example
It is generally difficult to write down the invariant distri-

bution of (3). In this section, we consider a very simple

one-dimensional setting which does admit an explicit ex-

pression for p∗, and serves to illustrate some remarkable

properties of anisotropic diffusion matrices.

Let us define D(x) := M2(x). Our analysis will be based

on the Fokker-Planck equation, which states that p∗ is the

invariant distribution of (3) if

0 = div(p∗(x)∇U(x)) + div(p∗(x)Γ(x) +D(x)∇p∗(x)),
(4)

where Γ(x) is a vector whose ith coordinate equals
∑d

j=1
∂

∂xj
[D(x)]i,j . In the one-dimensional setting, we

can explicitly write down the density of p∗(x). Note

that in this case, Γ(x) = ∇D(x). Let V (x) :=
∫ x

0

(

∇U(x)
D(x) + ∇D(X)

D(x)

)

dx =
∫ x

0

(

∇U(x)
D(x)

)

dx+logD(x)−
logD(0). We can verify that p∗(x) ∝ e−V (x) satisfies (4).

For a concrete example, let the potential U(x) and the diffu-

sion function M(x) be defined as

U(x) :=







1
2x

2, for x ∈ [−1, 4]
1
2 (x+ 2)2 − 1, for x ≤ −1
1
2 (x− 8)2 − 16, for x ≥ 4

M(x) =







1
2 (x+ 2), for x ∈ [−2, 8]
1, for x ≤ −2
6, for x ≥ 8

.

We plot U(x) in Figure 1a. Note that U(x) has two local

minima: a shallow minimum at x = −2 and a deeper min-

imum at x = 8. A plot of M(x) can be found in Figure

1b. M(x) is constructed to have increasing magnitude at

larger values of x. This has the effect of biasing the invariant

distribution towards smaller values of x.

We plot V (x) in Figure 1c. Remarkably, V (x) has only

one local minimum at x = −2. The larger minimum of

U(x) at x = 8 has been smoothed over by the effect of

the large diffusion M(x). This is very different from when

the noise is homogeneous (e.g., M(x) = I), in which case

p∗(x) ∝ e−U(x). We also simulate (3) (using (2)) for the

given U(x) and M(x) for 1000 samples (each simulated for

1000 steps), and plot the histogram in Figure 1d.

4. Assumptions and Definitions
In this section, we state the assumptions and definitions that

we need for our main results in Theorem 1 and Theorem 2.

Assumption A We assume that U(x) satisfies

1. The function U(x) is continuously-differentiable on R
d

and has Lipschitz continuous gradients; that is, there

exists a positive constant L ≥ 0 such that

for all x, y ∈ R
d, ‖∇U(x)−∇U(y)‖2 ≤ L‖x− y‖2.

2. U has a stationary point at zero: ∇U(0) = 0.

3. There exists a constant m > 0, LR, R such that for all

‖x− y‖2 ≥ R,

〈∇U(x)−∇U(y), x− y〉 ≥ m‖x− y‖22. (5)

and for all ‖x− y‖2 ≤ R, ‖∇U(x) − ∇U(y)‖2 ≤
LR‖x− y‖2.

Remark 1 This assumption, and minor variants, is com-

mon in the nonconvex sampling literature (Eberle, 2011;

2016; Cheng et al., 2018; Ma et al., 2018; Erdogdu et al.,

2018; Gorham et al., 2016).

Assumption B We make the following assumptions on ξ
and M :

1. For all x, E [ξ(x, η)] = 0.

2. For all x, ‖ξ(x, η)‖2 ≤ β almost surely.
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(a) U(x) (b) M(x) (c) V (x) (d) Samples

Figure 1. One-dimensional example exhibiting the importance of state-dependent noise: A simple construction showing how M(x)
can affect the shape of the invariant distribution. While U(x) has two local minima, V (x) only has the smaller minimum at x = −2.

Figure 1d represents samples obtained from simulating using the process (2). We can see that most of the samples concentrate around

x = −2.

3. For all x, y, ‖ξ(x, η)− ξ(y, η)‖2 ≤ Lξ‖x− y‖2 al-

most surely.

4. There is a positive constant cm such that for all x,

2cmI ≺ M(x).

