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Abstract

Given an elliptic integrand of class %%, we prove that finite unions of disjoint open Wulff
shapes with equal radii are the only volume-constrained critical points of the anisotropic surface
energy among all sets with finite perimeter and reduced boundary almost equal to its closure.

1 Introduction

Overview

The classical anisotropic isoperimetric problem (or Wulff problem) amounts to minimizing the ani-
sotropic boundary energy among all sets of finite perimeter with prescribed volume. For all positive
(continuous) integrands the solution is uniquely characterized up to translation by the Wulff shape,
as proved by Taylor in [42] and [43]. Alternative proofs can be found in [I9] 30 [5]. This isoperimetric
shape was constructed by Wulff in [44] and plays a central role in crystallography.

Instead of considering minima, a more subtle question asks to characterize critical points of the
anisotropic boundary energy with prescribed volume. For integrands of class %!, this is equivalent
to characterize sets of finite perimeter whose anisotropic mean curvature in the sense of varifolds is
constant. For all convex integrands in R?, Morgan proved in [32] that Wulff shapes are the only
critical points among all planar regions with boundary given by a closed and connected rectifiable
curve. To the best of our knowledge, the characterization in every dimension for smooth boundaries
has been conjectured for the first time by Giga in [20] and Morgan in [32]. For smooth elliptic
integrands, this has been positively answered in [21] for dimension 3, and in [22] for every dimension.
In particular, He, Li, Ma and Ge proved in [22] that if F' is a smooth elliptic integrand and 2 is
a set with smooth boundary and constant F-mean curvature (more generally constant higher order
F-mean curvature), then Q is a Wulff shape. This is the anisotropic counterpart of the celebrated
Alexandrov’s theorem [I]. Moreover, quantitative stability versions of this rigidity theorem have been
showed in [6] [15] [T4]. Related results for immersed smooth hypersurfaces are [33],[21], [26]; for piecewise
smooth hypersurfaces see [34) 25].

In the non-smooth setting, Maggi has conjectured in |28, Conjecture] the characterization of the
Wulff shapes among sets of finite perimeter:

Conjecture ([28]). For a positive convex integrand, Wulff shapes are the unique sets of finite perime-
ter and finite volume that are critical points of the anisotropic boundary energy at fized volume.

Since the integrand is assumed to be convex, but may fail to be ¢!, the notion of first variation and
critical points are suitably defined using the convexity in time of the functional along any prescribed
variational flow (see [28 p. 35-36]). Maggi specifies in [28] the significant interest from the physical
viewpoint for crystalline integrands. Moreover he points out that this conjecture is open even for
smooth elliptic anisotropic energies and among sets with Lipschitz boundaries, [28, p. 36].

In the full generality of sets of finite perimeter (and dimension greater than 2) the conjecture has
been solved so far only for the area functional by Delgadino and Maggi in [§]. In this important paper
[8], the authors prove that among sets of finite perimeter, finite unions of balls with equal radii are
the unique volume-constrained critical points of the isotropic surface area. They obtain this result
generalizing the argument of Montiel and Ros in [31] to sets of finite perimeter by means of the strong
maximum principle of Schétzle [40]. They also prove a weak version of the Heintze-Karcher inequality
for all sets of finite perimeter and, in a preliminary version of [§] (see [7]), they treat the special case



of local minimizers of anisotropic smooth energies, using an anisotropic strong maximum principle
proved in [I2]. However, the reliance on the strong maximum principles of [40] and [12] prevents the
extension of their method to treat critical points of anisotropic energies.

In the present paper we provide a positive answer to the aforementioned conjecture for elliptic inte-
grands of class > among finite perimeter sets with reduced boundary almost equal to their closure,
see Corollary[6.9] Our Theorem actually proves a stronger result, namely the following anisotropic
Heintze-Karcher inequality for sets of finite perimeter (we refer to Section 2| for the notation) and the
characterization of finite unions of disjoint open Wulff shapes as the unique configurations realizing
the equality case.

1.1 Theorem. Suppose a € (0,1), F is an elliptic integrand of class €*° (see[2.19), E C R"*! is
a set of finite perimeter such that

(1) A" (Clos(9" E) ~ 9*E) = 0,

the unit-density varifold associated with 0*E has first variation absolutely continuous with respect
to A"LO*E and its distributional mean curvature H with respect to the inner measure-theoretic
normal of E is bounded and positive. Furthermore we suppose that H is locally of class €%% on
the €% regular part of O*E.

Then

n+1 n F(H(E,(E)) n
) o (E)<n+1/8E A @),

Equality holds if and only if E coincides up to a set of £™ measure zero with a finite union of
disjoint open Wulff shapes with radii not smaller than n/||H || pe .

This theorem extends to the anisotropic setting an analogous result in the isotropic framework
given in [38]. The proof of the inequality is based on a suitable generalization of the Montiel-Ros
argument, that is different from the generalization given in [§]. In fact the core of our proof is based
on certain geometric properties of the generalized unit normal bundle (see [2.8]) of the support of a
varifold with bounded distributional mean curvature, whose proof does not depend on the Schatzle’s
maximum principle. It is also important to remark that, while for smooth varieties the analysis of
the equality case in easily follows from the well known rigidity of smooth (anisotropic) umbilical
surfaces in the Euclidean space (see [31] and [22]), in a singular setting such analysis is a delicate
issue.

The characterization of finite unions of Wulff shapes as the only volume-constrained critical points
of the anisotropic perimeter among sets with reduced boundary almost equal to its closure, see
Corollary follows as a simple corollary of our main theorem. Here we denote by Pr the F-
perimeter functional, i.e.

Pr(E) = F(n(E,x)) dot"(x)
O*E

for every E C R™! with finite perimeter.

1.2 Corollary (cf. . Suppose o € (0,1), F is an elliptic integrand of class €** and E C R"t!
is a finite perimeter set with finite volume such that

A (Clos(9* E) ~ 9" E) = 0.

If E is a volume-constrained critical point of Pr, then E is equivalent to a finite union of disjoint
open Wulff shapes.

It is worth to comment on the condition . By standard measure-theoretic results, see [I8]
2.10.19(4)], such condition always holds if E is a set of finite perimeter such that

(3) O (HA"LI*E,x) >0 for every x € Clos(0*E).

The density condition is always satisfied if F is a domain with Lipschitz boundary or if F is
either a local minimiser or an almost minimiser as considered in [7]. On the other hand it is not
known if this density condition holds for every set of finite perimeter E such that the unit-density
varifold v(0*E, 1) associated to the reduced boundary 0*E has constant anisotropic distributional



mean curvature. In the isotropic setting, this follows from the well known monotonicity formula.
However, no monotonicity formula is known for anisotropic energies. In view of these facts, condition
is a natural hypothesis in the context of anisotropic energies.

Finally we remark that we consider here €% (for 0 < a < 1) integrands to ensure that the regular
part of 0*F is a classical smooth hypersurface. In fact, employing the Allard’s regularity theory for
codimension 1 integral varifolds with bounded anisotropic mean curvature [2], one gets that the
regular part of 0*E is a €*-hypersurface. Assuming, as we did in our main theorem, that the
distributional mean curvature is C%®, it follows from the classical regularity theory of elliptic PDEs
that the regular part of 0*F is ¥*®. This is one of the several parts where the method employed
here conceptually differs from the method in [38], which instead is independent of Allard’s regularity
theory. This is due to the fact that some steps in [38] are based on the theory of curvature developed
in [36] and on the locality theorem of Schétzle in [41] and these items are currently not available in
the anisotropic setting. It is interesting to ask if they might be extended to the anisotropic setting,
in which case one expects that the results of the present paper might be generalized to all elliptic
integrands of class €2.

