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Abstract

Given an elliptic integrand of class C 2,α, we prove that finite unions of disjoint open Wulff
shapes with equal radii are the only volume-constrained critical points of the anisotropic surface
energy among all sets with finite perimeter and reduced boundary almost equal to its closure.

1 Introduction

Overview

The classical anisotropic isoperimetric problem (or Wulff problem) amounts to minimizing the ani-
sotropic boundary energy among all sets of finite perimeter with prescribed volume. For all positive
(continuous) integrands the solution is uniquely characterized up to translation by the Wulff shape,
as proved by Taylor in [42] and [43]. Alternative proofs can be found in [19, 30, 5]. This isoperimetric
shape was constructed by Wulff in [44] and plays a central role in crystallography.

Instead of considering minima, a more subtle question asks to characterize critical points of the
anisotropic boundary energy with prescribed volume. For integrands of class C 1, this is equivalent
to characterize sets of finite perimeter whose anisotropic mean curvature in the sense of varifolds is
constant. For all convex integrands in R2, Morgan proved in [32] that Wulff shapes are the only
critical points among all planar regions with boundary given by a closed and connected rectifiable
curve. To the best of our knowledge, the characterization in every dimension for smooth boundaries
has been conjectured for the first time by Giga in [20] and Morgan in [32]. For smooth elliptic
integrands, this has been positively answered in [21] for dimension 3, and in [22] for every dimension.
In particular, He, Li, Ma and Ge proved in [22] that if F is a smooth elliptic integrand and Ω is
a set with smooth boundary and constant F -mean curvature (more generally constant higher order
F -mean curvature), then Ω is a Wulff shape. This is the anisotropic counterpart of the celebrated
Alexandrov’s theorem [1]. Moreover, quantitative stability versions of this rigidity theorem have been
showed in [6, 15, 14]. Related results for immersed smooth hypersurfaces are [33, 21, 26]; for piecewise
smooth hypersurfaces see [34, 25].

In the non-smooth setting, Maggi has conjectured in [28, Conjecture] the characterization of the
Wulff shapes among sets of finite perimeter :

Conjecture ([28]). For a positive convex integrand, Wulff shapes are the unique sets of finite perime-
ter and finite volume that are critical points of the anisotropic boundary energy at fixed volume.

Since the integrand is assumed to be convex, but may fail to be C 1, the notion of first variation and
critical points are suitably defined using the convexity in time of the functional along any prescribed
variational flow (see [28, p. 35-36]). Maggi specifies in [28] the significant interest from the physical
viewpoint for crystalline integrands. Moreover he points out that this conjecture is open even for
smooth elliptic anisotropic energies and among sets with Lipschitz boundaries, [28, p. 36].

In the full generality of sets of finite perimeter (and dimension greater than 2) the conjecture has
been solved so far only for the area functional by Delgadino and Maggi in [8]. In this important paper
[8], the authors prove that among sets of finite perimeter, finite unions of balls with equal radii are
the unique volume-constrained critical points of the isotropic surface area. They obtain this result
generalizing the argument of Montiel and Ros in [31] to sets of finite perimeter by means of the strong
maximum principle of Schätzle [40]. They also prove a weak version of the Heintze-Karcher inequality
for all sets of finite perimeter and, in a preliminary version of [8] (see [7]), they treat the special case
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of local minimizers of anisotropic smooth energies, using an anisotropic strong maximum principle
proved in [12]. However, the reliance on the strong maximum principles of [40] and [12] prevents the
extension of their method to treat critical points of anisotropic energies.

In the present paper we provide a positive answer to the aforementioned conjecture for elliptic inte-
grands of class C 2,α among finite perimeter sets with reduced boundary almost equal to their closure,
see Corollary 6.9. Our Theorem 6.5 actually proves a stronger result, namely the following anisotropic
Heintze-Karcher inequality for sets of finite perimeter (we refer to Section 2 for the notation) and the
characterization of finite unions of disjoint open Wulff shapes as the unique configurations realizing
the equality case.

1.1 Theorem. Suppose α ∈ (0, 1), F is an elliptic integrand of class C 2,α (see 2.12), E ⊆ Rn+1 is
a set of finite perimeter such that

(1) H n(Clos(∂∗E)∼ ∂∗E) = 0,

the unit-density varifold associated with ∂∗E has first variation absolutely continuous with respect
to H n ∂∗E and its distributional mean curvature H with respect to the inner measure-theoretic
normal of E is bounded and positive. Furthermore we suppose that H is locally of class C 0,α on
the C 1,α regular part of ∂∗E.

Then

(2) L n+1(E) ≤ n

n+ 1

∫
∂∗E

F (n(E, x))

H(x)
dH n(x) .

Equality holds if and only if E coincides up to a set of L n+1 measure zero with a finite union of
disjoint open Wulff shapes with radii not smaller than n/‖H‖L∞ .

This theorem extends to the anisotropic setting an analogous result in the isotropic framework
given in [38]. The proof of the inequality (2) is based on a suitable generalization of the Montiel-Ros
argument, that is different from the generalization given in [8]. In fact the core of our proof is based
on certain geometric properties of the generalized unit normal bundle (see 2.8) of the support of a
varifold with bounded distributional mean curvature, whose proof does not depend on the Schätzle’s
maximum principle. It is also important to remark that, while for smooth varieties the analysis of
the equality case in (2) easily follows from the well known rigidity of smooth (anisotropic) umbilical
surfaces in the Euclidean space (see [31] and [22]), in a singular setting such analysis is a delicate
issue.

The characterization of finite unions of Wulff shapes as the only volume-constrained critical points
of the anisotropic perimeter among sets with reduced boundary almost equal to its closure, see
Corollary 6.9, follows as a simple corollary of our main theorem. Here we denote by PF the F -
perimeter functional, i.e.

PF (E) =

∫
∂∗E

F (n(E, x)) dH n(x)

for every E ⊆ Rn+1 with finite perimeter.

1.2 Corollary (cf. 6.9). Suppose α ∈ (0, 1), F is an elliptic integrand of class C 2,α and E ⊆ Rn+1

is a finite perimeter set with finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0.

If E is a volume-constrained critical point of PF , then E is equivalent to a finite union of disjoint
open Wulff shapes.

It is worth to comment on the condition (1). By standard measure-theoretic results, see [18,
2.10.19(4)], such condition always holds if E is a set of finite perimeter such that

(3) Θ∗n(H n ∂∗E, x) > 0 for every x ∈ Clos(∂∗E) .

The density condition (3) is always satisfied if E is a domain with Lipschitz boundary or if E is
either a local minimiser or an almost minimiser as considered in [7]. On the other hand it is not
known if this density condition holds for every set of finite perimeter E such that the unit-density
varifold v(∂∗E, 1) associated to the reduced boundary ∂∗E has constant anisotropic distributional

2



mean curvature. In the isotropic setting, this follows from the well known monotonicity formula.
However, no monotonicity formula is known for anisotropic energies. In view of these facts, condition
(1) is a natural hypothesis in the context of anisotropic energies.

Finally we remark that we consider here C 2,α (for 0 < α < 1) integrands to ensure that the regular
part of ∂∗E is a classical smooth hypersurface. In fact, employing the Allard’s regularity theory for
codimension 1 integral varifolds with bounded anisotropic mean curvature [2], one gets that the
regular part of ∂∗E is a C 1,α-hypersurface. Assuming, as we did in our main theorem, that the
distributional mean curvature is C0,α, it follows from the classical regularity theory of elliptic PDEs
that the regular part of ∂∗E is C 2,α. This is one of the several parts where the method employed
here conceptually differs from the method in [38], which instead is independent of Allard’s regularity
theory. This is due to the fact that some steps in [38] are based on the theory of curvature developed
in [36] and on the locality theorem of Schätzle in [41] and these items are currently not available in
the anisotropic setting. It is interesting to ask if they might be extended to the anisotropic setting,
in which case one expects that the results of the present paper might be generalized to all elliptic
integrands of class C 2.

Method of proof

Suppose F is an elliptic integrand of class C2, F ∗ is the conjugate of F (see 2.29) and BF
∗
(a, r) =

{x : F ∗(x− a) ≤ r}. Let A ⊆ Rn be a closed set and we define the anisotorpic distance function by

δFA(x) = inf{F ∗(a− x) : a ∈ A} for every x ∈ Rn+1.

The generalized anisotropic normal bundle of A is given by

NF (A) = (A× ∂BF∗(0, 1)) ∩ {(a, u) : δFA(a+ su) = s for some s > 0} .

The pillar of our proof is the following key geometric property of the generalized normal bundle
of the support of a varifold with bounded anisotropic mean curvature.

1.3 Theorem (cf. 4.10 and 4.11). Suppose V is an n-dimensional varifold in Rn+1 such that the F -
anisotropic first variation is absolutely continuous with respect to the weight measure ‖V ‖ associated
to V and the F -anisotropic distributional mean curvature vector hF (V, ·) is bounded in length.

Then the following Lusin (N) condition holds:

H n(N(spt ‖V ‖) ∩ {(a, u) : a ∈ S}) = 0

whenever S ⊆ spt ‖V ‖ with H n(S) = 0.

This theorem provides a fundamental control on the singular part of spt ‖V ‖, that allows to get
integral inequalities. This will be the key to extend the Montiel-Ros argument to a singular setting.

We now explain the strategy to prove our main theorem (from now on the integrand F is assumed
to be of class C 2,α elliptic). Let V = v(∂∗E, 1) be the unit-density varifold associated to the essential
boundary of E. Firstly, we use 6.2 to replace the set E with an open set Ω such that L n+1((Ω∼E)∪
(E∼Ω)) = 0 and H n(∂Ω∼ ∂∗Ω) = 0. Using Allard’s regularity theory for codimension 1 varifolds
with bounded anisotropic mean curvature [2], we deduce that H n almost all of ∂∗Ω is C 2,α regular.
On the C 2,α regular part we can express the distributional anisotropic mean curvature vector hF (V, ·)
as the trace of the anisotropic second fundamental form as in 2.21. The main difficulty to obtain the
inequality (2) is to prove that one can perform the anisotropic version of the integral estimates of
the Montiel-Ros argument only on the regular part of ∂∗E to get the conclusion. This very delicate
issue is resolved using Theorem 1.3. We deal now with the equality case. Firstly we notice that
the principal curvatures of ∂Ω at z must all be equal to −n/H(z), for z in the regular part of ∂Ω.
If ∂Ω was a regular hypersurface, then we could immediately conclude that ∂Ω is equal to a Wulff
shape, because of the well known rigidity of umbilical surfaces. However there is no way to deduce
from the regularity theory that ∂Ω has no singular part. Consequently, the fact that the regular
part of ∂Ω is umbilical only implies that ∂Ω is made of a countable collection of pieces of Wulff
shapes and of a singular set of H n measure zero. Therefore the global shape of ∂Ω might be a
priori arbitrarily complicated. To solve this issue, we first provide a general criterion to prove that
a closed set has positive anisotropic reach (see 5.5), by means of an anisotropic Steiner formula, see
5.9. This result generalizes to the anisotropic setting a theorem of Heveling-Hug-Last in [23] and
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it is of independent interest. Then we prove that a set E realizing the equality case in (2) satisfies
the Steiner formula in (16). To this aim, we employ Theorem 1.3 and consequently we deduce that
the anisotropic reach of C satisfies reachF C > n/‖H‖L∞ . This is a crucial information, since it
implies that the level-sets of the anisotropic distance function SF (C, r) are closed C 1,1-hypersurfaces
for every 0 < r < n/‖H‖L∞ . Using once again 1.3, we also obtain that SF (C, r) are umbilical.
Hence, by 3.2, we can conclude that SF (C, r) are finite unions of boundaries of Wulff shapes of radii
not smaller than (n− r‖H‖L∞)/‖H‖L∞ . We conclude that each connected component of Ω must be
a Wulff shape of radius at least n/‖H‖L∞ . Moreover, since the perimeter of Ω is finite, we also get
that there are at most finitely many connected components of Ω.

Structure of the paper

In Section 2, after having recalled some background material, we provide some classical facts about
Wulff shapes and we study some basic properties of the anisotropic nearest point projection onto
an arbitrary closed set. In Section 3 we prove that the only totally umbilical closed and connected
hypersurface of class C 1,1 is the Wulff shape. In Section 4 we prove Theorem 1.3. Actually we prove
this result in the more general class of anisotropic (n, h)-sets introduced in [11], thus extending an
analogous result for isotropic (n, h) sets obtained in [39, 3.8-3.9]. In Section 5 we establish the general
criterion to prove that a closed set has positive reach by means of an anisotropic Steiner formula.
To conclude, in Section 6 we prove our main theorem and its corollary.