Remark 2 We discuss these assumptions in a specific set-

ting in Section 6.2.

For convenience we define a matrix-valued function N(·) :
R

d → R
d×d:

N(x) :=
√

M(x)2 − c2mI. (6)

Under Assumption A, we can prove that N(x) and M(x)
are bounded and Lipschitz (see Lemma 15 and 16 in Ap-

pendix D). These properties will be crucial in ensuring con-

vergence.

Given an arbitrary sample space Ω and any two distri-

bution p ∈ P(Ω) and q ∈ P(Ω), a joint distribution

ζ ∈ P(Ω× Ω) is a coupling between p and q if its

marginals are equal to p and q respectively.

For a matrix, we use ‖G‖2 to denote the operator norm:

‖G‖2 = supv∈Rd,‖v‖2=1 ‖Gv‖2..
Finally, we define a few useful constants which will be used

throughout the paper:

LN :=
4βLξ

cm
, αq :=

LR + L2
N

2c2m
,

Rq := max

{

R,
16β2LN

m · cm

}

λ := min

{

m

2
,

2c2m
32Rq

2

}

exp

(

−7

3
αqRq

2

)

. (7)

LN is the smoothness parameter of the matrix N(x),

and we show in Lemma 16 that tr
(

(N(x)−N(y))
2
)

≤
L2
N‖x− y‖22. The constants αq and Rq are used to define

a Lyapunov function q in Appendix E.1. A key step in our

proof uses the fact that, under the dynamics (2), q contracts

at a rate of e−λ, plus discretization error.

5. Main Results
In this section, we present our main convergence results

beginning with convergence under Gaussian noise and pro-

ceeding to the non-Gaussian case.

Theorem 1 Let xt and yt have dynamics as defined in (3)

and (2) respectively, and suppose that the initial condi-

tions satisfy E

[

‖x0‖22
]

≤ R2 + β2/m and E

[

‖y0‖22
]

≤
R2 + β2/m. Let ǫ̂ be a target accuracy satisfying ǫ̂ ≤
(

16(L+L2

N)
λ

)

· exp (7αqRq/3) · Rq

αqRq
2+1

. Let δ be a step

size satisfying

δ ≤ min















λ2 ǫ̂2

512β2(L2+L4

N) exp
(

14αqRq2

3

)

2λǫ̂

(L2+L4

N ) exp

(

7αqRq2

3

)√
R2+β2/m

.

If we assume that x0 = y0, then there exists a coupling

between xt and yt such that for any k,

E [‖xkδ − ykδ‖2] ≤ ǫ̂

Alternatively, if we assume n ≥ 3αqRq
2

δ log R2+β2/m
ǫ̂ , then

W1(p
∗, pynδ) ≤ 2ǫ̂

where pyt := Law(yt).

Remark 3 Note that m,L,R are from Assumption A, LN

is from (7), cm, β, Lξ are from Assumption B).

Remark 4 Finding a suitable y0 can be done very quickly

using gradient descent wrt U(·). The convergence rate to

the ball of radius R is very fast, due to Assumption A.3.
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After some algebraic simplifications, we see that for a suffi-

ciently small ǫ̂, achieving W1(p
y
nδ, p

∗) ≤ ǫ̂ requires number

of steps

n = Õ

(

β2

ǫ̂2
· exp

(

14

3
·
(

LR

c2m
+

16β2L2
ξ

c4m

)

·max

{

R2,
212β6L2

ξ

m2c4m

}))

.

Remark 5 The convergence rate contains a term eR
2

; this

term is also present in all of the work cited in the previous

section under Remark 1. Given our assumptions, in partic-

ular 5, this dependence is unavoidable as it describes the

time to transit between two modes of the invariant distribu-

tion. It can be verified to be tight by considering a simple

double-well potential.

Remark 6 As illustrated in Section 6.2, the m from As-

sumption B.3 should be thought of as a regularization term

which can be set arbitrarily large. In the following discus-

sion, we will assume that max
{

R2,
β6L2

ξ

m2c4m

}

is dominated

by the R2 term.

