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Abstract

We prove quantitative convergence rates at which
discrete Langevin-like processes converge to the
invariant distribution of a related stochastic dif-
ferential equation. We study the setup where
the additive noise can be non-Gaussian and state-
dependent and the potential function can be non-
convex. We show that the key properties of these
processes depend on the potential function and
the second moment of the additive noise. We
apply our theoretical findings to studying the con-
vergence of Stochastic Gradient Descent (SGD)
for non-convex problems and corroborate them
with experiments using SGD to train deep neural
networks on the CIFAR-10 dataset.

1. Introduction

Stochastic Gradient Descent (SGD) is one of the workhorses
of modern machine learning. In many nonconvex optimiza-
tion problems, such as training deep neural networks, SGD
is able to produce solutions with good generalization error;
indeed, there is evidence that the generalization error of an
SGD solution can be significantly better than that of Gra-
dient Descent (GD) (Keskar et al., 2016; Jastrzebski et al.,
2017; He et al., 2019). This suggests that, to understand the
behavior of SGD, it is not enough to consider the limiting
cases such as small step size or large batch size where it
degenerates to GD. In this paper, we take an alternate view
of SGD as a sampling algorithm, and aim to understand its
convergence to an appropriate stationary distribution.

There has been rapid recent progress in understanding the
finite-time behavior of MCMC methods, by comparing
them to stochastic differential equations (SDEs), such as the
Langevin diffusion. It is natural in this context to think of
SGD as a discrete-time approximation of an SDE. There
are, however, two significant barriers to extending previous
analyses to the case of SGD. First, these analysis are often
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restricted to isotropic Gaussian noise, whereas the noise in
SGD can be far from Gaussian. Second, the noise depends
significantly on the current state (the optimization variable).
For instance, if the objective is an average over training data
with a nonnegative loss, as the objective approaches zero
the variance of minibatch SGD goes to zero. Any attempt
to cast SGD as an SDE must be able to handle this kind of
noise.

This motivates the study of Langevin MCMC-like methods
that have a state-dependent noise term:

Wt1)s = Wes — OVU (wis) + Vo (wrs,me), (1)

where w; € R? is the state variable at time ¢, § is the step
size, U : RY — R is a (possibly nonconvex) potential,
€ : R% x Q — R?is the noise function, and 7, are sampled
i.i.d. according to some distribution over 2 (for example,
in minibatch SGD, () is the set of subsets of indices in the
training sample).

Throughout this paper, we assume that E,, [£(z, )] = 0 for
all z. We define a matrix-valued function M (-) : RY —
R¥*4 to be the square root of the covariance matrix of &;
ie., forall z, M(z) := \/E, [£(z,n)&(z,1)T], where for
a positive semidefinite matrix G, A = /G is the unique
positive semidefinite matrix such that A2 = G.

In studying the generalization behavior of SGD, earlier
work (Jastrzgbski et al., 2017; He et al., 2019) propose that
(1) be approximated by the stochastic process Y 11)s =
Yks — OV U (yrs) + VOM (yxs)0x where 0), ~ N(0, 1), or,
equivalently:

dys = —=VU (yxs)dt + M (yrs)d By (2)
for ¢ € [kd, (k+ 1)d],

with B; denoting standard Brownian motion (Karatzas &
Shreve, 1998). Specifically, the non-Gaussian noise (-, 7))
is approximated by a Gaussian variable M (-)0 with the
same covariance, via an assumption that the minibatch size
is large and an appeal to the central limit theorem.

The process in (2) can be seen as the Euler-Murayama dis-
cretization of the following SDE:
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We let p* denote the invariant distribution of (3).