2 Preliminaries

Notation

The natural number n ≥ 1 shall be fixed for the whole paper.
In principle, but with some exceptions explained below, we shall follow the notation of Federer

(see [18, pp. 669 – 671]). The domain and the image of a map f are denoted by dmn f and im f .
The set-theoretic difference between two sets A and B is denoted by A ∼ B. Whenever A ⊆ Rn+1

we denote by IntA and ClosA the interior and the closure of A in Rn+1. If T ∈ G(n + 1, k),
then we write T\ for the linear orthogonal projection of Rn+1 onto T . The symbol N stands for
the set of non-negative integers. We use standard abbreviations for intervals (a, b) = R ∩ {t : a <
t < b} and [a, b] = R ∩ {t : a ≤ t ≤ b}. We also employ the terminology introduced in [18,
3.2.14] when dealing with rectifiable sets. Moreover, given a measure φ and a positive integer m
the notions of (φ,m) approximate tangent cone Tanm(φ, ·), (φ,m) approximate differentiability and
(φ,m) approximate differential are used in agreement with [18, 3.2.16]. The m-dimensional density
of a measure φ is denoted by Θm(φ, ·), see [18, 2.10.19]. We also introduce the symbol Sn for the
unit n-dimensional sphere in Rn+1. If X ⊆ Y are sets, we write 1X : Y → R for the characteristic
function of the set X and idY : Y → Y for the identity function on Y .

Concerning varifolds and submanifolds of Rn+1 we use the notation introduced in [3]. The space of
all m-dimensional varifolds on an open subset U of Rn+1 is denoted by Vm(U). If M is a submanifold
of Rn+1 of class C 1, we write X (M) for compactly supported tangent vectorfields on M of class C 1;
cf. [3, 2.5]. We say that M is a closed submanifold of Rn+1 if it is a submanifold of Rn+1 and a closed
(but not necessarily compact) subset of Rn+1; in particular, ∂M ∼M = ∅.

We also use the following convention. Whenever X, Y are normed vectorspaces, A ⊆ X, and
f : A→ Y we write Df for the derivative of f that is a Hom(X,Y ) valued function whose domain is
the set of points of differentiability of f . If Y = R and X is equipped with a scalar product, then we
write grad f for the X valued function characterised by〈

u, Df(x)
〉

= grad f(x) • u for x ∈ dmn Df and u ∈ X .

The unit normal bundle of a closed set

Let A ⊆ Rn+1 be a closed set.

2.1 Definition. Given A ⊆ Rn+1 we define the distance function to A as

δA(x) = inf{|x− a| : a ∈ A} for every x ∈ Rn+1.
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Moreover,
S(A, r) = {x : δA(x) = r} for r > 0.

2.2 Remark (cf. [36, 2.13]). If r > 0 then H n(S(A, r) ∩K) <∞ whenever K ⊆ Rn is compact and
S(A, r) is countably (H n, n) rectifiable of class 2.

2.3 Definition (cf. [36, 3.1]). If U is the set of all x ∈ Rn+1 such that there exists a unique a ∈ A
with |x − a| = δA(x), we define the nearest point projection onto A as the map ξA characterised by
the requirement

|x− ξA(x)| = δA(x) for x ∈ U.

We set U(A) = dmn ξA∼A. The functions νA and ψA are defined by

νA(z) = δA(z)−1(z − ξA(z)) and ψA(z) = (ξA(z),νA(z)),

whenever z ∈ U(A).

2.4 Definition (cf. [36, 3.6, 3.8, 3.13]). We define the function ρ(A, ·) setting

ρ(A, x) = sup
{
t : δA(ξA(x) + t(x− ξA(x))) = tδA(x)

}
for x ∈ U(A) ,

and we say that x ∈ U(A) is a regular point of ξA if and only if ξA is approximately differentiable at
x with symmetric approximate differential and ap limy→x ρ(A, y) = ρ(A, x) > 1. The set of regular
points of ξA is denoted by R(A).

For τ ≥ 1 we define
Aτ = U(A) ∩ {x : ρ(A, x) ≥ τ} .

2.5 Remark (cf. [36, 3.7]). The function ρ(A, ·) is upper semicontinuous and its image is contained
[1,∞].

2.6 Definition (cf. [36, 4.9]). Suppose x ∈ R(A). Then χA,1(x) ≤ . . . ≤ χA,n(x) denote the
eigenvalues of the symmetric linear map ap DνA(x)|{v : v • νA(x) = 0}.

2.7 Remark. Notice that H n(S(A, r)∼R(A)) = 0 for L 1 a.e. r > 0 (cf. [36, 3.15]) and

Tann(H n S(A, r), x) = {v : v • νA(x) = 0}

for H n a.e. x ∈ S(A, r) and for L 1 a.e. r > 0, cf. [36, 3.12].
The functions χA,i are the approximate principal curvatures of S(A, r) in the direction of νA(x).

In fact, as proved in [36, 3.12], they coincide with the eigenvalues of the approximate second-order
differential ap D2S(A, r) of S(A, r); cf. [37] for the general theory of higher order approximate differ-
entiability for sets.

2.8 Definition (cf. [36, 4.1], [24, §2.1]). The generalized unit normal bundle of A is defined as

N(A) = (A× Sn) ∩ {(a, u) : δA(a+ su) = s for some s > 0}

and N(A, a) = {v : (a, v) ∈ N(A)} for a ∈ A.

2.9 Remark (cf. [36, 4.3]). The set N(A) is a countably n rectifiable Borel subset of Rn+1 × Sn.

Anisotropic mean curvature

Here we recall the notion of ellipticity for an integrand F and the associated concept of F -mean
curvature vector both for varifolds and smooth varieties.

2.10 Definition. Let k ∈ N, α ∈ [0, 1]. By a (convex) integrand of class C k,α we mean a non-negative
(convex) function F : Rn+1 → R such that F |Rn+1∼{0} is of class C k,α and

F (λν) = |λ|F (ν) for ν ∈ Rn+1 and λ ∈ R

By an integrand we mean an integrand of class C 0. Moreover, we say that a convex integrand is
strictly convex if

F (x+ y) < F (x) + F (y) for all linearly independent x, y ∈ Rn+1 .
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2.11 Remark. Evidently strictly convex integrands correspond to strictly convex norms on Rn+1.

2.12 Definition (cf. [18, 5.1.2] and [2, 3.1(4)]). We say that an integrand F is elliptic if there exists
a number γ > 0 such that the map Rn+1 3 u 7→ F (u) − γ|u| is convex. We call γ the ellipticity
constant of F .

2.13 Remark (cf. [18, 5.1.3]). Assume F is an integrand of class C 1,1. Then ellipticity of F with
ellipticity constant γ > 0 is equivalent to the condition

(4)
〈
(v, v), D2F (u)

〉
≥ γ |u ∧ v|

2

|u|3
= γ
|v|2 − (v • u/|u|)2

|u|
for u ∈ dmn D2F , u 6= 0, v ∈ Rn+1 .

In particular, if F is elliptic, u ∈ dmn D2F , |u| = 1, and v ∈ span{u}⊥, then〈
(v, v), D2F (u)

〉
≥ γ|v|2 ,

which shows that F is uniformly elliptic in the sense of [11, §2]. The interested reader can find a
more exhaustive discussion about ellipticity conditions (in general codimension) in [9, 16].

2.14 Definition. Assume F is an elliptic integrand with ellipticity constant γ > 0. We define

C(F ) = sup
({
γ−1, supF [Sn]/ inf F [Sn]

}
∪
{
‖D2F (ν)‖ : ν ∈ Sn ∩ dmn D2F

})
.

2.15 Remark. Let U ⊆ Rn+1 be open. For any T ∈ G(n + 1, n) we choose arbitrarily ν(T ) ∈ T⊥
such that |ν(T )| = 1. In the sequel we shall tacitly identify any V ∈ Vn(U) with a Radon measure V̄
over U ×Rn+1 such that

V̄ (α) =
1

2

∫
α(x, ν(T )) + α(x,−ν(T )) dV (x, T ) for α ∈ C0

c (U,R) .

Clearly, this definition does not depend on the choice of ν(T ).

2.16 Definition. Let U ⊆ Rn+1 be open, F be an integrand of class C 1, V ∈ Vn(U). We define
the first variation of V with respect to F by the formula

δFV (g) =

∫
Dg(x) •BF (ν) dV (x, ν) for g ∈X (U) ,

where BF (ν) ∈ Hom(Rn+1,Rn+1) is given by

BF (ν)u = F (ν)u− ν · 〈u, DF (ν)〉 for ν, u ∈ Rn+1, ν 6= 0 .

2.17 Remark (cf. [2],[9, Appendix A],[13],[10]). If ϕ : R ×Rn+1 → Rn+1 is smooth, ϕ(0, x) = x for
x ∈ Rn+1, and g = d

dt |t=0ϕ(t, ·) ∈X (Rn+1), then

d

dt

∣∣∣∣
t=0

ΦF (ϕt#V ) = δFV (g) ,

where the functional ΦF : Vn(U)→ [0,∞] is defined as

ΦF (V ) =

∫
F (ν) dV (x, ν) .

2.18 Definition (cf. [11, §2]). Let Ω ⊆ Rn+1 be open, V ∈ Vn(Ω), F : Rn+1 → R be an integrand
of class C 1. Assume that ‖δFV ‖ is a Radon measure. Then

δFV (g) = −
∫

hF (V, x) • g(x) d‖V ‖(x) +

∫
ηF (V, x) • g(x) d‖δFV ‖sing(x) for g ∈X (Ω) ,

where ‖δFV ‖sing is the singular part of ‖δFV ‖ with respect to ‖V ‖, hF (V, ·) is an Rn+1 valued
‖V ‖-integrable function, and ηF (V, ·) is an Sn valued ‖δFV ‖-integrable function.

For ‖V ‖-a.e. x we define the F -mean curvature vector of V at x, denoted hF (V, x), by the formula

hF (V, x) =
hF (V, x)∫

F (ν) dV (x)(ν)
,

where V (x) is the probability measure on Sn coming from disintegration of V ; see [3, §3.3].
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2.19 Definition. Define Ξ :
⊙2

Rn+1 → Hom(Rn+1,Rn+1) to be the linear map1 characterised by

〈u, Ξ(A)〉 • v = A(u, v) for A ∈
⊙2

Rn+1 and u, v ∈ Rn+1 .

2.20 Remark. In particular, if f : Rn+1 → R is twice differentiable at x ∈ Rn+1, then

Ξ(D2f(x)) = D(grad f)(x) ∈ Hom(Rn+1,Rn+1) .

2.21 Remark. Let G ⊆ Rn+1 be open, v1, . . . , vn+1 be an orthonormal basis of Rn+1, M be a
submanifold of G of dimension n of class C 2, V = vn(M) ∈ Vn(G), x ∈ M , ν : G → Rn+1 be of
class C 1 and satisfy

|ν(y)| = 1 , ν(y) ∈ Nor(M,y) , and 〈ν(y), Dν(y)〉 = 0 for y ∈M .

In [11, Proposition 2.1] the authors show that if F is an elliptic integrand of class C 2 then

−F (ν(x))hF (V, x) = ν(x) tr
(
D(gradF ◦ ν)(x)

)
= ν(x)

n+1∑
j=1

〈
(Dν(x)vj , vj), D2F (ν(x))

〉
.

2.22 Definition (cf. [18, 4.5.5]). Let A ⊆ Rn+1 and b ∈ Rn+1. We say that u is an exterior normal
of A at b if u ∈ Rn+1, |u| = 1,

Θn+1(L n+1 {x : (x− b) • u > 0} ∩A, b) = 0 ,

and Θn+1(L n+1 {x : (x− b) • u < 0}∼A, b) = 0 .

We also set n(A, b) = u if u is the exterior normal of A at b and n(A, b) = 0 if there exists no exterior
normal of A at b.

2.23 Definition (cf. [4, Def. 3.54]). Let A ⊆ Rn+1 be a set of finite perimeter and V = vn+1(A) ∈
Vn+1(Rn+1). Then ‖δV ‖ is a Radon measure (cf. [3, 4.7]) and there exists ‖δV ‖ measurable function
η(V, ·) with values in Sn as in [3, 4.3]. We define the reduced boundary of A, denoted ∂∗A, as the set
of points x ∈ dmnη(V, ·) for which

‖δV ‖B(x, r) > 0 for r > 0 and lim
r↓0

1

‖δV ‖B(x, r)

∫
B(x,r)

η(V, ·) d‖δV ‖ = η(V, x) .

2.24 Definition. Let E ⊆ Rn+1 and x ∈ Rn+1. We define

nF (E, x) = gradF (n(E, x)) if n(E, x) 6= 0 and nF (E, x) = 0 if n(E, x) = 0 .

2.25 Remark. Assume X is a Hilbert space, dimX = k ∈ N, A,B ∈ Hom(X,X) are self-adjoint
automorphisms of X, and A is positive definite. With the help of the (tiny) spectral theorem [27,
Chap. VIII, Thm. 4.3] we find a self-adjoint and positive definite map C ∈ Hom(X,X) such that
A = C ◦C. Next, we observe that E = C−1 ◦A ◦B ◦C = C ◦B ◦C is self-adjoint. Employing again
the (tiny) spectral theorem we find an orthonormal basis v1, . . . , vk ∈ X and real numbers λ1, . . . , λk
such that Evi = λivi for i ∈ {1, 2, . . . , k}. We obtain

A ◦B(Cvi) = C ◦ Evi = λiCvi for i ∈ {1, 2, . . . , k}

and we see that Cv1, . . . , Cvk is a basis of eigenvectors of A ◦B with eigenvalues λ1, . . . , λk.
In particular, if G, M , x, and ν are as in 2.21, F is an elliptic integrand, u = ν(x) ∈ dmn D2F ,

and X = Tan(M,x), then the maps A = Ξ(D2F (ν(x))|X ×X) and B = Dν(x)|X ∈ Hom(X,X) are
self-adjoint and A is positive definite; hence, A ◦B has exactly n real eigenvalues.

