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Discretizations of the Langevin diffusion have been proven very useful for developing and an-
alyzing algorithms for sampling and stochastic optimization. We present an improved non-
asymptotic analysis of the Euler-Maruyama discretization of the Langevin diffusion. Our analy-
sis does not require global contractivity, and yields polynomial dependence on the time horizon.
Compared to existing approaches, we make an additional smoothness assumption, and improve
the existing rate in discretization step size from O(n) to O(n?) in terms of the KL divergence.
This result matches the correct order for numerical SDEs, without suffering from exponential
time dependence. When applied to MCMC, this result simultaneously improves on the analyses
of a range of sampling algorithms that are based on Dalalyan’s approach.
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1. Introduction

In recent years, the machine learning and statistics communities have witnessed a surge of
interest in the Langevin diffusion process, and its connections to stochastic algorithms for
sampling and optimization. The Langevin diffusion in R? is defined via the It6 stochastic
differential equation (SDE)

dX, = b(X,)dt + dB, (1.1)

where B, is a standard d-dimensional Brownian motion, and the function b : R — R¢

is known as the drift term. For a drift term of the form b(z) = —1VU(z) for some

differentiable function U : RY — R, the Langevin process (1.1) has stationary distri-

bution with density v(z) o e~U®): moreover, under mild growth conditions on U, the

diffusion converges to this stationary distribution as ¢ — oo. See the book [44] for more
1
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2 W. Mou et al.

background on these facts, which underlie the development of sampling algorithms based
on discretizations of the Langevin diffusion. Diffusive processes of this nature also play
an important role in understanding stochastic optimization; in this context, the Gaus-
sian noise helps escaping shallow local minima and saddle points in finite time, making
it especially useful for non-convex optimization. From a theoretical point of view, the
continuous-time process is attractive to analyze, being amenable to a range of tools com-
ing from stochastic calculus and Brownian motion theory [46]. However, in practice, an
algorithm can only run in discrete time, so that the understanding of discretized versions
of the Langevin diffusion is very important.

The discretization of SDEs is a central topic in the field of scientific computation, with
a wide variety of schemes proposed and studied (e.g., see the standard sources [33, 29,
43] and references therein). The most commonly used method is the Euler-Maruyama
discretization: parameterized by a step size n > 0, it is defined by the recursion

Xks1yn = Xin +10(Xpy) + 0k, for k=0,1,2,.... (1.2)

Here the sequence {}/2) consists of i.i.d. d-dimensional standard Gaussian random
vectors.

The behavior of the recursion (1.2), along with higher-order variants thereof, has
been intensively studied for decades, under different sets of assumptions. The classical
papers [50, 51] provide a guarantee of weak error expansion, giving a first-order error
bound on the forward Euler method, albeit one that exhibits exponential dependence on
the time horizon 7. Under mild assumptions on the potential function, the process (1.2)
can be shown to be geometrically ergodic as T' — +oo (e.g., [32, 41]). The Metropolis-
adjusted variant of the process (1.2) has also been studied, with various asymptotic and
non-asymptotic guarantees known [8, 7, 47, 22, 24].

As mentioned previously, the Euler-Murayama scheme is known to have first-order
accuracy under appropriate smoothness conditions. In particular, if we measure distance
using the Wasserstein distance W, for some p > 1, then the distance between the original
Langevin diffusion and the discretized version decays as O(n) as n decays to zero; here
the dependence on the dimension d and time horizon T is subsumed within the order
notation [see, e.g., 1]. When the underlying dependence on the time horizon T is explicitly
calculated, it can grow exponentially, due to the underlying Gronwall inequality. If the
potential U is both suitably smooth and strongly convex, then the scaling with the
step size 1 remains first-order, and the bound becomes independent of time 7' [16, 21].
These bounds, in conjunction with the coupling method, have been used to provide
non-asymptotic and explicit bounds on the mixing time of the unadjusted Langevin
algorithm (ULA) for sampling from strongly-log-concave densities. Moreover, this bound
aligns well with the classical theory of discretization for ordinary differential equations
(ODEs), where finite-time discretization error may suffer from bad dependence on 7', and
either contraction assumptions or symplectic structures are needed in order to control
long-time behavior [31].

On the surface, it might seem that SDEs pose greater numerical challenges than
ODEs; however, the presence of randomness actually has been shown to help in the
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Discretization Error Analysis of Langevin Diffusions without Convexity 3

long-term behavior of discretization. Most closely related to the current paper, the sem-
inal work of Dalalyan [15] showed that the pathwise Kullback-Leibler (KL) divergence
between the original Langevin diffusion (1.1) and the Euler-Maruyma discretization (1.2)
is bounded as O(nT') with only smoothness conditions. This result enables comparison
of the discretization with the original diffusion over long time intervals, even without
contraction. The discretization techniques of Dalalyan [15] are further developed by
Durmus and Moulines [20]; both papers serve as a foundation for a number of recent
papers on sampling and non-convex statistical learning, including a line of recent work
(e.g., [45, 53, 36, 37]).

On the other hand, this O(n) bound on the KL error is likely to be loose in general.
Under suitable smoothness conditions, standard transportation inequalities [5] guarantee
that such a KL bound can be translated into an O(,/7)-bound in Wasserstein (and TV)
distance. Yet, as mentioned in the previous paragraph, the Wasserstein (and TV) rate
should scale as O(7n) under an appropriate smoothness assumption. This latter result
either requires assuming contraction or leads to exponential time dependence, raising
naturally the question: can we achieve best of both worlds? That is, is it possible to
prove O(nT) bounds in the Wasserstein and TV distances without requiring convexity
or other contractivity conditions?

Our contributions: In this paper, we answer the preceding question in the affirmative:
more precisely, we close the gap between the correct rate for the Euler-Maruyama method
and the linear dependence on time horizon, without any contractivity assumptions. Fur-
thermore, as opposed to prior works where the long-term stability is asymptotic or built
upon the ergodicity of the process, our discretization error bound is non-asymptotic and
explicit, and does not require the mixing of the underlying process. As long as the drift
term satisfies certain first and second-order smoothness, as well as a certain type of dis-
tant growth condition, we show the KL divergence between marginal distributions of the
processes (1.1) and equation (1.2), at any time T, is bounded as O(n?d*T). Note that
this bound is non-asymptotic, with polynomial dependence on all the smoothness param-
eters, and linear dependence on T'. As a corollary of this improved discretization bound,
we give improved bounds for using the unadjusted Langevin algorithm (ULA) for sam-
pling from a distribution satisfying a log-Sobolev inequality. In addition, our improved
discretization bound improves a number of previous results on non-convex optimization
and inference, all of which are based on the discretized Langevin diffusion.

In the proof of our main theorem, we introduce a number of new techniques. A central
challenge is how to study the evolution of time marginals of the interpolation of discrete-
time Euler algorithm. In order to do so, we derive a Fokker-Planck equation for the
interpolated process, where the drift term is the backward conditional expectation of
b at the previous step, conditioned on the current value of x. The difference between
this new drift term for the interpolated process and b itself can be much smaller than
the difference between b at two time points. Indeed, taking the conditional expectation
cancels out the bulk of the noise terms, assuming the density from the previous step is
smooth enough. We capture the smoothness of density at the previous step by its Fisher
information, and develop a recursive bound using the convolution inequality in order
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to control the Fisher information along the path. Combining this regularity estimate
with suitable tail bounds leads to our main result. We suspect that our analysis of this
interpolated process may be of independent interest.