We prove quantitative bounds on the discretization error
between (2), (1) and (3), as well as convergence rates of
(2) and (1) to p*. Our bounds are in Wasserstein-1 dis-
tance (denoted by W (-, ) in the following). We present the
full theorem statements in Section 5, and summarize our
contributions below:

1. In Theorem 1, we bound the discretization error between
(2) and (3). Informally, Theorem 1 states:

1. If g = yo, then for all k, W1 (zks, yks) = O(\/g) :
~ (1
2. Forn > 0(5>, WL (", Law(yns)) = O(VE),

where Law(-) denotes the distribution of a random vec-
tor. This is a crucial intermediate result that allows us
to prove the convergence of (1) to (3). We highlight that
the variable diffusion matrix: 1) leads to a very large dis-
cretization error, due to the scaling factor of V8 in the
M (ygs)0y noise term, and 2) makes the stochastic process
non-contractive (this is further compounded by the non-
convex drift). Our convergence proof relies on a carefully
constructed Lyapunov function together with a specific
coupling. Remarkably, the ¢ dependence in our iteration
complexity is the same as that in Langevin MCMC with
constant isotropic diffusion (Durmus & Moulines, 2016).

2. In Theorem 2, we bound the discretization error between
(1) and (3). Informally, Theorem 2 states:

1. If o = wo, then for all k, W1 (xks, wis) = 0(51/8) ;
~ (1
2. Forn > O(5>, Wi(p*, Law(wys)) = O(5Y/®).

Notably, the noise in each step of (1) may be far from
Gaussian, but for sufficiently small step size, (1) is
nonetheless able to approximate (3). This is a weaker
condition than earlier work, which must assume that the
batch size is sufficiently large so that CLT ensures that the
per-step noise is approximately Gaussian.

3. Based on Theorem 2, we predict that for sufficiently small
4, two different processes of the form (1) will have similar
distributions if their noise terms £ have the same covari-
ance matrix, as that leads to the same limiting SDE (3). In
Section 6, we evaluate this claim empirically: we design
a family of SGD-like algorithms and evaluate their test
error at convergence. We observe that the noise covari-
ance alone is a very strong predictor for the test error,
regardless of higher moments of the noise. This corrobo-
rates our theoretical prediction that the noise covariance
approximately determines the distribution of the solution.
This is also in line with, and extends upon, observations
in earlier work that the ratio of batch size to learning rate
correlates with test error (Jastrzebski et al., 2017; He et al.,
2019).

2. Related Work

Previous work has drawn connections between SGD noise
and generalization (Mandt et al., 2016; Jastrzebski et al.,
2017; He et al., 2019; Hoffer et al., 2017; Keskar et al.,
2016). Notably, Mandt et al. (2016); He et al. (2019);
Jastrzebski et al. (2017) analyze favorable properties of
SGD noise by arguing that in the neighborhood of a local
minimum, (2) is roughly the discretization of an Ornstein-
Uhlenbeck (OU) process, and so the distribution of ygs
approximates is approximately Gaussian. However, empiri-
cal results (Keskar et al., 2016; Hoffer et al., 2017) suggest
that SGD generalizes better by finding better local minima,
which may require us to look beyond the “OU near local min-
imum” assumption to understand the global distributional
properties of SGD. Indeed, Hoffer et al. (2017) suggest
that SGD performs a random walk on a random loss land-
scape, Kleinberg et al. (2018) propose that SGD noise helps
smoooth out “sharp minima.” Jastrzgbski et al. (2017) fur-
ther note the similarity between (1) and an Euler-Murayama
approximation of (3). Chaudhari & Soatto (2018) also made
connections between SGD and SDE. Our work tries to make
these connections rigorous, by quantifying the error between
(3), (2) and (1), without any assumptions about (3) being
close to an OU process or being close to a local minimum.

Our work builds on a long line of work establishing the
convergence rate of Langevin MCMC in different settings
(Dalalyan, 2017; Durmus & Moulines, 2016; Ma et al.,
2018; Gorham et al., 2016; Cheng et al., 2018; Erdogdu
et al., 2018; Li et al., 2019). We will discuss our rates in
relation to some of this work in detail following our presenta-
tion of Theorem 1. We note here that some of the techniques
used in this paper were first used by Eberle (2011); Gorham
et al. (2016), who analyzed the convergence of (3) to p*
without log-concavity assumptions. Erdogdu et al. (2018)
studied processes of the form (2) as an approximation to (3)
under a distant-dissipativity assumption, which is similar
to the assumptions made in this paper. For the sequence
(2), they prove an O(1/€?) iteration complexity to achieve €
integration error for any pseudo-Lipschitz loss f with poly-
nomial growth derivatives up to fourth order. In comparison,
we prove W7 convergence between Law(ys) and p*, which
is equivalent to sup;y s <1 IE [f(yks)] — Eyep= [F (@)]],
also with rate O(1/€2). By smoothing the W test function,
we believe that the results by Erdogdu et al. (2018) can
imply a qualitatively similar result to Theorem 1, but with a
worse dimension and e dependence.

