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1. Introduction

The study of minimal surfaces spanning elastic boundaries dates back to Courant [13] and

Lewy [33]. They studied the Plateau problem under the assumption that the boundary of

the minimal surface is not fixed, but is constrained to lie on a prescribed manifold. The

generalization to minimal surfaces spanning non-constrained elastic boundaries has been re-

cently addressed by Giomi & Mahadevan [26]. These results have been complemented with

an investigation of the stability of flat circular solutions by Chen & Fried [11], Biria & Fried

[9, 10], Giusteri, Franceschini & Fried [27], and Hoang & Fried [32]. A similar problem has

been treated by Bernatzky & Ye [6] employing the theory of currents, however the elastic

energy used therein fails to satisfy the physical requirement of invariance under superposed

rigid transformations.

The Kirchhoff-Plateau problem differs from the aforementioned works, because the span-

ning boundary is assumed to lay on the surface of an elastic loop, referred to as the rod,

which is modeled as a deformable manifold. On the contrary, in all of the studies above

the boundary of the spanning surface was assumed to coincide with the loop midline. In

the Kirchhoff-Plateau problem the filament forming the loop is assumed to be thin enough

to be modeled faithfully by a Kirchhoff rod, that is an unshearable inextensible rod which

can sustain bending of its midline and twisting of its cross-sections, see Antman’s work [5].

To model the flexible rods, some physical constraints are imposed, such as local and global

non-interpenetration of matter introduced by Schuricht [34]. The isotropic Kirchhoff-Plateau

problem, that is minimizing the area functional, has been investigated by Giusteri, Lussardi

& Fried [28] with only one filament, and by Bevilacqua, Lussardi & Marzocchi [7] taking

into account a system of linked rods. The authors utilize the boundary condition via linking

number introduced by Harrison [30] and further investigated by De Lellis, Ghiraldin & Maggi
1
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[15]. Moreover, a dimensional reduction of the aforementioned variational problem has been

treated by Bevilacqua, Lussardi & Marzocchi [8].

In view of the works of Almgren [3, 4], Taylor [36] and Allard [1, 2], a natural question

is whether the isotropic results [7, 8] generalize to anisotropic surface energies. Indeed, an

increasing interest has been recently devoted to the study of the anisotropic Plateau problem:

see for instance the results by De Philippis, De Rosa & Ghiraldin [16, 17, 18], De Rosa [20],

De Rosa & Kolasinski [23] and Harrison & Pugh [31]. We also refer the reader to [21, 22, 24].

The aim of this paper is to address this question, considering the anisotropic Kirchhoff-

Plateau problem for systems of linked rods. The energy functional we minimize is given by

the sum of the elastic and the potential energy for the link and the anisotropic surface energy

of the film. As for the isotropic Kirchhoff-Plateau problem we prescribe the linking type of

the system of rods as well as the non-interpenetration of matter for each rod. Furthermore,

each midline has a prescribed knot-type.

To conclude, we perform a dimensional reduction in the spirit of the analysis carried out

in the isotropic setting.

2. Notation and preliminaries

In this section we recall notation for the geometry of curves. If x1,x2 : [0, L]→ R3 are two

continuous and closed curves, their linking number is the integer value

Link(x1,x2) :=
1

4π

ˆ L

0

ˆ L

0

x1(s)− x2(t)

|x1(s)− x2(t)|3
· x′1(s)× x′2(t) dsdt.

We say that x1 and x2 are isotopic, and we use the notation x1 ' x2, if there exists an open

neighborhood N1 of x1([0, L]), an open neighborhood N2 of x2([0, L]) and a continuous map

Φ: N1 × [0, 1]→ R3 such that Φ(N1, τ) is homeomorphic to N1 for all τ in [0, 1] and

Φ(·, 0) = Identity , Φ(N1, 1) = N2 , Φ(x1([0, L]), 1) = x2([0, L]) .