Related work: Recent years have witnessed a flurry of activity in statistics and ma-
chine learning on the Langevin diffusion and related stochastic processes. A standard ap-
plication is sampling from a density of the form (z) o< e~V (*) based on a first-order oracle
that returns the pair (U(x), VU (x)) for any query point z. In the log-concave case, algo-
rithms for sampling under this model are relatively well-understood, with various meth-
ods for discretization and variants of Langevin diffusion proposed in order to refine the
dependence on dimension, accuracy level and condition number [15, 21, 14, 35, 39, 22, 17].

When the potential function U is non-convex, the analysis of continuous-time con-
vergence and the discretization error analysis both become much more involved. When
the potential satisfies a logarithmic Sobolev inequalities, continuous-time convergence
rates can be established [see e.g. 40], and these guarantees have been leveraged for sam-
pling algorithms [4, 56, 37]. Coupling-based results for the Wasserstein distance W, have
also been shown for variants of Langevin diffusion [13, 6], and [38] show a bound un-
der a stronger W, distance under similar assumptions. For the non-convex case, these
approaches typically require (strong) convexity outside a ball, which excludes many im-
portant probability distributions. See Section A for more discussion.

Beyond sampling, the global convergence nature of Langevin diffusion has been used in
non-convex optimization, since the stationary distribution is concentrated around global
minima. Langevin-based optimization algorithms have been studied under log-Sobolev
inequalities [45], bounds on the Stein factor [25]; in addition, accelerated methods have
been studied [11]. The dynamics of Langevin algorithms have also been studied without
convergence to stationarity, including exiting times [53], hitting times [57], exploration
of a basin-of-attraction [34], and statistical inference using the path [36].

Much of this work in the non-convex setting is based on the discretization methods
first introduced by Dalalyan [15], and subsequently refined and generalized by Durmus
and Moulines [20]. This approach, which leads to an O(,/7) bound in total variation
distance, is based on computing pathwise KLi divergence using Girsanov’s theorem. No-
tably, this approach does not lead to the optimal bound for a first-order scheme. In
particular, when a second-order smoothness condition is assumed on the drift term b(-),
their bounds in terms of TV distance are loose compared to the O(n) bound given here.
Cheng and Bartlett [12] used this same approach to prove an O(n) bound in KL diver-
gence, as opposed to the sharper O(n?) bound that we establish in this paper. Recently,
De Bortoli and Durmus [19] used this Girsanov-based technique to establish asymptotic
discretization error guarantees. They study a very general class of drift terms, one which
does not require global Lipschitzness and allow arbitrary speed of growth. We believe
that our method might be fruitfully combined with their analysis, thereby replacing
the Girsanov-based argument so as to obtain non-asymptotic guarantees in their more
general setting.

1We only listed time horizon dependence for methods that guarantee discretization error between
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Discretization Error Analysis of Langevin Diffusions without Convexity 5

Paper Contractive | 1 o7 | 2 Step size 1 Re(}u.lres Additiqnal
operator mixing assumptions
[15],[20] No O(T) o(v/m)* No None
i No o) | om No | oo
[16],21] Yes : o) Yes | eenthonn
« strong convexity
[12],[37] No - O(v) Yes ton‘rqide a ba.llt
(3] 6] No : o) Yes | % edea bl
: * Second-order
This paper No O(VT) O(n) No smooth drift

Table 1. Comparison between non-asymptotic error bounds on discretization of Langevin diffusion
and MCMC sampling algorithms.

Finally, in a concurrent and independent line of work, Fang and Giles [26] also stud-
ied a multi-level sampling algorithm without imposing a contraction condition, and ob-
tained bounds for the mean-squared error; however, their results do not give explicit
dependence on problem parameters. Since the proofs involve bounding the moments of
Radon-Nikodym derivative, their results may be exponential in dimension, as opposed
to the polynomial-dependence given here.

Notation: We let ||z||2 denote the Euclidean norm of a vector € R%. For a matrix M
we let ||M]|,, denote its spectral norm. For a function b : RY — RY, we let Vb(x) € R4*4
denote its Jacobian evaluated at z. We use £(X) to denote the law of random variable
X. When the variable of the integrand is not explicitly written, integrals are taken with
respect to the Lebesgue measure: in particular, for an integrable function g : R — R,
we use [ g as a shorthand for [, g(2)dz. For a continuously differentiable probability
density function p (with respect to the Lebesgue measure), we use Z(p) to denote the
(scalar) Fisher information for p with respect to the Lebesgue measure, i.e.,

I(p) = / p(z) |V log p()||? d.

For real numbers z,y, we use £ Ay to denote min(z, y) and use z Vy to denote max(z, y).

2. Main Results and their Implications

We now turn to our main results, beginning with our assumptions and statement of our
main theorems. We then develop and discuss a number of corollaries of our results.

continuous-time and discrete-time for any time. If the proof requires mixing and does not bound the
difference between the finite-time distributions, we mark it as “-”.

2All distances are measured in W;. If the original bound was shown for the KL divergence, we have
transformed it into the W;-distance using transportation inequalities. We mark with * if the original
bound was shown in the KL divergence.

3For Hamiltonian Monte-Carlo, which is based on discretization of ODE, instead of SDE.
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6 W. Mou et al.
2.1. Statement of main results
Our main results involve three conditions on the drift term b, and one on the initialization:

Assumption 2.1 (Lipschitz drift term). There is a finite constant L1 such that
Ib(2) = b()ll2 < Lille — yll2 for all z,y € R7. (2.1)

Assumption 2.2 (Smooth drift term). There is a finite constant Lo such that
IVo(x) = Vo)ll., < Lallw —yllz for all z,y € RY. (2:2)

Assumption 2.3 (Distant dissipativity). There exist strictly positive constants u, 3
such that

(b(zx),2) < —plzl|3 + B for all z € RY. (2.3)

Assumption 2.4 (Initial distribution). The initializations X and XO, for the pro-
cesses (1.1) and (1.2) respectively, are drawn from a density mo such that

1/4
(E,ro ||XH3) < ooVd for some finite oy. (2.4)

Note that we do not impose any contractivity assumption on the drift term b. Rather, we
use the notion of distant dissipativity, which is substantially weaker; moreover, even this
assumption is relaxed in Theorem 2. A spectrum of growth conditions on the drift term (or
tail conditions for the stationary distribution for sampling problems) have been employed
in literature, including (strong) convexity [21, 18], strong convexity outside a ball [37, 23],
distant dissipativity [45, 27]; such growth conditions are also closely related to functional
inequalities that guarantee rapid mixing, such as the log-Sobolev inequality, Poincaré
inequality, and Talagrand’s inequality. In Section A of the supplementary material, we
carry out a comprehensive discussion of these conditions used in literature.

We note that the initialization condition (2.4) is rather standard, and clearly satisfied,
for instance, by the standard Gaussian density with o9 = /3.