In concurrent work by Li et al. (2019), the authors study a
process based on a stochastic Runge-Kutta discretization
scheme of (3). They prove an O (e,%/g) iteration complexity
to achieve e error in W, for an algorithm based on Runge-
Kutta discretization of (3). They make a strong assumption
of uniform dissipativity (essentially assuming that the pro-
cess (3) is uniformly contractive), which is much stronger
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than the assumptions in this paper, and may be violated in
the settings of interest considered in this paper.

There has been a number of work (Chen et al., 2016; Li et al.,
2018; Anastasiou et al., 2019) which establish CLT results
for SGD with very small step size (rescaled to have constant
variance). These work generally focus on the setting of
"OU process near a local minimum", in which the diffusion
matrix is constant.

Finally, a number of authors have studied the setting of
heavy-tailed gradient noise in neural network training.
(Zhang et al., 2019) showed that in some cases, the heavy-
tailed noise can be detrimental to training, and a clipped
version of SGD performs much better. (Simsekli et al.,
2019) argue that when the SGD noise is heavy-tailed, it
should not be modelled as a Gaussian random variable, but
instead as an a-stable random variable, and propose a Gen-
eralized Central Limit Theorem to analyze the convergence
in distribution. Our paper does not handle the setting of
heavy-tailed noise; our theorems require that the norm of
the noise term uniformly bounded, which will be satisfied,
for example, if gradients are explicitly clipped at a threshold,
or if the optimization objective has Lipschitz gradients and
the SGD iterates stay within a bounded region.

3. Motivating Example

It is generally difficult to write down the invariant distri-
bution of (3). In this section, we consider a very simple
one-dimensional setting which does admit an explicit ex-
pression for p*, and serves to illustrate some remarkable
properties of anisotropic diffusion matrices.

Let us define D(z) := M?(z). Our analysis will be based
on the Fokker-Planck equation, which states that p* is the
invariant distribution of (3) if

0 = div(p* (z)VU (x)) + div(p* ()['(x) + D(x)Vp*(x)),

“4)

where T'(z) is a vector whose i"

ijl 8%[D(Jn)] ;.;- In the one-dimensional setting, we
; ,

can explicitly write down the density of p*(z). Note
that in this case, I'(z) = VD(z). Let V(z) :=

i (3582 + T2O0Y s = 17 (42 +10g Dla)

log D(0). We can verify that p*(x) o e~V (®) satisfies (4).

coordinate equals

For a concrete example, let the potential U () and the diffu-

sion function M (x) be defined as

%IQ, forz € [—1,4]
U(x) = g(x+2)2—1, forz < —1

3(x—8)2—16, forz >4

Lz +2), forze[-2,8]
M(z) =14 1, forx < -2

6 forz > 8

We plot U(x) in Figure 1a. Note that U(x) has two local
minima: a shallow minimum at * = —2 and a deeper min-
imum at 2 = 8. A plot of M (x) can be found in Figure
Ib. M(x) is constructed to have increasing magnitude at
larger values of x. This has the effect of biasing the invariant
distribution towards smaller values of z.

We plot V(x) in Figure lc. Remarkably, V' (x) has only
one local minimum at x = —2. The larger minimum of
U(x) at x = 8 has been smoothed over by the effect of
the large diffusion M (z). This is very different from when
the noise is homogeneous (e.g., M (x) = I), in which case
p*(z) o< e=V®), We also simulate (3) (using (2)) for the
given U (z) and M (z) for 1000 samples (each simulated for
1000 steps), and plot the histogram in Figure 1d.

4. Assumptions and Definitions

In this section, we state the assumptions and definitions that
we need for our main results in Theorem 1 and Theorem 2.