Following Gonzalez et al. [29], we define the minimal global radius of curvature of a closed

curve x ∈W 1,p((0, L);R3), with p > 1, by

∆(x) := inf
s 6=σ 6=τ 6=s∈[0,L)

R(x(s),x(σ),x(τ))

where R(x, y, z) denotes the radius of the unique circle containing x 6= y 6= z 6= x, with the

convention R(x, y, z) = +∞ if x, y, z are collinear. The global radius of curvature determines

the self-intersections of the tubular neighborhoods of a curve. More precisely, for every r > 0

we define the r-tubular neighborhood of x by

Ur(x) =
⋃

s∈[0,L]

Br(x(s)).

Accordingly to Ciarlet et al. [12] we say that Ur(x) is not self-intersecting if for any p ∈ ∂Ur(x)

there exists a unique s ∈ [0, L] such that ‖p−x(s)‖ = r. It turns out (see Gonzalez et al. [29])
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that ∆(x) ≥ r if and only if Ur(x) is not self-intersecting. In particular, if ∆(x) > 0 then x

is simple, that is x : [0, L)→ R3 is injective.

3. The anisotropic Plateau problem

First we recall that a set S ⊂ R3 is said to be 2-rectifiable if it can be covered, up to

an H2-negligible set, by countably many 2-dimensional submanifolds of class C1, see [35,

Chapter 3]. Given a 2-rectifiable set S, we denote by TxS the approximate tangent space of

S ⊂ R3 at x, which exists for H2-almost every point x ∈ S [35, Chapter 3]. We also denote

by G the Grassmannian of unoriented 2-dimensional planes in R3. The anisotropic integrands

considered in the rest of the note will be continuous maps

F : R3 ×G 3 (x, π) 7→ F (x, π) ∈ (0,+∞),

verifying the lower and upper bounds

0 < λ ≤ F (x, π) ≤ Λ, ∀(x, π) ∈ R3 ×G. (3.1)

We also require that F is elliptic [25, 5.1.2-5.1.5], namely its even and positively 1-homogeneous

extension to R3× (Λ2(R3)\{0}) is C2 and it is convex in the π variable. Given a 2-rectifiable

set S ⊂ R3 we define:

F(S) :=

ˆ
S
F (x, TxS) dH2(x). (3.2)

Next, we need to define the spanning condition. For any closed set H ⊂ R3, let C(H) be the

class of all smooth embeddings γ : S1 → R3 \H. We say that C ⊂ C(H) is closed by homotopy

if for every γ ∈ C then γ̃ ∈ C for any γ̃ ∈ [γ] ∈ π1(R3 \H). We denote by P(H, C) the family

of all 2-rectifiable relatively closed sets S ⊂ R3 \H such that

S ∩ γ(S1) 6= ∅, ∀γ ∈ C.

We recall the following result, see [21, Theorem 2.7]:

Theorem 3.1. The problem

min{F(S) : S ∈ P(H, C)}

has a solution S ∈ P(H, C) and the set S is an (F, 0,∞)-minimal set in R3 \H in the sense

of Almgren [4].

4. The anisotropic Kirchhoff-Plateau problem

4.1. The system of linked rods. Let N ∈ N\{0} and p ∈ (1,+∞). For every i = 1, . . . , N ,

let Li > 0 and xi0, t
i
0,d

i
0 ∈ R3 be such ti0 ⊥ di0 and |ti0| = |di0| = 1. Moreover let κi1, κ

i
2, ω

i ∈
Lp(0, Li) such that

wi1 := (κi1, κ
i
2, ω

i) ∈ Lp((0, Li);R3),

wi := (wi1,x
i
0, t

i
0,d

i
0) ∈ Lp((0, Li);R3)× R3 × R3 × R3,
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and

w := (w1
1, w

2, . . . , wN ) ∈ Lp((0, L1);R3)×
N∏
i=2

((Lp((0, Li);R3)× R3 × R3 × R3) =: V.

We endow V with the natural Lp-norm, that we denote by ‖ · ‖V . For any i = 1, . . . , N and

for any w ∈ V , we denote by xi[w] ∈W 2,p((0, Li);R3) and ti[w],di[w] ∈W 1,p((0, Li);R3) the

unique solutions (as proved in [29, Lemma 6]) of the Cauchy problem

xi[w]′(s) = ti[w](s)

ti[w]′(s) = κi1(s)di[w](s) + κi2(s)ti[w](s)× di[w](s)

di[w]′(s) = ωi(s)ti[w](s)× di[w](s)− κi1(s)ti[w](s)

xi[w](0) = xi0

ti[w](0) = ti0

di[w](0) = di0.

