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1. INTRODUCTION

The study of minimal surfaces spanning elastic boundaries dates back to Courant [13] and
Lewy [33]. They studied the Plateau problem under the assumption that the boundary of
the minimal surface is not fixed, but is constrained to lie on a prescribed manifold. The
generalization to minimal surfaces spanning non-constrained elastic boundaries has been re-
cently addressed by Giomi & Mahadevan [26]. These results have been complemented with
an investigation of the stability of flat circular solutions by Chen & Fried [11], Biria & Fried
[9, 10], Giusteri, Franceschini & Fried [27], and Hoang & Fried [32]. A similar problem has
been treated by Bernatzky & Ye [6] employing the theory of currents, however the elastic
energy used therein fails to satisfy the physical requirement of invariance under superposed
rigid transformations.

The Kirchhoff-Plateau problem differs from the aforementioned works, because the span-
ning boundary is assumed to lay on the surface of an elastic loop, referred to as the rod,
which is modeled as a deformable manifold. On the contrary, in all of the studies above
the boundary of the spanning surface was assumed to coincide with the loop midline. In
the Kirchhoff-Plateau problem the filament forming the loop is assumed to be thin enough
to be modeled faithfully by a Kirchhoff rod, that is an unshearable inextensible rod which
can sustain bending of its midline and twisting of its cross-sections, see Antman’s work [5].
To model the flexible rods, some physical constraints are imposed, such as local and global
non-interpenetration of matter introduced by Schuricht [34]. The isotropic Kirchhoff-Plateau
problem, that is minimizing the area functional, has been investigated by Giusteri, Lussardi
& Fried [28] with only one filament, and by Bevilacqua, Lussardi & Marzocchi [7] taking
into account a system of linked rods. The authors utilize the boundary condition via linking

number introduced by Harrison [30] and further investigated by De Lellis, Ghiraldin & Maggi
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[15]. Moreover, a dimensional reduction of the aforementioned variational problem has been
treated by Bevilacqua, Lussardi & Marzocchi [8].

In view of the works of Almgren [3, 4], Taylor [36] and Allard [1, 2], a natural question
is whether the isotropic results [7, 8] generalize to anisotropic surface energies. Indeed, an
increasing interest has been recently devoted to the study of the anisotropic Plateau problem:
see for instance the results by De Philippis, De Rosa & Ghiraldin [16, 17, 18], De Rosa [20],
De Rosa & Kolasinski [23] and Harrison & Pugh [31]. We also refer the reader to [21, 22, 24].

The aim of this paper is to address this question, considering the anisotropic Kirchhoff-
Plateau problem for systems of linked rods. The energy functional we minimize is given by
the sum of the elastic and the potential energy for the link and the anisotropic surface energy
of the film. As for the isotropic Kirchhoff-Plateau problem we prescribe the linking type of
the system of rods as well as the non-interpenetration of matter for each rod. Furthermore,
each midline has a prescribed knot-type.

To conclude, we perform a dimensional reduction in the spirit of the analysis carried out

in the isotropic setting.

2. NOTATION AND PRELIMINARIES

In this section we recall notation for the geometry of curves. If z1,xz: [0, L] — R? are two

continuous and closed curves, their linking number is the integer value

Lol z(s) —x
Link(z1, x2) := 417r/0 /0 |3311((8))_ x22((tt))|3 -2 (8) x Th(t) dsdt.

We say that @, and x2 are isotopic, and we use the notation x; ~ xo, if there exists an open

neighborhood Nj of #1([0, L]), an open neighborhood N3 of 2([0, L]) and a continuous map
®: Ny x [0,1] — R3 such that ®(Ny,7) is homeomorphic to N; for all 7 in [0, 1] and

O(-,0) = Identity, ®(Ni,1) =Ny, &(21(]0,L]),1) = z([0, L]).

