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Abstract

We study a non local approximation of the Gaussian perimeter, proving the Gamma convergence
to the local one. Surprisingly, in contrast with the local setting, the halfspace turns out to be a
volume constrained stationary point if and only if the boundary hyperplane passes through the
origin. In particular, this implies that Ehrhard symmetrization can in general increase the non
local Gaussian perimeter taken into consideration.

1 Introduction

The Gaussian isoperimetric inequality says that the halfspace has the smallest Gaussian perimeter
among all sets with prescribed Gaussian measure, [4]. In the Euclidean setting, an increasing interest
has been devoted to the study of non local approximations of the perimeter and their isoperimetric
shapes, since the pioneering work of Caffarelli, Roquejoffre and Savin, [6].

The aim of this paper is to provide an analogous non local approximation of the Gaussian perimeter,
showing the Gamma convergence to the local one. Moreover, we study the isoperimetric properties
of this non local functional and observe that, in contrast with the local setting, an halfspace is a
volume constrained critical point if and only if it has Gaussian measure % In particular, we deduce
that Ehrhard symmetrization can in general increase the non local Gaussian perimeter taken into
consideration.

We remark that the non local approximation of the Gaussian perimeter we study is different from
the one recently proposed in [22]. The non local functional we introduce has the advantage of having
a more explicit formulation, while it has the drawback that the isoperimetric shapes and the Ehrhard
symmetrization are not preserved.

For an extensive description of the main differences between the local and the non local framework,
we refer the interested reader to [14]. A discussion about recent I'-convergence results in the non local
setting has been presented in [15].

Inspired by [1], for a measurable set £ C R”, n > 1,0 < s < 1, and a connected, open set {2 € R"
with Lipschitz boundary (or simply @ = (a,b) € R if n = 1), we define the Gaussian, non local
functional

JNE,Q) =T (B,Q) + TP (B,Q),

where
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and 1
7:R" x R" — RT, ~(z, y) = exp <—4 (|l"2 + y|2>> :

When 2 coincides with the whole space, we just write J5' (E).
In [1], Amborsio, De Philippis and Martinazzi have studied the Euclidean version of it, namely
Ts = jsl + jf, where

1
jsl E7Q ::/ / 7d$dy,
( ) BnQ JEenq [T — Yyt
1

1
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The authors point out that J5(E,2) can be thought of as a fractional perimeter of F in 2, and they
show the I'-convergence of (1 — s)7s(-, ) to w,—1P(-,Q) as s — 17, where w,,_1 is the volume of the
unit ball in R*~! P(E, Q) := H" Y(FE N Q) is the Euclidean perimeter, H* denotes the classical
a-Hausdorff measure and FFE the reduced boundary of E. Moreover, they prove the convergence of
any sequence {E;} of local minimizers for J,(-,€2) to a local minimizer for P(-,2), see [1, Theorem
3].

The first aim of this paper is to generalize [1, Theorem 3] to the Gaussian case, thus building a
relation between the functional ¢ and the Gaussian perimeter

PY(E, Q) := / ezl gn—1(2).
FENQ

The second goal is to investigate whether the halfspaces are volume constrained critical points of 75 .
This turns out to be true if and only if the boundary hyperplane passes through the origin.

The paper is divided in four Sections. In Section 2 we prove the I'—convergence of the functional
Js' to P7. In Section 3 we compute the first and second variation of 7' (for the local framework see
[3] or [19]). In Section 4 we prove that halfspaces are volume constrained stationary points for J5' if

and only if their Gaussian volume is %

2 The Gamma-convergence

In this section we extend [1, Theorem 3] to the Gaussian case. Namely, we show:

Theorem 1 (Convergence of local minimizers) Assume that s; T 1, E; are local minimizers of
T (-, 9), and xg, — xg in Li (R"). Then

limsup(1 — ;)7 (E;, Q') < +00 v e Q, (1)
1—00
E is a local minimizer of PY(-,Q) and (1 — 8;)Ts(E;, Q') — wn_1P(E, Q) whenever ' € Q and
P(E,0Q) =0.
The proof of Theorem 1 is almost identical to the Euclidean one for [1, Theorem 3]. We limit our

study to the parts which differ from it. In particular we will prove the following two propositions. Let
wy denote the volume of the unit ball in R¥ for k > 1, and set wp := 1.