Assumption A We assume that U (x) satisfies

1. The function U (x) is continuously-differentiable on R?
and has Lipschitz continuous gradients, that is, there
exists a positive constant L > 0 such that

forallz,y € (@) =VU(@)l2 < Lllz = yll2-
2. U has a stationary point at zero: VU (0) = 0.

3. There exists a constant m > 0, Lr, R such that for all
lz—yll, = R,

(VU(z) = VU(y),z —y) >mllz —yl3. &)

() = VU(@)ll2 <

and for all ||z —y|, <
Lgllz = yll2.

Remark 1 This assumption, and minor variants, is com-
mon in the nonconvex sampling literature (Eberle, 2011;
2016; Cheng et al., 2018; Ma et al., 2018; Erdogdu et al.,
2018; Gorham et al., 2016).

Assumption B We make the following assumptions on &

and M :
1. Forall z, E[¢{(x,n)] = 0.

2. Forall z, ||{(z,n)||y < B almost surely.
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Figure 1. One-dimensional example exhibiting the importance of state-dependent noise: A simple construction showing how M (z)
can affect the shape of the invariant distribution. While U (z) has two local minima, V'(z) only has the smaller minimum at x = —2.
Figure 1d represents samples obtained from simulating using the process (2). We can see that most of the samples concentrate around

r=—2.

3. For all z,vy,
most surely.

1€(x,m) =&y, mlly < Lellw — ylly al-

4. There is a positive constant c,, such that for all x,
2e; I < M(z).

Remark 2 We discuss these assumptions in a specific set-
ting in Section 6.2.

For convenience we define a matrix-valued function N (-) :
]Rd — Rdxd.

N(z):=+/M(x)? -2 1. (6)

Under Assumption A, we can prove that N(x) and M (x)
are bounded and Lipschitz (see Lemma 15 and 16 in Ap-
pendix D). These properties will be crucial in ensuring con-
vergence.

Given an arbitrary sample space 2 and any two distri-
bution p € H(Q) and ¢ € £(), a joint distribution
¢ € Z(QxQ)is a coupling between p and q if its
marginals are equal to p and q respectively.

For a matrix, we use ||G/|, to denote the operator norm:
1Gll, = SUPyeR?, ||v]|2=1 [Gvlf,-.

Finally, we define a few useful constants which will be used
throughout the paper:

4BLe Lp+ L%
Ly = =
N Cm , Oy 207277, )
165%L
R4 = max {R, ﬁN}
m-Cm

. [m 28, 7 9
A= mln{273272(12}exp (_3aqRq ) (7)

Ly is the smoothness parameter of the matrix N(z),
and we show in Lemma 16 that tr((N(a:) — N(y))Q) <

L3 ||z — y||§ The constants o, and R, are used to define
a Lyapunov function ¢ in Appendix E.1. A key step in our

proof uses the fact that, under the dynamics (2), ¢ contracts
at a rate of e, plus discretization error.

5. Main Results

In this section, we present our main convergence results
beginning with convergence under Gaussian noise and pro-
ceeding to the non-Gaussian case.

Theorem 1 Let x; and y; have dynamics as defined in (3)
and (2) respectively, and suppose that the initial condi-
tions satisfy E [||a:0| g} < R?*+B?/mand E [||y0||§} <
R? + B2/m. Let ¢ be a target accuracy satisfying ¢ <

2
(W) ~exp (TagRq/3) - % Let § be a step

size satisfying

222
2
51232 (L2+L‘}V) exp (%)
2)é

(L24L4)) exp (772 ) VEET B m

0 < min

If we assume that xo = yo, then there exists a coupling
between xy and vy, such that for any k,

E(llzes — yrsllo) < €

. . 3ayR
Alternatively, if we assume n > aqé 4

2 2 2
log & +? ™ then

Wi(p*, pps) < 2€
where p} := Law(y).

Remark 3 Note that m, L, R are from Assumption A, Ly
is from (7), ¢y, B, L¢ are from Assumption B).