Observe also that since F is positively 1-homogeneous, gradF is positively 0-homogeneous, i.e.,
gradF (λv) = gradF (v) for λ ∈ (0,∞) and v ∈ dmn gradF ; hence,

(5) v ∈ ker D(gradF )(v) for v ∈ dmn D2F .

Since D2F (ν(x)) ∈
⊙2

Rn+1 is symmetric it follows that D(gradF )(ν(x)) ∈ Hom(Rn+1,Rn+1) is
self-adjoint and we have

im D(gradF )(ν(x)) =
(
ker D(gradF )(ν(x))

)⊥
so that D(gradF )(ν(x))|X ∈ Hom(X,X) by (5). Seeing that also Dν(x)|X ∈ Hom(X,X) we conclude

D(gradF ◦ ν)(x)|X ∈ Hom(X,X) .
1As in [18, 1.10] the symbol

⊙2X denotes the vectorspace of bilinear maps of the type X ×X → R.
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2.26 Definition. Let F be an elliptic integrand of class C 1,1, G ⊆ Rn+1 be open, M be a submanifold
of G of dimension n of class C 1,1, ν : G → Rn+1 be Lipschitz continuous and such that |ν(z)| = 1
and ν(z) ∈ Nor(M, z) for z ∈ M , x ∈ dmn Dν, and u = gradF (ν(x)). We define the F -principal
curvatures of M at (x, u)

κFM,1(x, u) ≤ . . . ≤ κFM,n(x, u)

to be the eigenvalues of the map D(gradF ◦ν)(x)|Tan(M,x) ∈ Hom(Tan(M,x),Tan(M,x)); cf. 2.25.

2.27 Remark. If V = vn(M) ∈ Vn(G), then one may check using 2.21 that

F (ν(x))hF (V, x) = hF (V, x) = −ν(x)
∑n
i=1κ

F
M,i(x, u) .

Wulff shapes

Here we collect basic facts on Wulff shapes for readers convenience.

2.28 Definition. Let F : Rn+1 → R be a norm, x ∈ Rn+1 and r > 0. We define

UF (x, r) = {y : F (y − x) < r} and BF (x, r) = {y : F (y − x) ≤ r} .

2.29 Definition. Let F : Rn+1 → R be a norm. Define the conjugate norm F ∗ on Rn+1 by setting

F ∗(w) = sup{w • u : u ∈ Rn+1, F (u) ≤ 1}.

By a Wulff shape (of F ) we mean any open ball with respect to the F ∗ norm.

2.30 Remark. If F is a norm on Rn+1 then F ∗ is a norm on Rn+1 and F = F ∗∗. Moreover,

F ∗(w) = sup{w • u : u ∈ Rn+1, F (u) = 1}.

2.31 Remark. If f : Rn+1 → R is a convex function then, following [35, pag. 104], we define the
conjugate of f to be the convex function g : Rn+1 → R given by

g(x) = sup
{

(x • u)− f(u) : u ∈ Rn+1
}

for x ∈ Rn+1 .

Let F : Rn+1 → R be a 1-homogeneous function such that F−1{0} = {0} and set f = 1
2F

2.
Fix x ∈ Rn+1∼{0}. Whenever u ∈ Rn+1 satisfies F (u) = 1 define

ϕu(λ) = x • (λu)− f(λu) = λ(x • u)− 1
2λ

2 for λ ∈ R .

Note that ϕu is a quadratic polynomial having exactly one maximum

sup{ϕu(λ) : λ ∈ R} = ϕu(x • u) = 1
2 (x • u)2 .

Maximizing with respect to u ∈ Rn+1 satisfying F (u) = 1 we see that

sup
{

(x • u)− f(u) : u ∈ Rn+1
}

= 1
2 sup

{
(x • u)2 : u ∈ Rn+1 , F (u) = 1

}
.

Therefore, if F is a norm, then the conjugate of 1
2F

2 equals 1
2 (F ∗)2.

In the next lemma we summarize few facts about F and F ∗.

2.32 Lemma. Let F be a strictly convex norm, differentiable at each point of Rn+1∼{0}. Define
W = UF (0, 1), W ∗ = UF∗(0, 1), G = gradF and G∗ = gradF ∗.

Then the following statements hold.

(a) F is continuously differentiable on Rn+1∼{0}.

(b) F ∗ is strictly convex norm and continuously differentiable on Rn+1∼{0}.

(c) F (x) = x •G(x) and G(λx) = (λ/|λ|)G(x) for λ 6= 0 and x ∈ Rn+1∼{0}. The same statement
holds if we replace F and G with F ∗ and G∗.

(d) For every w ∈ Rn+1∼{0} there exists a unique u ∈ ∂W such that F ∗(w) = u • w and
G(u)F ∗(w) = w. The same statement holds if we replace W , F ∗ and G with W ∗, F and
G∗.
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(e) G[Rn+1∼{0}] = ∂W ∗ and G∗[Rn+1∼{0}] = ∂W .

(f) G|∂W is an injective map onto ∂W ∗ with (G|∂W )−1 = G∗|∂W ∗.

(g) G|Sn is an injective map onto ∂W ∗ with (G|Sn)−1 = n(W ∗, ·); G∗|Sn is an injective map onto
∂W with (G∗|Sn)−1 = n(W, ·).

(h) n(W ∗, x) = F (n(W ∗, x))G∗(x) for x ∈ ∂W ∗ and n(W,x) = F ∗(n(W,x))G(x) for x ∈ ∂W .

(i) If F is an elliptic integrand of class C 1,1, then F ∗ is an elliptic integrand of class C 1,1.

Proof. The assertion in (a) follows from [35, 25.5]. Noting 2.31, one sees that (b) is a consequence of
[35, 26.3]. Then the assertion in (c) directly follows from the positive 1-homogeneity of F and F ∗.

Claim 1: G|∂W and G∗|∂W ∗ are injective maps. Assume that G|∂W is not injective, i.e., that
there exist a, b ∈ ∂W such that a 6= b and G(a) = G(b). Then it follows from (c) that a and b
are linearly independent. Set u = b − a and define the map f : [0, 1] → Rn+1 by the formula
f(t) = F (a+tu), which is a strictly convex function on [0, 1] because a and b are linearly independent.
Then f ′(0) = G(a) • u and f ′(1) = G(b) • u, so f ′(0) = f ′(1) which contradicts strict convexity of f .
Therefore G|∂W is injective. In view of (b) and (c) we also have that G∗|∂W ∗ is injective.

For any w ∈ Rn+1 define gw : Rn+1 → R by the formula gw(u) = u • w for u ∈ Rn+1. Let
w ∈ Rn+1∼{0} and select u ∈ ∂W such that gw(u) = sup{gw(v) : v ∈ ∂W} = F ∗(w). Then
w = grad gw(u) ∈ Nor(∂W, u), whence we deduce that w = λG(u) for some λ ∈ R. Using (c) we infer
that

F ∗(w) = u • w = λu •G(u) = λF (u) = λ .

Henceforth, G(u)F ∗(w) = w and the uniqueness asserted in (d) is a consequence of the injectivity of
G|∂W proved in Claim 1. Noting that F ∗∗ = F and (b), the second part of (d) follows from its first
part by duality.

Let y ∈ Rn+1 ∼ {0}. It follows from (d) that there exists a unique u ∈ ∂W such that G(u) = y
F∗(y)

and there exists a unique v ∈ ∂W ∗ such that F (u) = u•v andG∗(v) = u
F (u) = u. Since F (u) = u•G(u)

by (c) and both G(u) and v belong to ∂W ∗, we conclude from the aforementioned uniqueness that
y

F∗(y) = G(u) = v. Therefore we get from the 0-homogeneity of G∗ that

(6)
y

F ∗(y)
= G(G∗(v)) = G(G∗(y/F ∗(y))) = G(G∗(y)).

By duality we also obtain

(7)
y

F (y)
= G∗(G(y)).

Now, noting that the inclusions ∂W ∗ ⊆ G[∂W ] and ∂W ⊆ G∗[∂W ∗] follow immediately from (d), one
may infer from the equalities in (6) and (7) that ∂W ∗ = G[∂W ] and ∂W = G∗[∂W ∗]. Henceforth,
(f) is proved and the statement in (e) follows from the 0-homogeneity of G claimed in (c).

Let x ∈ ∂W ∗. Since G∗(x) is an exterior normal to W ∗ at x, then G∗(x) = λn(W ∗, x) for some
λ > 0 and we employ (c), (e) and (f) to compute

x = G(G∗(x)) = G(λn(W ∗, x)) = G(n(W ∗, x)),

1 = F (G∗(x)) = λF (n(W ∗, x)).

Noting that im(n(W ∗, ·)) = Sn, we readily obtain the first parts of the statements in (g) and (h),
while the second parts follow, as usual, by duality.

We assume now that F is an elliptic integrand of class C 1,1. It follows that G|Sn is a bi-lipschitzian
homeomorphism. Henceforth, by (g) and (h), n(W ∗, ·) and G∗|∂W ∗ are Lipschitz maps. It follows
that F ∗ is of class C 1,1. Moreover, since n(W, ·) is a Lipschitz map, we infer from (g) that (G∗|Sn)−1

is Lipschitz and, consequently, F ∗ is elliptic.

2.33 Corollary. Assume F is an elliptic integrand of class C 1,1, r ∈ R is positive, W = UF∗(0, r),
η : ∂W → Rn+1 is given by η(z) = gradF (n(W, z)) for z ∈ ∂W . We have η(z) = z/r for z ∈ ∂W so
Dη(y)v = v/r for v ∈ Tan(∂W, y) and y ∈ ∂W ; hence, recalling 2.26 and 2.27 we see that

κF∂W,i(y, η(y)) = 1/r for y ∈ ∂W and i = 1, . . . , n .
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Now we prove a basic one-sided estimate for the anisotropic principal curvatures of a smooth
submanifold at the touching points with Wulff shapes.

2.34 Lemma. Assume F is an elliptic integrand of class C 2, Ω ⊆ Rn+1 is open, ∂Ω is a manifold
of class C 2, a ∈ Ω, r > 0, W = Rn+1∩{x : F ∗(x−a) < r}, W ⊆ Ω, b ∈ ∂Ω∩∂W , νΩ : ∂Ω→ Rn+1,
νΩ(z) = n(Ω, z) for z ∈ ∂Ω.

Then κF∂Ω,i(b, gradF (νΩ(b))) ≤ 1/r for i = 1, . . . , n.

Proof. Define νW : ∂W → Rn+1 by νW (z) = n(W, z) for z ∈ ∂W and set T = Tan(∂Ω, b) and
ν = νΩ(b). Since W ⊆ Ω we have T = Tan(∂W, b) and ν = νW (b); cf. 2.38(h).

Assume b = 0. If U ⊆ Rn+1 is an open neighbourhood of b and fΩ : T → R and fW : T → R are
functions of class C 2 such that

U ∩ {z : fΩ(T\z) < −ν • z} = U ∩ Ω

U ∩ {z : fW (T\z) < −ν • z} = U ∩W,

then the inclusion W ⊆ Ω implies fΩ(T\z) ≤ fW (T\z) for z ∈ U and D2fΩ(0)(u, u) ≤ D2fW (0)(u, u)
for all u ∈ T . We conclude that

(8) DνΩ(0)u • u = D2fΩ(0)(u, u) ≤ D2fW (0)(u, u) = DνW (0)u • u for u ∈ T .

Define the linear maps A,B,E ∈ Hom(T, T ) by the formulas

A = D(gradF )(ν)|T , B = DνΩ(0) , E = DνW (0) .

Since A = A∗ and Au • u > 0 for all nonzero u ∈ T , recalling 2.25, we find a self-adjoint and positive
map C ∈ Hom(T, T ) such that A = C◦C. Noting from 2.33 that A◦Eu = D(gradF ◦νW )(b)u = r−1u
for u ∈ T , it follows that

C ◦ E ◦ Cu = C−1 ◦A ◦ E ◦ Cu =
u

r
for u ∈ T .

Next, applying (8) with Cu in place of u, we get

C ◦B ◦ Cu • u = B(Cu) • (Cu) ≤ E(Cu) • (Cu) = C ◦ E ◦ Cu • u =
|u|2

r
for u ∈ T .

Finally, noting that C ◦B ◦ C is a self-adjoint map with the same eigenvalues of the map A ◦B and
A ◦B = D(gradF ◦ νΩ)(b)|T , we get the conclusion.