Proposition 2 For every measurable set E C R™ we have

I~ liminf(1 = $)727(E,0) = w,-1P(E,9) (2)

w.r.t. the LllOC convergence of the corresponding characteristic functions in R™, i.e.

liminf(1 — s;) 27 (B, Q) > wa 1 PY(E, Q) whenever Xg, — g in L (R™), s; 1.

i—00 i
Proposition 3 For every measurable set E C R"™ we have

I' = limsup(l — s)J)(E,Q) < w,_1P7(E,Q) (3)
sT1

w.r.t. the Llloc convergence of the corresponding characteristic functions in R™. Inequality (3) means
that for every measurable set E and sequence s; T 1 there exists a sequence E; with xXg, — XE in
Ll (R™) such that
limsup(1 — s;) T (B, Q) < wn 1 P7(E, Q).
1—00

In these two propositions lurk the main differences between the Gaussian case and the Euclidean
case. Once we have proved Proposition 2 and Proposition 3, we are done: the proof of Theorem 1 is
completely identical to the proof of [1, Theorem 3], with the only forethought of adding a -superscript
in every considered functional, and remembering the simple inequality (x, y) < 1.

We will use the following notation: we write € R as (2/,z,) with 2/ € R"! and z,, € R; we
denote by H the halfspace {z : x, <0} and by Q = (—1/2,1/2)" the canonical unit cube; we denote
by B,(x) the ball of radius r centered at x and, unless otherwise specified, B, := B,.(0); for every
h € R™ and function u defined on U C R™ we set mpu(z) := u(x + h) for all z € U — h. For the
definition and basic properties of the perimeter P(FE, () in the sense of De Giorgi, we refer to [2, 18].

2.1 Proof of proposition 2
We denote by C the family of all n-cubes in R™

C:={R(zx+7rQ): zeR", r>0, R€SO(n)}.

1
loc

Let s; 11 and sets E; C R" with xg, = xg in L
inequality

(R™) as i — oo be given. We need to show the

liminf(1 — 8;,) 70 7(E;, Q) > w1 PY(E, Q). (4)

1—00
We can assume that the left-hand side of (4) is finite, otherwise the inequality is trivial. We choose
an arbitrary Q' € 0, and find a positive constant cg = ¢o(2') so that ¢y < y(z, y), YV, y € Q. Then
we easily obtain the inequality
¢p lim sup jsll(l —8:)(E;, ) < lim(1 — si)Jsli’“’(Ei, ) < +oc.
1 7
By [1, Theorem 1] and the arbitrariness of ', we conclude that E has locally finite perimeter. We
shall denote by pu its perimeter measure, i.e. u(A) = |Dxg|(A) for any Borel set A C 2, and we shall

use the following property of sets of finite perimeter: for p-a.e. g € Q there exists Ry, € SO(n) such
that (E — xo)/r locally converge in measure to R,,H as r — 0. In addition,

r—0 rn—1

=1, for pae. . (5)



Indeed this property holds for every zp € FE, see [2, Theorem 3.59(b)].
Now, given a cube C' € C contained in €2, we set

i (C) == (1 —8)TL(F;, 0), and a(C) = liminf o, (C).

* 1—00

Moreover, we define Cy(z¢) := xo + 1Ry, @, where Ry, is as in (5), and the measure
v(E) = / ezl du(z), for every E Borel set.
E

We claim that for p-a.e. xg € R™ it holds
(Cr (o))

. . o
wp—1 < liminf

r—=0  v(Cr(xg))’
If the claim is true, then we observe that for all € > 0 the family
A= {Cr(a;o) CQ : wp1v(Cr(x)) < (1 +€)(X(Cr($0))}
is a fine covering of p-almost all of 2. By a suitable variant of Vitali’s theorem (see [21]), we can
extract a countable subfamily of disjoint cubes {C; C Q: j € J} such that v(Q\ U C;) = 0, whence

jeJ

wn 1 PY(B,Q) = wn,ly( U cj) w1 Y 1(C) < (1+6) Y a(C)) < (1+2)liminf Y ai(C))

71— 00
< (1+¢)liminf(1 — ;)7 (E;, Q).
71— 00

Since € > 0 is arbitrary, we get the I' — lim inf estimate.
We now prove the inequality in (6) at any point x such that (E — xg)/r converges locally in
measure as 7 — 0 to Ry, H and (5) holds. The continuity of the exponential ensures that

. _1ig? 12
lim e 217" du(z) = ezl®l”,
r—0

Cr(wo)