Method of proof

Suppose F is an elliptic integrand of class C?, F* is the conjugate of F (see [2.29) and BT (a,r) =
{z: F*(x —a) <r}. Let A CR"™ be a closed set and we define the anisotorpic distance function by

04 (z) = inf{F*(a — ) :a € A} for every € R""1.
The generalized anisotropic normal bundle of A is given by
NF(A) = (A x 0BT (0,1)) N {(a,u) : 65 (a + su) = s for some s > 0} .

The pillar of our proof is the following key geometric property of the generalized normal bundle
of the support of a varifold with bounded anisotropic mean curvature.

1.3 Theorem (cf. and. Suppose V is an n-dimensional varifold in R"*1 such that the F -
anisotropic first variation is absolutely continuous with respect to the weight measure ||V|| associated
to V and the F-anisotropic distributional mean curvature vector hp(V,-) is bounded in length.

Then the following Lusin (N) condition holds:

A" (N(spt |[V|) N {(a,u) :a € S}) =0
whenever S C spt ||V|| with 7™(S) = 0.

This theorem provides a fundamental control on the singular part of spt ||V||, that allows to get
integral inequalities. This will be the key to extend the Montiel-Ros argument to a singular setting.

We now explain the strategy to prove our main theorem (from now on the integrand F' is assumed
to be of class €% elliptic). Let V = v(9*E, 1) be the unit-density varifold associated to the essential
boundary of E. Firstly, we use[6.2]to replace the set E with an open set Q such that £"+((Q2~ E)U
(E~Q)) =0 and #7002~ 0*Q) = 0. Using Allard’s regularity theory for codimension 1 varifolds
with bounded anisotropic mean curvature [2], we deduce that /™ almost all of 9*(Q2 is €% regular.
On the €% regular part we can express the distributional anisotropic mean curvature vector hr (V)
as the trace of the anisotropic second fundamental form as in The main difficulty to obtain the
inequality is to prove that one can perform the anisotropic version of the integral estimates of
the Montiel-Ros argument only on the regular part of 0*F to get the conclusion. This very delicate
issue is resolved using Theorem We deal now with the equality case. Firstly we notice that
the principal curvatures of 9Q at z must all be equal to —n/H(z), for z in the regular part of 9.
If 00 was a regular hypersurface, then we could immediately conclude that 02 is equal to a Wulff
shape, because of the well known rigidity of umbilical surfaces. However there is no way to deduce
from the regularity theory that 02 has no singular part. Consequently, the fact that the regular
part of 90 is umbilical only implies that 92 is made of a countable collection of pieces of Wulff
shapes and of a singular set of J#™ measure zero. Therefore the global shape of 92 might be a
priori arbitrarily complicated. To solve this issue, we first provide a general criterion to prove that
a closed set has positive anisotropic reach (see , by means of an anisotropic Steiner formula, see
This result generalizes to the anisotropic setting a theorem of Heveling-Hug-Last in [23] and



it is of independent interest. Then we prove that a set F realizing the equality case in satisfies
the Steiner formula in . To this aim, we employ Theorem and consequently we deduce that
the anisotropic reach of C satisfies reach’ C' > n/||H||p~. This is a crucial information, since it
implies that the level-sets of the anisotropic distance function S¥'(C,r) are closed ¢'''!-hypersurfaces
for every 0 < r < n/||H||p=. Using once again we also obtain that S¥(C,r) are umbilical.
Hence, by we can conclude that S¥(C,r) are finite unions of boundaries of Wulff shapes of radii
not smaller than (n — r||H||p)/||H| L. We conclude that each connected component of € must be
a Wulff shape of radius at least n/||H||p~. Moreover, since the perimeter of 2 is finite, we also get
that there are at most finitely many connected components of 2.

Structure of the paper

In Section [2] after having recalled some background material, we provide some classical facts about
Wulff shapes and we study some basic properties of the anisotropic nearest point projection onto
an arbitrary closed set. In Section [3| we prove that the only totally umbilical closed and connected
hypersurface of class €' is the Wulff shape. In Section |4 we prove Theorem Actually we prove
this result in the more general class of anisotropic (n, h)-sets introduced in [I1], thus extending an
analogous result for isotropic (n, h) sets obtained in [39, 3.8-3.9]. In Section[5| we establish the general
criterion to prove that a closed set has positive reach by means of an anisotropic Steiner formula.
To conclude, in Section [6] we prove our main theorem and its corollary.

2 Preliminaries

Notation

The natural number n > 1 shall be fixed for the whole paper.

In principle, but with some exceptions explained below, we shall follow the notation of Federer
(see [I8, pp. 669 — 671]). The domain and the image of a map f are denoted by dmn f and im f.
The set-theoretic difference between two sets A and B is denoted by A ~ B. Whenever A C R"*+!
we denote by Int A and Clos A the interior and the closure of A4 in R*™. If T € G(n + 1,k),
then we write T} for the linear orthogonal projection of R™*! onto T. The symbol N stands for
the set of non-negative integers. We use standard abbreviations for intervals (a,b) = RN {t:a <
t < b} and [a,0) = RN{t : a <t < b}. We also employ the terminology introduced in [I8]
3.2.14] when dealing with rectifiable sets. Moreover, given a measure ¢ and a positive integer m
the notions of (¢, m) approximate tangent cone Tan" (¢, ), (¢, m) approximate differentiability and
(¢, m) approximate differential are used in agreement with [I8, 3.2.16]. The m-dimensional density
of a measure ¢ is denoted by @™ (¢,-), see [18, 2.10.19]. We also introduce the symbol S™ for the
unit n-dimensional sphere in R**!. If X C Y are sets, we write 1x : Y — R for the characteristic
function of the set X and idy : Y — Y for the identity function on Y.

Concerning varifolds and submanifolds of R" ™! we use the notation introduced in [3]. The space of
all m-dimensional varifolds on an open subset U of R"*! is denoted by V,,,(U). If M is a submanifold
of R"*1 of class 6, we write 2 (M) for compactly supported tangent vectorfields on M of class €*;
cf. [3, 2.5]. We say that M is a closed submanifold of R"*! if it is a submanifold of R"*! and a closed
(but not necessarily compact) subset of R"*!; in particular, 9M ~ M = &.

We also use the following convention. Whenever X, Y are normed vectorspaces, A C X, and
f: A=Y we write Df for the derivative of f that is a Hom(X,Y") valued function whose domain is
the set of points of differentiability of f. If Y = R and X is equipped with a scalar product, then we
write grad f for the X valued function characterised by

<u, Df(x)> =grad f(z)eu forx € dmnDf and u € X .

The unit normal bundle of a closed set

Let A C R™! be a closed set.

2.1 Definition. Given A C R™t! we define the distance function to A as

da(z) =inf{|zr —a|:a € A} for every z € R"T!,



Moreover,
S(A,r) ={x:04(x)=r} forr>O0.

2.2 Remark (cf. [36], 2.13]). If r > 0 then s#™(S(A,r) N K) < oo whenever K C R"™ is compact and
S(A,r) is countably (", n) rectifiable of class 2.

2.3 Definition (cf. [36] 3.1]). If U is the set of all z € R"™! such that there exists a unique a € A
with |z — a| = da(x), we define the nearest point projection onto A as the map &4 characterised by

the requirement
|z — €a(z)| = da(x) forxel.