2.35 Remark. The idea of the proof of Lemma 2.34 is taken from [7, pp. 25-26].

Anisotropic nearest point projection

Here we introduce the anisotropic nearest point projection onto an arbitrary closed set and we prove
some basic properties.

2.36 Definition. Let F be a norm on Rn+1. Given A ⊆ Rn+1, we define the anisotropic distance
function to A as

δFA(x) = inf{F ∗(a− x) : a ∈ A} for every x ∈ Rn+1.

Moreover,
SF (A, r) = {x : δFA(x) = r} for r > 0.

2.37 Definition. Suppose A ⊆ Rn is closed and W is the set of all x ∈ Rn such that there exists
a unique a ∈ A with F ∗(x− a) = δFA(x). The anisotropic nearest point projection onto A is the map
ξFA : W → A characterised by the requirement

F ∗(x− ξFA(x)) = δFA(x) for x ∈W.

We also define νFA : W ∼A→ ∂BF∗(0, 1) and ψFA : W ∼A→ A× ∂BF∗(0, 1) by the formulas

νFA (z) = δFA(z)−1(z − ξFA(z)) and ψFA(z) = (ξFA(z),νFA (z)) for z ∈W ∼A .
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2.38 Lemma. Let F : Rn+1 → R be norm over Rn+1, G = gradF , G∗ = gradF ∗, A ⊆ Rn+1 be
closed. Then

(a) |δFA(y)− δFA(z)| ≤ F ∗(y − z) for y, z ∈ Rn+1.

(b) ξFA is continuous.

(c) Suppose x ∈ Rn+1∼A and a ∈ A are such that δFA(x) = F ∗(x− a). Then

δFA(a+ t(x− a)) = tF ∗(x− a) = tδFA(x) for 0 < t ≤ 1 .

In case F is a strictly convex norm of class C 1 then the following additional statements hold.

(d) Suppose x ∈ Rn+1∼A such that DδFA(x) exists. Then x ∈ dmn ξFA and

grad δFA(x) = G∗
(x− ξFA(x)

δFA(x)

)
, G(grad δFA(x)) =

x− ξFA(x)

δFA(x)
.

(e) The maps δFA | Int
(
dmn ξFA ∼A

)
and (δFA)2| Int

(
dmn ξFA

)
are continuously differentiable and〈

u, D(δFA)2(y)
〉

=
〈
u, D(F ∗)2(y − ξFA(y))

〉
for y ∈ Int

(
dmn ξFA

)
and u ∈ Rn+1 .

(f) L n+1(Rn+1∼dmn ξFA) = 0.

(g) Assume a ∈ A, u ∈ ∂BF∗(0, 1), t > 0, and δFA(a + tu) = t. Then a + su ∈ dmn ξFA and
ξFA(a+ su) = a for all 0 < s < t. In particular,

{s : ξFA(a+ su) = a} ⊆ {s : δFA(a+ su) = s} = Clos {s : ξFA(a+ su) = a} .

(h) Assume a ∈ A, x ∈ Rn+1, and δFA(x) = F ∗(x− a). Then

x− a ∈ G(Nor(A, a)) .

In particular, if n(A, a) 6= 0, then

nF (A, a) = νFA (x) =
x− a

F ∗(x− a)
.

Proof. We mimic parts of the proof of [17, 4.8].
Let y, z ∈ Rn+1, then

δFA(y) ≤ δFA(z) + F ∗(y − z) and δFA(z) ≤ δFA(y) + F ∗(y − z) ;

hence, claim (a) follows.
Assume that (b) does not hold. Then there are yi ∈ dmn ξFA for i ∈ N and ε > 0 such that

limi→∞ yi = y ∈ dmn ξFA but F ∗(ξFA(yi)− ξFA(y)) ≥ ε. Using (a) we get

F ∗(ξFA(yi)− y) ≤ δFA(y) + 2F ∗(yi − y) for i ∈ N ;

hence, the set {ξFA(yi) : i ∈ N} is a bounded subset of the closed set A and we may assume that
limi→∞ ξ

F
A(yi) = z ∈ A. Then

δFA(y) = lim
i→∞

δFA(yi) = lim
i→∞

F ∗(ξFA(yi)− yi) = F ∗(z − y) ;

hence, ξFA(y) = z which is incompatible with

F ∗(z − ξFA(y)) = lim
i→∞

F ∗(ξFA(yi)− ξFA(y)) ≥ ε .

Assume (c) does not hold. Then there are 0 < t < 1 and b ∈ A such that setting y = a+ t(x− a)
we get F ∗(y − b) < F ∗(y − a) and

F ∗(x− a) ≤ F ∗(x− b) ≤ F ∗(x− y) + F ∗(y − b) < F ∗(x− y) + F ∗(y − a) = F ∗(x− a)
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a contradiction.
Now we prove (d). Let a ∈ A be such that δFA(x) = F ∗(x− a). By (c) we have

δFA(x+ t(a− x)) = δFA(x)− tδFA(x) for 0 < t < 1 ,

which implies

(9) grad δFA(x) • x− a
δFA(x)

=
DδFA(x)(a− x)

−δFA(x)
= 1.

Noting that (9) and (a) imply that

1 = sup{DδFA(x)u : u ∈ Rn+1, F ∗(u) ≤ 1}
= sup{grad δFA(x) • u : u ∈ Rn+1, F ∗(u) ≤ 1}

= F ∗∗(grad δFA(x)) = F (grad δFA(x)),

we employ 2.32(d)(f) to conclude that

G(grad δFA(x)) =
x− a
δFA(x)

, grad δFA(x) = G∗
(x− ξFA(x)

δFA(x)

)
.

The formula for D(δFA)2 postulated in (e) follows from (d) arguing exactly as in [17, 4.8(5)] and
noting that

〈u, D(F ∗)2(y)〉 = 2F ∗(y)G∗(y) • u for u ∈ Rn+1.

Continuity of the derivatives of δFA |Rn+1∼A and (δFA)2 follows from the formulas and a reasoning
completely analogous to the proof of [17, 4.8(5)].

Item (f) is a consequence of (d) and the Rademacher theorem [18, 3.1.6].
For the proof of (g), firstly we notice that δFA(a + su) = s for 0 < s ≤ t by (c). Now assume

to the contrary, that there exist 0 < s < t and b ∈ A, b 6= a such that s = F ∗(a + su − a) =
F ∗(a + su − b) = δFA(a + su). Set p = a + su and q = a + tu. Clearly b 6= p + su since otherwise
t = δFA(q) ≤ F ∗(q− b) = F ∗(a+ tu− (a+ 2su)) = t−2s < t which is impossible. Therefore, q−a and
q− b are linearly independent and, since F ∗ is strictly convex by 2.32(b), we obtain the contradictory
estimate

t ≤ F ∗(q − b) < F ∗(q − p) + F ∗(p− b) = t− s+ s = t .

To prove (h) we observe that

UF∗(x, F ∗(x− a)) ∩A = ∅ ; hence, − n(BF∗(x, F ∗(x− a)), a) ∈ Nor(A, a) .

Indeed, otherwise there would exist v ∈ Tan(A, a), |v| = 1, such that v • n(BF∗(x, F ∗(x− a)), a) < 0
so there would be points yi ∈ A such that |yi − a| → 0 and (yi − a)/|yi − a| → v as i→∞ and then,
since F ∗ is of class C 1, we could find i ∈ N for which yi ∈ UF∗(x, F ∗(x − a)) ∩ A and this cannot
happen. Henceforth, employing 2.32(c)(g) we see that

x− a
F ∗(x− a)

= G(−n(BF∗(x, F ∗(x− a)), a)) ∈ G(Nor(A, a)) .

3 Totally umbilical hypersurfaces

In 2.33 we proved that ∂BF∗(0, r) has all F -principal curvatures equal to 1/r. In this section we
show that this condition actually characterises the manifold ∂BF∗(0, r).

3.1 Lemma. Suppose M is a connected submanifold of Rn+1 of class C 1,1 of dimensions n, η : M →
Rn+1 is Lipschitz, and κ : M → R is such that

Dη(z)(u) = κ(z)u for H n almost all z ∈M and all u ∈ Tan(M, z) .

Then κ is a constant function.
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Proof. Since M is connected it suffices to show the claim only locally. Let a ∈ M . We represent M
near a as the graph of some C 1,1 function f , i.e., we find p ∈ O∗(n+ 1, n), q ∈ O∗(n+ 1, 1), U ⊆ Rn

an open ball centred at p(a), and f : U → R of class C 1,1 such that2, setting L = p∗ + q∗ ◦ f , there
holds

a ∈ L[U ] ⊆M and q ◦ p∗ = 0 .

For each v ∈ Rn we define

γv : U → R by γv(x) = η(L(x)) • v .

Then

Dγv(x)u = Dη(L(x))(DL(x)u) • v = κ(L(x))(DL(x)u) • v
= κ(L(x))(p∗(u) + q∗(Df(x)u)) • v = κ(L(x))(u • p(v) + Df(x)u • q(v))

for L n almost all x ∈ U , u ∈ Rn, v ∈ Rn+1 .

Now, choose an orthonormal basis e1, . . . , en of Rn and set γi = γp∗(ei) for i = 1, 2, . . . , n. Since
q ◦ p∗ = 0 and p ◦ p∗ = 1Rn , we obtain

(10) Dγi(x)ej = κ(L(x))(ei • ej) = 0 and Dγi(x)ei = κ(L(x))

for L n almost all x ∈ U , i, j ∈ {1, 2, . . . , n}, and i 6= j .

Recall that U is an open ball centred at p(a). Define J = {(x − p(a)) • e1 : x ∈ U}. Since η
is Lipschitz we see that γ1, . . . , γn are absolutely continuous and deduce from (10) that there exist
Lipschitz functions a1, . . . , an : J → R such that

γi(x) = ai((x− p(a)) • ei)
and a′i((x− p(a)) • ei) = a′j((x− p(a)) • ej) = κ(L(x))

for L n almost all x ∈ U , i, j ∈ {1, 2, . . . , n} .

It follows that a′i is a constant function for i = 1, 2, . . . , n; hence, κ is also constant.

3.2 Lemma. Suppose F is an elliptic integrand of class C 1,1, M is a connected n-dimensional
submanifold of Rn+1 of class C 1,1 satisfying ClosM ∼M = ∅, ν : M → Rn+1 is Lipschitz and such
that ν(z) ∈ Nor(M, z) and |ν(z)| = 1, η : M → Rn+1 is defined by η(y) = gradF (ν(y)), and there
exists a scalar function κ : M → R such that

Dη(y)u = κ(y)u for H n almost all y ∈M and all u ∈ Tan(M,y) .

Then there exists λ ∈ R such that κ(y) = λ for y ∈ M and either λ = 0 and M is a hyperplane
in Rn+1 or λ 6= 0 and M = ∂BF (a, |λ|−1) for some a ∈ Rn+1.

Proof. In view of 3.1 we obtain λ ∈ R such that

Dη(z)u = λu for all H n almost all z ∈M and u ∈ Tan(M, z) .

Therefore, D(η − λidRn) = 0 and we obtain c ∈ Rn such that

η(z)− λz = c for all z ∈M .

If λ = 0, then η is constant and M must be a hyperplane because ClosM ∼M = ∅. In case λ 6= 0
we set a = −cλ−1 and ρ = |λ|−1. Then

F ∗(z − a) = ρF ∗(η(z)) = ρF ∗(gradF (ν(z))) = ρ for all z ∈M ,

by 2.32(e). Hence, M = ∂BF∗(a, ρ) because ClosM ∼M = ∅.

2As in [18, 1.7.4] we write O∗(n, k) for the set of α ∈ Hom(Rn,Rk) such that α∗ ◦α = (imα∗)\ and α ◦α∗ = idRk .
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4 The Lusin property for anisotropic (n,h)-sets

In this section F is an elliptic integrand of class C 2 and Ω ⊆ Rn+1 is open.

4.1 Definition (cf. [11, Definition 3.1]). We say that Z ⊆ Ω is an (n,h)-set with respect to F if Z is
relatively closed in Ω and for any open set N ⊆ Ω such that ∂N ∩Ω is smooth and Z ⊆ ClosN there
holds

F (n(N, p))hF (vn(∂N), p) • n(N, p) ≥ −h for p ∈ Z ∩ ∂N ∩ Ω .

In order to prove the main result of this section we need to prove a weak maximum principle for
(n, h) sets (see 4.8), where the barrier is not in general a smooth hypersurface but only a graph of
function that is a twice differentiable at the touching point with the (n, h) set. For this purpose, it
seems convenient to introduce a concept of pointwise anisotropic mean curvature for those sets which
are twice differentiable in the sense of the recent work [29].

4.2 Definition (cf. [29, §2.7]). Let k ∈ N, X, Y be normed vectorspaces, A ⊆ X, f : A → Y , and
a ∈ X. Then f is called pointwise differentiable of order k at a if there exists an open set U ⊆ X and
a function g : U → Y of class k such that

a ∈ U ⊆ A , f(a) = g(a) , and lim
x→a

|f(x)− g(x)|
|x− a|k

= 0 .