With these definitions, the main result of this paper is the following:

Theorem 1. Consider the Langevin diffusion (1.1) under Assumptions 2.1—2.4. Then
there are universal constants (co,c1) such that for any n € (0, ﬁ) and all times T > 0,
the KL error of the Euler-Maruyama discretization (1.2) is bounded as

dlogn='T

Dy (fr||mr) < 00772L%T{ T

NI (7o) +Lyd+AZ+L3 (03d+ %) }+con2TL§dz
+ c1n4L§{Ag + It (a§d2 + B d2) } (2.5)
where Ag :={|b(0)]|2.
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Discretization Error Analysis of Langevin Diffusions without Convexity 7

It is important to note that this bound is non-asymptotic, holding for all times, and
provides explicit dependence on all the problem parameters. The bound allows for any
initial distribution 7 satisfying the moment condition (2.4). When 7 has bounded Fisher
information, then Theorem 1 gives an O(n?) dependency on the stepsize, matching the
optimal numerical order for Euler schemes. Note that this bounded Fisher information
condition is often satisfied; for instance, in sampling for Monte Carlo estimation, one
might simply take a standard Gaussian initialization. On the other hand, even if the
initial distribution lacks a density, Theorem 1 still gives an O(n?logn~!) bound in terms
of the KL divergence, and moreover, this scaling is near-optimal.

It is worthwhile highlighting certain aspects of the dependency on the triple (n, T, d).
In order to do so, we consider the following canonical setup of problem parameters:

e The smoothness parameters L, Lo are of constant order, independent of problem
dimension.

e The quantity Ay = ||b(0)]|, is of order O(V/d).

e The dissipativity condition 2.3 is satisfied by a pair (i, 8) such that u = Q(1) and
B =0(d).

e The initial distribution is taken as standard Gaussian A (0, Iy).

Note that the first and third requirements are just scaling conditions, and can be satsified
by rescaling the coordinates. The second condition—namely, the bound on ||6(0)||o—can
be satisfied by finding an approximate solution to the nonlinear equation b(x) = 0, and
then translating the coordinate system so as to satisfy this condition.

Under the canonical setup, if we track only the dependence on (7, T, d), the result (2.5)
can be summarized as a bound of the form Dy (77||77) < n?d?T. This result should be
compared to the O(ndT) bound from past work [15] that imposes only Assumption 2.2. Tt
is also worth noticing that the term 72d?L3T only comes with the third order derivative
bound, which coincides with the Wasserstein distance result, based on a coupling proof, as
obtained in the papers [21, 16]. However, these works require a contractivity assumption,
and do not study separately the discretization error of the discrete process. On the other
hand, the bounds from the paper [20] do not require the contractivity condition. To
compare with their result, Theorem 1 can be transformed into an O(ndv/T) bound in
terms of total variation distance using Pinsker’s inequality. In comparison, results in the
paper [20] provide a bound that scales as O(y/ndT). Our bound improves upon this result
for step size n = O(1/d), which is required to make the discretization error small.

Note that Assumption 2.3 can be substantially relaxed when the drift function cor-
responds to the negative gradient of some function f. Essentially, we only require the
function f to be non-negative, along with the smoothness assumptions. In such case, we
have the following discretization error bound:

Theorem 2. Consider the original Langevin diffusion (1.1) under Assumptions 2.1,
2.2, and 2.4, and suppose that b = —V f for some non-negative function f. Then for any

stepsize 1 € (0, i) and time T > 0, the KL error of the Euler-Maruyama discretiza-
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tion (1.2) is bounded as

[f(X

Er
AZI(mo) + Lyd + ==

dl -1iT
ogn 7 )])+con2TL§d2

Drca(irlrr) < P 37 (125!
rant{af+ L (5007 + BT + i) | (20)
where Ag :=||b(0)]|2.

Once again tracking only the dependence on the triple (1, T,d), the bound (2.6) can
be stated succinctly as Dxy, (7r||mr) < n?T(1+n*T3)d?, where < denotes inequality that
holds up to quantities independent of (n,T,d). Relative to Theorem 1, this bound has
weaker dependency on the time horizon 7', but it holds for any non-negative potential
function without any growth conditions. We note that neither Theorem 1 nor Theorem 2
depend on the mixing time of the underlying process, which can be exponentially large
for multi-modal problems [9]. Indeed, the condition f > 0 does not even guarantee the
existence of a stationary distribution, and Theorem 2 holds true even when the underlying
process is not ergodic at all. This bound broadens the class of SDEs for which the long-
term structure-preservation is guaranteed.

It is also worthwhile comparing the conditions and bounds in Theorem 2 to those
of Durmus and Moulines [20]. When transformed into a bound in TV distance using
Pinsker’s inequality, Theorem 2 leads to a bound of the order O(nd+/T (1 + n2T*?), while
the bound in the paper [20] is of the order O(y/ndT). Our bound leads to an improved
numerical order, and is better than their result for a stepsize n € (0, T%rd); note that
such a choice is required to make the overall discretization error be bounded as O(1).
On the other hand, the bound in Theorem 2 does not require any condition on mixing
properties of the underlying Langevin diffusion, and gives explicit dependency on all the
problem parameters. This result can be combined with any mixing time bound in TV
distance to get the mixing time upper bound in Corollary 1. In comparison, Proposition 2
in the paper [20] assumes exponential ergodicity of the Langevin diffusion. Furthermore,
their bound is expressed in terms of A(1, z) = supyq E||V f(Xg,) |3, which can also grow
with the time horizon T'; in contrast, our bound provides explicit upper bound on such
quantities when the potential function is uniformly bounded from below.

2.2. Results on mixing and ergodicity

We now discuss some implications of our main results for the analysis of MCMC algo-
rithms. We first present mixing time bounds under both strong assumptions in Theorem 1
and weak assumptions in Theorem 2. Then, an MSE bound is established for the empir-
ical averages of the discretized trajectory.

When the problem of sampling from a target distribution y(x) e~ U@ is consid-
ered, the above bounds applied to the drift term b(z) = —%VU(JJ) yield bounds in
TV distance, more precisely via the convergence of the Fokker-Planck equation and the
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Discretization Error Analysis of Langevin Diffusions without Convexity 9

Pinsker inequality [15]. Instead, in this paper, so as to obtain a sharper result, we di-
rectly combine the proofs of Theorem 1 with the analysis of Cheng et al. [12]. A notable
feature of this strategy is that it completely decouples analyses of the discretization error
and of the convergence of the continuous-time diffusion process. The convergence of the
continuous-time process is guaranteed when the target distribution satisfies a log-Sobolev
inequality [52, 40].

We now state a guarantee for the Euler scheme (1.2), also known as Unadjusted
Langevin Algorithm (ULA). Note that compared to Theorem 1, the initialization require-
ment (2.4) is relaxed in such case, and the bound only requires a moment assumption on
the initial distribution.

Theorem 3. Consider a density of the form ~(x) x exp(=U(x)) such that:

(a) The gradient VU satisfies Assumptions 2.1—2.3.
(b) The distribution defined by -y satisfies a log-Sobolev inequality with constant p > 0.

Then for the Gaussian initialization N (0, Ll_lfd) and any stepsize parametern € (0, i),
the KL divergence is bounded as

Dy (fi|7) S e "/* Dip(follv) + 2 (0P LIRG +n° Lid + n* L3L1RG + n°L3d®) ,  (2.7)
where Ry := oovd + # + ’2—2.
See Section D.1 of the supplementary material for the proof.

The KL bound (2.7) has a number of consequences for mixing times. Given an error
tolerance € > 0 and a distance function dist, we define the associated mizing time
N (e, dist) := arg kEI111211 {dist(7gy,v) < €}. (2.8)
Under the canonical setup (smoothness parameters independent of the dimension) and
the initial distribution A/ (0, I), for any € > 0, we can show that the unadjusted Langevin
algorithm (1.2) with drift b = —1VU and step size n = ‘/767)(10g %)_1 has mixing times
bounded as:

N(e,Dkr) =0 (d 5_%p_%) in KL-divergence,
N, TV) =0 (d a—lp—%) in TV distance,
N(e,W2) =0 (d sflp*g> in W, distance,
N(e,Wy) =0 (d2 E_lp_%) in W, distance.