Thus, thanks to (5), we just need to show the inequality
(Cr(20))

lim inf a

1 2
— 5T
minf ——C57 > wp e 2700 (7)

Since from now on zg is fixed, we may assume R,, = I, so that the limit hyperplane is H and the
cubes C,(xg) are the standard ones z¢ 4+ rQ. Let us choose a sequence r; — 0 such that

liminfa(cri(xlo)) = lim O‘(CTk_(;EO))
r—0 T k—o0 7‘2

For k > 0 we can choose i(k) large enough that the following conditions hold:

ai(k)(CT’k (1’0)) < a(C""k (:Co)) + Tlrclv
1
k’

][ IXE, 4 — XE|dz <
Cr. (20)

1-—s;
i(k)
Ty >1-—

| =




We observe that, although J+7 does not enjoy the nice scaling properties of J}, it still satisfies the
equality
s A Lvsg.r
TS E, Cr(x0)) =" T 7 ((E — o) /7, Q),

where we have set

1
’7:(:0,T($’ y) = €xp <_4 (|x0 + T$’2 + "730 + Ty|2>> .

Since || Dy (e )|z < 1, for every z,y € Q and r > 0 the following inequality holds:

'Yxo,r(x’ y) - 6_%|m0|2 | <r.

Then we infer

a(Cr, (x0)) - (k) (Cry (20)) = (1- Si(k))%il;j;o'rk ((Eiky — w0) /7K, Q)Tzisi(k) o
TZ_l - TZ_l rg_l

> (1= 2) (1 = i) Tats™ ™ (Eiey — o) /i @) =

> (1= )0 = s) Ty (Bugey — 0) i @38 — i) — i,
ie.

Jim. Oé(c:;,cf_(fo)) > ¢~ 3kl lim inf(1 — $i(k)) Tssi, (Bigh) — %0) /71, Q)
Since we have
Jim /Q IX(Biy—20)/ri — X(B—20) /i |dT =0,
and
kﬁ_{go/Q IX(E—20)/rm, — XH|dT =0,
it follows that (E;) — x0)/re — H in L'(Q). If we define
Py += inf { liminf(1 — )7} (E:. Q) | xa, — xur in L1Q)}. ®)

it has been proved in [1, Lemmata 7, 11, 12] that I';, = w,,—;. Hence we conclude the claimed inequality
(7).
2.2 Proof of proposition 3

As in [1], it is enough to prove the I' — lim sup inequality for the collection B of polyhedra II of finite
perimeter which satisfy P(II,0§2) = 0. B is dense in energy, i.e. such that for every set F of finite
perimeter there exists Ej € B with yg, — xg in LL _(R") as k — oo and limsup;, P7(E, Q) =

loc

PY7(E,Q). We recall that a polyhedron II is in the class B if and only if
lim P(IL, Qf UQy) =0 ivalently lim PY(IL,Qf UQ;) =0
e (IL, €25 5) =0, orequivalently s (IL, €25 ;) =0,
where we set

Of ={zeQ|dQ) <8}, Q5 ={zeQ|da) <} 9)



We are going to prove that for a polyhedron II C R"™ there holds

limsup(1 — 8) 77 (I1, Q) < T PY(IL, Q) + 2T% %ir% PY(IL,Qf UQy), (10)
st -
where
I'* :=limsup(l — s) 7 (H, Q). (11)
sT1

Again, as in [1, Lemmata 7, 11, 12] we have the equality I'} = w,_1. We shall divide the proof into
two main steps.
Step 1. We first estimate J5 7 (II, Q). For a fixed £ > 0 set

(Ol :={z € Q| d(z,0lI) < e}, (0H); := (oII). NIIL.
We can find N; disjoint cubes Q5 C Q, 1 < i < N, of side length ¢ satisfying the following properties:

(i) if @f denotes the dilation of Q) by a factor (1+¢), then each cube Qf intersects exactly one face
> of O11, its barycenter belongs to 3 and each of its sides is either parallel or orthogonal to ¥;

(i) H! (((an) N\ UY, Qf) = |P(IL, Q) — N.c™ 1| = 0 as e — 0.

Property (ii), combined with the continuity of the exponential and the property of measures, easily
implies

Ne
P, Q) — "t Z e—%fxfﬁ
i=1

—0ase—0, (12)

where we have set by x5 the center of the cubes Q5. For z € R" set

6_%@'2
L(z) = /H s

‘We consider several cases.