We set U(A) = dmn &y ~ A. The functions v4 and 14 are defined by
va(z) =0a(2)7 (2 = €a(2)) and wha(z) = (€al2),va(2)),
whenever z € U(A).

2.4 Definition (cf. [36, 3.6, 3.8, 3.13]). We define the function p(4,-) setting
p(A,x) = sup{t: a(€a(x) + t(z — €a(x))) = tda(zx)} forz € U(A),

and we say that x € U(A) is a regular point of €4 if and only if €4 is approximately differentiable at
x with symmetric approximate differential and ap lim,_,, p(A,y) = p(A,z) > 1. The set of regular
points of €4 is denoted by R(A).
For 7 > 1 we define
A =UA)N{z: p(A,z) > T}.

2.5 Remark (cf. [36, 3.7]). The function p(A4,-) is upper semicontinuous and its image is contained
[1, o0].

2.6 Definition (cf. [36] 4.9]). Suppose z € R(A). Then xai1(z) < ... < xan(zr) denote the
eigenvalues of the symmetric linear map ap Dva(z)|{v : vewva(z) = 0}.

2.7 Remark. Notice that 52" (S(A,r)~ R(A)) =0 for £* a.e. r > 0 (cf. [36] 3.15]) and
Tan™(H"LS(A,r),z) = {v:vevs(z) =0}

for " a.e. z € S(A,r) and for £ a.e. r > 0, cf. [36] 3.12].

The functions x4, are the approximate principal curvatures of S(A,r) in the direction of v4(x).
In fact, as proved in [36] 3.12], they coincide with the eigenvalues of the approximate second-order
differential ap D2S(A, ) of S(A,r); cf. [37] for the general theory of higher order approximate differ-
entiability for sets.

2.8 Definition (cf. [36, 4.1], [24], §2.1]). The generalized unit normal bundle of A is defined as
N(A) = (AxS")N{(a,u) : 64(a+ su) = s for some s > 0}

and N(A,a) ={v: (a,v) € N(A)} for a € A.

2.9 Remark (cf. [36], 4.3]). The set N(A) is a countably n rectifiable Borel subset of R"*1 x S™.

Anisotropic mean curvature

Here we recall the notion of ellipticity for an integrand F' and the associated concept of F-mean
curvature vector both for varifolds and smooth varieties.

2.10 Definition. Let k € N, a € [0, 1]. By a (convez) integrand of class €* we mean a non-negative
(convex) function F : R — R such that F|R"T! ~{0} is of class €% and

FOw)=\F(v) forveR" and A e R

By an integrand we mean an integrand of class ¥°. Moreover, we say that a convex integrand is
strictly convex if

F(z+1y) < F(z)+ F(y) for all linearly independent z,y € R""!.
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2.11 Remark. Evidently strictly convex integrands correspond to strictly convex norms on R™*1!.

2.12 Definition (cf. [I8, 5.1.2] and [2], 3.1(4)]). We say that an integrand F' is elliptic if there exists
a number v > 0 such that the map R"™ > u — F(u) — 7|u| is convex. We call v the ellipticity
constant of F.

2.13 Remark (cf. [I8, 5.1.3]). Assume F is an integrand of class ¥*!. Then ellipticity of F with
ellipticity constant v > 0 is equivalent to the condition

[unol? v = (veu/lul)®

T = for u € dmnD?F, u # 0, v € R"!,
|ul Jul

4 ((v,v), D*F(u)) > v

In particular, if F is elliptic, € dmnD?F, |u| = 1, and v € span{u}*, then
((v,0), D*F(u)) > yJv|?,

which shows that F' is uniformly elliptic in the sense of [11l §2]. The interested reader can find a
more exhaustive discussion about ellipticity conditions (in general codimension) in [9, [16].

2.14 Definition. Assume F' is an elliptic integrand with ellipticity constant v > 0. We define
C(F) =sup({y~", sup F[S"]/inf F[S"]} U {|ID*F(v)|| : v € S*NdmnD?F}).

2.15 Remark. Let U C R™"! be open. For any T' € G(n + 1,n) we choose arbitrarily v(T) € T+
such that [v(T)| = 1. In the sequel we shall tacitly identify any V' € V,,(U) with a Radon measure V'
over U x R"*! such that

V(o) = %/a(m,u(T)) + (@, —v(T) dV(2,T) for a € COU,R).

Clearly, this definition does not depend on the choice of v(T).

2.16 Definition. Let U C R"*! be open, F be an integrand of class €, V € V,(U). We define
the first variation of V' with respect to F' by the formula

0rV(g) = /Dg(:c) e Bp(v)dV(z,v) forge Z(U),
where Br(v) € Hom(R"! R"*!) is given by

Br(v)u=FW)u—v-{u, DF(v)) for v,u € R"™ v#0.

2.17 Remark (cf. [2],[9, Appendix A],
ze R and g = Fli—op(t,)) € 2

13],[10]). If ¢ : R x R™™ — R™*! is smooth, ¢(0,z) = x for
R"™*1), then

—_—

g Pr(pV) =6rV(g),

t=0
where the functional ®p : V,,(U) — [0, 0] is defined as
Op(V) = /F(V) dV(z,v).

2.18 Definition (cf. [I1] §2]). Let Q@ C R"! be open, V € V,,(Q), F : R"™! — R be an integrand
of class €!. Assume that |6V is a Radon measure. Then

51V (g) = - / Br(V,2) o g() V() + / 16 (V,2) © 9(2) |V amg (2) for g € 2°(9),

where ||0FV ||sing is the singular part of ||§#V|| with respect to ||V, hp(V,-) is an R"*! valued
|V ||-integrable function, and ng(V,-) is an S™ valued |6V ||-integrable function.

For |V ||-a.e.  we define the F-mean curvature vector of V at x, denoted hg(V, z), by the formula
HF(‘/, l‘)

where V(#) is the probability measure on S™ coming from disintegration of V; see [3, §3.3].
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2.19 Definition. Define = : @2 R — Hom(R"" R"*1) to be the linear ma characterised by
(u, Z(A)) e v = A(u,v) for Ae O’R"! and u,v € R"*!,
2.20 Remark. In particular, if f: R"™! — R is twice differentiable at 2 € R"*!, then
E(D?f(z)) = D(grad f)(z) € Hom(R" ™, R""1).

2.21 Remark. Let G C R"*! be open, v1,...,v,41 be an orthonormal basis of R"*!, M be a
submanifold of G of dimension n of class €2, V = v,,(M) € V,,(G), x € M, v : G — R"*! be of
class ¢! and satisfy

v(y) =1, v(y) € Nor(M,y), and (v(y),Dv(y))=0 forye M.
In [I1], Proposition 2.1] the authors show that if F' is an elliptic integrand of class € then

n+1
—F(v(z))hp(V,z) = v(z) tr(D(grad F o v)(z)) = v(z) Z<(Du(x)vj,vj)7 D*F(v(z))).

j=1
2.22 Definition (cf. [I8] 4.5.5]). Let A C R"*! and b € R""!. We say that u is an exterior normal
of A atbif u € R" ! |u| =1,
O ("M Uz (r—b)eu>0}NAb =0,
and ©@"TH (" x: (x—b)eu<0}~Ab) =0.

We also set n(A, b) = w if u is the exterior normal of A at b and n(A4, b) = 0 if there exists no exterior
normal of A at b.