See Section D.1 of the supplementary material for the steps leading from the KL bound (2.7)
to these mixing time bounds.

It is worth noting that the set of distributions satisfying a log-Sobolev inequality [28]
includes strongly log-concave distributions [3] as well as perturbations thereof [30]. For
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10 W. Mou et al.

example, it includes distributions that are strongly log-concave outside of a bounded
region, but non-log-concave inside of it, as analyzed in some recent work [37]. Under the
additional smoothness Assumption 2.2, we obtain an improved mixing time of O(d/e) in
total variation distance, compared to the O(d/c?) bound in the paper [37]. On the other
hand, we obtain the same mixing time in W, distance as the papers [20, 16] but under
weaker assumptions on the target distribution—namely, those that satisfy a log-Sobolev
inequality as opposed to being strongly log-concave. See Section A in the supplementary
file for more discussion regarding the relationship between tail assumptions and the
isoperimetric inequalities.

Similar to Theorem 3, when the potential function U does not satisfy the distant
dissipativity assumption, but is uniformly bounded from below, and when the continuous-
time dynamics is geometrically ergodic, a non-asymptotic mixing time upper bound on
the forward Euler scheme can be then derived by directly combining the continuous-time
mixing result with Theorem 2 with the triangle inequality.

Corollary 1. Given any € > 0 and initial distribution w9 = N(0, 1), suppose that
there exists T(€) > 0 such that the continuous-time diffusion (1.1) satisfies the bound

dry (Tr(e),7) < €/2.

Assume moreover that the potential function U satisfies the smoothness Assumptions 2.1
and 2.2 with Ly, Ly of constant order, and |[VU(0)||, = O(Vd), U(0) = O(d), and that

U(6) > 0 for all € RY. Then with the step size choice n = y CE(E) A T(CE‘)[\E/E for a constant

c > 0 depending on smoothness parameters but independent of dimension and €, we have:

NETV) =0 (d#”f(s) N ﬂ;(@) '

Note that Corollary 1 only requires a total variation distance upper bound on the
continuous-time dynamics, and directly translates into a mixing time result for the Euler
discretization. To have a better understanding of this corollary, we consider the following
three examples:

e For v oc e~V satisfying the log-Sobolev inequality with constant A and smoothness
conditions (2.1) and (2.2), we have:

At
drv () < VD) < Drslrol)e < exp (00ogd) - 3 ).

which leads to a bound 7(¢) < § log g. Plugging into Corollary 1, we obtain:

Vd 1 d
_ —1/2 2
N(,TV) =0 (AB/QE (\/g+ A ) log” — ).
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Discretization Error Analysis of Langevin Diffusions without Convexity 11

e For v ox e~V satisfying the Poincaré inequality with constant A and smoothness
assumptions (2.1), (2.2), we have:

drv (m,7) < VR (mlly) < 4/x2(mol[7)e > < exp <O(d) - A;) :

which leads to a bound 7(¢) < %log % Plugging into Corollary 1, we obtain:

51
N, TV) = ——log” — | .
(e,TV) O()\Qs og 5)

e For heavy-tailed potential functions satisfying the Veretennikov condition:

(VU(x), T2 ) > for all x with ||z||, > M, for some r > d/2,
2

the Langevin process has mixing time bounded as 7(¢) = O(e™ T*ld/Q) in TV dis-

tance [55]. When used in conjunction with Corollary 1, this leads to the bound:

N(e, TV) =0 (g—ﬁ—% +€—ﬁ-1) .

Here we have suppressed the problem-dependent pre-factors within the O(-)-notation
so as to focus on the exponent in (1/¢) in the convergence rate.

There are also non-asymptotic results for the mixing time of ULA under the Poincaré
inequality or related conditions. For instance, Vempala and Wibisono [54] give Rényi
divergence upper bounds under the Poincaré inequality. The expression of their bound
depends on the Rényi divergence between the stationary distribution of the discrete-time
process and the target density. In comparison, our bound gives an explicit dependence
on all problem parameters. Dalalyan et al. [18] prove upper bounds on the mixing time
in the non-strongly log-concave setting. Log-concavity is known to imply the Poincaré
inequality [2]. However, our bounds are expressed in terms of the Poincaré constant, and
the problem-dependent constants are not directly comparable. In terms of dependency on
the target accuracy e, Corollary 1 implies an 0(5_1) mixing time bound in TV distance,
which improves upon the O(e~*) bound given in the paper [18].

MCMC is widely used to compute the expectation of a function under the target
distribution. In many applications, one can take the empirical average of the value of a
given test function h over the trajectory of the Euler scheme:

No+N

~ 1 ~
hy =5 > (X, (2.9)
k=No+1

where N is the number of samples taken, and Ny is a burn-in time. Although the empirical
measure supported on N points inevitably has large Wasserstein distance to the target
measure, a small error between hy and the expectation E,h(X) under the target measure
can be obtained. In the following, we show a corollary to Theorem 1 that guarantees the
MSE bound for bounded and Lipschitz test functions.
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12 W. Mou et al.

Corollary 2. Consider a density v x exp(—U(x)) such that VU satisfies Assump-
tion 2.1, 2.2 and 2.8. Suppose furthermore that the density v satisfies the log-Sobolev
inequality with constant p. For a given number of iterations N > 0 and burn-in time Ny,
define hy as in equation (2.9). Under the canonical setup, we have:

1
o If h is a bounded function, taking step size n < (%)3 and burn-in time

Nd
p 7

. 2 hll? Nd\ 3
E (hN —]Eyh(X)) < c”f')oo (dlog pd> , and

Ny < 771;3 log we obtain:

- N

1/3
o [If h is a Lipschitz function, taking step size n < (ﬁ log n%) and burn-in time

Nd

. s we obtain:

- 1
NQ = IOg
2 2 Nd\b
- 2
E (o~ E100) < i, (51000 )
where C is a problem-dependent constant independent of (N,n,d, p).

Corollary 2 matches the O(N~2/3) MSE bound from the paper [21], a rate which
is standard in the MCMC literature. However, the result given here holds under milder
assumptions, allowing for non-log-concave and multi-modal distributions. We also present
the explicit dependency of the MSE bound on problem-dependent parameters (d, p). It
is also worthwhile comparing to the classical MSE bound [42] obtained using Poisson
equation methods. In comparison, our bound requires fewer smoothness assumptions on
both the test function h and the potential function U. Notably, our result applies to
discontinuous test functions h such as indicator functions, which play an important role
in the construction of Bayesian credible sets.

2.3. Overview of proof

In this section, we provide a high-level overview of the three main steps that comprise
the proof of Theorem 1; the subsequent Sections 3, 4, and 5 are devoted (respectively)
to the details of these three steps.

Step 1: Our first step is to construct a continuous-time interpolation {Xt}tzo of the
discrete-time process {X;m}iozo, and prove that its density 7; satisfies an analogue of
the Fokker-Plank equation (see Lemma 1). The elliptic operator of this equation is time-
dependent, with a drift term b; = E(b(Xy,)|X; = =) given by the backward conditional
expectation of the original drift term b. By direct calculation, the time derivative of the
KL divergence between the interpolated and the original Langevin diffusion Dkr, (7¢||7+)
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Discretization Error Analysis of Langevin Diffusions without Convexity 13

is controlled by the mean squared difference between the drift terms of the Fokker-Planck
equations for the original and the interpolated processes, namely the quantity

/ Fo(@) D) — be() |2 (2.10)
See Lemma 2 for details.