Case 1: x € (IINQ)\ (OI)7. Then for y € II°NQ we have |z — y| > ¢, hence

1 >~ 1 NWh,
S(x) = /('Bg(a:))c ’.%' _ y|n+s Y nwn/g ps+1 P ses 3

since nw, = H" (8" 1). Therefore

/ Is(:n)e_ﬂ”“|2 dr < nw:/ e~ il gy (13)
(IN)\ (o) s€7 J1uno

Case 2: x € (0II)7 \ UfV:EI Q. Then

1 ©° 1 nw
Iy(z) < / ——dy = nwn/ dp = = . (14)
(Bago.mrenay (@)e [T =y d(z,enq) P51 s[d(z,IIc N Q)]*

Now write (OII) N Q2 = U}]:1 ¥;, where each 3; is the intersection of a face of JII with €2, and define
(OI)_ ; »={x € (OII); : dist(x, I1° N Q) = dist(z, ;) }.

6



Clearly (0II); = szl(an);j. Moreover we have
() ; C{z+tv:z € X, t €(0,¢), v is the interior unit normal to X ;},

and Y. ; is the set of points x belonging to the same hyperplane as ¥; and with dist(z,3;) < €
Clearly H" 12 ;) < H" }(%;) + Ce as € — 0. Then from (14) we infer

1.2 nw 1
L(z)e il gu < Tn / I
/(an)s\ui”a@g ) Z M- \UN, @ [d(z, TT0))¢
Nnwn, 1
7d1‘
Z/ @M= \UY, Qs [d(z, Xe )]

(Se.)\UNe o t*

S

:“(“1”%8 (U%)\UQ& -5

with error o(1) — 0 as ¢ — 0 and independent of s.

Case 3: x € IIN U 1 @;. In this case we write

IN

| /\

—3y? —y?

Is(z) = mdy

EELA
y|n+s (MenQ)N{y:|lz—y|<e?} ‘l' -y

/<Hcm>m{y:|z—y|252} |z —
— IM2) + L(a).

Then, similar to the case 1,
* 1 nw
1 o n
Is(x)ﬁnwn/sg de—seﬁa

hence (since all cubes are contained in 2)

/ I;(x)e_i Ydr < na;z e~ ilel® gy (16)
nnUNe, Qs e Ja

As for I2(z) observe that if z € QF and |z — y| < €2, then y € Qf, where Qf is the cube obtained by
dilating Q5 by a factor 1+ ¢ (hence the side length of Q¢ is € + £2). Then

4 (alP+1uP?)
/ I?(z)e —glzl? da}<2/ / eélin_i_sdy‘m
e A
ST
< Z/ / “ﬁdydx
g Juengs | =yl
Ne L 9
< (Ze”‘xf' )7<H € +Q)1 +¢)

=1

(17)

Ne 5
= (8’” > ezl ) 11+ )" T H, Q)(1 + €2),
=1

=P(I1, Q)+o(1)

7



where in the last identity we used the scaling property
TJIANE,NY) = N JHE, Q) for A>0,i=1,2. (18)
Keeping ¢ > 0 fixed, letting s go to 1 and putting (13)-(17) together, we infer

limsup(1 — 5) 7,7 (I, Q) < o(1) + I PY(IL Q) = o(1) + w,—1 PY(IL, ),
sT1

with error o(1) — 0 as ¢ — 0 uniformly in s. Since € > 0 is arbitrary, we conclude

limsup(1 — s) 7L 7(I1, Q) < w,_1 P11, Q). (19)
sT1

Step 2. It now remains to estimate T2 Let us start by considering the term

/ / =2 (lz1*+yl?)
dydz.
NQ JIIenQe ]w— y[nts

Case 1: x € IIN (Q\ Qg ). Then for y € II° N Q° we have |z — y| > J, whence

1 2
—zlvl 4
e 1 1) W,
@) /Hchc |z — y|nts y_nw"/g plts 509

Case 2: x € IINCY . In this case, using the same argument of case 1 for y € I1°N (Q° \ Q(J{), we have

12
e 4|y‘ NWnp,

lyl [yl
I(:c):/ dy—l—/ dyg/ —dy + —2.
mena; 1T — Y[t nen@e\Qr) 12—yt nenq; [T — Y[t 507

Therefore

/ / =3 (j=*+]y?) e e i |2 +]yl*)
dydxr < / Tl dg —|—/ / dydzx
INQ JIIenQe ’«T— |n+s 5 1nnQy Jienqy ‘n+5