2.23 Definition (cf. [4, Def. 3.54]). Let A C R"™! be a set of finite perimeter and V = v,,41(A) €
V,+1(R™™1). Then [|6V]| is a Radon measure (cf. [3, 4.7]) and there exists ||§V || measurable function
n(V,-) with values in S™ as in [3| 4.3]. We define the reduced boundary of A, denoted 9* A, as the set
of points z € dmnn(V,-) for which

1
V|| B(z,r) >0 forr >0 and 1im7/ n(V,)d||§V| =n(V,x).
16V Bz, 7) 0 TBGT) o, M4V = (o)

2.24 Definition. Let £ C R™*! and z € R**!. We define
n"(E,z) = grad F(n(E,z)) ifn(E,z)#0 and n’(E,z)=0 ifn(E,z)=0.

2.25 Remark. Assume X is a Hilbert space, dimX = k € N, A, B € Hom(X, X) are self-adjoint
automorphisms of X, and A is positive definite. With the help of the (tiny) spectral theorem [27]
Chap. VIII, Thm. 4.3] we find a self-adjoint and positive definite map C' € Hom(X, X) such that
A= CoC. Next, we observe that E =C"'0oAoBoC = CoBoC( is self-adjoint. Employing again
the (tiny) spectral theorem we find an orthonormal basis v1,...,v; € X and real numbers A,..., Ag
such that Ev; = \v; for i € {1,2,...,k}. We obtain

Ao B(Cv;) =CoEv; =\Cv; forie{l,2,... k}

and we see that Cvy,...,Cuy is a basis of eigenvectors of A o B with eigenvalues Aq, ..., Ag.

In particular, if G, M, =, and v are as in F is an elliptic integrand, v = v(z) € dmnD?F,
and X = Tan(M, z), then the maps A = E(D?F(v(z))|X x X) and B = Dv(x)|X € Hom(X, X) are
self-adjoint and A is positive definite; hence, A o B has exactly n real eigenvalues.

Observe also that since F' is positively 1-homogeneous, grad F' is positively 0-homogeneous, i.e.,
grad F'(Av) = grad F(v) for A € (0,00) and v € dmn grad F'; hence,

(5) v € ker D(grad F)(v) for v € dmnD?F .

Since D2F(v(z)) € O?R™! is symmetric it follows that D(grad F)(v(z)) € Hom(R"t*, R"*+1) is
self-adjoint and we have

imD(grad F)(v(z)) = (ker D(grad F)(v(z))) +

so that D(grad F)(v(x))|X € Hom(X, X) by (5]). Seeing that also Dv(z)|X € Hom(X, X) we conclude

D(grad F ov)(x)|X € Hom(X, X).
1As in [I8} 1.10] the symbol 02 X denotes the vectorspace of bilinear maps of the type X x X — R.
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2.26 Definition. Let F be an elliptic integrand of class €', G C R™*! be open, M be a submanifold
of G of dimension n of class €11, v : G — R""! be Lipschitz continuous and such that |v(z)| = 1
and v(z) € Nor(M, z) for z € M, x € dmnDv, and v = grad F(v(z)). We define the F-principal
curvatures of M at (x,u)

/ﬁﬂyl(x,u) <... < /{f(},n(x,u)

to be the eigenvalues of the map D(grad F ov)(x)| Tan(M, z) € Hom(Tan(M, z), Tan(M, x)); cf.
2.27 Remark. 'V =v,(M) € V,,(G), then one may check using that

F(v(z))hp(V,2) = hp(V,2) = —v(x) 0 K, ).

Waulff shapes

Here we collect basic facts on Wulff shapes for readers convenience.
2.28 Definition. Let F : R"*! — R be a norm, € R"*! and r > 0. We define
Ul (z,r)={y: Fly—x)<r} and Bf(z,r)={y:F(ly—xz)<r}.
2.29 Definition. Let F : R®*! — R be a norm. Define the conjugate norm F* on R™*! by setting
F*(w) = sup{weu:uc R F(u) < 1}.
By a Wulff shape (of F') we mean any open ball with respect to the F* norm.
2.30 Remark. If F is a norm on R™*! then F* is a norm on R"*! and F = F**. Moreover,
F*(w) =sup{weu:uec R, F(u) =1}.

2.81 Remark. If f : R""1 — R is a convex function then, following [35, pag. 104], we define the
conjugate of f to be the convex function g : R**! — R given by

g(z) =sup{(zeu) — f(u) :u e R"™'} forz e R"'.

Let F : R""! — R be a 1-homogeneous function such that F~1{0} = {0} and set f = $F2.
Fix z € R"*! ~{0}. Whenever u € R""! satisfies F(u) = 1 define

pu(N) =z 0 (Au) — f(Au) = Az ou) — 3A* for \ER.
Note that ¢, is a quadratic polynomial having exactly one maximum
sup{pu(N) 1 A € R} = pu(z o u) = L(z 0 ).
Maximizing with respect to u € R"*! satisfying F(u) = 1 we see that
sup{(zou) — f(u) :u e R"™} = Lsup{(zeu)® :u e R"™ F(u) =1}.
Therefore, if F' is a norm, then the conjugate of %Fz equals %(F*)2

In the next lemma we summarize few facts about F and F*.

2.32 Lemma. Let F be a strictly convex norm, differentiable at each point of R" Tt ~{0}. Define
W =UF(0,1), W* =U"(0,1), G = grad F and G* = grad F*.
Then the following statements hold.

(a) F is continuously differentiable on R" T ~{0}.
(b) F* is strictly convexr norm and continuously differentiable on R"1 ~{0}.

(c) F(z) = x e G(x) and G(\x) = (\/|\))G(z) for A\ # 0 and x € R"*1 ~{0}. The same statement
holds if we replace F' and G with F* and G*.

(d) For every w € R"1~{0} there exists a unique u € OW such that F*(w) = u e w and
G(u)F*(w) = w. The same statement holds if we replace W, F* and G with W*, F and
G*.



(e) GIR" 1 ~{0}] = OW* and G*[R" ! ~{0}] = OW.
(f) GIOW s an injective map onto OW* with (G|OW)~! = G*|oW*.

(9) G|S™ is an injective map onto OW* with (G|S™)~! = n(W*,.); G*|S™ is an injective map onto
OW with (G*|S™)~! = n(W,-).

(h) n(W*,x2) = F(n(W*,z))G*(z) for x € OW* and n(W,z) = F*(n(W,x))G(z) for x € OW.
(i) If F is an elliptic integrand of class €, then F* is an elliptic integrand of class €41.

Proof. The assertion in [(a)| follows from [35, 25.5]. Noting one sees that [(b)]is a consequence of
[35, 26.3]. Then the assertion in directly follows from the positive 1-homogeneity of F' and F*.

Claim 1: G|OW and G*|OW™* are injective maps. Assume that G|OW is not injective, i.e., that
there exist a,b € OW such that @ # b and G(a) = G(b). Then it follows from that a and b
are linearly independent. Set u = b — a and define the map f : [0,1] — R"! by the formula
f(t) = F(a+tu), which is a strictly convex function on [0, 1] because a and b are linearly independent.
Then f'(0) = G(a) eu and f'(1) = G(b) e u, so f'(0) = f'(1) which contradicts strict convexity of f.
Therefore G|OW is injective. In view of@ and we also have that G*|0W™ is injective.

For any w € R"*! define g, : R"™* — R by the formula g, (u) = v e w for u € R""!. Let
w € R" ~{0} and select u € OW such that g,(u) = sup{gy(v) : v € OW} = F*(w). Then
w = grad g, (u) € Nor(OW,u), whence we deduce that w = AG(u) for some A € R. Using|(c)] we infer
that

F*(w)=uew=AueG(u) = AF(u) = A.