Remark 4 Finding a suitable yo can be done very quickly
using gradient descent wrt U (-). The convergence rate to
the ball of radius R is very fast, due to Assumption A.3.



Stochastic Gradient and Langevin Processes

After some algebraic simplifications, we see that for a suffi-
ciently small €, achieving W1 (p! 5, p*) < € requires number

of steps
- [ B2 14 (Lp  168°L§
0( epl gl T

21256[/2
2 3
-max {R s W .

Remark 5 The convergence rate contains a term e™ ; this
term is also present in all of the work cited in the previous
section under Remark 1. Given our assumptions, in partic-
ular 5, this dependence is unavoidable as it describes the
time to transit between two modes of the invariant distribu-
tion. It can be verified to be tight by considering a simple
double-well potential.

Remark 6 As illustrated in Section 6.2, the m from As-
sumption B.3 should be thought of as a regularization term
which can be set arbitrarily large. In the following discus-

6712
. . L . .
sion, we will assume that max {R2, mch } is dominated

by the R? term.

To gain intuition about this term, let’s consider what it looks
like under a sequence of increasingly weaker assumptions:

a. Strongly convex, constant noise: U (z) m-strongly con-
vex, L-smooth, £(z,n) ~ N (0, I) for all z. (In reality we
need to consider a truncated Gaussian so as not to violate
Assumption B.2, but this is a minor issue). In thlS case,
Le=0,¢, =1, R=0,8=0(Vd),so k= O(£%). This
is the same rate as obtained by Durmus & Moulines (2016).
We remark that Durmus & Moulines (2016) obtain a W5
bound which is stronger than our W/ bound.

b. Non-convex, constant noise: U () not strongly convex
but satisfies Assumption A, and {(x, ) ~ N(0, I). In this
case, Le = 0, ¢, = 1, 8 = O(\/E) This is the setting
studied by Cheng et al. (2018) and Ma et al. (2018). The
rate we recover is k = O( - exp (14LR2)), which is

in line with Cheng et al. (2018), and is the best W rate
obtainable from Ma et al. (2018).

c. Non-convex, state-dependent noise: U (z) satisfies As-
sumption A, and £ satisfies Assumption B. To simplify mat-
ters, suppose the problem is rescaled so that c,,, = 1. Then
the main additional term compared to setting b. above is

2752 p2
exp (w). This suggests that the effect of a Lg-

Lipschitz noise can play a similar role in hindering mixing
as a L p-Lipschitz nonconvex drift.

When the dimension is high, computing M (yy) can be dif-
ficult, but if for each z, one has access to samples whose
covariance is M (z), then one can approximate M (y )0

via the central limit theorem by drawing a sufficiently large
number of samples. The proof of Theorem 1 can be readily
modified to accommodate this (see Appendix A.5).

‘We now turn to the non-Gaussian case.

Theorem 2 Let x; and w; have dynamics as defined
in (3) and (1) respectively, and suppose that the ini-

tial conditions satisfy E [||$0||§:| < R? + ?/m and

E [Hwo”ﬂ < R? + B?/m. Let ¢ be a target accu-

o 16(L+L2
racy satisfying é < ((:\FN) - exp (TagRy/3)
R A TagRq2\ ~
%Riqqgﬂ. Let € m exp (7 '13 q )6. Let
— minJ 1 52 2 Ly
T := min { T6L° BL2(R2+B%/m)’ 32\F/37 12847 ) TGP,

and let § be a step size satisfying

Te2L Tet L2
36d32 log (36‘”2) " 914484 10g (23%4)

6 < min

If we assume that Ty = wy, then there exists a coupling
between xy and wy such that for any k,

E{[lzrs — wrslly] < €
2
Alternatively, if we assume that n > 30‘“;3‘1 -log R2+§2/m,
then
Wi(p*,pns) < 26,

where p}’ := Law(wy).

Remark 7 To achieve W1 (p*,p¥s) < € the number of
steps needed is of order n = O (6% - 2994Ra”> ) The ¢ de-
pendency is considerably worse than in Theorem 1. This is
because we need to take many steps of (1) in order to ap-

proximate a single step of (2). For details, see the coupling
construction in equations (27)—(31) of Appendix B.