1 2 2
2 4(|I| +yl )
< TL(A;n il 4o _|_/ / eimrs dydz.
s0° Ja IIN(Q; UQy) JIen(Qy u) |z -yl

An obvious similar estimate can be obtained by swapping II and I1¢, finally yielding

(21> +1y[?)
J2V(IL Q) < Ancon / e ilel g o+ 2/ / ——————dydzx
s6° Jo nn(e; uaey) Juen@yuep) o=yt

4
- ”W"/e—ilmF da +2717(I, 925 U Q).
Q

508
Using inequality (19) applied with the open set Q5 U Qgr, we get

limsup(1 — ) J27(T, Q) < 2w,_1 PY(IL, Q5 U Q).
sT1

Since & > 0 is arbitrary, letting § go to zero, we conclude the proof of the Proposition.



3 First and second variation

In this section we calculate the first and second variation of J3 (E). A similar analysis has been done
in [17] in order to prove the local minimality of the ball for a functional involving non local terms.

First, we fix some notation. Given a vector field X € C2(R",R"), the associated flow is defined as
the solution of the Cauchy problem

0
9 p(a.1) = X(@(a.)) (20)

&(z,0) = z.

In the following, we shall always write ®; to denote the map ®(-,t). Note that for any given X there
exists > 0 such that, for ¢ € [4, 0], the map ®; is a diffeomorphism coinciding with the identity
map outside a compact set.

If E C R™ is measurable, we set E; := ®;(E). Denoting by J®; the n-dimensional Jacobian of &,
the first and second derivatives of J®; are given by

2
Btli=0 92 li=o

Finally, given a sufficiently smooth bounded open set £ C R™ and a vector field X, we recall that
the first variation of J5 (E) along the vector field X is defined by

_d
'_ @‘tzo

where ®, is the flow associated with X. The second variation of Js (E) along the vector field X is
defined by

J®, = divX, J®, = div((divX)X). (21)

0J¢ (E)[X] TS (E),

d2
- @’tzojg(Et)'

0277 (E)[X]
If X is a vector field such that X := ¢vp on OF, where vg denotes the exterior normal to E, using the
area formula and the divergence theorem, the first variation of the Gaussian volume can be computed
as

|® ||

d d _ ik . _l=zlZ
dt|t207(Et):dt|t:0/EJ<I>t(x)e 2 dx:/E(dle—(X,x>)e > dx

o2 o2
= / div (Xe_2|> dx = (:L‘)e_%ng_l. (22)
E OF

If F is a set of class C2, given a smooth function ¢ : 9E — R, it can be extended in a neighborhood
U of OF so that

;ng +¢(H — (z,vg)) =0 on JE. (23)

The second variation of the Gaussian volume along the vector field X such that X = ¢rg on OF and
¢ satisfies (23), can be calculated using the divergence theorem and reads as

d2 212 o =2
@h:Oy(Et) = /Ediv <div <Xe_2> X) dx = /aEqZ) <8y¢ + ¢(H — <x,1/E))> e_%dHZ_l =0

Thus, we say that a vector field preserves the Gaussian volume of F if it satisfies

¢($)6_%d7{2_1 =0 and % +¢(H — (x,vg)) =0 for x € OF. (24)

oFE



We note that without these assumptions the expression of the second variation of the Gaussian perime-
ter even in the local framework is quite complicated, see [3, Eq. (17)].

In order to compute the first and second variation of J3, due to the singularity of the Ker-
nel in the integrand, we need to pass through approximations. Thus, given 6 € [0,1/2), let ns €
C([0,+0), [0, 1]) be such that ns = 1 on [0,8] U [1/, 00], ns = 0 on [26,1/(25)], || <2/§ on [0, 00),
and 75 | 0 as § — 07. Then we define

K5(2) = (1= ns2D) s

Moreover, we now introduce the two quantities

Hyps(z) = /n (xE<(y) — xE(Yy)) Ks(x — y)e*%(|zl2+|y|2)dy

and
Hige) = [ (o) — xelw) Ko —p)e 0Dy

corresponding respectively to the fractional mean curvature with respect to the regularized non local
Gaussian perimeter and to the fractional mean curvature with respect to the non local Gaussian
perimeter. Bearing these definitions in mind we now show the following theorem.