It is easy to see that ti[w](s) ⊥ di[w](s) and |ti[w](s)| = |di[w](s)| = 1 and consequently that

(ti[w](s),di[w](s), ti[w](s)× di[w](s))

is an orthonormal frame in R3, for any s ∈ [0, Li] and for any i = 1, . . . , N . Let η, ν > 0 and

consider Ai(s) ⊂ R2 be compact and simply connected such that

Bη(0) ⊂ Ai(s) ⊂ Bν(0), ∀s ∈ [0, Li], i = 1, . . . , N.

For any i = 1, . . . , N we define

Ωi := {(s, ζ1, ζ2) ∈ R3 : s ∈ [0, Li], (ζ1, ζ2) ∈ Ai(s)},

Λi[w] := {xi[w](s) + ζ1d
i[w](s) + ζ2t

i[w](s)× di[w](s) : (s, ζ1, ζ2) ∈ Ωi}, (4.1)

and

Λ[w] :=
N⋃
i=1

Λi[w].

The system of closed rods is subjected to some constraints on w, enumerated below, which

will identify the admissible subset W ⊂ V : First of all we assume that the midlines are closed

and sufficiently smooth, that is

(C1) xi[w](Li) = xi[w](0) = xi0, for any i = 1, . . . , N

and

(C2) ti[w](Li) = ti[w](0) = ti0, for any i = 1, . . . , N .

To prescribe how many times the ends of the rods are twisted before being glued together,

we prescribe the linking number between the midline and a closed curve close to the midline.
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More precisely, for any i = 1, . . . , N we close up the curve xi[w] + τdi[w], for τ > 0 fixed and

small enough, defining as in Schuricht [34]

x̃iτ [w](s) :=


xi[w](s) + τdi[w](s) if s ∈ [0, Li]

xi[w](Li) + τ(cos(ϕi(s− Li))di[w](Li)

+ sin(ϕi(s− Li))ti[w](Li)× di[w](Li)) if s ∈ [Li, Li + 1]

(4.2)

where ϕi ∈ [0, 2π) is the unique angle between di0 and di[w](Li) such that ϕi−π has the same

sign as di0×di[w](Li) · ti0. We trivially identify xi[w] with its extension xi[w](s) = xi(Li) for

any s ∈ [Li, Li + 1] and therefore we require that for any i = 1, . . . , N there is some li ∈ Z
such that

(C3) Link(xi[w], x̃iτ [w]) = li.

To encode the knot type of the midlines, for any i = 1, . . . , N we fix a continuous mapping

`i : [0, Li]→ R3 such that `i(Li) = `i(0) and we require that

(C4) xi[w] ' `i.

Finally, in order to prevent the interpenetration of matter, following Ciarlet et al. [12] we

require that

(C5)

ˆ
Ωi

(1− ζ1k
i
2(s) + ζ2k

i
1(s)) dsdζ1dζ2 ≤ |Λi[w]| ∀i = 1, . . . , N, and

N⋂
i=1

int(Λi[w]) = ∅.

We now require that our system of rods has a prescribed chain structure. We fix Lij ∈ ZN×N ,

with the property that |Li(i+1)| = 1 for every i = 1, . . . , N − 1 and we assume that:

(C6) Link(xi[w],xj [w]) = Lij .

We finally denote by W the set of all constraints, namely

W :=
{
w ∈ V : (C1)–(C6) hold true

}
.

It turns out that W is weakly closed in V (see Gonzalez et al. [29] and Schuricht [34]).