6. Application to Stochastic Gradient Descent

In this section, we will cast SGD in the form of (1). We
consider an objective of the form

Z ®)

We reserve the letter 7 to denote a random minibatch from
{1,...,n}, sampled with replacement, and define {(w, n)
as follows:

§\>—'

C(w,n) =

Z VU;(w )

‘77| iEN
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For a sample of size one, i.e. |n| = 1, we define

H(w) :=E [¢(w,n)¢(w,n)"] (10)

as the covariance matrix of the difference between the true
gradient and a single sampled gradient at w. A standard
run of SGD, with minibatch size b := |n|, then has the
following form:

1
W41 = Wg — 55 Z VUI(’LUk)

€N

= wy — 6VU(wy) + V3 (VEC(wr,m)). (1)

We refer to an SGD algorithm with step size § and minibatch
size b a (4, b)-SGD. Notice that (11) is in the form of (1),
with £(w,n) = v/0((w,n). The covariance matrix of the
noise term is

E [¢(w, n)é(w,n)"] = 2 fr(w). (12)

b

Because the magnitude of the noise covariance scales with
Ve , it follows that as § — 0, (11) converges to deterministic
gradient flow. However, the loss of randomness as § — 0 is
not desirable as it has been observed that as SGD approaches
GD, through either small step size or large batch size, the
generalization error goes up (Jastrzgbski et al., 2017; He
et al., 2019; Keskar et al., 2016; Hoffer et al., 2017); this
is also consistent with our experimental observations in
Section 6.3.1.

Therefore, a more meaningful way to take the limit of SGD
is to hold the noise term constant in (11). More specifically,
we define the constant-noise limit of (11) as

dxy = =VU (z¢)dt + M (x4)d By, 13)

where M (z) := /2 H(z). Note that this is in the form of

(3), with noise covariance M (z;)? matching that of SGD
in (11). Using Theorem 2, we can bound the W distance
between the SGD iterates wy, from (11), and the continuous-
time SDE z; from (13).

6.1. Importance of Noise Covariance
We highlight the fact that the limiting SDE of a discrete
process,

Wit1 = wi — sVU (wg) + Vs&(we, i), (14)

depends only on the covariance matrix of £&. More specifi-
cally, as long as ¢ satisfies \/E [¢(w,n)E(w,n)T] = M (w),
(14) will have (13) as its limiting SDE, regardless of higher
moments of . This fact, combined with Theorem 2, means
that in the limit of 6 — 0 and k — oo, the distribution of
wy, will be determined by the covariance of £ alone. An
immediate consequence is the following: at convergence,

the test performance of any Langevin MCMC-like algorithm
is almost entirely determined by the covariance of its noise
term.

Returning to the case of SGD algorithms, since the noise
covariance is M (z)? = %H(x) (see (12)), we know that
the ratio of step size J to batch size b is an important quan-
tity which can dictate the test error of the algorithm; this
observation has been made many times in prior work (Jas-
trzebski et al., 2017; He et al., 2019), and our results in this
paper are in line with these observations. Here, we move
one step further, and provide experimental evidence to show
that more fundamentally, it is the noise covariance in the
constant-noise limit that controls the test error.

To verify this empirically, we propose the following algo-
rithm called large-noise SGD.

Definition 1 An (s, 0, by, by)-large-noise SGD is an algo-
rithm that aims to minimize (8) using the following updates:

Wiar = wi = 7 Y VU(wy) (15)

1ENK

< DS V) = Y V) |
1EMN, 1EMN),

where 1y, 1}, and n}, are minibatches of sizes by, ba, and bo,

sampled uniformly at random from {1, ... ,n} with replace-

ment. The three minibatches are sampled independently and

are also independent of other iterations.