Theorem 4 Let E be an open set of class C? and X € C2(R™,R") a vector field such that X = ¢vp
on OF with ¢ € C*(OE). Then the first variation of J3 (E) along a vector field X is given by

0JNE)X] = | Hjp(a)(X(z),vp(e))dHy ™", (25)

oFE

while the second variation reads as

e~ 1 (lz*+ly[*) n_ .
Pae = [ [ (90 6wl ) v ar g
0
+ /BE Hjp (¢ (Hpp — (z,vg)) + 8f> $ M (26)
2 (y — z,vg) e~ 1 (12 1) n—1
_/8E¢(33)/n 5 o= [+ dydHy ",

where Hyp(x) stands for the mean curvature of OF at the point x. Moreover, if X is volume preserving,
then

—1(jz*+1y?)
82 v € _ 2 _ 42 _ denfldanl
- /aE/aE |z — n+: <¢(l’)( )d;(y)!l(l li |IyTQE)(ﬂb‘) VE(y)\> z dHy o)
B 9 y—x,vg(x))e 2\ el
fe#o [ e

Proof. Let us call J2 the integral associated to the regularized kernel, namely

5 — o o= 222 gy,
7E) = [ [ Ksw=y drdy

10



By the definition of @, the implicit function theorem gives the existence of € > 0 such that the map
®, is a diffeomorphism for all ¢ € [—6,6]. Using the area formula, we compute

7o) = [ / Ks(®(a,1) — By, 1))e (PEOF AP0 102, 1).10(y, t)dady
EC

We use the first equation in (21), the divergence theorem and the symmetry of the kernel K;s to
compute the first variation of J?

ccllt|t OJ5 (Ey) /6/ 1 (JzlP+y?) D, (Ks(z —y)) (X(z) — X (y))dxdy
+ /Ec /EK(S(JU — y) Dm(efi(|$\2+|y\2)>X(x) n Dy(€7i(|$‘2+|y‘2))X(y)) dudy
+ /EC/EK(S(HC — y)e_i(lx\uly@) (div X (z) + div X (y)) dady
- / / div, (e—i(\x|z+|y|2)f<5(x - y)X(x)) dady
cJE
+ /c /E divy (e_i(\wlfrlyl?)[(g(x - y)X(y)) dxdy
- /aE / (e (y) = xe W) Kslx — y)e s TV (X @), vp () dyd ;.

Now we compute the second variation of J2.
S279X] = dt% O/E/ Ks(®(x,t) — Dy, t))e 1(PEIFH2WDE) qiv X (2) div X (y)dady
[ [ Ka<x—y>e—z<‘f'2+'y'2>) (X (2), X (2)]drdy
// (Ksta e 30500 DX (2)X (2) ) ey
+2/Ec/ D2, (Ks(w — y)e™ 117 ) [X (2), X () dady
+ [ Dk (st = e 3T) (X (), X ) dady
[ [ {0y (Ksta = e T DX ()X (0)) dody
+2/L/ K5 z —y)e —%(lxl2+lyl2)) ,X(x)>(diva(x)+diva(y))d:cdy
+2/C/ K5 (& —y)e —i(mzﬂy‘z)) ,X(y)>(diva(a?)—i—diva(y))d:cdy
+ /E C /E Ks(x — y)e” 1 (FPH) (div[X (2) div(X (2))] + div[X () div(X (y))]) dady
+2/EC/EK5(93y)e—i(ixl2+ly2)diva(x) divy X (y)dwdy

We now use the divergence theorem and exploit the symmetry of K5 in order to simplify the above

11



expression as follows

278 = / / div, [X(x) div, (Kg(:n - y)e*i(‘“Q*‘y'Q)X(:c))} dady
cJE
+ /C /Edivy X(y) div, (K(;(x - y)e_%(|x|2+‘y|2)X(y))] dxdy
—i—/ / div, X(:I:) divy <K5(a: - y)e‘i(‘xl2+|yl2)X(y)>} dxdy (28)
cJE i

+ /C/Edivy X(y) div, (Kg(x —y)efi(‘xlﬂlyﬁ)X(x))} dxdy

=L+ 1+ I3+ Iy

Using Fubini and the divergence theorems we have
I :/ (X(x),yE(x»/ div, (Ks(x = y)e 57 X (@) ayare ™!
OF ¢
and

I = /8 (X (@) () [ divy (st = e T x () ) dyare

) 1 2 2 (29)
= _/(9E /aE(Ké(:L‘ - y)e*z(\xl +lyl )<X(y),I/E(y)><X(;1;)’VE(:L‘))dH;Z—IdHZ_l‘