Whenever this is satisfied one defines also the pointwise differential of order i of f at a by

pt Dif(a) = Dig(a) for i ∈ {0, 1, . . . , k} .

4.3 Definition (cf. [29, §3.3]). Suppose k, n ∈ N and A ⊆ Rn+1. Then A is called pointwise
differentiable of order k at a if there exists a submanifold B of Rn+1 of class k such that a ∈ B,

lim
r↓0

r−1 sup |distance (·, A)− distance (·, B) |[B(a, r)] = 0 ,

and lim
r↓0

r−k sup distance (·, B) [A ∩B(a, r)] = 0 .

4.4 Definition (cf. [29, §3.12]). Suppose n, k ∈ N and A ⊆ Rn+1. Then pt DkA is the function
whose domain consists of pairs (a, S) such that a ∈ ClosA, A is pointwise differentiable of order k
at a, S ∈ G(n + 1,dim Tan(A, a)), and S⊥ ∩ Tan(A, a) = {0} and whose value at (a, S) equals the

unique φ ∈
⊙k

(Rn+1,Rn+1) such that whenever f : S → S⊥ is of class k and satisfies

lim
r↓0

r−1 sup |distance (·, A)− distance (·, B) |[B(a, r)] = 0 ,

and lim
r↓0

r−k sup distance (·, B) [A ∩B(a, r)] = 0 ,

where B = {x+ f(x) : x ∈ S}, then φ = Dk(f ◦ S\)(a).

4.5 Remark (cf. [29, §§3.14, 3.15]). Assume n, d, k ∈ N, S ∈ G(n+ 1, d), U ⊆ S is open, f : U → S⊥

is continuous, x ∈ U , A = {χ + f(χ) : χ ∈ S}. Then A is pointwise differentiable of order k
at a = x+ f(x) if and only if f is pointwise differentiable of order k at x. Moreover, pt DiA(a, S) =
pt Di(f ◦ S\)(x) for i ∈ {0, 1, . . . , k}.

4.6 Definition. Assume M ⊆ Rn+1 is pointwise differentiable of order 2 at a ∈ ClosM , T ∈
G(n + 1, n), f : T → T⊥ is pointwise differentiable of order 2 at 0, f(0) = 0, pt Df(0) = 0,
B = Rn+1 ∩ {a+ x+ f(x) : x ∈ T}, ν ∈ T⊥, |ν| = 1, and

lim
r↓0

r−1 sup |distance (·,M)− distance (·, B) |[B(a, r)] = 0 ,

and lim
r↓0

r−2 sup distance (·, B) [M ∩B(a, r)] = 0 .

We define the pointwise F -mean curvature vector of M at a, denoted pt hF (M,a), by the formula

−F (ν) pt hF (M,a) = ν tr
(
Ξ(D2F (ν)) ◦Ξ(pt D2(f ◦ T\)(0) • ν)

)
.

4.7 Remark. Note that the above definition does not depend on the choice of ν and f .
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4.8 Lemma. Suppose T ∈ G(n + 1, n), η ∈ T⊥, |η| = 1, f : T → T⊥ is pointwise differentiable
of order 2 at 0 and satisfies f(0) = 0 and pt Df(0) = 0, Σ = {x + f(x) : x ∈ T}, h ≥ 0, and Γ is
an (n, h) subset of Ω with respect to F such that 0 ∈ Γ and

Γ ∩ V ⊆
{
z : z • η ≤ f ◦ T\(z) • η

}
for some open neighbourhood V of 0. Then

F (η) pt hF (Σ, 0) • η ≥ −h.

Proof. We mimic the proof of [39, 3.4]. Fix ε > 0, define P,ψ : T → T⊥ by

P (x) = 1
2 〈(x, x), pt D2f(0)〉 for x ∈ T ,

ψ(x) =
(
P (x) • η + ε|x|2

)
η for x ∈ T ,

and set M = Rn ∩
{
x+ ψ(x) : x ∈ T

}
.

Note that since f is pointwise differentiable of order 2 at 0, it follows that

lim
x→0

|f(x)− P (x)|
|x|2

= 0 .

Hence, we choose r > 0 such that f(x) • η ≤ ψ(x) • η for x ∈ U(0, r) ∩ T . Since Γ is an (n, h) subset
of Ω, M is smooth and touches Γ at 0, and Γ∩U(0, r) ⊆ Rn+1{x : x • η ≤ ψ(x) • η}, we may use the
barrier principle [11, Proposition 3.1(iii)] to derive the estimate

F (η)hF (M, 0) • η ≥ −h .

Recall 4.6 to see that

−F (η) pt hF (M, 0) = η tr
(
Ξ(D2F (η)) ◦Ξ(D2(ψ ◦ T\)(0) • η)

)
.

Since
D2(ψ ◦ T\)(0)(u, v) • η = pt D2(f ◦ T\)(0)(u, v) • η + 2εu • T\v for u, v ∈ Rn

we see that
−F (0, η) pt hF (Σ, 0) = −F (η) pt hF (M, 0)− 2εη tr

(
Ξ(D2F (η))

)
.

Passing to the limit ε ↓ 0 we obtain the claim.

4.9 Definition. Suppose A ⊆ Rn+1 is a closed set. We say that N(A) satisfies the n dimensional
Lusin (N) condition in Ω if and only if

S ⊆ A ∩ Ω and H n(S) = 0 implies that H n(N(A)|S) = 0 .

4.10 Theorem. Suppose 0 ≤ h <∞, A is an (n, h) subset of Ω with respect to F .
Then N(A) satisfies the n dimensional Lusin (N) condition in Ω.

Proof. We modify the proof of [39, 3.8]. Let τ > λ = 2C(F )2(n− 1) + 1, where C(F ) > 0 is defined
in 2.14.

Claim 1: Assume r ∈ R satisfies 0 ≤ h < 1
2C(F )r , and x ∈ S(A, r)∩R(A)∩Aτ ∩ ξ−1

A (A) (see 2.4)

is such that Θn(H n S(A, r)∼Aτ , x) = 0, and the conclusions of [39, 2.9] are satisfied. Consider
an orthonormal basis v1, . . . , vn+1 in which the matrix of ap DνA(x) is diagonal and vn+1 = νA(x).
We introduce abbreviations

∂ijF (ν) = 〈(vi, vj), D2F (ν)〉 for i, j ∈ {1, 2, . . . , n+ 1} .

Then we have

n∑
i=1

∂iiF (νA(x))χA,i(x) ≤ h and ‖
∧
n

(
(H n S(A, r), n) ap DξA(x)

)
‖ > 0 .
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Noting that ξA|Aλ is approximately differentiable at x (since x ∈ R(A)), we employ [36, 3.7,
3.10(3)(6)] and [18, 3.2.16] to conclude that

χA,j(x) ≥ −(λ− 1)−1r−1 for j = 1, . . . , n ,(11)

ap DξA(x)|Tan(H n S(A, r), x) = (H n S(A, r), n) ap DξA(x).(12)

We choose f , V and T as in [39, 2.9] and 0 < s < r/2 such that U(x, s) ⊆ V . We assume ξA(x) = 0 ∈ Γ
and we notice that T\(x) = 0 and νA(x) = r−1x. Then we define g(ζ) = f(ζ)− x for ζ ∈ T ,

U = T\
(
U(x, s) ∩ {χ+ f(χ) : χ ∈ T}

)
, W = {y − x : y ∈ T−1

\ (U) ∩U(x, s)} .

It follows that W is an open neighbourhood of 0 and

(13) W ∩A ⊆ {z : z • νA(x) ≤ g(T\(z)) • νA(x)} .

Indeed, if (13) did not hold, then there would be y ∈ U(x, s) ∩ T−1
\ [U ] such that y − x ∈ A and

y • νA(x) > f(T\(y)) • νA(x); noting that

T\(y) + f(T\(y)) ∈ U(x, s) ∩ S(A, r) and |T\(y) + f(T\(y))− y| < r ,

we would conclude

|T\(y) + f(T\(y))− (y − x)| = r − (y − f(T\(y))) • νA(x) < r = δA(T\(y) + f(T\(y)))

which is a contradiction.
Since −χA,1(x), . . . ,−χA,n(x) are the eigenvalues of pt D2g(0)•νA(x) and 0 ∈ A, we may apply 4.8

to infer that

(14) ∂11F (νA(x))χA,1(x) + . . .+ ∂nnF (νA(x))χA,n(x) ≤ h

and combining (4), 2.14, (11), and (14) we get that for every j = 1, . . . , n

χA,j(x) ≤ C(F )∂jjF (νA(x))χA,j(x) ≤ C(F )h− C(F )

n∑
k 6=j,k=1

∂kkF (νA(x))χA,k(x)

≤ C(F )h− C(F )2(n− 1)

(λ− 1)r
<

1

r
.

From (12) and [36, 3.5] follows that 1 − rχA,j(x) are the eigenvalues of (H n S(A, r), n) ap DξA(x)
for j = 1, . . . , n; hence, we obtain∥∥∧

n

(
(H n S(A, r), n) ap DξA(x)

)∥∥ ≥ n∏
i=1

(
1− χA,i(x)r

)
> 0 .

Claim 2: For H n a.e. x ∈ S(A, r)∩Aτ ∩ ξ−1
A (A) and for L 1 a.e. 0 < r < 1

2C(F )h the conclusion

of Claim 1 holds.

This is immediate since
Θn(H n S(A, r)∼Aτ , x) = 0

for H n a.e. x ∈ S(A, r) ∩ Aτ and for every r > 0 by [36, 2.13(1)] and [18, 2.10.19(4)], and
H n(S(A, r)∼R(A)) = 0 for L 1 a.e. r > 0 by [36, 3.15].

Claim 3: N(A) satisfies the n dimensional Lusin (N) condition in Ω.

Let R ⊆ A be such that H n(R) = 0. For r > 0 it follows from [36, 3.16, 3.17(1), 4.3] that
ψA|Aτ ∩ S(A, r) is a bilipschitz homeomorphism and

ψA(ξ−1
A {x} ∩Aτ ∩ S(A, r)) ⊆ N(A, x) for x ∈ A .

Noting Claim 2 and [36, 3.10(1)], we can apply [39, 3.5, 3.6] with W , S, and f replaced by S(A, r) ∩
Aτ ∩ ξ−1

A (A), R, and ξA|S(A, r) ∩Aτ ∩ ξ−1
A (A) to infer that

H n(ξ−1
A (R) ∩ S(A, r) ∩Aτ ) = 0 for L 1 a.e. 0 < r <

1

2C(F )
h−1.

We notice that N(A)|R =
⋃
r>0ψA(S(A, r) ∩ Aτ ∩ ξ−1

A (R)) by [36, 4.3] and ψA(S(A, r) ∩ Aτ ) ⊆
ψA(S(A, s) ∩Aτ ) if s < r by [36, 3.17(2)]. Henceforth, it follows that

H n(N(A)|R) = 0 .
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The following weak maximum principle is a simple consequence of [11, Theorem 3.4].

4.11 Lemma. Assume

V ∈ Vn(Ω) , F (hF (V, x)) ≤ h for ‖V ‖ almost all x , ‖δFV ‖sing = 0 .

Then spt ‖V ‖ is an (n, h) subset of Ω with respect to F .

Proof. For every k ∈ N let Vk = k · V . Note that

u • v =
u

F (u)
• v

F ∗(v)
F (u)F ∗(v) ≤ F (u)F ∗(v) whenever u, v ∈ Rn+1 ;

thus, for k ∈ N and g ∈X (Ω), we compute

δFVk(g) = −
∫

hF (V, x) • g(x) d‖Vk‖(x) = −
∫

hF (V, x) • g(x)F (ν) dVk(x, ν)

≤ h
∫
F ∗(g(x))F (ν) dVk(x, ν).

Moreover, the area blowup set

(15) Z =
{
x ∈ Ω : lim sup

k→∞
‖Vk‖(B(x, r)) = +∞ for every r > 0

}
coincides with spt ‖V ‖; hence, [11, Theorem 3.4] yields that spt ‖V ‖ = Z is an (n, h) set.

4.12 Remark. Although the area blowup set Z is defined in [11, Theorem 3.4] as

Z =
{
x ∈ Clos Ω : lim sup

k→∞
‖Vk‖(B(x, r)) = +∞ for every r > 0},

the correct definition should be the one used in (15), in order to be consistent with [11, Definition
3.1] (requiring an (n, h) set being a relatively closed subset of Ω)

5 The anisotropic unit normal bundle

In this section we will need to work with a suitable anisotropic variant of the normal bundle for closed
sets. Let us introduce some definitions.

5.1 Definition. Suppose F is an elliptic integrand and A ⊆ Rn+1 is closed. The generalized
anisotropic unit normal bundle of A is defined as

NF (A) = (A× ∂BF∗(0, 1)) ∩ {(a, u) : δFA(a+ su) = s for some s > 0} .

5.2 Lemma. Suppose F is an elliptic integrand of class C 1,1 and A ⊆ Rn+1 is closed. Then

NF (A) = (idRn+1 × gradF )[N(A)] =
{

(a, gradF (u)) : (a, u) ∈ N(A)
}
.