To gain intuition about this term, let’s consider what it looks

like under a sequence of increasingly weaker assumptions:

a. Strongly convex, constant noise: U(x)m-strongly con-

vex, L-smooth, ξ(x, η) ∼ N (0, I) for all x. (In reality we

need to consider a truncated Gaussian so as not to violate

Assumption B.2, but this is a minor issue). In this case,

Lξ = 0, cm = 1, R = 0, β = Õ(
√
d), so k = O( d

ǫ̂2 ). This

is the same rate as obtained by Durmus & Moulines (2016).

We remark that Durmus & Moulines (2016) obtain a W2

bound which is stronger than our W1 bound.

b. Non-convex, constant noise: U(x) not strongly convex

but satisfies Assumption A, and ξ(x, η) ∼ N (0, I). In this

case, Lξ = 0, cm = 1, β = Õ(
√
d) This is the setting

studied by Cheng et al. (2018) and Ma et al. (2018). The

rate we recover is k = Õ
(

d

ǫ̂2
· exp

(

14
3 LR2

)

)

, which is

in line with Cheng et al. (2018), and is the best W1 rate

obtainable from Ma et al. (2018).

c. Non-convex, state-dependent noise: U(x) satisfies As-

sumption A, and ξ satisfies Assumption B. To simplify mat-

ters, suppose the problem is rescaled so that cm = 1. Then

the main additional term compared to setting b. above is

exp
(

64β2L2

ξR
2

c4m

)

. This suggests that the effect of a Lξ-

Lipschitz noise can play a similar role in hindering mixing

as a LR-Lipschitz nonconvex drift.

When the dimension is high, computing M(yk) can be dif-

ficult, but if for each x, one has access to samples whose

covariance is M(x), then one can approximate M(yk)θk

via the central limit theorem by drawing a sufficiently large

number of samples. The proof of Theorem 1 can be readily

modified to accommodate this (see Appendix A.5).

We now turn to the non-Gaussian case.

Theorem 2 Let xt and wt have dynamics as defined

in (3) and (1) respectively, and suppose that the ini-

tial conditions satisfy E

[

‖x0‖22
]

≤ R2 + β2/m and

E

[

‖w0‖22
]

≤ R2 + β2/m. Let ǫ̂ be a target accu-

racy satisfying ǫ̂ ≤
(

16(L+L2

N)
λ

)

· exp (7αqRq/3) ·
Rq

αqRq
2+1

. Let ǫ := λ
16(L+L2

N )
exp

(

− 7αqRq
2

3

)

ǫ̂. Let

T := min
{

1
16L ,

β2

8L2(R2+β2/m) ,
ǫ

32
√
Lβ

, ǫ2

128β2 ,
ǫ4L2

N

214β2c2m

}

and let δ be a step size satisfying

δ ≤ min







Tǫ2L

36dβ2 log
(

36dβ2

ǫ2L

) ,
T ǫ4L2

214dβ4 log
(

214dβ4

ǫ4L2

)







.

If we assume that x0 = w0, then there exists a coupling

between xt and wt such that for any k,

E [‖xkδ − wkδ‖2] ≤ ǫ̂.

Alternatively, if we assume that n ≥ 3αqRq
2

δ · log R2+β2/m
ǫ̂ ,

then

W1(p
∗, pwnδ) ≤ 2ǫ̂,

where pwt := Law(wt).

Remark 7 To achieve W1(p
∗, pwnδ) ≤ ǫ̂, the number of

steps needed is of order n = Õ
(

1
ǫ̂8 · e29αqRq

2

)

. The ǫ̂ de-

pendency is considerably worse than in Theorem 1. This is

because we need to take many steps of (1) in order to ap-

proximate a single step of (2). For details, see the coupling

construction in equations (27)–(31) of Appendix B.