We remark that I; (resp. I3) has the same expression of Is (resp. I4) exchanging z and y. Using this
observation and the symmetry of K, we compute

o= [ (X@)wp@) [ G = xeto) dive (Koo = e 000X @) dyarez .
and
L+ I = —2 /8 i /8 (g y)e T (X (), vp(y)) (X (2), v (@) dHE dHD

Next we write div, X(r) = div, ) X(z) + div, ) X(2), where div, ) X(z) = (DX[vg(z)], ve(z)).
Using Fubini’s theorem and the divergence theorem on manifolds, we get

L+1= /n (xEe(y) — xE(Y)) /aE
+ /R (xee(y) - xe W) /a (X, vp(a)) divige) (Kse = y)e s 00 X (@) apstay
— [ ) - )

+ /n (xEe(y) — XE(Z/))/ (X(z),ve(r)) div, ) (K(;(x — y)efi(|x|2+|y|2)X(x)) d?—[g—ldy

(X (), vp(2)) div ) (Ks = y)e 5070 X (2) ) arz—ay

H8E<X($)a I/E(iL')>2 (K(;(:L‘ — y)efi(|$|2+|y|2)) d%;_ldy
OFE

oF
= [ veelo) = xe ) [ Hop(e)o*(@) (Kste et F400) ) arztay

+ /Rn (xE-(y) — xE(Y)) /BE ¢2(Sﬂ)a£$> (Ka(fv - y)e_%(‘x'mym) dHy dy

i /]Rn (xee(y) = xe(y) /8E o(x) 858«) Ks(x — y)e’i(|x\2+|y\2)d7-l;—1dy’
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where we used that X = ¢vg and then (D, f, X) = 0 for every f € C'(OF). Werecall that ¢ € C%(OF),
hence the integrals are well defined. Regarding the second addend of the expression above, using again
Fubini’s theorem and the fact that D,K; = —D,K;s, we get

ay KN_ y)e~1 (2 *+lyl )) dy

- / [<D9K5($ —y),ve()) + Wm(:ﬁ —~ y)] =3 (=) gy,
E

—— [ Ksta =) T (o), vty arty ! - [ CAPIEED 0 e () gy,
OF E (31)

Finally, thanks to the identity |vg(z) — ve(y)|? = 2 — 2(vp(z), vE(y)), after some elementary calcula-
tions we deduce

PRENX) = [ [ K ) (jo6e) - @) - () - ve)]) anrdne!
OFE JOE
* 8¢ n—1
+ | Hps | ¢ (Hoe —(x,vE)) + 5 | ¢dH
OF v
—z,vg(x 1 (122 e
[ @ [ o ) P ko e 0y,
(32)
At this point we just need to show that the first and second variation of js‘s converge, respectively, to

the first and second variation of J3 as & goes to 0. The proof of this fact is exactly the same as in
[17]. O

Note that, since

d 22 12
dt‘t—o/ e 2dr :/a 6_%<X($),VE(x)>dH"_l7
T JE E

we have that the flow ® associated to X preserves the Gaussian volume if

JET
/ e” 2 (X(z),vp(z))dH" 1 =0
(o))
Thus, the Euler-Lagrange equation for the problem

min JJ(F 33)
in ) (
is .
[ ot0) [ vt = o) e gz < [ oo
@M/ XEe(Yy) — xXE(Y dydHl =X | o¢(x)e” 2 dHZ .
OF n |z —y["te ’ OF ¢
Moreover, if E is a set of class C?, then thanks to the fundamental lemma, of the calculus of variations
the above equation can be rewritten as

—ily? 2
e 4 _ =7
| ) = xp) oy = AL Ve e or (34

F is said to be stationary with respect to the non local Gaussian isoperimetric problem, or equivalently
a volume constrained critical point, if it satisfies equation (34).

13



4 Volume constrained stationary shapes

In this section we prove that, as opposed to the local setting, the only halfspaces which are stationary
with respect to the non local Gaussian isoperimetric problem are the ones generated by hyperplanes
passing through the origin.