Henceforth, G(u)F*(w) = w and the uniqueness asserted in [(d)]is a consequence of the injectivity of
G|OW proved in Claim 1. Noting that F** = F and @ the second part of @ follows from its first

part by duality.
Let y € R"™ ~ {0}. It follows fromthat there exists a unique u € 9W such that G(u) = =5

and there exists a unique v € OW* such that F(u) = uev and G*(v) = 7y = - Since F(u) = ueG(u)
by and both G(u) and v belong to OW*, we conclude from the aforementioned uniqueness that
F*L(y) = G(u) = v. Therefore we get from the 0-homogeneity of G* that

(6) F*y(y) =G(G*(v)) = G(G™(y/F*(y))) = G(G"(y))-
By duality we also obtain

Yy _ *
(7) ) G*(G(y)).

Now, noting that the inclusions 9W* C G[OW] and OW C G*[dW*] follow immediately from [(d)] one
may infer from the equalities in (6]) and that OW* = G[OW] and OW = G*[0W*|. Henceforth,
is proved and the statement i follows from the 0-homogeneity of G claimed in

Let € OW™*. Since G*(x) is an exterior normal to W* at z, then G*(x) = An(W*, z) for some

A > 0 and we employ @ and to compute
z=G(G"(2)) = G(An(W",z)) = G(n(W", z)),
1=F(G*(z)) = \F(n(W*, z)).

Noting that im(n(W*,-)) = S™, we readily obtain the first parts of the statements in and
while the second parts follow, as usual, by duality.

We assume now that F is an elliptic integrand of class €11, Tt follows that G|S™ is a bi-lipschitzian
homeomorphism. Henceforth, by and n(W*,.) and G*|0W* are Lipschitz maps. It follows
that F* is of class €'!. Moreover, since n(W,-) is a Lipschitz map, we infer from that (G*|S™)~1
is Lipschitz and, consequently, F’* is elliptic.

O

2.33 Corollary. Assume F is an elliptic integrand of class €%, r € R is positive, W = UF " (0,r),
n: OW — R is given by n(z) = grad F(n(W, 2)) for = € OW. We have n(z) = z/r for z € OW so
Dn(y)v =v/r for v € Tan(OW,y) and y € OW; hence, recalling and we see that

/igwyi(y,n(y)) =1/r foryedW andi=1,...,n.
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Now we prove a basic one-sided estimate for the anisotropic principal curvatures of a smooth
submanifold at the touching points with Wulff shapes.

2.34 Lemma. Assume F is an elliptic integrand of class €2, @ C R™t! is open, OQ is a manifold
of class €%, a € Q, r >0, W =R""'n{x: F*(x—a) <r}, W CQ, bec INNOW, vg : 00 — R,
va(z) =n(Q, z) for z € 990.

Then lﬁlgﬂ,i(b, grad F(vq(b))) < 1/r fori=1,...,n.

Proof. Define vy : OW — R" by vy (2) = n(W,2) for 2 € OW and set T = Tan(9€,b) and
v = vgq(b). Since W C Q we have T' = Tan(90W, b) and v = vy (b); cf. [2.38(h)]

Assume b = 0. If U € R™*! is an open neighbourhood of b and fq : T — R and fir : T — R are
functions of class ¢’ such that

Un{z: fo(Tiz) < —vez} =UNQN

Un{z: fw(Tiz) < —vez}=UNW,

then the inclusion W C Q implies fo(T}2) < fw (Tyz) for 2 € U and D? fo(0)(u, u) < D? iy (0)(u, u)
for all uw € T. We conclude that

(8) Drg(0)u e u = D? fo (0)(u, u) < D? fyy (0)(u, u) = Dy (0)ueu for u e T.
Define the linear maps A, B, E € Hom(T',T) by the formulas
A=D(grad F)(v)|[T, B =Dvq(0), E =Dvryw(0).

Since A = A* and Au e u > 0 for all nonzero u € T, recalling [2.25] we find a self-adjoint and positive
map C' € Hom(T, T) such that A = C'oC. Noting from that Ao Eu = D(grad Fovy )(b)u = r~tu
for w € T, it follows that

COEOCu:C’_1voEoC’u:E forueT.
T

Next, applying with C'u in place of u, we get
2
CoBoCueu=B(Cu)e(Cu) <E(Cu)e(Cu)=CoFEoCueu= [ul” forueT.
r
Finally, noting that C' o B o C is a self-adjoint map with the same eigenvalues of the map A o B and
Ao B =D(grad F o vg)(b)|T, we get the conclusion. O

2.85 Remark. The idea of the proof of Lemma is taken from [7, pp. 25-26].

Anisotropic nearest point projection

Here we introduce the anisotropic nearest point projection onto an arbitrary closed set and we prove
some basic properties.

2.36 Definition. Let F be a norm on R*T!. Given A C R"™*!, we define the anisotropic distance
function to A as
04 (z) = inf{F*(a — ) :a € A} for every € R""1.

Moreover,
SE(Ar)={z:65(x)=r} forr>0.

2.37 Definition. Suppose A C R" is closed and W is the set of all x € R™ such that there exists
a unique a € A with F*(z — a) = % (z). The anisotropic nearest point projection onto A is the map
¢4 : W — A characterised by the requirement

F*(z — &5 () = 65 (x) forzeW.
We also define vf : W~ A — OB (0,1) and 9% : W~ A — A x 9B (0,1) by the formulas

vi(2) = 04(2) (2 — €4(2)) and l(2) = (€4(2).v4(2)) for z€ W~A.

10



2.38 Lemma. Let F : R — R be norm over R"*!', G = grad F, G* = grad F*, A C R™t! be
closed. Then

(a) 165 (y) = 04(2)] < F*(y — 2) for y,z € R*1.
(b) & is continuous.
(¢c) Suppose x € R""1 ~ A and a € A are such that 6% (z) = F*(z — a). Then
0i(a+t(x—a)=tF*(x —a) =té5(x) for0<t<1.
In case F is a strictly convex norm of class €' then the following additional statements hold.

(d) Suppose x € R"" ~ A such that D&% (z) exists. Then x € dmn&k and

x— €8 (x) x— &l (x)

e 34(0) = & () 5% (1)

). Glgradsf(x)) =

(e) The maps 8%|Int(dmn &’ ~A) and (65)?|Int(dmn&X) are continuously differentiable and
(u, D812 (y)) = (u, D(F*)*(y — €4(y))) for y € Int(dmn&f) and u € R™H',

(f) L (R ~dmn €5) = 0.

(9) Assume a € A, u € OBF (0,1), t > 0, and 6% (a + tu) = t. Then a + su € dmné&k and
¢4 (a+ su) =a for all 0 < s < t. In particular,

{s:&h(a+su)=a} C{s:0%(a+su)=s}=Clos{s:&(a+su)=a}.

(h) Assume a € A, v € R""Y, and 65 (x) = F*(z — a). Then
x —a € G(Nor(A4,a)) .
In particular, if n(A,a) # 0, then

n"(4,a) = vj(z) = m-

Proof. We mimic parts of the proof of [I7, 4.8].
Let y,z € R™"!, then
04 (y) S 04(2) + F*(y —2) and &}(2) < 84(y) + F(y —2);

hence, claim @ follows.
Assume that @ does not hold. Then there are y; € dmnék for i € N and € > 0 such that

lim; 00 y; = y € dmn &5 but F* (&5 (y;) — €5 (y)) > e. Using|(a)| we get
F*(&5(yi) —y) < 65 (y) +2F*(y; —y) forieN;

hence, the set {¢f(y;) : i € N} is a bounded subset of the closed set A and we may assume that
lim; o0 €5 (yi) = 2 € A. Then

3 (y) = lim &5 (y:) = lim F*(€4(vi) — ) = F*(2 = v);
hence, ££(y) = 2z which is incompatible with
Pz~ €5(0) = lim P*(€5 () - €50)) > <.