Following Gonzalez et al.[29], we define the minimal global radius of curvature of a closed
curve € WHP((0, L);R?), with p > 1, by
Alx) = s#a#igge[o,L) R(x(s),z(0),z(T))
where R(z,y, z) denotes the radius of the unique circle containing = # y # z # x, with the
convention R(x,y,z) = +oo if x,y, z are collinear. The global radius of curvature determines
the self-intersections of the tubular neighborhoods of a curve. More precisely, for every r > 0
we define the r-tubular neighborhood of by
Ur(@) = | Br(=m(s)).
s€[0,L]

Accordingly to Ciarlet et al. [12] we say that U, (x) is not self-intersecting if for any p € 0U,(x)
there exists a unique s € [0, L] such that ||[p—x(s)| = 7. It turns out (see Gonzalez et al. [29])
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that A(z) > r if and only if U,(x) is not self-intersecting. In particular, if A(x) > 0 then x
is simple, that is z: [0, L) — R3 is injective.

3. THE ANISOTROPIC PLATEAU PROBLEM

First we recall that a set S C R? is said to be 2-rectifiable if it can be covered, up to
an H2-negligible set, by countably many 2-dimensional submanifolds of class C*, see [35,
Chapter 3]. Given a 2-rectifiable set S, we denote by T,.S the approximate tangent space of
S C R3 at x, which exists for H2-almost every point = € S [35, Chapter 3]. We also denote
by G the Grassmannian of unoriented 2-dimensional planes in R3. The anisotropic integrands

considered in the rest of the note will be continuous maps
F:R¥x G >3 (z,7)— Fz,m) € (0,400),
verifying the lower and upper bounds
0 <A< F(z,m) <A, Y(z,7) € R® x G. (3.1)

We also require that F'is elliptic [25, 5.1.2-5.1.5], namely its even and positively 1-homogeneous
extension to R3 x (Ag(R3)\ {0}) is C? and it is convex in the 7 variable. Given a 2-rectifiable
set S C R? we define:

F(S) := / F(x,T,S) dH?(z). (3.2)

S
Next, we need to define the spanning condition. For any closed set H C R3, let C(H) be the
class of all smooth embeddings v: S! — R3\ H. We say that C C C(H) is closed by homotopy

if for every v € C then 7 € C for any 7 € [y] € m(R3\ H). We denote by P(H,C) the family
of all 2-rectifiable relatively closed sets S C R?\ H such that

SnySH #£0, vyec.
We recall the following result, see [21, Theorem 2.7]:
Theorem 3.1. The problem
min{F(S5): S € P(H,C)}
has a solution S € P(H,C) and the set S is an (F,0,00)-minimal set in R3\ H in the sense
of Almgren [4].

4. THE ANISOTROPIC KIRCHHOFF-PLATEAU PROBLEM
4.1. The system of linked rods. Let N € N\ {0} and p € (1,400). Foreveryi=1,...,N,
let L' > 0 and @, ), d) € R3 be such ¢}y | df and |t}| = |d}| = 1. Moreover let k%, kb, w' €
LP(0, L?) such that
wi = (K], kY, w') € LP((0, LY); R?),
w' = (wi, zd, th,d}) € LP((0,LY);R?) x R3 x R? x R3,
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N
w = (wi,w?,...,w™) € LP((0, L');R?) x JJ((LP((0,L7); R?) x R? x R® x R?) =: V.
=2

We endow V' with the natural LP-norm, that we denote by || - ||yy. For any i = 1,..., N and
for any w € V, we denote by z'[w] € W2P((0, L?); R?) and #[w], d'[w] € W'P((0, L}); R?) the
unique solutions (as proved in [29, Lemma 6]) of the Cauchy problem

z'[w]'(s) = t'[w](s)

t'[w]'(s) = ki(s)d'[w](s) + rh(s)t'[w] (s) x d'[w](s)

d'[w]'(s) = W' (s)t'[w](s) x d'[w](s) — K} (s)t'[w](s)

a'[w](0) =

t'[w)(0) = t;

d'[w](0) = dy,.