6. Application to Stochastic Gradient Descent
In this section, we will cast SGD in the form of (1). We

consider an objective of the form

U(w) =
1

n

n
∑

i=1

Ui(w). (8)

We reserve the letter η to denote a random minibatch from

{1, . . . , n}, sampled with replacement, and define ζ(w, η)
as follows:

ζ(w, η) := ∇U(w)− 1

|η|
∑

i∈η

∇Ui(w) (9)
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For a sample of size one, i.e. |η| = 1, we define

H(w) := E
[

ζ(w, η)ζ(w, η)T
]

(10)

as the covariance matrix of the difference between the true

gradient and a single sampled gradient at w. A standard

run of SGD, with minibatch size b := |ηk|, then has the

following form:

wk+1 = wk − δ
1

b

∑

i∈ηk

∇Ui(wk)

= wk − δ∇U(wk) +
√
δ
(√

δζ(wk, ηk)
)

. (11)

We refer to an SGD algorithm with step size δ and minibatch

size b a (δ, b)-SGD. Notice that (11) is in the form of (1),

with ξ(w, η) =
√
δζ(w, η). The covariance matrix of the

noise term is

E
[

ξ(w, η)ξ(w, η)T
]

=
δ

b
H(w). (12)

Because the magnitude of the noise covariance scales with√
δ, it follows that as δ → 0, (11) converges to deterministic

gradient flow. However, the loss of randomness as δ → 0 is

not desirable as it has been observed that as SGD approaches

GD, through either small step size or large batch size, the

generalization error goes up (Jastrzębski et al., 2017; He

et al., 2019; Keskar et al., 2016; Hoffer et al., 2017); this

is also consistent with our experimental observations in

Section 6.3.1.

Therefore, a more meaningful way to take the limit of SGD

is to hold the noise term constant in (11). More specifically,

we define the constant-noise limit of (11) as

dxt = −∇U(xt)dt+M(xt)dBt, (13)

where M(x) :=
√

δ
bH(x). Note that this is in the form of

(3), with noise covariance M(xt)
2 matching that of SGD

in (11). Using Theorem 2, we can bound the W1 distance

between the SGD iterates wk from (11), and the continuous-

time SDE xt from (13).

6.1. Importance of Noise Covariance

We highlight the fact that the limiting SDE of a discrete

process,

wk+1 = wk − s∇U(wk) +
√
sξ(wk, ηk), (14)

depends only on the covariance matrix of ξ. More specifi-

cally, as long as ξ satisfies
√

E [ξ(w, η)ξ(w, η)T ] = M(w),
(14) will have (13) as its limiting SDE, regardless of higher

moments of ξ. This fact, combined with Theorem 2, means

that in the limit of δ → 0 and k → ∞, the distribution of

wk will be determined by the covariance of ξ alone. An

immediate consequence is the following: at convergence,

the test performance of any Langevin MCMC-like algorithm

is almost entirely determined by the covariance of its noise

term.

Returning to the case of SGD algorithms, since the noise

covariance is M(x)2 = δ
bH(x) (see (12)), we know that

the ratio of step size δ to batch size b is an important quan-

tity which can dictate the test error of the algorithm; this

observation has been made many times in prior work (Jas-

trzębski et al., 2017; He et al., 2019), and our results in this

paper are in line with these observations. Here, we move

one step further, and provide experimental evidence to show

that more fundamentally, it is the noise covariance in the

constant-noise limit that controls the test error.

To verify this empirically, we propose the following algo-

rithm called large-noise SGD.

Definition 1 An (s, σ, b1, b2)-large-noise SGD is an algo-

rithm that aims to minimize (8) using the following updates:

wk+1 = wk − s

b1

∑

i∈ηk

∇Ui(wk) (15)

+
σ
√
s

b2





∑

i∈η′

k

∇Ui(wk)−
∑

i∈η′′

k

∇Ui(wk)



 ,

where ηk, η′k, and η′′k are minibatches of sizes b1, b2, and b2,

sampled uniformly at random from {1, . . . , n} with replace-

ment. The three minibatches are sampled independently and

are also independent of other iterations.

Intuitively, an (s, σ, b1, b2)-large-noise SGD should be con-

sidered as an SGD algorithm with step size s and minibatch

size b1 and an additional noise term. The noise term com-

putes the difference of two independent and unbiased esti-

mates of the full gradient ∇U(wk), each using a batch of b2
data points. Using the definition of ζ in (9), we can verify

that the update (15) is equivalent to

wk+1 = wk − s∇U(wk) + sζ(wk, ηk) (16)

+ σ
√
s(ζ(wk, η

′′
k )− ζ(wk, η

′
k)),

which is in the form of (1), with

ξ(w, η̃) =
√
sζ(w, η) + σ(ζ(w, η′′)− ζ(w, η′)), (17)

where η̃ = (η, η′, η′′), and |η| = b1, |η′| = |η′′| = b2.