Intuitively, an (s, o, by, be)-large-noise SGD should be con-
sidered as an SGD algorithm with step size s and minibatch
size by and an additional noise term. The noise term com-
putes the difference of two independent and unbiased esti-
mates of the full gradient VU (wy,), each using a batch of by
data points. Using the definition of ( in (9), we can verify
that the update (15) is equivalent to

wiy1 = wi — sVU (wy) + sC(wg, ng) (16)
+ U\/E(C(wk:a 77]/@/) - C(wlm 77;))’

which is in the form of (1), with
5(1117 ﬁ) = \/EC(’LU, 77) + O'(C(’LU7 77//) - C(wv nl))’ (17)

where 7 = (n,7',1"), and |n| = by, || = [n"| = ba.
Further, the noise covariance matrix is

s 202

E [¢(w, M)E(w,7)T] = (— +

TR LACONEIL)

Therefore, if we have

= 19)
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then an (s, o, by, by)-large-noise SGD should have the same
noise covariance as a (9, b)-SGD (but very different higher
noise moments due to the injected noise), and based on
our theory, the large-noise SGD should have similar test
error to that of the SGD algorithm, even if the step size
and batch size are different. In Section 6.3, we verify this
experimentally. We stress that we are not proposing the
large-noise SGD as a practical algorithm. The reason that
this algorithm is interesting is that it gives us a family of
(W )}y o, Which converges to (13), and is implementable
in practice. Thus this algorithm helps us uncover the impor-
tance of noise covariance (and the unimportance of higher
noise moments) in Langevin MCMC-like algorithms. We
also remark that Hoffer et al. (2017) proposed a different
way of injecting noise, multiplying the sampled gradient
with a suitably scaled Gaussian noise.

6.2. Satisfying the Assumptions

Before presenting the experimental results, we remark on
a particular way that a function U (w) defined in (8), along
with the stochastic sequence wy, defined in (15), can satisfy
the assumptions in Section 4.

Suppose first that we shift the coordinate system so that
VU(0) = 0. Let us additionally assume that for each 4,
U;(w) has the form

Ui(w) = Ul(w) + V(w),

where V (w) := m(||z||2 — R/2)” is a m-strongly convex
regularizer outside a ball of radius R, and each U/ (w) has
Lr-Lipschitz gradients. Suppose further that m > 4 - Lg.
These additional assumptions make sense when we are only
interested in U (w) over Bgr(0), so V(w) plays the role of
a barrier function that keeps us within Br(0). Then, it can
immediately be verified that U (w) satisfies Assumption A
with L = m + L.

The noise term & in (17) satisfies Assumption B.1 by defini-
tion, and satisfies Assumption B.3 with L¢ = (/s + 20)L.
Assumption B.2 is satisfied if {(w,n) is bounded for all
w, i.e. the sampled gradient does not deviate from the true
gradient by more than a constant. We will need to assume di-
rectly Assumption B.4, as it is a property of the distribution
of VU;(w) fori =1,...,n.

6.3. Experiments

In this section, we present experimental results that validate
the importance of noise covariance in predicting the test
error of Langevin MCMC-like algorithms. In all experi-
ments, we use two different neural network architectures on
the CIFAR-10 dataset (Krizhevsky & Hinton, 2009) with
the standard test-train split. The first architecture is a sim-
ple convolutional neural network, which we call CNN in
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Figure 2. Relationship between test accuracy and the noise covari-
ance of SGD algorithm. In each plot, the dots with the same color
correspond to SGD runs with the same batch size but different step
sizes.

the following,1 and the other is the VGG19 network (Si-
monyan & Zisserman, 2014). To make our experiments
consistent with the setting of SGD, we do not use batch
normalization or dropout, and use constant step size. In all
of our experiments, we run SGD algorithm 2000 epochs
such that the algorithm converges sufficiently. Since in most
of our experiments, the accuracies on the training dataset
are almost 100%, we use the test accuracy to measure the
generalization performance.

Recall that according to (12) and (18), for both SGD and
large-noise SGD, the noise covariance is a scalar multiple
of H(w). For simplicity, in the following, we will slightly
abuse our terminology and call this scalar the noise covari-
ance; more specifically, for (J, b)-SGD, the noise covariance
is §/b, and for an (s, o, by, by)-large-noise SGD, the noise
covariance is ﬁ + %

6.3.1. ACCURACY VS NOISE COVARIANCE

In our first experiment, we focus on the SGD algorithm,
and show that there is a positive correlation between the
noise covariance and the final test accuracy of the trained
model. One major purpose of this experiment is to establish
baselines for our experiments on large-noise SGD.