Step 2: Our next step is to control the mean-squared error term (2.10). Compared to
the MSE bound obtained from the Girsanov theorem in past work [15], our bound has an
additional backward conditional expectation inside the norm. Directly pulling this latter
outside the norm by convexity inevitably entails a KL bound O(7) due to fluctuations of
the Brownian motion. However, taking the backward expectation cancels out most of the
noises, as long as the density function of the iterate at each step is smooth enough. This
geometric intuition is explained precisely in Section 4.1, and concretely implemented in
Section 4.2. The main conclusion from Steps 1 and 2 is summarized as follows:

Proposition 1. Under Assumptions 2.1 and 2.2, for any t € [kn, (k + 1)n], we have

d . . . 2
D (Fallm) < ALt — kn)*T(fny) + 16L3(t — o) *E Hb(xk,])H2 F1204(t — kn)Pd

. 4
F16(t — ky)iL2E Hb(an)H FA8(t — kn)2L2d?, (2.11a)
2
and the moments of drift terms can be further bounded as

. 2 A 2 R 4 N 4
E Hb(X,m)HQ <9242 4+ 2I°E HX,WHQ, and E Hb(an)Hz < 44 + 4LIE HX,W,HQ.
(2.11b)

See Section 4 for the proof of this claim.

Step 3: The third step is to bound the Fisher information term Z(7,,). In order to ob-
tain bound the Fisher information for the density at the discrete time steps, we iteratively
apply Stam’s convolution inequality for Fisher information [49]. The update rule (1.2)
can be viewed as a deterministic update combined with convolution with a Gaussian
kernel. The Fisher information can increase under the first step and will decrease under
the second step. We can then prove the recursive inequality characterizing the effect of
both steps, leading to the following proposition:

Proposition 2. Under Assumptions 2.1, 2.2 and 2.4, for T = Nn and N € N, there
exists a universal constant ¢ > 0, such that the following bound holds true:

N
1 . . (dlogT/n L3d?
Ng:lI(mﬂ,) <ec- [mm (T,I(ﬂ'o)) + % + Lid| .
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14 W. Mou et al.
See Section 5.1 for the proof of this claim.

Note that the bound deals with two cases: when the initial Fisher information is small,
the upper bound is independent of the step size 7; when the initial Fisher information
can be unbounded, we still have a bound with logarithmic dependency on the stepsize.

It remains to bound the moments of X, along the path. In Proposition 1, the second
and fourth moment of X; are used. With different assumptions on the drift term, different
moments bounds can be established, leading to Theorem 1 and Theorem 2, respectively.

e Under distant dissipativity (Assumption 2.3), the p-th moment of this process can
be bounded from above, for arbitrary value of p > 1. (see Lemma 8). The proof
is based on the Burkholder-Davis-Gundy inequality for continuous martingales.
Collecting these results yields equation (2.5), which completes our sketch of the
proof of Theorem 1.

e Without Assumption 2.3, if the drift term takes the form b = —V f for some non-
negative function f, then the second and fourth moments can still be bounded (see
Lemma 9 and 10). Collecting these results yields equation (2.6), and completes our
sketch of the proof of Theorem 2.

3. Interpolation, KL. Bounds and Fokker-Planck

As in the analysis of Dalalyan [15], the first step of the proof is to construct a continuous-
time interpolation for the discrete-time algorithm (1.2). In particular, we define a stochas-
tic process over the interval ¢t € [kn, (k 4+ 1)n] via

t t

b(Xpy)ds + / dB,. (3.1)

Xy = Xy + /
kn

kn

Let {F, | t > 0} be the natural filtration associated with the Brownian motion {B; |
t > 0}. Conditionally on Fy,, the process {(X|Fpy) | t € [kn, (k + 1)n]} is a Brownian
motion with constant drift (X}, ) and starting at Xj,. This interpolation has been used
in past work [15, 12]. In their work, the KL divergence between the law of processes
{X;|te0,T)} and {X; | t € [0,T]} is controlled, via a use of the Girsanov theorem, by
bounding Radon-Nikodym derivatives. This approach requires controlling the quantity
E||b(X;) — b(Xky)|13 for t € [kn, (k 4 1)7]. Tt should be noted that it scales as O(7), due
to the scale of oscillations in Brownian motion.

In our approach, we overcome this difficulty by only considering the KL divergence of
the one-time marginal laws Dxr,(L£(X7)||£(X71)). Let us denote the densities of X, and
X, with respect to Lebesgue measure in R¢ by 7, and 7, respectively. It is well-known
that when b is Lipschitz, then the density m; satisfies the Fokker-Planck equation

67'('15

1
E =-V. (7Ttb) + §A7Tt7 (32)
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Discretization Error Analysis of Langevin Diffusions without Convexity 15

where A denotes the Laplacian operator. On the other hand, the interpolated process
an is not Markovian, and so does not have a semigroup generator. For this reason, it
is difficult to directly control the KL divergence between it and the original Langevin
diffusion. In the following lemma, we construct a different partial differential equation
that is satisfied by 7.

Lemma 1. The density #; of the process X; defined in equation (3.1) satisfies the PDE

7 .
% =-V- <ﬁ-tbt) + AR over the interval t € [kn, (k+ 1)), (3.3)

where by(z) :=E (b(an)‘Xt = :C) is a time-varying drift term.

See Section 3.1 for the proof of this lemma. . .
The key observation is that, conditioned on the o-field Fi,, = o(X; : 0 <t < kn), the

process {(Xt | Fin) | t € [n, (k+ l)n]} is a Brownian motion with constant drift, whose

conditional density 7 | ]:"k77 satisfies a Fokker-Planck equation. Taking the expectation
on both sides, and interchanging the integral with the derivatives, we obtain the Fokker-
Planck equation for the density 7; unconditionally.

In Lemma 1, we have a Fokker-Planck equation with time-varying coefficients; it is
satisfied by the one-time marginal densities of the continuous-time interpolation for the
process (1.2). This representation provides convenient tool for bounding the time deriva-
tive of KL divergence, a task to which we turn in the next section.

3.1. Proof of Lemma 1

We first consider the conditional distribution of (X : kn < t < (k + 1)), conditioned
on ﬁkn- At time t = kn, it starts with an atomic mass (viewed as Dirac é-function at
point an, which is a member of the tempered distribution space &’ [see, e.g., 48]. Its
derivatives and Hessian are well-defined as well.) For ¢ > kn, this conditional density
follows the Fokker-Planck equation for a Brownian motion with constant drift:

8(72;':’”7) - V. (ﬁt‘ﬁknb(.}zhn)) T %Aﬁt\ﬁw (3.4)

where the partial derivatives are in terms of the dummy variable x. Next we take expec-
tations of both sides of (3.4). By interchanging derivative and integration, we obtain the
following identities (with rigorous justification of these steps provided below):

E (aﬁgt}—k"(xo = %(x) (3.5a)
E(V (#il7,, @b(Xi))) = V- (R(2)E (b(Z0y)| X0 = 2) ) (3.5)
E (Afrt| f) = Ay (3.5¢)
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16 W. Mou et al.
Proof of equation (3.5a): We show:

aﬁ-t |]:—k1; ~ aﬁ_t ‘]:—kn (Z) 0 ~ 87}1&
E <8t(95)> = /Rd i (y) —5, (@ly)dy = 8t/ ()7 | 2,,, (ly)dy = = (2),

Applying Lemma 1 in Section E of the supplementary material, We can show that the
|

density 7, has a tail decaying as Ce™ rllvl® . We then note that ’”’ (x]y) is equal to
the semigroup generator of the conditional Brownian motion with constant drift, which
also decays exponentially with ¥, in a small neighborhood of ¢, for fixed z. So the quantity

7y
T () taf’“" (z|y) has a dominating function of the form of C'(1+ [jy|)e~"1¥I" in a small
neighborhood of ¢. Combining with the dominated convergence theorem justifies step (i).