Assume does not hold. Then there are 0 < ¢t < 1 and b € A such that setting y = a + ¢t(x — a)
we get F*(y —b) < F*(y — a) and

F(z—a) < F*(z—b) < F*(x —y) + F*(y —b) < F*(x —y) + F*(y —a) = F*(z — )

11



a contradiction.
Now we prove Let a € A be such that 6% (z) = F*(x — a). By|(c)| we have

08 (x +t(a—x)) =084 (x) —té6(x) for0O<t<1,
which implies

r—a D&Y (z)(a— 1)

oL —ohw "

(9) grad 8% (2) o
Noting that @ and @ imply that

1 = sup{Dé&% (z)u : u € R™M F*(u) < 1}
= sup{grad 6% (z) eu:u € R" F*(u) <1}
= F**(grad 8} (z)) = F(grad 8} (x)),

we employ [2.32(d)}(f)| to conclude that

G(grad 8} () = %7 grad 8% (z) = G* (33;5(13:(;:))'

The formula for D(64)? postulated in follows from |(d)| arguing exactly as in [I7, 4.8(5)] and
noting that
(u, D(F*)*(y)) = 2F*(y)G*(y) u for u € R™*1.

Continuity of the derivatives of 6§ |R"*1 ~ A and (6%)? follows from the formulas and a reasoning
completely analogous to the proof of [I7], 4.8(5)].

Item [(f)| is a consequence of @ and the Rademacher theorem [18] 3.1.6].

For the proof of firstly we notice that % (a + su) = s for 0 < s < ¢ by |(c)l Now assume
to the contrary, that there exist 0 < s < ¢t and b € A, b # a such that s = F*(a + su — a) =
F*(a+ su—b) = 65 (a + su). Set p=a+ suand ¢ = a+ tu. Clearly b # p + su since otherwise
t=65(q) < F*(q—b) = F*(a+tu— (a+2su)) =t —2s < t which is impossible. Therefore, ¢ —a and
q — b are linearly independent and, since F'* is strictly convex by we obtain the contradictory
estimate

t<F*(q—b0)<F'(q—p)+F'(p—b)=t—s+s=t.

To prove we observe that
U™ (2, F*(x —a))NA=@; hence, —n(B (z,F*(z—a)),a)e Nor(A,a).

Indeed, otherwise there would exist v € Tan(A, a), |v| = 1, such that v e n(BY" (x, F*(z —a)),a) < 0
so there would be points y; € A such that |y; —a| — 0 and (y; — a)/|y; — a] = v as i — oo and then,
since F* is of class ¢!, we could find i € N for which y; € U (2, F*(x — a)) N A and this cannot

happen. Henceforth, employing [2.32(c)(g)| we see that
x—a

- = G(-nBF (z,F*(z —a)),a or(A,a)).
s = Glon(B (0. (o — a)).) € G(Nor(d.a) =

3 Totally umbilical hypersurfaces

In we proved that OBF(0,7) has all F-principal curvatures equal to 1/r. In this section we
show that this condition actually characterises the manifold 9B¥" (0, 7).

3.1 Lemma. Suppose M is a connected submanifold of R"*1 of class €1' of dimensionsn, n: M —
Rt is Lipschitz, and k : M — R is such that

Dn(z)(u) = k(2)u  for ™ almost all z € M and all v € Tan(M, z) .

Then k is a constant function.
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Proof. Since M is connected it suffices to show the claim only locally. Let a € M. We represent M
near a as the graph of some ¢! function f, i.e., we find p € O*(n+1,n), ¢ € O*(n+1,1), U CR"
an open ball centred at p(a), and f : U — R of class €'1'! such thatﬂ setting L = p* 4 ¢* o f, there
holds

ac€ LUICM and qop*=0.

For each v € R" we define
Y :U—=R by 7v(z)=n(L(x))ev.
Then
Dy, (z)u = Dn(L(x))(DL(x)u) @ v = k(L(x))(DL(x)u) e v

= K(L(2))(p*(u) + ¢"(Df(z)u)) e v = K(L(z))(u e p(v) + Df (z)u o q(v))
for #™ almost all z € U, u € R", v € R" 1,

Now, choose an orthonormal basis eg,...,e, of R™ and set v; = 7p«(e,) for i = 1,2,...,n. Since
gop* =0 and pop* = 1rn, we obtain

(10) Dyi(@)e; = w(L(x))(eiwe;) =0 and Dos(w)e; = w(L(x))
for £" almost all z € U, 4,5 € {1,2,...,n}, and i # j.

Recall that U is an open ball centred at p(a). Define J = {(z — p(a)) ®e; : x € U}. Since
is Lipschitz we see that ~1,...,7, are absolutely continuous and deduce from that there exist
Lipschitz functions ay,...,a, : J — R such that

(@) = ai((z — p(a)) @ €;)
and al((z — p(a)) » ) = @ (= — p(a)) » ¢;) = £(L(z))
for " almost all z € U, 4,5 € {1,2,...,n}.

It follows that a} is a constant function for ¢ = 1,2, ..., n; hence, & is also constant. O

3.2 Lemma. Suppose F is an elliptic integrand of class €Y', M is a connected n-dimensional
submanifold of R™"*! of class €' satisfying Clos M ~M = @, v: M — R"t! s Lipschitz and such
that v(z) € Nor(M, z) and |v(2)] =1, n: M — R is defined by n(y) = grad F(v(y)), and there
exists a scalar function k : M — R such that

Dn(y)u = k(y)u for ™ almost ally € M and all u € Tan(M,y).

Then there exists A € R such that k(y) = X for y € M and either A = 0 and M is a hyperplane
in R" or X\ # 0 and M = 0B* (a, |\|71) for some a € R"HL.

Proof. In view of [3.1] we obtain A € R such that
Dn(z)u = Au for all #™ almost all z € M and u € Tan(M, z) .
Therefore, D(n — Aidr») = 0 and we obtain ¢ € R™ such that
N(z) —Az=c forall ze M.

If A =0, then 7 is constant and M must be a hyperplane because Clos M ~ M = @. In case A # 0
we set a = —cA~! and p = |A\|~!. Then

F*(z—a)=pF*(n(z)) = pF*(grad F(v(2))) =p forall z€ M,

by [2.34(e)l Hence, M = OB (a, p) because Clos M ~ M = @. O

2As in [I8, 1.7.4] we write O*(n, k) for the set of « € Hom(R", R¥) such that a* o a = (im a*), and aoa™ =idgk.
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4 The Lusin property for anisotropic (n,h)-sets

In this section F is an elliptic integrand of class ¢? and 2 C R"*! is open.

4.1 Definition (cf. [I1l Definition 3.1]). We say that Z C Q is an (n,h)-set with respect to F if Z is
relatively closed in € and for any open set N C Q such that 9N N {2 is smooth and Z C Clos N there
holds

F(n(N,p))hp(v,(ON),p)en(N,p) > —h forpe ZNONNKQ.