Theorem 5 We fita € R and w € S 1. If H, . := {x € R" : (x,w) < a} is stationary with respect
to the non local Gaussian isoperimetric problem, then a = 0, or equivalently,

1 / NE
—_— e T = —.
(2m)2 JH,. 2

Proof. Up to rotation, we can assume w = e, and to shorten the notations we write H, instead of
H., .. We start observing that, for every @ € 0H,, it holds (x,e,) = a. This implies that, with the
change of coordinate z =y — z, if (y,e,) < a, then (z,e,) < 0 and then we can write

/ el ; / e~ 1l ; / e—i(\z|2+|x\2+z<z,x>>d
H, |a7 - y‘nJrs {yn<a} ’:L‘ - y’nJrs {zn<0} |Z’n+s

35
/ e—i(\2|2+\xl2—2<27:0>)d e e Ol (35)
= Y, T € :
{zn>0} ’Z‘n—i—s ¢
Analogously, we compute
/ e ilul? ; / e ilvl’ ; / e—i(lz\2+|x\2+2(z,x>)d e e O (36)
me |z —y["ts (yn>a} 1T — y|"ts (200} || s ¢
Plugging equations (35), (36) in equation (34), we get
—l(|z‘2+|$|2 (z,x) (z,z) |Jf‘2
/ 647114—5’) (e T —e 2 ) dz=MXe 2, Vo € 0H,, (37)
(z>0) |2
which in turn reads
—l=?
2 / T |j1+s sinh <<Z’2x>> dz=)\,  VzecdH, (38)
{z,>0} |7
We remark that the integral in (38) is well defined, since lim,_,¢ Smgﬂ =1.
We split « = (2/, x,,) and we observe that
/ /
sinh (:2) = sinh L)+ znn
2 2 (39)
) (', 2") ZnTn (' 2"y . ZnTn,
= sinh [ —— ] cosh (7> + cosh sinh ( ) .
2 2 2 2
Plugging (39) in (38), we deduce the following equation for every x € OF
—11z)? roo
A—l—B::/ ® *_ sinh (2, 2) cosh(M)dz
(>0} |27 2 2
(40)

1|Z|2

-1 roo
+/ c ;H cosh<<z’x>>sinh(w>dz:)\.
{za>0} 2] 2 2 2
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11,712 2
. _7(‘2 [“+lznl . ! X! . .
Since < n+2 sinh <<Z 3 >) cosh (25%) is odd in 2/, we deduce
(2P +lzal?) "2

|Z| +lznl?) ! !
A= / / == sinh ((z & >> cosh <@> dz'dz, = 0.
R \Z’| + |za[*) 2 2 2

Plugging this information in (40) and taking the partial derivative in z;, for every j =1,...,n — 1,

we deduce '
— |z / /
/ %i <cosh <<z,x>)> sinh <@> dz = 0.
{2n>0} ’Z’n $ 8xj 2 2

Assuming without loss of generality that j = n — 1 and denoting 2’ = (2", x,,—1), we obtain

2
67i|zl

0 (" 2" Zn—1Tn—1 . Zna
o0} s a—x] (cosh ( > cosh <f> sinh <7> dz
Liz|? "o
g (s (5 o (B i (%57 2 =
(s> |27 Ox; 2 2 2
—lzI?

Since elz‘T cosh (%) Zp—1 is odd in z,_1, we deduce

L2 "o
D / / / e 4 sinh <Z , L > cosh (M) Zn—1 sinh (@> dz = 0.
s Jn 2 : 2 ’

Plugging this information in (41), we get that for every x € OF it holds

e_%|z\2 (2", 2" 1T 1 o
/ | ’n+s cosh < 72 ) sinh (T) sinh (7) 2n—1dz = 0. (42)
{z,>0} 17

C+D:=

(41)

We denote

L2 zn) < " //>
e 1 A . Zn—1Tn—1
Cl(zp,x) = h ) h7>n,d"dn,,
(zn, ) /]Rnl|zl )‘n+scos < 5 )sm ( 5 Zn—1d2" dzp_1

and we observe that if z,,_1 # 0, then C(z,,x) # 0 since the integrand is even in the variables 2’ and
Zn—1. Equation (42) then reads

/ C(2n, ) sinh ( ) dzp =0,  VacOE, (43)
and since for every z, > 0
o >0 ifa>0
smh(%) =0 ifa=0 |,
<0 ifa<O
equation (43) can hold if and only if a = 0. O

Remark 6 It remains an interesting open question to characterize the critical points of the isoperi-
metric problem. We refer the interested reader to [11, 12, 13] for the characterization of critical points
of the isoperimetric porblem in other settings.
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