Proof of equation (3.5b): We have:
BV (fils,, @) = [ 500V (7l o)) dy
Vs [ )il (al)b(0)dy
R

D9 (r@E (b)) % = ).

In order to justify step (i), we first note that, according to Assumption 2.1, both of the
functions y — b(y) and y — V, log ﬁt\]:-kn (z|y) grow at most linearly in y, for fixed ¢t. By
the rapid decay of the tail of 7 shown in Lemma 1, and the decay of the tail of 7, |f'kn (z|y)
obtained by elementary results on the Gaussian density, we have a dominating function
of the form of C(1 + ||y|[2)e="¥I”. This justifies step (i) by the dominated convergence
theorem. Step (ii) simply follows from the Bayes rule.

Proof of equation(3.5¢): We similarly have:

E (Amﬁk" (x)) = /Rd A, (ﬁ't|jrk" (xly)) Ty (y)dy.

Note that Ap(z) = (Alogp+]|V log p||?)p for any density function p. Since log frt|¢kn (x|y)
is a quadratic function in the variable , its gradient is linear (it also grows at most linearly
with ||y||), and its Laplacian is constant. Therefore, we have a dominating function of
form C(1 + ||1/H2)e*”“y‘|2 for the integrand, which guarantees the interchange between
the integral and the Laplacian operator. This leads to E (Aﬁt\j_kn (:1:)) = A7y (z).
Combining these identities yields
or s 1. .
@ = =V (w@)bi(x)) + 3 A7, t€ k. (k+ Do

where by (z) = ]E< (Xhy) |Xt —m) for t € [kn, (k + 1)n].
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Discretization Error Analysis of Langevin Diffusions without Convexity 17

4. Controlling the KL divergence: Proof of
Proposition 1

We now turn to the proof of Proposition 1, which involves bounding the derivative
4 Dy, (7| ). We first compute the derivative using the Fokker-Planck equation es-
tablished in Lemma 1, and then upper bound it by a regularity estimate of the density
Tky and moment bounds on an. The key geometric intuition underlying our argument
is the following: if the drift b is second-order smooth and the initial distribution at each
step is also smooth, most of the Gaussian noise is cancelled out, and only higher-order
terms remain. This intuition is fleshed out in Section 4.1.

In the following lemma, we give an explicit upper bound on the KL divergence between
the one-time marginal distributions of the interpolated process and the original diffusion,
based on Fokker-Planck equations derived above.

Lemma 2. For any pair of densities m and 7 satisfying the Fokker-Planck equations (3.2)
and (3.3), respectively, we have

GDElm) <5 [ wle)l(e) - o) (4.1)

See Section B.1 of the supplementary material for the proof of this claim.

It is worth noting the key difference between our approach and the method of Dalalyan [15],
which is based on the Girsanov theorem. His analysis controls the KL divergence via the
quantity fOT E||b(Xk,) — b(X1)||3dt, a term which scales as O() even for the simple case
of the Ornstein-Uhlenbeck process. Observe that the Brownian motion contributes to an
O(n) oscillation in || X, — X;||3, dominating other lower-order terms. By contrast, we
control the KL divergence using the quantity fOT E||b;(X;) — b(X,)||3dt. Observe that b,
is exactly the backward conditional expectation of b(X &n) conditioned on the value of
X,;. Having the conditional expectation inside the norm (rather than outside) leads to
cancellation of the lower-order oscillations.

In the remainder of this section, we focus on bounding the integral on the right-hand
side of equation (4.1). Since the difference between Xj, and X; comes mostly from an
isotropic noise, we may expect it to mostly cancel out. In order to exploit this intuition,
we use the third-order smoothness condition (see Assumption 2.2) so as to perform the
Taylor expansion

by(z) — b(z) = E (b(X,m) —b(X)| X, = x) = Vb(2)E (X',m — X[ X, = :c) + 74(2),
(4.2)

Xtii>.
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18 W. Mou et al.

The reminder is relatively easy to control, since it contains a || Xy, — X;||3 factor, which
is already of order O(n). We summarize as follows:

Lemma 3. Under Assumptions 2.1 and 2.2, we have

Ellf(X0)IIf < 8(t — kn)*L3 (A3 + LIE| Xy 1) + 24(¢ — bom)* L3
for any t € [kn, (k+ 1)n).
See Section B.2 of the supplementary material for the proof of this claim.

It remains to control the first order term. From Assumption 2.1, the Jacobian norm
IVb(z)|l.p is at most Li; accordingly, we only need to control the norm of the vector

E an — Xt\f(t = x) It corresponds to the difference between the best prediction about

the past of the path and the current point, given the current information. Herein lies the
main technical challenge in the proof of Proposition 1, apart from the construction of
the Fokker-Planck equation for the interpolated process. Before entering the technical
details, let us first provide some geometric intuition for the argument.

4.1. Geometric intuition

Suppose that we were dealing with the conditional expectation of the continuous process
Xt, conditioned on X kn; in this case, the Gaussian noise would completely cancel out
(see equation (3.1)). However, we are indeed reasoning backward, and X, itself depends
on the the Gaussian noise |, ktn dB; added to this process. It is unclear whether the cancel-

lation occurs when computing E (X kn |Xt> —X,.In fact, it occurs only under particular

situations, which turn out to be typical for the discretized process.

Due to the dependence between Xt and Gaussian noise, we cannot expect cancellation
to occur in general. Figure 1(a) illustrates an extremal case, where the initial distribu-
tion at time k7 is an atomic mass. When we condition on the value at X, as well, the
process behaves like a Brownian bridge. Consequently, it makes no difference whether
the conditional expectation is inside or outside the norm: in either case, there is a term
of the form || X, — X¢||2, which scales as O(\/1).

On the other hand, as illustrated in Figure 1(b), if the initial distribution is uniform
over some region, the initial point is almost equally likely to be from anywhere around
Xt, up to the drift term, and most of the noise gets cancelled out. In general, if the initial
distribution is smooth, locally it looks almost uniform, and similar phenomena should
also hold true. Thus we expect E(an|f(t) — X, to be decomposed into terms coming
from the drift and terms coming from the smoothness of the initial distribution.

imsart-bj ver. 2014/10/16 file: output.tex date: March 12, 2021



Discretization Error Analysis of Langevin Diffusions without Convexity 19

o)

Time kn Time t

Time kn Time t

(a) (b)

Figure 1. Different cases of the backward conditional expectation E(Xy, | X;) for
t € [kn, (k+ 1)n). In order to generate the plots, we take the drift term b = 0, and
simulate the Brownian motion path within time period [kn,t] conditionally on the end
point X;. (a) In one extreme case, if Xp, is fixed, the difference |E(Xy,|X:) — X¢| is of
order O(/n) with high probability. (b) In another extreme case, if Xy, ~ A(0,1), which
is smooth enough, we can compute the backward conditional expectation in closed form,
which leads to |E(Xg, | X¢) — X¢| = O(n) with high probability.