In particular, NF (A) is a countably n rectifiable Borel subset of Rn+1 × ∂BF∗(0, 1).

Proof. Given (a, u) ∈ NF (A), there exists s > 0 such that

a ∈ A ∩ ∂UF∗(a+ su, s) and UF∗(a+ su, s) ∩A = ∅ .

Since ∂UF∗(a + su, s) is submanifold of Rn+1 of class C 1,1 (see 2.32(i)), there exists r > 0 and
x ∈ Rn+1 such that U(x, r) ⊆ UF∗(a+ su, s) and a ∈ ∂U(x, r). It follows that

n(U(x, r), a) = n(UF∗(a+ su, s), a) and (a,−n(UF∗(a+ su, s), a)) ∈ N(A) .

Since gradF (n(UF∗(0, 1), z)) = z for every z ∈ ∂UF∗(0, 1) (see 2.32(g)), it follows that

gradF
(
−n(UF∗(a+ su, s), a)

)
= − gradF

(
n(UF∗(a+ su, s), a)

)
= −a− (a+ su)

s
= u ,

i.e. (a, u) ∈ (idRn+1 × gradF )(N(A)).
The proof of the reverse inclusion (idRn+1×gradF )(N(A)) ⊆ NF (A) is completely analogous and

the postscript follows from [36, 4.3].
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5.3 Definition. Suppose Ω ⊆ Rn+1 is open, F is an elliptic integrand, and A ⊆ Rn+1 is closed.
We say that NF (A) satisfies the n dimensional Lusin (N) condition in Ω if and only if the following
implication holds,

S ⊆ A ∩ Ω, H n(S) = 0 =⇒ H n(NF (A)|S) = 0 .

5.4 Lemma. Assume F is an elliptic integrand of class C 1,1, Ω ⊆ Rn+1 is open, and A ⊆ Rn+1

is closed. Then N(A) satisfies the n dimensional Lusin (N) condition in Ω if and only if NF (A)
satisfies the n dimensional Lusin (N) condition in Ω.

Proof. Let S ⊆ A ∩ Ω be such that H n(S) = 0. Assume that either H n(NF (A)|S) = 0 or
H n(N(A)|S) = 0. Since the map idRn+1 × gradF is a bilipschitz homeomorphism (see 2.32(i)), we
deduce that H n(NF (A)|S) = H n((idRn+1 × gradF )(N(A)|S)) = H n(N(A)|S) = 0 as desired.

5.5 Definition. Let F be an elliptic integrand and A ⊆ Rn+1 be closed. The anisotropic reach
function rFA : NF (A)→ [0,∞] is defined by

rFA(a, u) = sup{s : δFA(a+ su) = s} for (a, u) ∈ NF (A) .

The anisotropic reach of A is defined by

reachF (A) = inf
{

sup{r : UF∗(a, r) ⊆ dmn ξFA} : a ∈ A
}

= sup
{
r : {x : δFA(x) < r} ⊆ dmn ξFA

}
.

5.6 Remark. Since δFA is Lipschitz continuous (see 2.32(a)), the function fs : NF (A) → R given by
fs(a, u) = min{δFA(a+su) , s} is also Lipschitz for any s ∈ R and rFA(a, u) = sup{fs(a, u) : s ∈ (0,∞)}.
Therefore rFA is lower-semicontinuous. In particular, rFA is a Borel function.

5.7 Lemma. Suppose F is an elliptic integrand of class C 1,1 and A is a closed submanifold of Rn+1

of class C 1 such that reachF A > 0. Then reachA > 0 and A is a submanifold of Rn+1 of class C 1,1.

Proof. Set W = BF∗(0, 1). First observe that ∂W is a submanifold of Rn+1 of class C 1,1 by 2.32(i).
Therefore, there exists ρ ∈ (0, 1) such that for each x ∈ ∂W we have

B(x+ ρn(W,x), ρ) ⊆W .

Assume reachF A = s > 0. Let z ∈ Rn+1 be such that δA(z) = r < ρs and find x ∈ A with
|z−x| = δA(z). SetB = B(z, r), u = −n(B, x), and w = x+r gradF (u)/ρ. Note that u ∈ Tan(A, x)⊥.
We have δFA(w) = r/ρ < s so w ∈ dmn ξFA and BF∗(w, r/ρ) ∩ A = {x} and B(z, r) ⊆ BF∗(w, r/ρ);
hence, z ∈ dmn ξA.

Since z was arbitrary we see that {x : δA(x) < ρs} ⊆ dmn ξA which shows that reachA ≥ ρs.
The second part of the conclusion readily follows from [17, 4.20].

5.8 Corollary. Suppose A ⊆ Rn+1 is closed and reachF A > 0. Then SF (A, r) is a submanifold
of Rn+1 of class C 1,1 of dimension n for every 0 < r < reachF A.

Proof. Since R = reachF A > 0, we have that Rn+1 ∩ {y : δFA(y) < R} ⊆ dmn ξFA . Therefore,
from 2.38(e)(d) it follows that δFA |Rn+1 ∩ {y : 0 < δFA(y) < R} is of class C 1 and

grad δFA(y) = gradF ∗
(x− ξFA(y)

δFA(y)

)
6= 0 for y ∈ Rn+1 with 0 < δFA(y) < R .

Consequently, for every 0 < r < R we see that SF (A, r) = (δFA)−1{r} is a closed submanifold of Ω of

class C 1 of dimension n. Moreover, we have reachF SF (A, r) ≥ min{R − r, r} > 0 so the conclusion
follows from 5.7.

We prove now the anisotropic version of [23, Theorem 3], whose proof is essentially along the same
lines.

5.9 Theorem. Assume F is an elliptic integrand of class C 1,1 and A ⊆ Rn+1 is closed. Let r > 0 and
suppose that for every H n measurable bounded function f : Rn+1 × ∂UF∗(0, 1) → R with compact
support there are numbers c1(f), . . . , cn+1(f) ∈ R such that

(16)

∫
Rn+1∼A

f ◦ψFA · 1{x:δFA(x)≤t} dL n+1 =

n+1∑
j=1

cj(f)tj for 0 < t < r .

Then reachF (A) ≥ r.
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Proof. Let S = {(x, u, t) : (x, u) ∈ NF (A), rFA(x, u) > t} and define φ : NF (A)× (0,∞)→ Rn+1

φ(x, u, t) = x+ tu for (x, u, t) ∈ NF (A)× (0,∞).

Claim 1: L n+1(dmn ξFA ∼(A ∪ φ(S))) = 0; hence,

L n+1(Rn+1∼(A ∪ φ(S))) = 0 .

Recalling 2.32(g) we see that

dmn ξFA ∼(A ∪ φ(S)) = φ({(x, u, t) : (x, u) ∈ NF (A), t = rFA(x, u) > 0}) .

Since φ is a locally Lipschitz map, it suffices to prove that

(17) H n+1({(x, u, t) : (x, u) ∈ K, M > t = rFA(x, u) > 0}) = 0

for all M ∈ N and K ⊆ NF (A) bounded. By 5.2 and [18, 3.2.29] we know that NF (A) is countably
n rectifiable. Hence, it suffices to prove (17) for all M ∈ N and K ⊆ A being n rectifiable. Assume
K and M are such. Employing [18, 3.2.23] we get

(18) H n+1(K × (0,M + 1)) = (M + 1)H n(K) <∞ .

Recall 5.6. For q ∈ R define the Borel set

Vq = {(x, u, t+ q) : (x, u) ∈ K, M > t = rFA(x, u) > 0}

and observe that

Vq ∩ Vp = ∅ whenever p 6= q , Vq ⊆ K × (0,M + 1) for 0 < q < 1 ,

and H n+1(Vq) = H n+1(V0) for any q ∈ R .

Therefore, if H n+1(V0) > 0, then H n+1(
⋃
{Vq : 0 < q < 1, q rational}) =∞ which contradicts (18).

Claim 2:

(19) L n+1
(
{z : 0 < δFA(z) ≤ r, rFA(ψFA(z)) < r}

)
= 0 .

In the following sequence of estimates we have to deal with the problem that NF (A) might not
have locally finite measure so µ = H n NF (A) might not be Radon and (µ, n) approximate Jacobian
of φ might not be well defined.

Recalling 2.32(g) one readily infers that φ|S is injective. Since NF (A) is Borel and countably
n rectifiable (see 5.2) we may find a partition

NF (A) =
⋃∞
i=1Ni

such that each Ni is a Borel n rectifiable set (in particular, H n(Ni) <∞) and the family {Ni : i ∈ N}
is disjointed; cf. [18, 2.1.6]. For i ∈ N w define

µi = H n Ni , Si = S ∩
(
Ni × (0,∞)

)
, and J =

∞∑
i=1

∥∥∧
n[(µi, n) ap Dφ]

∥∥1Si .
We apply Claim 1 and the coarea formula [18, 3.2.22] to find that

(20)

∫
Rn+1∼A

g dL n+1 =

∫
φ(S)

g dL n+1 =

∞∑
i=1

∫
φ(Si)

g dL n+1

=

∫ ∞
0

∞∑
i=1

∫
Ni

∥∥∧
n[(µi, n) ap Dφ(x, u, t)]

∥∥g(x+ tu)1{(w,v):rFA(w,v)>t}(x, u) dH n(x, u) dt

=

∫ ∞
0

J(x, u, t)g(x+ tu)1{(w,v):rFA(w,v)>t}(x, u) dH n(x, u) dt
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whenever g : Rn+1 → R is a non-negative Borel function with compact support.
Let B ⊆ Rn+1 be compact, 0 < τ < r and τ < t < r. We define

Nτ,B = NF (A) ∩ {(x, u) : rFA(x, u) ≤ τ, x ∈ B} ,

and we apply (16) to the function 1Nτ,B and (20) to the function g = (1Nτ,B ◦ ψFA) · 1{w:δFA(w)≤t} to
compute

(21)

n+1∑
j=1

cj(f)tj
(16)
=

∫
Rn+1∼A

1Nτ,B (ψFA(z))1{w:δFA(w)≤t}(z) dL n+1z

(20)
=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+su)1{(w,v):rFA(w,v)>s}(x, u)1Nτ,B (ψFA(x+su)) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+ su)1{(w,v):rFA(w,v)>s}(x, u)1Nτ,B (x, u) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{w:δFA(w)≤t}(x+ su)1{(w,v):s<rFA(w,v)≤τ}(x, u)1B(x) dH n(x, u) ds

=

∫ ∞
0

∫
NF (A)

J(x, u, s)1{(w,v):s<rFA(w,v)≤τ}(x, u)1B(x) dH n(x, u) ds ,

where the last equality follows because δFA(x + su) = s < rFA(x, u) ≤ τ < t, for every τ < t < r.

Whence, we deduce that
∑n+1
j=1 cj(f)tj is independent of t, for every τ < t < r. Therefore, this

polynomial is identically zero, a condition that implies, by the first equality in (21),

L n+1
(
{z : 0 < δFA(z) ≤ r, ψFA(z) ∈ Nτ,B}

)
= 0 .

Since the last equation holds for every 0 < τ < r and for every compact set B ⊆ Rn+1, we conclude
that (19) holds.

Claim 3: reachF (A) ≥ r.

Let z ∈ Rn+1∼A satisfy 0 < δFA(z) < r. Then there exists a sequence {zi : i ∈ N} ⊆ dmn ξFA
which converges to z and such that

0 < δFA(zi) ≤ r and rFA(ψFA(zi)) ≥ r .

Noting that (ξFA(zi)) is a bounded sequence, and passing to a subsequence if necessary, we find p ∈ A
and u ∈ ∂UF∗(0, 1) such that

ξFA(zi)→ p, νFA (zi)→ u .

In particular, z = p+ δFA(z)u. We find t ∈ R such that δFA(z) < t < r, and notice that

UF∗(ξFA(zi) + tνFA (zi), t) ∩A = ∅ for i ≥ 1 ; hence, UF∗(p+ tu, t) ∩A = ∅ .

This shows that δFA(p+ tu) = t > δFA(z); hence, 2.32(g) yields z ∈ dmn ξFA and ξFA(z) = p.

5.10 Remark. We point out that Claim 1 proves that the set of centers of maximal F -balls contained in
the complement of A has L n+1 measure zero. This set, in turn, contains the set of non-differentiability
points of the distance function δFA .

6 Heintze Karcher inequality

Here we prove our main theorem 6.5. Firstly we need the following basic facts on sets of finite
perimeter.

6.1 Remark. Suppose E ⊆ Rn+1 is of finite perimeter. We recall that the reduced boundary (see 2.23)
and the essential boundary (cf. [18, 4.5.12] and [4, Def. 3.60]) of E are H n almost the same (see [4,
Thm. 3.61]). Recalling [3, 4.7] we deduce that n(E, ·)|∂∗E : ∂∗E → Rn+1 equals the negative of the
generalised inner normal to E defined in [4, Def. 3.54].
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6.2 Lemma. Let E be a set of finite perimeter in Rn+1 such that

H n(Clos ∂∗E∼ ∂∗E) = 0 .