We choose constant step size d from
{0.001, 0.002, 0.004, 0.008,0.016, 0.032,0.064, 0.128}

and minibatch size b from {32, 64, 128, 256, 512}. For each
(step size, batch size) pair, we plot its final test accuracy
against its noise covariance in Figure 2. From the plot, we
can see that higher noise covariance leads to better final
test accuracy, and there is a linear trend between the test
accuracy and the logarithm. We also highlight the fact that
conditioned on the noise covariance, the test accuracy is
not significantly correlated with either the step size or the

"We provide details of this CNN architecture in Appendix G.
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Figure 3. Large-noise SGD. Small dots correspond to all the baseline SGD runs in Figure 2. Each x corresponds to a baseline SGD run
whose step size is specified in the legend and batch size is specified in the title. Each ¢ corresponds to a large-noise SGD run whose noise
covariance is 8 times of that of the x with the same color. As we can see, injecting noise improves test accuracy, and the large-noise SGD

runs fall close to the linear trend.
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Figure 4. Large-noise SGD. Batch size in the titles represents the batch size of x runs. Each ¢ corresponds to a large-noise SGD run
whose noise covariance matches that of a baseline SGD run whose step size is the same as the x run with the same color and batch size is

128. Again, large-noise SGD falls close to the linear trend.

minibatch size. In other words, similar to the observations
in prior work (Jastrzgbski et al., 2017; He et al., 2019), there
is a strong correlation between relative variance of an SGD
sequence and its test accuracy, regardless of the combination
of minibatch size and step size.

6.3.2. LARGE-NOISE SGD

In this section, we implement and examine the performance
of the large-noise SGD algorithm proposed in (15). We
select a subset of SGD runs with relatively small noise
covariance in the experiment in the previous section (we
call them baseline SGD runs), and implement large-noise
SGD by injecting noise. Our goal is to see, for a particular
noise covariance, whether large-noise SGD has test accuracy
that is similar to SGD, in spite of significant differences in
third-and-higher moments of the noise in large-noise SGD
compared to standard SGD.

Our first experiment is to add noise with the same mini-

batch size to the (4,b) baseline SGD run such that the
new noise covariance matches that of an (89, 5)-SGD (an
SGD run with larger step size). In other words, we im-
plement (6, \/76/2,b, b)-large-noise SGD, whose noise co-
variance is 8 times of that of the baseline. Our results are
shown in Figure 3. Our second experiment is similar: we
add noise with minibatch size 128 to the (d,b) baseline
SGD run with b € {256,512} such that the new noise
covariance matches that of a (9, 128)-SGD (an SGD run
with smaller batch size). More specifically, we implement

(6,1/3(1 — 128)5,b,128)-large-noise SGD runs. The re-
sults are shown in Figure 4. In these figures, each x denotes
a baseline SGD run, with step size specified in the legend
and minibatch size specified by plot title. For each baseline
SGD run, we have a corresponding large-noise SGD run,
denoted by ¢ with the same color. As mentioned, these ¢
runs are designed to match the noise covariance of SGD

with larger step size or smaller batch size. In addition to x
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and ¢, we also plot using a small teal marker all the other
runs from Section 6.3.1. This helps highlight the linear trend
between the logarithm of noise covariance and test accuracy
that we observed in Section 6.3.1.

As can be seen, the (noise variance, test accuracy) values for
the ¢ runs fall close to the linear trend. More specifically,
a run of large-noise SGD produces similar test accuracy to
vanilla SGD runs with the same noise variance. We highlight
two potential implications: First, just like in Section 6.3.1,
we observe that the test accuracy strongly correlates with
relative variance, even for noise of the form (17), which can
have rather different higher moments than ¢ (standard SGD
noise); Second, since the ¢ points fall close to the linear
trend, we hypothesize that the constant-noise limit SDE (13)
should also have similar test error. If true, then this implies
that we only need to study the potential U(z) and noise
covariance M () to explain the generalization properties of
SGD.
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