4.2. Upper bound via integration by parts
With this intuition in hand, we now turn to the proof itself. In order to leverage the

smoothness of the initial distribution, we use integration by parts to move the derivatives
onto the density of Xy,. From Bayes’ formula, we have

B (X1, 0| i) = [ (-2 =¥ =)y [ (y-a) 2l icsiXunzigy,
(4.3)

Since the conditional density p(X; = | Xy, = y) is a Gaussian centered at y—(t—kn)b(y)
with fixed covariance, the gradient with respect to y is the density itself times a linear
factor  —y+ (t — kn)b(y), with an additional factor depending on the Jacobian of b. This
elementary fact motivates a decomposition whose goal is to express IE(X kn — XX, = x)
using the conditional expectation of Vlog7, and some other terms which are easy
to control. More precisely, in order to expose a gradient of the Gaussian density, we
decompose the difference y—x into three parts, namely y—z = a1 (x, y)—az(z, y)—as(z,y),
where

ar(z,y) == (I + (t = kn)Vb(y))(y — = + (t — kn)b(y)),
az(z,y) := (t — kn)Vb(y)(y — = + (t — kn)b(y)), and
az(z,y) :== (t — kn)b(y).
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20 W. Mou et al.

We define the conditional expectations I;(x) := E(ai(an7Xt)|Xt = x) fori=1,2,3
and control the three terms separately.

Let us denote by ¢ the d-dimensional standard Gaussian density. The first term Iy
can directly be expressed in terms of the gradient of :

R@) = [+ (= kDo) = = + (= bbiu)e (

_ x—y—(t—knb(y)\ Fry(y)
‘“_k”)/v‘”“"( = Fn > o)

T —y—(t=knby)\ Try(y)
t—kn ) e () d

where we used the chain rule and Vi (y) = —ye(y). Thus, applying integration by parts,
we write I; in a revised form.

Lemma 4. Forallt € [kn, (k+1)n], we have I (x) = —(t—kn)E (V log ﬁkn(an)’Xt = x),

and consequently,
E|L(X0)l3 < (¢ - kn)2/ﬁkn(x)l\VIOgﬁkn(x)Hid%
See Section 4.3 for the proof of this lemma.

It is clear from Lemma 4 that a regularity estimates on the moments of V log 7, (X' kn)
gives an O(n?) estimates on the squared integral. Such a bound with reasonable dimen-
sion dependence is nontrivial to obtain, and we postpone this argument to Section 5.

On the other hand, the remaining two terms are relatively easy to control, as summa-
rized in the following:

Lemma 5. Under Assumption 2.1, the following bounds hold for all t € [kn, (k+1)n]:
E|L(X)3 < 3(t — kn)°L3d,  and (4.4a)

A A 2 -
Ellfs(X0)I13 < (¢t = kn)°E [0(%un) | < 26 = kn) (A3 + LB K. (4.4D)
See Section 4.4 for the proof of this lemma.

Combining the Taylor expansion (4.2) with the bounds from Lemma 4 and 5 yields
the bound claimed in Proposition 1.

4.3. Proof of Lemma 4

In this section, we prove Lemma 4; it controls the dominant term I; in the decomposi-
tion (4.3) of E (an—Xt‘thx). Recall the definition

_ z—y—(t—knby)\ 7y
Ii(x) = (t - kn)/vy‘:@ < g ) () dy,
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where ¢ is the d-dimensional standard Gaussian density. We first note the tail of the
Gaussian density is trivial, and the tail of 7y, is controlled by the results in Section E
of the supplementary material. Therefore, we may apply integration by parts so as to
obtain

h@%ﬁ/ﬂ+@*kmvﬂwﬂy*$+U*kmeX%ﬁ*ka

1 2 ﬁ-kn(y)
e (=gl = v = - ol ) 2y

= /(t — kn)Vy exp (_Q(t—lkn)”x —y—(t— kn)b(y)llg) 7:177((5)) dy

B 1 VT (y)
~ (=) [exp (=gt le = v = = b3 Ty

—(t— kn)/vy log iy (y)p(Xe = [ Xy = y)lm((:cy))dy

4
2

— (t = k) (V108 g (X)X = )
Applying the Cauchy-Schwartz inequality yields

Ell1(X0)l13 =(¢ — kn)E [E (¥ 1og (K

I,

<(t ~ k) B| log iy (X[} = (¢ = k) [ | b 7 3

which concludes the proof.

4.4. Proof of Lemma 5

In this section, we prove Lemma 5; it provides bounds on the remaining two terms I
and I3 of the decomposition (4.3) of E (an—Xt|Xt:x). We split our proof into two

parts, corresponding to the two bounds.

Proof of the bound (4.4a): We directly bound the Jacobian matrix using Assump-
tion 2.1. In particular, we have

= —y — (t = kn)b(y)|13

Trn(y)

'f_kk H /w z+(tkﬂ)b(y))@ﬂ(tkn))ge"p( 20t — )

<L [+ (- kb A% = )Xy = )iy

= LaE (|| Ky + (¢ = kn)b(Kiy) = Killa| £ = )

LiE ) / B ]|% = 2).
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Plugging into the squared integral yields

2

t t
E|L(X)|2 < (t — kn)’L2E (E(n [ i X)) < (6~ kn? BRI [ BB < 8t~ knLd
kn kn

Proof of the bound (4.4b): The size of norm of I3 is determined largely by b(X4,),
which can be controlled using Assumption 2.1:

E|I3(X0)l13 = (t — kn) EIE®(Xiy) | Xo) |13 < (8 = kn) E[b(Xin)lI3 < 2(t — kn)® (A5 + LIE| Xy |[3)-

5. Bounds on the Fisher information and moments

In the previous section, we established upper bounds on the time derivative of the KL
divergence between the Langevin diffusion and its Euler discretization; these bounds
involve the Fisher information of 7, and the moments of X kn- In order to show that the
above estimate is O(n?), we now derive upper bounds on the Fisher information and the
moments that are independent of the step size.

Bounding the discretization error essentially relies on a bound on the Fisher informa-
tion Z(#x,), and control of the higher order moments of the process { Xy, }3%,. In this
section, we provide non-asymptotic bounds for both quantities. The regularity estimate
is based on a discrete-time argument via Stam’s convolution inequality [49]. This proof
technique yields bounds with polynomial dependence on the dimension, in sharp contrast
to results from classical PDE regularity theory that exhibit exponential dependence. The
moment estimate comes from a standard martingale argument, but with explicit depen-
dence on all the parameters.

5.1. Bounding the Fisher information: Proof of Proposition 2

We now turn to the proof of Proposition 2, which gives control of the Fisher information
term that appears in the bound from Proposition 1. Our proof is based on Stam’s con-
volution inequality for Fisher information [49]. This inequality guarantees that for any
pair of suitably regular probability density functions p,q on R%, the Fisher information
satisifes the inequality

1 S 1 n 1
I(p*q) ~ Z(p) Z(q)’
where p * ¢ denotes the convolution of p and g. The discrete-time update (1.2) can be
seen as a combination of applying the deterministic mapping ¢, () := x + nb(x) with
a convolution step with Gaussian kernel. We exploit the inequality (5.1) so as to bound
the Fisher information Z(7(x41)y) in terms of Z(7x,). In order to do so, we bound the
Fisher information for the intermediate density after the first step.