Then there exists an open set P ⊆ Rn+1 such that

L n+1((P ∼E) ∪ (E∼P )) = 0 and H n(∂P ∼ ∂∗P ) = 0 .

Proof. We define

P = Rn+1 ∩ {x : L n+1(U(x, ρ)∼E) = 0 for some ρ > 0} ,
Q = Rn+1 ∩ {x : L n+1(U(x, ρ) ∩ E) = 0 for some ρ > 0} ,

and we notice that they are open subsets of Rn+1. It follows from [18, 4.5.3] that

(22) spt H n ∂∗E = Rn+1∼(P ∪Q) .

Simple use of a Vitali covering lemma [18, 2.8.18] yields

L n+1(P ∼E) = 0 , L n+1(E ∩Q) = 0 ;

L n+1(E∼P ) = L n+1(E ∩Q) + L n+1(spt H n ∂∗E) = 0 .

From 6.1 and [18, 4.5.11] we deduce that ∂∗P = ∂∗E and, since ∂P ⊆ spt H n ∂∗E by (22),
we conclude

H n(∂P ∼ ∂∗P ) = 0 .

6.3 Remark. Let F be an elliptic integrand. Recalling [18, 5.1.1] we define Φ : Rn+1×
∧
nRn+1 → R,

a parametric integrand of degree n on Rn+1, by setting

Φ(z, ξ) = F (∗ξ) for z ∈ Rn+1 and ξ ∈
∧
nRn+1 ,

where ∗ denotes the Hodge star operator associated with the standard scalar product and orientation
on Rn+1; see [18, 1.7.8]. By 2.12 and [18, 5.1.2] we see that Φ is elliptic in the sense of [18, 5.1.2].
Moreover, if Φ§ is the nonparametric integrand associated with Φ (see [18, 5.1.9]) and Φ§z(ξ) = Φ§(z, ξ)
for (z, ξ) ∈ Rn+1 ×

∧
nRn+1, then D2Φ§z(ξ) is strongly elliptic in the sense of [18, 5.2.3] for all

(z, ξ) ∈ Rn+1 ×
∧
nRn+1 by [18, 5.2.17].

Let W ⊆ Rn be open and bounded, V ∈ Vn(W × R), p : Rn+1 → Rn and q : Rn+1 → R
be given by p(z1, . . . , zn+1) = (z1, . . . , zn) and q(z1, . . . , zn+1) = zn+1 for (z1, . . . , zn+1) ∈ Rn+1.
Assume f : Rn → R is of class C 1, and V is the unit density varifold associated to the graph of f ,
i.e., V = vn(im(p∗ + q∗ ◦ f)). Recalling [18, 5.1.9] we see that for any θ : W → R of class C 1 with
compact support there holds

δFV (q∗ ◦ θ ◦ p) =

∫ 〈
(0, θ(x),Dθ(x)), DΦ§(x, f(x),Df(x))

〉
dL n+1(x) .

Suppose α ∈ (0, 1), F is of class C 2,α, f is of class C 1,α, ‖δFV ‖ is a Radon measure, ‖δFV ‖sing = 0,
and hF (V, ·) : spt ‖V ‖ → Rn+1 is of class C 0,α. Define η : W → Rn+1 and H : W → R by the
formulas

η(x) = (q∗(1)− p∗(grad f(x))) · (1 + | grad f(x)|2)−1/2

and H(x) = −F (η(x)) · q ◦ hF (V, (p∗ + q∗ ◦ f)(x)) ·
√

1 + | grad f |2

for x ∈W . Note that η(x) is the unit normal vector to the graph of f at (p∗ + q∗ ◦ f)(x) for x ∈W .
Employing the area formula [18, 3.2.3] we get

δFV (q∗ ◦ θ ◦ p) = −
∫

spt ‖V ‖
θ(p(z)) · q(h(V, z)) · F (η(p(z)) dH n(z) =

∫
W

θ(x) ·H(x) dL n(x)

so that

(23)

∫
W

〈
(0, θ(x),Dθ(x)), DΦ§(x, f(x),Df(x))

〉
dL n+1(x) =

∫
W

θ(x) ·H(x) dL n(x)

for any θ ∈ D(W,R) .
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Since H is of class C 0,α and F of class C 2,α a slight modification of the proof of [18, 5.2.15] shows

that f is actually of class C 2,α2

.
To support the last claim recall the proof of [18, 5.2.15] with 2, n + 1, n, α2, W , Φ§ in place of

q, n, m, δ, U , G. Using all the symbols defined in [18, 5.2.15], for any integer ν such that ν > 1/d,
define Rν : B(b, ρ− d)→ Hom(Rn,R) so that

σ •Rν(x) =

∫ 1

0

σ(ei) ·H(x+ tei/ν) dL 1(t) for σ ∈ Hom(Rn,R) and x ∈ B(b, ρ− d) .

We remark that we intentionally refer to [18, 5.2.15] with α2 in place of δ, since in this case the
estimates for the δ-Hölder constants of Qν and Aν from page 556 can be adjusted by replacing the
supremum norm of D3G with the α-Hölder norm of D2G. Moreover, since in our case f satisfies (23)
rather than [18, 5.2.15(4)] the displayed equation in the middle of page 556 of [18], i.e.,∫

U(b,ρ−d)

〈
Dfν(x)�Dθ(x), Aν(x)

〉
dL n(x) = (Pν −Qν , Dθ)b,ρ−d

turns into ∫
U(b,ρ−d)

〈
Dfν(x)�Dθ(x), Aν(x)

〉
dL n(x) = (Pν −Qν −Rν , Dθ)b,ρ−d .

Clearly Rν is α-Hölder continuous with Hölder constant independent of ν so all the estimates from
the upper half of page 557 of [18] hold in the modified case with an additional term coming from Rν .
Thus, one can still use [18, 5.2.2] to conclude that Dif is of class C 1,α; hence, f is of class C 2,α.

6.4 Definition. Let A ⊆ Rn+1, k ∈ N, α ∈ [0, 1]. We say that x ∈ A is a C k,α-regular point of A
if there exists an open set W ⊆ Rn+1 such that x ∈ W and A ∩W is an n-dimensional submanifold
of class C k,α of Rn+1. The set of all C k,α regular points of A shall be called the C k,α regular part
of A. If α = 0 we omit it in the notation.

6.5 Theorem. Suppose

n ≥ 2 , c ∈ (0,∞) , α ∈ (0, 1) , F is an elliptic integrand of class C 2,α ,

E ⊆ Rn+1 is a set of finite perimeter , H n
(
Clos(∂∗E)∼ ∂∗E

)
= 0 ,

V = vn(∂∗E) ∈ RVn(Rn+1) , ‖δFV ‖sing = 0 ,

hF (V, ·)|K is of class C 0,α for each compact subset K of the C 1,α regular part of spt ‖V ‖ ,
0 < −hF (V, x) • n(E, x) ≤ c for ‖V ‖ almost all x .

Then

(24) L n+1(E) ≤ n

n+ 1

∫
∂∗E

1

|hF (V, x)|
dH n(x)

and equality holds if and only if here there exists a finite union Ω of disjoint open Wulff shapes with
radii not smaller than n/c such that L n+1

(
(Ω∼E) ∪ (E∼Ω)

)
= 0.

Proof. First we employ 6.2 to obtain an open set Ω ⊆ Rn+1 such that

L n+1
(
(Ω∼E) ∪ (E∼Ω)

)
= 0 and H n(∂Ω∼ ∂∗Ω) = 0 .

Directly from the definition (see [18, 4.5.12, 4.5.11]) it follows that the essential boundaries of Ω
and E coincide; hence, recalling 6.1, we obtain V = vn(∂∗Ω). We shall consider Ω instead of E in
the sequel. Let us define

H : spt ‖V ‖ → [0, c] so that H(x) = −hF (V, x) • n(E, x) for ‖V ‖ almost all x ,

C = Rn+1∼Ω , Q = ∂C ∩
{
x : x is a C 2-regular point of ∂C

}
.

Note that ∂∗C = ∂∗Ω, nF (C, ·) = −nF (Ω, ·), and H(x) = F (n(E, x))|hF (V, x)| for ‖V ‖ almost all x.

Claim 1: If x ∈ Q, y ∈ Ω, and ξFC (y) = x (in other words: y ∈ Ω ∩ (ξFC )−1(Q)), then

0 ≤ 1

n
H(x) ≤ −κFQ,1(ψFC (y)) ≤ δFC (y)−1 .
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We clearly have

UF∗(y, δFC (y)) ∩ C = ∅ and ∂UF∗(y, δFC (y)) ∩ C = {x} ;

hence, recalling 2.33, 2.27, 2.34 and that x is a C 2-regular point of ∂C, wee see that

1

n
H(x) ≤ −κFQ,1(ψFC (y)) ≤ −κF∂UF∗ (y,δFC (y)),1(ψFC (y)) = δFC (y)−1

and the claim is proven.

Claim 2: L n+1(Ω∼(ξFC )−1(Q)) = 0.

Note that F (hF (V, x)) = H(x)F (n(Ω, x)) for ‖V ‖ almost all x so applying Lemma 4.11 we
conclude that ∂Ω is an (n, cC(F )) subset of Rn+1. It follows by Theorem 4.10 that H n(N(∂Ω)|S) =
0 whenever S ⊆ Rn+1 satisfies H n(S) = 0. Combining this with Lemma 5.4, we deduce that
H n(NF (∂Ω)|S) = 0 whenever S ⊆ Rn+1 satisfies H n(S) = 0. Since NF (C) ⊆ NF (∂Ω), one readily
infers that H n(NF (C)|S) = 0 whenever S ⊆ Rn+1 satisfies H n(S) = 0. We also observe that
for ‖V ‖ almost all z there exists a radius r > 0 such that V satisfies all the assumption of [2, The
Regularity Theorem, pp. 27-28] inside U(z, r). This implies that for H n almost all z ∈ ∂C there
exists an open set G ⊂ Rn+1 with z ∈ G and such that ∂C∩G coincides with a rotated graph of some
function f : Rn → R of class C 1,α. However, employing 6.3, we see that f is actually of class C 2,α2

.
Therefore,

(25) H n(∂C ∼Q) = 0 and H n(NF (C)|(∂C ∼Q)) = 0 .

Since ψFC
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

)
⊆ N(C)|(∂C ∼Q) for every r > 0, we get

H n
(
ψFC
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

))
= 0 for every r > 0 .

Moreover, we have
(
ψFC |(SF (C, r) ∩ dmn ξFC ∼C)

)−1 ∈ C 1 and we deduce that

H n
(
SF (C, r) ∩ (dmn ξFC )∼(ξFC )−1(Q)

)
= 0 for every r > 0.

Combining 2.38(f)(a)(d) with the coarea formula [18, 3.2.22], we get

H n(SF (C, r)∼dmn ξFC ) = 0 for L 1 almost all r > 0 .

From 2.38(d) it follows that F (grad δFC (x)) = 1; hence, recalling 2.14, we obtain | grad δFC (x)| ≥ 1
C(F ) .

Using the coarea formula, we compute

1

C(F )
L n+1(Ω∼(ξFC )−1(Q))

≤
∫

Ω∼(ξFC)−1(Q)

| grad δFC (x)|dx =

∫ ∞
0

H n(SF (C, r)∼(ξFC )−1(Q)) dr = 0 .

In particular we get that L n+1(Ω∼(ξFC )−1(Q)) = 0, which settles Claim 2.
We define

Z = (Q×R) ∩
{

(x, t) : 0 < t ≤ −κFQ,1(x,nF (C, x))−1
}
,

ζ : Z → Rn+1 , ζ(x, t) = x+ tnF (C, x) .

For brevity of the notation we also set

Jn+1ζ(x, t) = ‖
∧
n+1(H n+1 Z, n+ 1) ap Dζ(x, t)‖ whenever (x, t) ∈ Z .

Claim 3: There holds

Jn+1ζ(x, t) = F (n(C, x))

n∏
i=1

(
1 + t κFQ,i(x,n

F (C, x))
)

for (x, t) ∈ Z .
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Let (x, t) ∈ Z and u = nF (C, x). Recalling 2.25 we find a basis τ1(x), . . . , τn(x) of Tan(Q, x)
consisting of eigenvectors of D(nF (C, ·))(x) and such that〈

τi(x), DnF (C, ·)(x)
〉

= κFQ,i(x, u) τi(x) for i ∈ {1, 2, . . . , n} ,
|τ1(x) ∧ · · · ∧ τn(x)| = 1 .

Noting that Tan(Z, (x, t)) = Tan(Q, x)×R,〈
(0, 1), Dζ(x, t)

〉
= nF (C, x) = gradF (n(C, x)) ,〈

(τi(x), 0), Dζ(x, t)
〉

= (1 + tκFQ,i(x, u)) τi(x) for i ∈ {1, . . . , n} ,

we compute

Jn+1ζ(x, t) =

n∏
i=1

(1 + tκFQ,i(x, u)) |nF (C, x) ∧ τ1(x) ∧ · · · ∧ τn(x)|

= gradF (n(C, x)) • n(C, x)

n∏
i=1

(1 + tκFQ,i(x, u)) |n(C, x) ∧ τ1(x) ∧ · · · ∧ τn(x)|

and Claim 3 follows from 2.32(c) and [18, 1.7.5].