4.2. Energy contributions and existence of a minimizer. In what follows we will pre-

scribe an elastic energy of the system of rods, which is a proper function

Eel : W → R ∪ {+∞}, satisfying Eel(w) ≥ c‖w‖V , (4.3)

for some c > 0. The second energy contribution we want to take into account is the weight of

the rods. Let ρi ∈ L∞(Ωi) with ρ ≥ 0 be the mass density functions and g be the gravitational

acceleration. Let us define Eg : W → R ∪ {+∞} as

Eg(w) :=
N∑
i=0

ˆ
Ωi

ρi(s, ζ1, ζ2)g · (xi[w](s) + ζ1d
i[w](s) + ζ2t

i[w](s)× di[w](s)) dsdζ1dζ2.



6 ANTONIO DE ROSA AND LUCA LUSSARDI

The last contribution we want to take into account is the surface energy. Let Cw ⊂ C(Λ[w])

be the class of all γ ∈ C(Λ[w]) such that there exists i = 1, . . . , N with

|Link(γ,xi[w])| = 1, Link(γ,xj [w]) = 0, ∀j 6= i.

Cw is closed by homotopy, see [30]. We define Esf : W → R ∪ {+∞} as

Esf(w) := inf
{
F(S) : S ∈ P(Λ[w], Cw)

}
.

We define the energy functional of our variational problem as

E(w) := Eel(w) + Eg(w) + Esf(w), w ∈W. (4.4)

The first main result of the paper is given by the following existence theorem.

Theorem 4.1. Let Eel be the lower semicontinuous envelope of Eel with respect to the weak

topology of V . Assume that infW E < +∞. Then the problem

min
w∈W

Eel(w) + Eg(w) + Esf(w)

has a solution w0 ∈ W and there exists S∞ ∈ P(Λ[w0], Cw0) which is an (F, 0,∞)-minimal

set in R3 \ Λ[w0] in the sense of Almgren such that

Eel(w0) + Eg(w0) + F(S∞) = min
w∈W

Eel(w) + Eg(w) + Esf(w) = inf
w∈W

E(w).

4.3. Proof of Theorem 4.1. First of all we prove that the weight and the soap film energy

are weakly continuous.

Lemma 4.2. The functional Eg is weakly continuous on W .

Proof. Let (wh) be a sequence in W with wh ⇀ w in W for some w ∈W . Then xi[wh] ⇀ xi[w]

in W 2,p and ti[wh] ⇀ ti[w], di[wh] ⇀ di[w] in W 1,p. Then by Sobolev embedding we deduce

that xi[wh] → xi[w] in C1,α and ti[wh] → ti[w], di[wh] → di[w] in C0,α for some α ∈ (0, 1).

This is enough to pass to the limit under the integral and get the claim. �

The continuity of the soap film energy follows from the next theorem.

Theorem 4.3. Let (wh) be a sequence in W with wh ⇀ w in W for some w ∈ W . Assume

that

(a) Sh ∈ P(Λ[wh], Cwh
), for every h ∈ N;

(b) suph∈NF(Sh) = suph∈N inf{F(S) : S ∈ P(Λ[wh], Cwh
)} < +∞.

Let µh := FH2 Sh. Then the following three statements hold true:

µh ⇀
∗ µ (up to subsequences), (4.5)

µ ≥ FH2 S∞, where S∞ = (sptµ) \ Λ[w] is 2-rectifiable; (4.6)

S∞ ∈ P(Λ[w], Cw). (4.7)
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Proof. We first observe that the classes P(Λ[wh], Cwh
) and P(Λ[w], Cw) are good classes in the

sense of De Lellis et al. [21, Def. 2.2], as proved in [21, Thm. 2.7(a)]. Then the proof of (4.5)

and (4.6) follows verbatim the proof of Theorem 2.5 of [21]. It is sufficient to observe that the

convergence of {Λ[wh]} ensures that, whenever x ∈ S∞, we have d(x,Λ[wh]) > 0 for h large

enough. We are left to prove (4.7), namely that S∞ ∩ γ(S1) 6= ∅ for any γ ∈ Cw. Assume by

contradiction that there exists γ ∈ Cw with S∞∩γ(S1) = ∅. Since γ is compact and contained

in R3 \ Λ[w] and S∞ is relatively closed in R3 \ Λ[w], there exists a positive ε such that the

tubular neighborhood U2ε(γ) does not intersect S∞ and is contained in R3 \ Λ[w]. Hence