(5.1)
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Lemma 6. For some stepsize n € (0, i), let pi(-) be the density of the random

variable Zy, = ¢y, (an) obtained by applying the deterministic mapping ¢,. Then under
Assumption 2.1, we have the bound

. . L2d?
[N 10gpie) 3z < (1+4nL) [ g @) Voo ) s + 16725

See Section C.1 of the supplementary material for the proof of this lemma.

Let ¢, denote the d-dimensional Gaussian distribution N'(0,714). Clearly we have the

identity Z(g,) = %. By the update rule (1.2), we have that 7441y, = pr * ¢, for the

density pj, defined in Lemma 6. Invoking the convolution inequality (5.1), for n < <

8Ly
we have the bound
1 R SR 1 o 52)
(T kyryn) — Z(pk)  Z(qy) = (L+4nLy)I(7ky) + 160L5d% /Ly~ d ’
Applying equation (5.1) to the initial distribution yields the bound Z(#,,) < %.
Now we solve the recursion (5.2). First, we note that if Z(7,) > 16%(12, then the
1
recursion becomes
. 1 > 1 . + n > % + n
L(R(kr1yy) — A +5nLy)L(7ky)  d — I(Fky)  d
If Z(ftgy) < wiﬁ, it can be easily seen from equation (5.2) that Z(7(441),) < 32§§d2.
1 1

Consequently, equation (5.2) implies that

1 . ( Li 1-5nLi n)
————— > min , _ 2.
Z(R (kt1)n) 32L3d*" I(fyy) d

The solution to the recursion of the form above is given by the following lemma:

Lemma 7. Given positive constants A1, Ay > 0 and v € (0,1), if a non-negative se-
quence (uk)r>o0 satisfies ug > 0 and

U1 > min (Mg, (1 —y)ur +vA2), fork=0,1,2,--- (5.3a)

Then we have the following two bounds for all k > 0:

(avk AL A ) A A
ukzmm( ZZ ,;,;), and wug > min (uo,;,22>. (5.3b)

See Section C.2 of the supplementary material for the proof.
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2
Applying Lemma 7 with u := I(#n)’ AL = 322%7 Ao :=5L1d and v := 5nlL,, we
have the bound
4d
I(#ky) < max (nk A Z(m), 64L3d% /L3, 10L1d) , fork=1,2,... (5.4)
Summing over kK =1,2,..., N, we arrive at the bound
1 & dlog N L2d?
— (7)) < z —=—+ I1d

which proves the desired result.

5.2. Moment estimates under dissipativity conditions

In this section, we bound the moments of the process X, kn along the path of the discretized
Langevin diffusion. In particular, leveraging Assumption 2.3 yields the following;:

Lemma 8. Suppose that Assumption 2.8 holds for the drift term b(-). Then there is a
universal constant C > 0 such that the interpolated process (3.1) satisfies

o i\ P . / +d
sup (E”XtHIQ)) <C (IE||X0||12]) +C prpo+d for allp > 1. (5.5)
>0 W

In particular, when the initialization condition (2.4) is also satisfied, we have the bound
1

sup (Eufgug) f< ClogVd+ /B4

>0 w

The proof of this lemma is based on martingale LP estimates and the Burkholder-Davis-
Gundy inequality [10]. See Section C.3 of the supplementary material for the details. It
is worth noting the bounds in this lemma depend polynomially on the parameters (u, 5)
in Assumption 2.3.

Without Assumption 2.3 and control on the directions of the drift at a far distance,
the moment of the iterates can exponentially blow up. A simple counterexample is given
by the potential function U(x) = —||z||3 and associated drift term b(x) = z. With these
choices, it can be seen that || X;[2 > e”. On the other hand, it is possible to significantly
weaken Assumption 2.3 when the potential function is non-negative, as we discuss in the
following section.

5.3. Moment estimates without dissipativity conditions

Note that Lemma 8 requires the distant dissipativity condition from Assumption 2.3.
When the underlying potential function is non-negative, this condition can be relaxed,
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albeit with a slightly worse dependence on the time horizon T'. In this section, we assume
b= —Vf for some function f that is non-negative over R?, which we refer to as the case
of a non-negative potential. In this special case, we have the following auxiliary results:

Lemma 9. If Assumptions 2.1 and 2.4 hold for a non-negative potential, then there is
a universal constant C > 0 such that any stepsize n € (0, i), we have

N 4 N
sup (E HX;W,H > < O+ (Bf(Ro) + L3T208d? + L3T' ) .
0<k<T/n 2

See Section C.4 of the supplementary material for the proof of this claim.
We also need the following bounds on the moments of the gradient V f:

Lemma 10. If Assumptions 2.1 and 2.4 hold for a non-negative potential, then there

is a universal constant C > 0 such that for any stepsize n € (0, i), we have

/n 9
E nZHVf(X,m)HQ <9Ef(Xo) + L1 Td, and
=0

2

/n 9
E nZHVf(an)HQ <12Ef(Xo)? + 24Ef(Xo) + 12T Lyd + 9L2T2d2.
k=0

See Section C.5 of the supplementary material for the proof of this claim.

We caution that the two lemmas have inter-dependence: the proof of Lemma 9 relies
on Lemma 10. The main idea in the proof of the two lemmas is straightforward: when
the gradient Vf has large norm, the dynamics of the Langevin algorithm force down
the value of f. Since f is non-negative, the average mean-squared norm can be bounded
using the initial value of f. The combinatorial techniques used in the proof of Lemma 10
are only able to control moments up to order four, which is all that is needed in the
proof of Theorem 2. The on-average gradient norm bound in turn makes it possible to
establish bounds on the iterates themselves, by invoking Gronwall’s inequality.

Substituting the fourth moment bound from Lemma 9 into Proposition 1 yields the
claim of Theorem 2.

6. Discussion
We have presented an improved non-asymptotic analysis of the Euler-Maruyama dis-

cretization of the Langevin diffusion. We have shown that as long as the drift term satis-
fies a second-order smoothness condition, then the KL divergence between the Langevin
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diffusion and its discretization is bounded as O(n?d*T). Importantly, this analysis yields
a tight O(n) rate for the error in the Euler-Maruyama scheme, measured under ei-
ther Wasserstein or TV distances, without assuming global contractivity. This allows
continuous-time results to be directly translated into discrete time results with tight
rates. Thus, it serves as a convenient tool for the future study of Langevin algorithms
for sampling, optimization, and statistical inference.

We should emphasize that our results apply only to the Langevin diffusion. Consider-
ing the discretization of more general diffusions, either with location-varying covariance
or second-order structure, such as the underdamped Langevin dynamics [14], is a promis-
ing direction for further research. Finally, we note that a class of high-order discretization
schemes exist for SDE, including the Talay-Tubaro expansion [51], and the Ozaki dis-
cretization using Hessian information [15]. For the discrete-time process defined by those
schemes, the backward conditional expectation in our analysis admits a higher-order ex-
pansion. It is also an interesting direction of research to extend our analysis and obtain
improved bounds for high-order schemes in the non-convex setting.
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Supplementary material to “Improved Bounds for Discretization of Langevin
Diffusions: Near-Optimal Rates without Convexity”

(doi: COMPLETED BY THE TYPESETTER; .pdf). The supplementary material con-
sists of the following sections: some additional discussion on the tail assumptions used
in literature; proofs of the technical results (Lemma 2 and 3) in Section 4; proofs of
the technical results (Lemma 6, 7, 8, 9, and 10) in Section 5; proofs of the mixing time
results (Theorem 3, Corollary 2 and Corollary 1); and coarse tail bounds that facilitate
the integration-by-parts arguments used throughout the paper.
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