Further, the noise covariance matrix is

E
[

ξ(w, η̃)ξ(w, η̃)T
]

= (
s

b1
+

2σ2

b2
)H(w). (18)

Therefore, if we have

s

b1
+

2σ2

b2
=

δ

b
, (19)
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then an (s, σ, b1, b2)-large-noise SGD should have the same

noise covariance as a (δ, b)-SGD (but very different higher

noise moments due to the injected noise), and based on

our theory, the large-noise SGD should have similar test

error to that of the SGD algorithm, even if the step size

and batch size are different. In Section 6.3, we verify this

experimentally. We stress that we are not proposing the

large-noise SGD as a practical algorithm. The reason that

this algorithm is interesting is that it gives us a family of

(wk)k=1,2,... which converges to (13), and is implementable

in practice. Thus this algorithm helps us uncover the impor-

tance of noise covariance (and the unimportance of higher

noise moments) in Langevin MCMC-like algorithms. We

also remark that Hoffer et al. (2017) proposed a different

way of injecting noise, multiplying the sampled gradient

with a suitably scaled Gaussian noise.

6.2. Satisfying the Assumptions

Before presenting the experimental results, we remark on

a particular way that a function U(w) defined in (8), along

with the stochastic sequence wk defined in (15), can satisfy

the assumptions in Section 4.

Suppose first that we shift the coordinate system so that

∇U(0) = 0. Let us additionally assume that for each i,
Ui(w) has the form

Ui(w) = U ′
i(w) + V (w),

where V (w) := m(‖x‖2 −R/2)
2

is a m-strongly convex

regularizer outside a ball of radius R, and each U ′
i(w) has

LR-Lipschitz gradients. Suppose further that m ≥ 4 · LR.

These additional assumptions make sense when we are only

interested in U(w) over BR(0), so V (w) plays the role of

a barrier function that keeps us within BR(0). Then, it can

immediately be verified that U(w) satisfies Assumption A

with L = m+ LR.

The noise term ξ in (17) satisfies Assumption B.1 by defini-

tion, and satisfies Assumption B.3 with Lξ = (
√
s+ 2σ)L.

Assumption B.2 is satisfied if ζ(w, η) is bounded for all

w, i.e. the sampled gradient does not deviate from the true

gradient by more than a constant. We will need to assume di-

rectly Assumption B.4, as it is a property of the distribution

of ∇Ui(w) for i = 1, . . . , n.

6.3. Experiments

In this section, we present experimental results that validate

the importance of noise covariance in predicting the test

error of Langevin MCMC-like algorithms. In all experi-

ments, we use two different neural network architectures on

the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) with

the standard test-train split. The first architecture is a sim-

ple convolutional neural network, which we call CNN in

Figure 2. Relationship between test accuracy and the noise covari-

ance of SGD algorithm. In each plot, the dots with the same color

correspond to SGD runs with the same batch size but different step

sizes.

the following,1 and the other is the VGG19 network (Si-

monyan & Zisserman, 2014). To make our experiments

consistent with the setting of SGD, we do not use batch

normalization or dropout, and use constant step size. In all

of our experiments, we run SGD algorithm 2000 epochs

such that the algorithm converges sufficiently. Since in most

of our experiments, the accuracies on the training dataset

are almost 100%, we use the test accuracy to measure the

generalization performance.

Recall that according to (12) and (18), for both SGD and

large-noise SGD, the noise covariance is a scalar multiple

of H(w). For simplicity, in the following, we will slightly

abuse our terminology and call this scalar the noise covari-

ance; more specifically, for (δ, b)-SGD, the noise covariance

is δ/b, and for an (s, σ, b1, b2)-large-noise SGD, the noise

covariance is s
b1

+ 2σ2

b2
.

6.3.1. ACCURACY VS NOISE COVARIANCE

In our first experiment, we focus on the SGD algorithm,

and show that there is a positive correlation between the

noise covariance and the final test accuracy of the trained

model. One major purpose of this experiment is to establish

baselines for our experiments on large-noise SGD.