µ(U2ε(γ)) = 0, and consequently

lim
h→∞

H2(Sh ∩ Uε(γ)) = 0. (4.8)

Denote by Bε the open disk of R2 with radius ε and centered at the origin of R2, and consider

a diffeomorphism Φ: S1 × Bε → Uε(γ) such that Φ|S1×{0} = γ. Let y belong to Bε and

set γy := Φ|S1×{y} . Then γy in [γ] represents an element of π1(R3 \ Λ[w]). Since wh ⇀ w

in W then (xi[wh]) converges to xi[w] strongly in W 1,p((0, L);R3) for every i = 1, . . . , N .

In particular, (xi[wh]) converges to xi[w] uniformly on [0, Li] for every i = 1, . . . , N , which

implies the existence of δ > 0 such that, for h sufficiently large, Λ[wh] is contained in Uδ(Λ[w])

with Uδ(Λ[w]) ∩ Uε(γ) = ∅. Hence, for such h and ε it follows that, for any y ∈ Bε, γy(S1) ⊂
R3\Uδ(Λ[w]). This implies that ‖xi[wh]−γy‖∞ ≥ δ for any y ∈ Bε and for every i = 1, . . . , N .

This estimate, together with the W 1,p convergence of xi[wh] to xi[w], implies that

lim
h→+∞

Link(xi[wh], γy) = Link(xi[w], γy), ∀y ∈ Bε, ∀i = 1, . . . , N.

As a consequence, for h large enough, γy ∈ Cwh
which, combined with Sh ∈ P(Λ[wh], Cwh

),

yields Sh ∩ γy(S1) 6= ∅. Take now π̃ : S1 × Bε → Bε as the projection on the second factor

and let π̂ := π̃ ◦ Φ−1. Then, π̂ is Lipschitz-continuous and Bε is contained in π̂(Sh ∩ Uε(γ)),

which entails that

πε2 = H2(Bε) ≤ H2(π̂(Sh ∩ Uε(γ)) ≤ (Lip π̂)2H2(Sh ∩ Uε(γ)) .

We thus conclude that

H2(Sh ∩ Uε(γ)) ≥ πε2

(Lip π̂)2

which contradicts (4.8). �

Proof of Theorem 4.1. Thanks to the weak continuity of Eg and Esf , proved in Lemma

4.2 and Theorem 4.3, we deduce that Eel(w) + Eg(w) + Esf(w) is the lower semicontinuous

envelope of E, from which we get

inf
w∈W

Eel(w) + Eg(w) + Esf(w) = inf
w∈W

E(w).
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Let {wh} be a minimizing sequence for Eel +Eg +Esf . Since infW E < +∞ we can say that

E(wh) ≤ c for some c > 0. In particular, Eel(wh) ≤ c and, by coercivity of Eel, we have

wh ⇀ w0 in W . We deduce, using again Lemma 4.2 and Theorem 4.3, that

Eel(w0) + Eg(w0) + Esf(w0) ≤ lim inf
h

Eel(wh) + Eg(wh) + Esf(wh)

≤ lim inf
h

E(wh) = inf
W
E = inf

W
Eel + Eg + Esf .

Moreover, since Esf(w0) < +∞, applying Theorem 2.7 of [21] we deduce the claim. �

5. Dimensional reduction of the anisotropic Kirchhoff-Plateau problem

The second main result of the paper concerns the dimensional reduction. In this section

we consider cross sections with vanishing diameter. The set of constraints is almost the same,

but in order to prevent the non-selfintersection in the limit configurations (otherwise the

knot-type is not well defined) we replace the constraint (C5) by (C5)’. Precisely, we require

that:

(C5)’ ∆(xi[w]) ≥ ∆0 for some prescribed ∆0 > 0.

We denote by W ′ the set of all constraints, namely

W ′ :=
{
w ∈ Lp([0, L];R3) : (C1)-(C2)-(C3)-(C4)-(C5)’-(C6) hold true

}
.

It turns out that W ′ is weakly closed in V (see again Gonzalez et al. [29] and Schuricht [34]).