It is easy to see that #'[w](s) L d'[w](s) and |[t'[w](s)| = |d'[w](s)| = 1 and consequently that
(¢ [w)(s), d'[w](s), t'[w] (s) x d'[w](s))

is an orthonormal frame in R?, for any s € [0, L] and for any i = 1,..., N. Let n, > 0 and

consider A’(s) C R? be compact and simply connected such that
B,(0) c A'(s) c B,(0), Vse[0,LY,i=1,...,N.
For any i = 1,..., N we define
Q= {(5,C1,2) €R% 15 € [0, 7], (C1,G2) € A'(5)},

A'[w] = {2'[w](s) + Gd'[w](s) + Gt'[w](s) x d'[w](s) = (5,¢1,¢) € X}, (4.1)

and
N -
Afw] = | A'[w].
=1

The system of closed rods is subjected to some constraints on w, enumerated below, which
will identify the admissible subset W C V': First of all we assume that the midlines are closed

and sufficiently smooth, that is
(C1) z'[w](L) = '[w](0) = x}, for any i = 1,..., N
and
(C2) ti[w](L)) = t[w](0) = ¢, for any i = 1,..., N.
To prescribe how many times the ends of the rods are twisted before being glued together,

we prescribe the linking number between the midline and a closed curve close to the midline.
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More precisely, for any i = 1,..., N we close up the curve *[w] + 7d'[w], for 7 > 0 fixed and

small enough, defining as in Schuricht [34]
z'[w](s) + 7d'[w](s) if s € [0, LY]

' [w](s) == (4.2)

' [w](L') + 7(cos(¢'(s — LY))d' [w] (L")
+sin(p'(s — L))t [w](L") x d'[w](L")) if se[L" L'+ 1]
where ¢’ € [0,27) is the unique angle between df, and d’[w](L?) such that ¢ — 7 has the same
sign as dg x d'[w|(L") - t;. We trivially identify «*[w] with its extension x'[w](s) = x*(L") for
any s € [L", L' + 1] and therefore we require that for any ¢ = 1,..., N there is some " € Z
such that

(C3) Link(x'[w], &', [w]) = I'.
To encode the knot type of the midlines, for any ¢ = 1,..., N we fix a continuous mapping
£ [0, L'] — R3 such that £'(L?) = £/(0) and we require that

(C4) z*[w] ~ £
Finally, in order to prevent the interpenetration of matter, following Ciarlet et al.[12] we

require that

(C5)
. . . N .
/‘(1 — Ciky(s) + Coki (s)) dsdCrdGe < [N'[w]] Vi=1,...,N, and (7)int(A’fw]) = 0.
o i=1

We now require that our system of rods has a prescribed chain structure. We fix L¥ € ZN*N |

with the property that |Li(”l)\ =1foreveryi=1,...,N — 1 and we assume that:
(C6) Link(x‘[w], 2’ [w]) = LY.
We finally denote by W the set of all constraints, namely
W :={w €V : (C1)~(C6) hold true}.
It turns out that W is weakly closed in V' (see Gonzalez et al. [29] and Schuricht [34]).

4.2. Energy contributions and existence of a minimizer. In what follows we will pre-

scribe an elastic energy of the system of rods, which is a proper function
E: W = RU{+o0}, satisfying  E°(w) > ¢|w]|v, (4.3)

for some ¢ > 0. The second energy contribution we want to take into account is the weight of
the rods. Let p' € L°°(02!) with p > 0 be the mass density functions and g be the gravitational
acceleration. Let us define E&: W — R U {+o0} as

N
Ef(w) =" /Q (5, G (@ w)(s) + G [w)(s) + Gwl(s) x d'fu](5)) dsdCrdGe
=0
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The last contribution we want to take into account is the surface energy. Let C,, C C(A[w])
be the class of all v € C(A[w]) such that there exists i = 1,..., N with

|Link(y, z'[w])| =1, Link(y, 2’/ [w]) = 0, Vj # i.
C, is closed by homotopy, see [30]. We define E5': W — RU {400} as
ES(w) := inf {F(S) : S € P(Alw],Cy)}.
We define the energy functional of our variational problem as
E(w) := E%w) + E&(w) + B (w), we W, (4.4)

The first main result of the paper is given by the following existence theorem.

Theorem 4.1. Let E! be the lower semicontinuous envelope of E®' with respect to the weak

topology of V. Assume that infyy E < +00. Then the problem

min El(w) + E&(w) 4+ E5 (w)
weWw

has a solution wg € W and there exists Soo € P(Alwo),Cuw,) which is an (F,0,c0)-minimal
set in R3\ Alwo] in the sense of Almgren such that

ENwo) + E%(wp) + F(Sa) = %%ﬁ(w) + E%(w) + B (w) = inf E(w).