In order to prove the main result of this section we need to prove a weak maximum principle for
(n, h) sets (see 4.8), where the barrier is not in general a smooth hypersurface but only a graph of
function that is a twice differentiable at the touching point with the (n,h) set. For this purpose, it
seems convenient to introduce a concept of pointwise anisotropic mean curvature for those sets which
are twice differentiable in the sense of the recent work [29].

4.2 Definition (cf. 29, §2.7]). Let kK € N, X, Y be normed vectorspaces, A C X, f: A — Y, and
a € X. Then f is called pointwise differentiable of order k at a if there exists an open set U C X and
a function g : U — Y of class k such that

aeUCA, fla)=ga), and lm /@ =9

z—a |z —alk

=0.
Whenever this is satisfied one defines also the pointwise differential of order i of f at a by
ptDif(a) = D'g(a) foric {0,1,...,k}.

4.3 Definition (cf. [29) §3.3]). Suppose k,n € N and A C R""!. Then A is called pointwise
differentiable of order k at a if there exists a submanifold B of R™t! of class k such that a € B,

liﬂ)lrfl sup | distance (-, A) — distance (-, B) |[B(a, )] =0,

and lig)l r~* sup distance (-, B) [ANB(a,r)] = 0.

4.4 Definition (cf. [29, §3.12]). Suppose n,k € N and A C R"*!. Then pt D¥A is the function
whose domain consists of pairs (a,S) such that a € Clos A, A is pointwise differentiable of order k
at a, S € G(n + 1,dim Tan(A4,a)), and S+ N Tan(A,a) = {0} and whose value at (a,S) equals the
unique ¢ € @k(R”H, R™"1) such that whenever f : S — S% is of class k and satisfies

h?ol 7~ sup | distance (-, A) — distance (-, B) |[B(a,7)] =0,

and liﬂ)lr*k sup distance (-, B) [AN B(a,r)] =0,

where B = {x + f(z) : & € S}, then ¢ = D¥(f 0 Sy)(a).

4.5 Remark (cf. [29] §§3.14, 3.15]). Assume n,d,k € N, S€ G(n+1,d), U C Sisopen, f: U — S+
is continuous, * € U, A = {x + f(x) : x € S}. Then A is pointwise differentiable of order k
at a = z + f(x) if and only if f is pointwise differentiable of order k at x. Moreover, pt D'A(a, S) =

pt Di(f o Sy)(x) for i € {0,1,...,k}.

4.6 Definition. Assume M C R™t! is pointwise differentiable of order 2 at a € Clos M, T €
G(n+ 1,n), f : T — T+ is pointwise differentiable of order 2 at 0, f(0) = 0, ptDf(0) = 0,
B=R""'Nn{a+z+ f(z):x€T},veTt |v|=1, and

lif[olrfl sup | distance (-, M) — distance (-, B) |[B(a,r)] =0,
and hﬁ} r~%sup distance (-, B) [M N B(a,r)] = 0.
We define the pointwise F-mean curvature vector of M at a, denoted pthp(M,a), by the formula
—F(v)pthp(M,a) = vtr(E(D*F(v)) o E(pt D*(f o T3)(0) e v)) .

4.7 Remark. Note that the above definition does not depend on the choice of v and f.
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4.8 Lemma. Suppose T € G(n+1,n), n € T+, [n| =1, f: T — T+ is pointwise differentiable
of order 2 at 0 and satisfies f(0) =0 and ptDf(0) =0, X ={z+ f(z) : 2 €T}, h >0, and T is
an (n, h) subset of Q with respect to F such that 0 € T and

PNV Cc{z:zen< foTy(z)en}
for some open neighbourhood V' of 0. Then
F(n)pthp(X,0)en > —h.
Proof. We mimic the proof of [39] 3.4]. Fix € > 0, define P+ : T — T~ by
P(z) = L{(x,x), ptD*f(0)) foraz €T,

1
2

Y(z) = (P(x)en+elzl*)n forzeT,

andset M =R"N{z+¢(x):ze€T}.

Note that since f is pointwise differentiable of order 2 at 0, it follows that

Hence, we choose 7 > 0 such that f(z)en < ¢ (x)en for z € U(0,r) NT. Since I is an (n, h) subset
of Q, M is smooth and touches IT' at 0, and T NU(0,7) C R""{z : z 7 < t)(x) en}, we may use the
barrier principle [11l Proposition 3.1(iii)] to derive the estimate

F(n)hp(M,0)en > —h.
Recall 1.6l to see that
—F(n) pt hp(M,0) = ntr(E(D*F(n)) o E(D?*(¢ 0 T;)(0) @ 7)) -

Since
D?(¢) 0 T;)(0)(u,v) @ p = pt D*(f o T;)(0)(u,v) @ + 2cu @ Tyv  for u,v € R"

we see that
—F(0,n)pthp(X,0) = —F(n) pthp(M,0) — 2entr(E(D*F(n))) .

Passing to the limit € | 0 we obtain the claim. O

4.9 Definition. Suppose A C R"! is a closed set. We say that N(A) satisfies the n dimensional
Lusin (N) condition in € if and only if

SCANQ and 7(S)=0 impliesthat " (N(A)|S)=0.

4.10 Theorem. Suppose 0 < h < 0o, A is an (n,h) subset of Q with respect to F.
Then N(A) satisfies the n dimensional Lusin (N) condition in Q.

Proof. We modify the proof of [39] 3.8]. Let 7 > X\ = 2C(F)?(n — 1) + 1, where C(F) > 0 is defined
in 214

Claim 1: Assume r € R satisfies 0 < h < m, and x € S(A,r)NR(A)NA, NELH(A) (see
is such that O™ ("L S(A,r)~A,,x) =0, and the conclusions of [39, 2.9] are satisfied. Consider

an orthonormal basis vy, ..., vny1 tn which the matriz of ap Dva(z) is diagonal and v,y = va(x).
We introduce abbreviations

0i; F(v) = ((vi,v5), D?F(v)) fori,j€{1,2,....,n+1}.

Then we have

n

Z@iiF(VA(x))XAJ(x) <h and ||An((%"LS(A,T),n) apDEA(J:))H >0.

=1
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Noting that €4|A) is approximately differentiable at x (since z € R(A)), we employ [36, 3.7,
3.10(3)(6)] and [18] 3.2.16] to conclude that

(11) xaj(x)>—-A=1)"t"t forj=1,...,n,
(12) ap D€ (z)| Tan(s"LS(A,r),x) = (H"LS(A,r),n)apDE4(x).

We choose f, V and T as in [39] 2.9] and 0 < s < r/2 such that U(z,s) C V. Weassume €4(z) =0€ T
and we notice that Tj(x) = 0 and v4(z) = r~'z. Then we define g(¢) = f(¢) — x for ( € T,

U=T,(U(z,s)N{x+fx): x€T}), W={y—z:ye TH_I(U) NU(z,s)}.
It follows that W is an open neighbourhood of 0 and
(13) WNAC{z:zevy(z) < g(Ty(z)) eva(x)}.

Indeed, if did not hold, then there would be y € U(z,s) N Thfl[U] such that y — 2 € A and
yova(zx) > f(Ty(y)) @ va(z); noting that

Ty(y) + f(Ty(y)) € Ulz,s) N S(A,r) and |Ti(y) + f(Th(y) —yl <7,
we would conclude
ITy(y) + f(Th(y) — (y — )| =7 — (y — [(Th(y)) e va(x) <7 =da(Ti(y) + [(T4(y)))

which is a contradiction.