For every i = 1, . . . , N , every ε > 0 small enough and every w ∈W ′ we let

Λiε[w] := {xi[w](s) + ζ1d
i[w](s) + ζ2t

i[w](s)× di[w](s) : (s, ζ1, ζ2) ∈ Ωi
ε} (5.1)

where

Ωi
ε := {(s, ζ1, ζ2) ∈ R3 : s ∈ [0, Li], (ζ1, ζ2) ∈ εAi(s)}.

We also let

Λε[w] :=

N⋃
i=1

Λiε[w].

The main goal of this section is to prove that as ε approaches 0, we recover by Γ-convergence

the anisotropic Plateau problem with elastic one dimensional boundary. The first two energy

contributions to take into account are the elastic energy Eel as in (4.3) and the scaled weight

Eg
ε (w) :=

1

ε2

N∑
i=1

ˆ
Ωi

ε

ρi(s, ζ1, ζ2)g · (xi[w](s) + ζ1d
i[w](s) + ζ2t

i[w](s)× di[w](s)) dsdζ1dζ2

where ρi ∈ L∞(Ωi
1) and ρi ≥ 0. Concerning the soap film energy, similarly to the previous

section, we define Cε,w ⊂ C(Λε[w]) as the class of all γ ∈ C(Λε[w]) such that there exists

i = 1, . . . , N with

|Link(γ,xi[w])| = 1, Link(γ,xj [w]) = 0 ∀j 6= i.
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We define Esf
ε : W ′ → R ∪ {+∞} as

Esf
ε (w) := inf

{
F(S) : S ∈ P(Λε[w], Cε,w)

}
.

Finally, Eε : W ′ → R ∪ {+∞} is given by

Eε(w) := Eel(w) + Eg
ε (w) + Esf

ε (w).

We now describe the Γ-limit functional. For any i = 1, . . . , N , let ρi0 : [0, Li]→ R be given by

ρi0(s) := lim
(ξ1,ξ2)→(0,0)

ρi(s, ξ1, ξ2)

and let

E0(w) := Eel(w) +

N∑
i=1

ˆ Li

0
|Ai(s)|ρi0(s)g · xi[w](s) ds+ inf{F(S) : S ∈ P(Hw, Cw)},

where

Hw :=

N⋃
i=1

xi[w]([0, Li]),

and Cw is the class of all γ ∈ C(Hw) such that there exists i = 1, . . . , N with

|Link(γ,xi[w])| = 1, Link(γ,xj [w]) = 0 ∀j 6= i.

We are ready to state our second main result.

Theorem 5.1. Let (εh) be a positive and infinitesimal sequence and let (wh) be a sequence

in W ′ with suph∈NEεh(wh) ≤ c for some c > 0. Then, up to a subsequence, wh ⇀ w in V

and w ∈ W ′. Moreover, the family {Eε}ε>0 Γ-converges to E0 as ε→ 0+ with respect to the

weak topology of V , namely:

(a) for any sequence (εh) with εh → 0, for any w ∈W ′ and for any sequence (wh) in W ′

with wh ⇀ w in V we have

E0(w) ≤ lim inf
h→+∞

Eεh(wh); (5.2)

(b) for any w ∈W ′ there is a sequence (εh) with εh → 0 and a sequence (w̄h) in W ′ with

w̄h ⇀ w in V such that

E0(w) ≥ lim sup
h→+∞

Eεh(w̄h). (5.3)

As a standard consequence of Theorem 5.1 we have the next result.

Corollary 5.2. Let (εh) be a positive and infinitesimal sequence. For any h ∈ N and for any

σh → 0 let wh ∈W ′ be such that

Eεh(wh) ≤ inf
W ′

Eεh + σh. (5.4)

Then up to a subsequence wh ⇀ w0 in V and

E0(w0) = min
W ′

E0.
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5.1. Proof of Theorem 5.1. Here we give some preliminary propositions and then prove

Theorem 5.1. Fix a positive and infinitesimal sequence (εh).

Proposition 5.3. Let (wh) be a sequence in W ′ with suph∈NEεh(wh) ≤ c for some c > 0.

Then, up to a subsequence, wh ⇀ w in V and w ∈W ′.