4.3. Proof of Theorem 4.1. First of all we prove that the weight and the soap film energy

are weakly continuous.
Lemma 4.2. The functional E® is weakly continuous on W.

Proof. Let (wy,) be a sequence in W with wj, — w in W for some w € W. Then z![wy,] — x*[w]
in W2P and t'[wy] — t'[w], d'[wp] — d'[w] in WHP. Then by Sobolev embedding we deduce
that '[wy,] — x'[w] in CH* and t[wy] — t'[w], d'[wp] — d'[w] in CO* for some a € (0,1).
This is enough to pass to the limit under the integral and get the claim. O

The continuity of the soap film energy follows from the next theorem.
Theorem 4.3. Let (wy) be a sequence in W with wp, — w in W for some w € W. Assume
that

(a) Sy, € P(Alwy),Cu,), for every h € N;
(b) suppen F(Sh) = suppen inf{F(S) : S € P(Awp],Cy, )} < +00.
Let pup, := FH?LS),. Then the following three statements hold true:

pun =" o (up to subsequences), (4.5)
p> FH2L So, where Soo = (sptp) \ Alw] is 2-rectifiable; (4.6)
Seo € P(Aw],Cy). (4.7)
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Proof. We first observe that the classes P(Afwp], Cy, ) and P(Aw],C,,) are good classes in the
sense of De Lellis et al. [21, Def. 2.2], as proved in [21, Thm.2.7(a)]. Then the proof of (4.5)
and (4.6) follows verbatim the proof of Theorem 2.5 of [21]. It is sufficient to observe that the
convergence of {A[wy]} ensures that, whenever x € S, we have d(z, A[wy]) > 0 for h large
enough. We are left to prove (4.7), namely that S, N y(S') # 0 for any v € Cy. Assume by
contradiction that there exists v € Cy, with Ss Ny(S') = (. Since v is compact and contained
in R?\ A[w] and S, is relatively closed in R? \ A[w], there exists a positive £ such that the
tubular neighborhood Us.(7) does not intersect Sy and is contained in R?\ A[w]. Hence
(U (7)) = 0, and consequently

lim H2(S, NU(v)) = 0. (4.8)

h—o00

Denote by B. the open disk of R? with radius € and centered at the origin of R?, and consider
a diffeomorphism ®: S! x B. — U.(y) such that (I)\slx{o} = ~. Let y belong to B. and

set vy 1= Q| Then 7, in [y] represents an element of 71 (R3 \ A[w]). Since w, — w

in W then (w’x[{zj)}h]) converges to z‘[w] strongly in WP((0, L); R?) for every i = 1,..., N.
In particular, (z‘[wy]) converges to z’[w] uniformly on [0, L] for every i = 1,..., N, which
implies the existence of § > 0 such that, for h sufficiently large, A[wy] is contained in Us(A[w])
with Us(A[w]) N U:(7y) = 0. Hence, for such h and ¢ it follows that, for any y € Be, v,(S!) C
R3\ Us(A[w]). This implies that ||&*[wp] —7y|lec > § for any y € B. and for every i = 1,..., N.

This estimate, together with the WP convergence of z'[wy] to z![w], implies that

lim Link(z'[wp],v,) = Link(z'[w], y,), Vy € Be,Vi=1,...,N.

h—+o00

As a consequence, for h large enough, v, € Cy, which, combined with Sy € P(Alwy],Cuwy,),
yields S, N7, (S') # 0. Take now 7 : S! x B. — B. as the projection on the second factor
and let 7t := 7 o ®~1. Then, 7 is Lipschitz-continuous and B. is contained in #(Sj, N U:(7)),
which entails that

me? = H*(B.) < H(7(Sh NU:(y)) < (Lip#)*H*(Sh N Ue(7)) -

We thus conclude that
e
(Lip 7r)?