We choose constant step size δ from

{0.001, 0.002, 0.004, 0.008, 0.016, 0.032, 0.064, 0.128}

and minibatch size b from {32, 64, 128, 256, 512}. For each

(step size, batch size) pair, we plot its final test accuracy

against its noise covariance in Figure 2. From the plot, we

can see that higher noise covariance leads to better final

test accuracy, and there is a linear trend between the test

accuracy and the logarithm. We also highlight the fact that

conditioned on the noise covariance, the test accuracy is

not significantly correlated with either the step size or the

1We provide details of this CNN architecture in Appendix G.
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Figure 3. Large-noise SGD. Small dots correspond to all the baseline SGD runs in Figure 2. Each × corresponds to a baseline SGD run

whose step size is specified in the legend and batch size is specified in the title. Each ⋄ corresponds to a large-noise SGD run whose noise

covariance is 8 times of that of the × with the same color. As we can see, injecting noise improves test accuracy, and the large-noise SGD

runs fall close to the linear trend.

Figure 4. Large-noise SGD. Batch size in the titles represents the batch size of × runs. Each ⋄ corresponds to a large-noise SGD run

whose noise covariance matches that of a baseline SGD run whose step size is the same as the × run with the same color and batch size is

128. Again, large-noise SGD falls close to the linear trend.

minibatch size. In other words, similar to the observations

in prior work (Jastrzębski et al., 2017; He et al., 2019), there

is a strong correlation between relative variance of an SGD

sequence and its test accuracy, regardless of the combination

of minibatch size and step size.

6.3.2. LARGE-NOISE SGD

In this section, we implement and examine the performance

of the large-noise SGD algorithm proposed in (15). We

select a subset of SGD runs with relatively small noise

covariance in the experiment in the previous section (we

call them baseline SGD runs), and implement large-noise

SGD by injecting noise. Our goal is to see, for a particular

noise covariance, whether large-noise SGD has test accuracy

that is similar to SGD, in spite of significant differences in

third-and-higher moments of the noise in large-noise SGD

compared to standard SGD.

Our first experiment is to add noise with the same mini-

batch size to the (δ, b) baseline SGD run such that the

new noise covariance matches that of an (8δ, b)-SGD (an

SGD run with larger step size). In other words, we im-

plement (δ,
√

7δ/2, b, b)-large-noise SGD, whose noise co-

variance is 8 times of that of the baseline. Our results are

shown in Figure 3. Our second experiment is similar: we

add noise with minibatch size 128 to the (δ, b) baseline

SGD run with b ∈ {256, 512} such that the new noise

covariance matches that of a (δ, 128)-SGD (an SGD run

with smaller batch size). More specifically, we implement

(δ,
√

1
2 (1− 128

b )δ, b, 128)-large-noise SGD runs. The re-

sults are shown in Figure 4. In these figures, each × denotes

a baseline SGD run, with step size specified in the legend

and minibatch size specified by plot title. For each baseline

SGD run, we have a corresponding large-noise SGD run,

denoted by ⋄ with the same color. As mentioned, these ⋄
runs are designed to match the noise covariance of SGD

with larger step size or smaller batch size. In addition to ×
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and ⋄, we also plot using a small teal marker all the other

runs from Section 6.3.1. This helps highlight the linear trend

between the logarithm of noise covariance and test accuracy

that we observed in Section 6.3.1.

As can be seen, the (noise variance, test accuracy) values for

the ⋄ runs fall close to the linear trend. More specifically,

a run of large-noise SGD produces similar test accuracy to

vanilla SGD runs with the same noise variance. We highlight

two potential implications: First, just like in Section 6.3.1,

we observe that the test accuracy strongly correlates with

relative variance, even for noise of the form (17), which can

have rather different higher moments than ζ (standard SGD

noise); Second, since the ⋄ points fall close to the linear

trend, we hypothesize that the constant-noise limit SDE (13)

should also have similar test error. If true, then this implies

that we only need to study the potential U(x) and noise

covariance M(x) to explain the generalization properties of

SGD.
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