Proof. The conclusion follows from the coercivity of Eel. �

The study of the weight term is easy, since the weak convergence wh ⇀ w implies the

uniform convergence of the midlines.

Proposition 5.4. For any w ∈ W ′ and for any sequence (wh) in W ′ with wh ⇀ w in V we

have

lim
h→+∞

Eg
εh

(wh) =

N∑
i=1

ˆ Li

0
|Ai(s)|ρi0(s)g · xi[w](s) ds. (5.5)

Proof. By the change of variables ζj = εhηj , j = 1, 2, we obtain that for any i = 1, . . . N ,

=
1

ε2
h

ˆ
Ωi

εh

ρi(s, ζ1, ζ2)g · (xi[wh](s) + ζ1d
i[wh](s) + ζ2t

i[wh](s)× di[wh](s)) dsdζ1dζ2

=

ˆ
Ωi

1

ρi(s, εhη1, εhη2)g · (xi[wh](s) + εhη1d
i[wh](s) + εhη2t

i[wh](s)× diwh](s)) dsdη1dη2.

Passing to the limit as h → +∞, using the fact that xi[wh] → xi[w] uniformly on [0, Li] for

any i = 1, . . . , N and applying the Dominated Convergence Theorem we conclude. �

Now we pass to the limit in the soap film part of the energy. First of all we need the

following Theorem whose proof requires minor modifications of the proof of Theorem 4.3.

Theorem 5.5. Let (wh) be a sequence in W ′ with wh ⇀ w in W ′ for some w ∈W ′. Assume

that

(a) ∀h ∈ N, Sh ∈ P(Λεh [wh], Cεh,wh
);

(b) suph∈NF(Sh) = suph∈N inf{F(S) : S ∈ P(Λεh [wh], Cεh,wh
)} < +∞.

Let µh := FH2 Sh. Then the following three statements hold true:

µh ⇀
∗ µ (up to subsequences), (5.6)

µ ≥ FH2 S∞, where S∞ = (sptµ) \Hw is 2-rectifiable, (5.7)

S∞ ∈ P(Hw, Cw). (5.8)

Now we prove the existence of a recovery sequence.

Proposition 5.6. Consider w ∈ W ′ and (wk) ⊂ W ′ such that wk ⇀ w in W ′. There exists

(wkh) subsequence of (wk) such that

inf{F(S) : S ∈ P (Hw, Cw)} ≥ lim sup
h→+∞

Esf
εh

(wkh). (5.9)
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Proof. Since wk ⇀ w in W ′, xi[wh] → xi[w] uniformly on [0, Li] for any i = 1, . . . , N . Then

for every h ∈ N there exists kh ∈ N such that

‖xi[wkh ]− xi[w]‖∞ ≤
εh
2
, ∀i = 1, . . . , N. (5.10)

Since we can assume without loss of generality that

inf{F(S) : S ∈ P(Hw, Cw)} < +∞,

again applying Theorem 2.7 of [21], we find S∞ ∈ P(Hw, Cw) such that

F(S∞) = min {F(S) : S ∈ P(Hw, Cw)}.

Now we set

Sh := S∞ \ Λεh [wkh ].

For any γ ∈ C(Λεh [wkh ]) not homotopic to a point in R3 \ Λεh [wkh ] we have

(S∞ \ Λεh [wkh ]) ∩ γ(S1) 6= ∅.

As a consequence,

lim sup
h→+∞

Esf
εh

(w) ≤ lim sup
h→+∞

F(Sh) ≤ F(S∞) = min {F(S) : S ∈ P(Hw, Cw)},

which concludes the proof. �

Proof of Theorem 5.1. The compactness statement is Proposition 5.3. Inequality (5.2) follows

combining (5.5) and (5.7) with the subadditivity of the liminf operator. Next, for any w ∈
W ′, we consider the constant sequence wh ≡ w. Applying Proposition 5.6, for every εh →
0, the (unique) subsequence w̄h ≡ w of (wh) satisfies obviously w̄h ⇀ w in V and (5.9).

Inequality (5.3) follows easily combining (5.5) and (5.9) with the superadditivity of the limsup

operator. �
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