which contradicts (4.8). O

H2(Sn N Us(7)) >

Proof of Theorem 4.1. Thanks to the weak continuity of F% and E®, proved in Lemma
4.2 and Theorem 4.3, we deduce that E°!(w) + E%(w) + E (w) is the lower semicontinuous

envelope of E, from which we get

inf EYw) + E8(w) + B (w) = inf E(w).
we
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Let {wy,} be a minimizing sequence for E° + E8 + E. Since infyy E < 400 we can say that
E(wp) < ¢ for some ¢ > 0. In particular, Eel(wh) < ¢ and, by coercivity of E°, we have

wp, — wo in W. We deduce, using again Lemma 4.2 and Theorem 4.3, that

E(wy) 4+ E8(wp) + E* (wg) < lim inf B (wy,) + E¥(wn) + B (wy,)
< liminf E(wy) = inf E = inf B! + E& + B
h W W
Moreover, since E5f(wg) < 400, applying Theorem 2.7 of [21] we deduce the claim. O

5. DIMENSIONAL REDUCTION OF THE ANISOTROPIC KIRCHHOFF-PLATEAU PROBLEM

The second main result of the paper concerns the dimensional reduction. In this section
we consider cross sections with vanishing diameter. The set of constraints is almost the same,
but in order to prevent the non-selfintersection in the limit configurations (otherwise the
knot-type is not well defined) we replace the constraint (C5) by (C5)’. Precisely, we require
that:

(C5) A(x'[w]) > Ay for some prescribed Ag > 0.
We denote by W’ the set of all constraints, namely
W’ = {w € LP([0, L};R?) : (C1)-(C2)-(C3)-(C4)-(C5)~(C6) hold true}.

It turns out that W’ is weakly closed in V' (see again Gonzalez et al. [29] and Schuricht [34]).

For every i = 1,..., N, every € > 0 small enough and every w € W’ we let
Abfw] = {2 [w](s) + Gd'[w](s) + Gt [w](s) x d'[w](s) : (5,1, C2) € QL (5.1)
where
0L = {(5,¢1,G2) € R*: 5 € [0, L7, (C1,¢2) € eA(9)}-
We also let

N .
Ac[w] == ] Alfw].
i=1

The main goal of this section is to prove that as € approaches 0, we recover by I'-convergence
the anisotropic Plateau problem with elastic one dimensional boundary. The first two energy

contributions to take into account are the elastic energy E® as in (4.3) and the scaled weight

N
BHw) = 5 Y [ 56,0 Glg - @) + Galul(s) + e ul(s) x dul(s) dsdcidc
=1 €

where p' € L>(QY) and p* > 0. Concerning the soap film energy, similarly to the previous
section, we define C.,, C C(A;[w]) as the class of all v € C(A:[w]) such that there exists
i=1,...,N with

[Link(y,2/[w])| = 1, Link(y,@'[w]) =0 Vj #1i.
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We define ESf: W — RU {+o00} as
Eff(w) := inf {F(S) : S € P(A[w],Cew) }-
Finally, E.: W — R U {+oo} is given by
E.(w) = E%(w) + E&(w) + E (w).
We now describe the I-limit functional. For any i = 1,..., N, let p{: [0, L] — R be given by

¢ = li g &1,
Po(s) e o) (5,&1,&2)

and let

Eo(w) +Z/ | A (3)|p5(s)g - ' [w](s) ds + inf{F(S) : S € P(Hy,Cw)},

where

1=

Hy = «'[w](0, L),
i=1

and C,, is the class of all v € C(H,,) such that there exists i = 1,..., N with
[Link(y, @'[w])| = 1, Link(y,@9[w]) =0 Vj #4.
We are ready to state our second main result.

Theorem 5.1. Let (¢) be a positive and infinitesimal sequence and let (wy) be a sequence
in W' with supyey Ee, (wp) < ¢ for some ¢ > 0. Then, up to a subsequence, wp, — w in V
and w € W'. Moreover, the family {E:}.~o T'-converges to Ey as € — 07 with respect to the
weak topology of V', namely:

(a) for any sequence () with €, — 0, for any w € W' and for any sequence (wy) in W’

with wp, — w in V we have

Ey(w )<l}1§_~1_nfE (wp); (5.2)

(b) for any w € W' there is a sequence (ep) with 5, — 0 and a sequence (wy) in W' with

wp, — w in V' such that

Eo(w) > limsup E;, (wp,). (5.3)

h—+o0

As a standard consequence of Theorem 5.1 we have the next result.