Claim 4: Inequality (24) holds.

Employing Claim 1 and Claim 2 we see that L n+1(Ω∼ ζ(Z)) = 0. Hence, using the area formula
and then Claim 3, we get

(26) L n+1(Ω) ≤ L n+1(ζ(Z)) ≤
∫
ζ(Z)

H 0(ζ−1(y)) dL n+1(y) =

∫
Z

Jn+1ζ dH n+1

=

∫
Q

F (n(C, x))

∫ −1/κFQ,1(x,nF (C,x))

0

n∏
i=1

(
1 + tκFQ,i(x,n

F (C, x))
)

dtdH n(x) .

Using again Claim 1, then the standard inequality between the arithmetic and the geometric mean,
and finally 2.27, we obtain

(27) L n+1(Ω) ≤
∫
Q

F (n(C, x))

∫ −1/κFQ,1(x,nF (C,x))

0

( 1

n

n∑
i=1

(
1 + tκFQ,i(x,n

F (C, x))
))n

dtdH n(x)

≤
∫
Q

F (n(C, x))

∫ n/H(x)

0

(
1− tH(x)

n

)n
dtdH n(x)

=
n

n+ 1

∫
∂Ω

F (n(C, x))

H(x)
dH n(x) ,

which implies (24) by 2.18.
We assume now that equality holds in (24). Since the chains of inequalities (26) and (27) become

chains of equalities, we deduce that

L n+1(ζ(Z)∼Ω) = 0 ,(28)

H 0(ζ−1(y)) = 1 for L n+1 almost all y ∈ ζ(Z) ,(29)

−κFQ,j(z,nF (C, z))−1 =
n

H(z)
for H n almost all z ∈ Q and all j = 1, . . . , n .(30)

Our goal is to prove that Ω is a finite union of disjoint open Wulff shapes. We need two preliminary
claims, whence the conclusion will be easily deduced.

Claim 5: reachF C ≥ n/c.
Recall that H(z) ≤ c for H n almost all z ∈ ∂C. Let 0 < ρ < n/c and

Qρ = Q ∩ {z : ρ < −κFQ,1(z,nF (C, z))−1}.

It follows from (25), (30), and the fact that ∂C is an (n, cC(F )) subset of Rn+1, that

H n(∂C ∼Qρ) = 0 and H n(N(C)|∂C ∼Qρ) = 0 ;
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hence, we argue as in Claim 2 to conclude that L n+1(Ω∼ ξ−1
C (Qρ)) = 0. We define

CFρ = {z : δFC (z) ≤ ρ} and Zρ = Qρ × {t : 0 < t ≤ ρ}

and we notice that

ξ−1
C (Qρ) ∩ Ω ∩ CFρ ⊆ ζ(Zρ) ⊆ CFρ , L n+1(Ω ∩ CFρ ∼ ζ(Zρ)) = 0 .

Let f : Rn+1× ∂UF∗(0, 1)→ R be a Borel measurable function with compact support. Then we use
Claim 1, (28), (29), (30), and [36, 5.4] to compute∫

Ω∩CFρ
f(ψFC (y)) dL n+1(y) =

∫
Ω∩ζ(Zρ)

f(ψFC (y)) dL n+1(y)

=

∫
Ω∩ζ(Zρ)

∫
ζ−1(y)

f(z,nF (C, z)) dH 0(z) dL n+1(y)

=

∫
ζ(Zρ)

∫
ζ−1(y)

f(z,nF (C, z)) dH 0(z) dL n+1(y)

=

∫
Zρ

Jn+1ζ(z, t) f(z,nF (C, z)) dH n+1(z, t)

=

∫
Qρ

f(z,nF (C, z))F (n(C, z))

∫ ρ

0

(
1− t H(z)

n

)n
dtdH n(z)

=

∫
∂C

f(z,nF (C, z))F (n(C, z))

∫ ρ

0

(
1− t H(z)

n

)n
dtdH n(z)

=

n+1∑
i=1

ci(f)ρi,

where, for i = 1, . . . , n+ 1,

ci(f) =
(
− 1

n

)i−1 n!

i!(n− i+ 1)!

∫
∂C

f(z,nF (C, z))F (n(C, z))H(z)i−1 dH n(z) .

Therefore, reachF C ≥ n/c by Theorem 5.9.

Claim 6: Let 0 < r < n/c ≤ reachF C. Then SF (C, r) is a finite union of Wulff shapes of radii
not smaller than c−1(n− rc).

Since reachF C ≥ n/c we employ 5.8 to find that SF (C, r) is a submanifold of Rn+1 of dimension n
of class C 1,1. We define

Cr = Rn+1 ∩ {z : δFC (z) < r} .
Noting that nF (Cr, ·)|SF (C, r) = gradF ◦ n(Cr, ·)|SF (C, r) and gradF is a C 1 function, we deduce
that nF (Cr, ·)|SF (C, r) is a Lipschitzian vector field. We define

T = Q ∩
{
z : κFQ,j(z) = −H(z)/n for j = 1, . . . , n

}
,

and we notice that H n(∂C ∼T ) = 0 by (25) and (30); then the Lusin (N) condition implies

(31) H n(SF (C, r)∼(ξFC )−1(T )) = 0 .

Recalling 2.38(h) we see that

nF (Cr, z) =
z − ξFC (z)

r
= gradF

(
n(C, ξ(z))

)
= nF (C, ·) ◦ ξFC (z) whenever z ∈ SF (C, r) .

Let us set
σ = ξFC |SF (C, r) ∩ (ξFC )−1(T ) and ϕ = ζ|T × {r} .

Observe that if x ∈ T , then z = x + rnF (C, x) ∈ SF (C, r), ξFC (z) = x, and Tan(SF (C, r), z) =
Tan(T, x); hence, σ = ϕ−1 and we get〈

u, Dϕ(x)
〉

= (1− rH(x)/n)u for x ∈ T and u ∈ Tan(T, x) ,(32) 〈
u, Dσ(z)

〉
= (1− rH(ξFC (z))/n)−1u for z ∈ dmnσ and u ∈ Tan(T, ξFC (z)) ,

DnF (Cr, ·)(z)u =
−H(ξFC (z))

n− rH(ξFC (z))
u for H n a.a. z ∈ SF (C, r) and u ∈ Tan(T, ξFC (z)) .
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Employing 3.2 we conclude that SF (C, r) is a union of at most countably many boundaries of Wulff
shapes with radii not smaller than c−1(n− rc). Since E has finite perimeter we have H n(∂Ω) <∞
so using (32) and (31) we conclude that H n(SF (C, r)) < H n(∂∗Ω) <∞ and Claim 6 follows.

We are now ready to conclude the proof. We notice from [17, 4.20] that

∂C = {x : dim Nor(C, x) ≥ 1}

and by Lemma 5.2, we also get that

∂C = {x : dim NorF (C, x) ≥ 1} .

We claim that

ξFC (SF (C, r)) = ∂C for 0 < r < n/c .

Indeed, since 0 < r < reachF C, for every x ∈ ∂C there exists ν ∈ NorF (C, x) such that x + rν ∈
SF (C, r)∩dmn ξFC and consequently ξFC (x+rν) = x. We deduce that ∂C ⊆ ξFC (SF (C, r)). The reverse
inclusion is trivial.

Consider a connected component S1 of SF (C, r). By Claim 6 we obtain s ≥ n/c−r and z ∈ Rn+1

such that S1 = ∂BF∗(z, s). Observe that

SF (Rn+1∼BF∗(z, s+ r), r) = S1 ;

hence,
∂BF∗(z, s+ r) = ξFC (S1) ⊆ ∂C

and, using, e.g., the constancy theorem [18, 4.1.7], we deduce that UF∗(z, s + r) is a connected
component of Ω. Since S1 was chosen arbitrarily we see that Ω must be a finite union of open disjoint
Wulff shapes of radii at least n/c.

6.6 Remark. This theorem extends to sets of finite perimeter the analogous result for smooth bound-
aries in [22, Theorem 4].

We use now Theorem 6.5 to study the critical points of the anisotropic surface area for a given
volume.

6.7 Definition (cf. [3, 4.1]). A smooth function h : (−ε, ε)×Rn+1 → Rn+1 is called local variation
if and only if

(a) h(0, x) = x for every x ∈ Rn+1,

(b) h(t, ·) : Rn+1 → Rn+1 is a diffeomorphism for every t ∈ (−ε, ε),

(c) the set {x : h(t, x) 6= x for some t ∈ (−ε, ε)} has compact closure in Rn+1.

We set ht = h(t, ·) and ḣt(x) = limu→0 u
−1(ht+u(x)− ht(x)) for every (t, x) ∈ (−ε, ε)×Rn+1.

Given an integrand F we define the F -perimeter functional as

PF (E) =

∫
∂∗E

F (n(E, x)) dH nx

for every E ⊆ Rn+1 with finite perimeter, and the F -isoperimetric functional as

IF (E) =
PF (E)n+1

L n+1(E)n

for every E ⊆ Rn+1 with finite perimeter and finite volume.

6.8 Corollary. Let E ⊆ Rn+1 be a set of finite perimeter and finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0 .

If α ∈ (0, 1), F is an elliptic integrand of class C 2,α and for every local variation h it holds that

d

dt
IF (ht(E))

∣∣∣
t=0

= 0 ,

then there exists a finite union Ω of disjoint open Wulff shapes with equal radii such that

L n+1((Ω∼E) ∪ (E∼Ω)) = 0 .

26



Proof. Let h be a local variation and V = v(∂∗E). Define p(t) = PF (ht(E)) and v(t) = L n+1(ht(E))
for −ε < t < ε. We observe that

p′(0) = δFV (ḣ0) ,

v′(0) =

∫
E

div ḣ0 dL n+1 =

∫
∂∗E

ḣ0(x) • n(E, x) dH n(x) .

Noting that the derivative of the function pn+1

vn equals(p(t)
v(t)

)n[
(n+ 1)p′(t)− np(t)

v(t)
v′(t)

]
for −ε < t < ε ,

it follows that

(n+ 1)p′(0)− np(0)

v(0)
v′(0) = 0

and the arbitrariness of h implies that

‖δFV ‖sing = 0 and hF (V, x) = − n

n+ 1

PF (E)

L n+1(E)
n(E, x) .

It follows that the hypothesis of Theorem 6.5 and the equality in (24) are realized. Henceforth, the
conclusion follows from Theorem 6.5.

6.9 Corollary. Let E ⊆ Rn+1 be a set of finite perimeter and finite volume such that

H n(Clos(∂∗E)∼ ∂∗E) = 0 .

If α ∈ (0, 1), F is an elliptic integrand of class C 2,α, and for every local variation h

(33)

∫
∂∗E

ḣ0(x) • n(E, x) dH n(x) = 0 implies
d

dt
PF (ht(E))

∣∣∣
t=0

= 0 ,

then there exists a finite union Ω of disjoint open Wulff shapes with equal radii such that

L n+1((Ω∼E) ∪ (E∼Ω)) = 0 .

Proof. Let V = v(∂∗E). Given g ∈X (Rn+1) such that
∫
∂∗E

g(x)•n(E, x) dH n(x) = 0 and ε ∈ (0, 1)
define h : (−ε, ε) ×Rn+1 → Rn+1 by the formula h(t, x) = x + tg(x) and observe that h is a local
variation provided ε is small enough. Moreover, it satisfies

∫
∂∗E

ḣ0(x) • n(E, x) dH n(x) = 0; hence,
by (33), we deduce that

(34) δFV (g) = 0 whenever g ∈X (Rn+1) and

∫
∂∗E

g(x) • n(E, x) dH n(x) = 0 .

Given g1, g2 ∈X (Rn+1) such that
∫
∂∗E

gi(x) • n(E, x) dH n(x) 6= 0 for i ∈ {1, 2}, we define

g3 = g1 −
∫
∂∗E

g1(x) • n(E, x) dH n(x)∫
∂∗E

g2(x) • n(E, x) dH n(x)
g2

and observe that ∫
∂∗E

g3(x) • n(E, x) dH n(x) = 0 ;

hence, by (34), we get δFV (g3) = 0, which in turn reads∫
Dg1(x) •BF (ν) dV (x, ν)∫

∂∗E
g1(x) • n(E, x) dH n(x)

=

∫
Dg2(x) •BF (ν) dV (x, ν)∫

∂∗E
g2(x) • n(E, x) dH n(x)

.

In particular, there exists λ ∈ R such that∫
Dg(x) •BF (ν) dV (x, ν)∫

∂∗E
g(x) • n(E, x) dH n(x)

= λ for g ∈X (Rn+1) with

∫
∂∗E

g(x) • n(E, x) dH n(x) 6= 0 .

Hence, recalling Definition 2.18, the hypothesis of Theorem 6.5 and the equality in (24) are realized
as in the proof of 6.8. Theorem 6.5 provides the desired conclusion.
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