Corollary 5.2. Let (ep,) be a positive and infinitesimal sequence. For any h € N and for any
on — 0 let wy, € W' be such that

Egh (’LUh) < IVIII/f Esh + op. (54)
Then up to a subsequence wyp, — wg tn V and

E()(’LU()) = min EQ.
W/
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5.1. Proof of Theorem 5.1. Here we give some preliminary propositions and then prove

Theorem 5.1. Fix a positive and infinitesimal sequence (gp,).

Proposition 5.3. Let (wy) be a sequence in W' with sup,cy Ee, (wp) < ¢ for some ¢ > 0.

Then, up to a subsequence, wy, — w in'V and w € W'.

Proof. The conclusion follows from the coercivity of E°. O

The study of the weight term is easy, since the weak convergence wy — w implies the

uniform convergence of the midlines.

Proposition 5.4. For any w € W' and for any sequence (wy) in W' with w, — w in 'V we
have

lim B () =S / A(5)] b (5)g - @[] (s) ds. (5.5)
i=1"0

h—+o00

Proof. By the change of variables (; = ¢,n;, j = 1,2, we obtain that for any i = 1,... N,
1 , . . . .
= 2/ p'(s,C1,C2)g - (' [wn](s) + Qrd'[wn](s) + Gt [wa](s) x d'[wh](s)) dsdidC
Q

e Jai,
= / P (s.enm, ent2)g - (' [wn](s) + enmd [wp](s) + enmat'[wn](s) x d'wp)(s)) dsdnmidipe.
i
Passing to the limit as h — +oco, using the fact that z‘[wy,] — 2‘[w] uniformly on [0, L] for

any ¢ = 1,..., N and applying the Dominated Convergence Theorem we conclude. O

Now we pass to the limit in the soap film part of the energy. First of all we need the

following Theorem whose proof requires minor modifications of the proof of Theorem 4.3.

Theorem 5.5. Let (wy) be a sequence in W' with wyp, — w in W' for some w € W'. Assume
that

(a) Yh e N, S, € P(Ag, [wn],Cepp )
(b) suppen F(Sh) = suppen inf{F(S) : S € P(Ag, [wn],Cepwy,)} < +00.
Let py, :== FH?L_Sy,. Then the following three statements hold true:

pup = 1 (up to subsequences), (5.6)
p > FH2L So, where Soo = (sptp) \ Hy, is 2-rectifiable, (5.7)
Soo € P(Hy, Cy). (5.8)

Now we prove the existence of a recovery sequence.
Proposition 5.6. Consider w € W' and (wy) C W' such that wy, — w in W'. There exists
(wg, ) subsequence of (wy) such that

inf{F(S):S e P(H,,Cy)} > limsupngL(wkh). (5.9)

h—+o0
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Proof. Since wy — w in W/, x'[wy,] — x‘[w] uniformly on [0, L] for any i = 1,..., N. Then
for every h € N there exists kp € N such that

i [w, ] — 2 [w]]ls < %h Vi=1,...,N. (5.10)
Since we can assume without loss of generality that

inf{F(S): S € P(Hy,Cuw)} < 400,
again applying Theorem 2.7 of [21], we find Sy € P(H,,Cy) such that
F(Sex) =min{F(S): S € P(Hy,Cy)}.
Now we set
Sh = S0 \ Ag, Wi, ]

For any v € C(Ag, [wg,]) not homotopic to a point in R? \ A, [wy, ] we have

(SOO \ AEh [wkh]) N ’V(Sl) # 0.

€h

As a consequence,
lim sup E;fl(w) <limsupF(Sy) < F(Sw) = min{F(S) : S € P(Hy,Cu)},
h——4-o00 h—+00

which concludes the proof. O

Proof of Theorem 5.1. The compactness statement is Proposition 5.3. Inequality (5.2) follows
combining (5.5) and (5.7) with the subadditivity of the liminf operator. Next, for any w €
W', we consider the constant sequence wy, = w. Applying Proposition 5.6, for every g, —
0, the (unique) subsequence w;, = w of (wp) satisfies obviously w;, — w in V and (5.9).
Inequality (5.3) follows easily combining (5.5) and (5.9) with the superadditivity of the limsup

operator. ]
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