Since —x4,1(x), ..., —xa,n(z) are the eigenvalues of pt D?g(0)er4(z) and 0 € A, we may apply
to infer that
(14) O F(wa(z)xai(@)+...+ OpnF(wa(z))xan(z) <h

and combining (4], (1), and we get that for every j=1,....n

Xa,j(x) < C(F)0;;F(va(z))xa,;(z) < C(F) Z OerF (va(z))xar(z)
k#j,k=1
C(F*n—-1) 1

From and [36], 3.5] follows that 1 — rx4 ;(x) are the eigenvalues of (J#"LS(A,r),n)apDE€a(x)
for j =1,...,n; hence, we obtain

A, (7 LS(A,7),n) ap D€a(x H 1—xa(z)r) >0.

Claim 2: For #" a.e. x € S(A,7)N A, NELN(A) and for £ ae. 0 <r < the conclusion

of Claim 1 holds.

This is immediate since

1
2C(F)h

" (AL S(A,r)~ A z) =0

for S™ ae. x € S(A,r) N A; and for every » > 0 by [36] 2.13(1)] and [I8, 2.10.19(4)], and
A (S(A, 1)~ R(A)) =0 for £ a.e. r > 0 by [36, 3.15].

Claim 3: N(A) satisfies the n dimensional Lusin (N) condition in ).

Let R C A be such that ##"(R) = 0. For r > 0 it follows from [36, 3.16, 3.17(1), 4.3] that
PalA; NS(A,r) is a bilipschitz homeomorphism and

a3 {2} N A, NS(A,7) CN(A,z) forzecA.
Noting Claim 2 and [36], 3.10(1)], we can apply [39, 3.5, 3.6] with W, S, and f replaced by S(A4,r)N
A, NELN(A), R, and €4]S(A,r) N A, N€,1(A) to infer that

ht.

mie—1 o 1 1
H(EL(R)NS(A,r)NA)=0 forZ a.e.0<r<20(F)

We notice that N(A)|R = U, ¥a(S(4,7) N A, N €, (R)) by [36, 4.3] and 4(S(A,r) N A;) C
Pa(S(A,s)NAL) if s <r by [36] 3.17(2)]. Henceforth, it follows that

H"(N(A)|R) = 0. O
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The following weak maximum principle is a simple consequence of [IT, Theorem 3.4].

4.11 Lemma. Assume

VeV,(Q), Fhp(V,z))<h for|V| almostallz, ||6rV|sing=0.
Then spt |V is an (n, h) subset of Q with respect to F.
Proof. For every k € Nlet Vy, =k - V. Note that

F?u) o F*L(U)F(u)F*(v) < F(u)F*(v) whenever u,v € R"";

uev =
thus, for k € N and g € 2°(Q2), we compute
5rVilg) = — / Bp(V,2) o g(z) d|[Vill(z) = — / hi(V,2) o g(x)F(v) dVi(z, )

< h/F*(g(m))F(y) AVi(z, ).
Moreover, the area blowup set

(15) Z ={z € Q:limsup | Vi||(B(z,r)) = +o00 for every r > 0}
k— o0

coincides with spt ||V||; hence, [I1, Theorem 3.4] yields that spt ||V| = Z is an (n, h) set. O
4.12 Remark. Although the area blowup set Z is defined in [I1, Theorem 3.4] as
Z = {z € ClosQ : limsup ||V;||(B(z, 7)) = +oo for every r > 0},
k—o0

the correct definition should be the one used in (15), in order to be consistent with [II, Definition
3.1] (requiring an (n, h) set being a relatively closed subset of Q)

5 The anisotropic unit normal bundle

In this section we will need to work with a suitable anisotropic variant of the normal bundle for closed
sets. Let us introduce some definitions.

5.1 Definition. Suppose F is an elliptic integrand and A C R™*! is closed. The generalized
anisotropic unit normal bundle of A is defined as

NF(A) = (A x 0BT (0,1)) N {(a,u) : 65 (a + su) = s for some s > 0} .
5.2 Lemma. Suppose F is an elliptic integrand of class €V' and A C R"*! is closed. Then
NF(A) = (idrn+1 x grad F)[N(A)] = {(a,grad F(u)) : (a,u) € N(A)}.
In particular, N¥(A) is a countably n rectifiable Borel subset of R*1 x 0B (0,1).
Proof. Given (a,u) € NT'(A), there exists s > 0 such that
a€ ANOUT (a+su,s) and U (a+su,s)NA=2.

Since QU (a + su, s) is submanifold of R™*! of class €%' (see [2.31)), there exists r > 0 and
x € R™! such that U(z,r) € U (a + su, s) and a € OU(z,r). Tt follows that

n(U(z,7),a) =n(U" (a+su,s),a) and (a,—n(UT (a+ su,s),a)) € N(A).
Since grad F(n(U*"(0,1), 2)) = 2 for every z € 9U (0,1) (see [2.3X(g)), it follows that

grad F(—n(U*" (a + su, s),a)) = — grad F (n(U" (a + su, s),a)) = _a—(atsu) _ u,
s
ie. (a,u) € (idgn+1 x grad F)(N(A)).
The proof of the reverse inclusion (idgn+1 x grad F)(N(A)) € N¥(A) is completely analogous and
the postscript follows from [36] 4.3]. O
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5.3 Definition. Suppose Q C R"'! is open, F is an elliptic integrand, and A C R"*! is closed.
We say that N'(A) satisfies the n dimensional Lusin (N) condition in ( if and only if the following
implication holds,

SCANQ, #"(S)=0 = H#"(NF(A)S)=0.

5.4 Lemma. Assume F is an elliptic integrand of class €', Q C R™! is open, and A C R"t!
is closed. Then N(A) satisfies the n dimensional Lusin (N) condition in Q if and only if N¥(A)
satisfies the n dimensional Lusin (N) condition in (.

Proof. Let S C AN Q be such that #"(S) = 0. Assume that either J#"(N¥(A)|S) = 0 or
A" (N(A)|S) = 0. Since the map idrn+: X grad F' is a bilipschitz homeomorphism (see [2.32(i)]), we
deduce that 7#"(NF(A)|S) = s ((idgn+1 x grad F)(N(A)|S)) = #"(N(A)|S) = 0 as desired. [

5.5 Definition. Let F be an elliptic integrand and A € R"*! be closed. The anisotropic reach
function r& : N¥(A) — [0, ] is defined by

rh(a,u) = sup{s : 6% (a + su) = s} for (a,u) € NF(A).
The anisotropic reach of A is defined by
reach’ (4) = inf{sup{r : U™ (a,7) Cdmnél} 1 a e A} =sup{r:{z:6%(z) <r} Cdmng&f}.

5.6 Remark. Since 8% is Lipschitz continuous (see [2.3%(a))), the function fs : N¥(A) — R given by
fs(a,u) = min{d% (a+su), s} is also Lipschitz for any s € R and rf (a,u) = sup{fs(a,u) : s € (0,00)}.

Therefore 7% is lower-semicontinuous. In particular, r4 is a Borel function.

5.7 Lemma. Suppose F is an elliptic integrand of class €% and A is a closed submanifold of R"t!
of class € such that reach™ A > 0. Then reach A > 0 and A is a submanifold of R"*1 of class €1'.

Proof. Set W = B¥"(0,1). First observe that W is a submanifold of R™*! of class ! by [2.32(i)
Therefore, there exists p € (0, 1) such that for each z € OW we have

B(z + pn(W,z),p) CW.

Assume reach” A = s > 0. Let z € R""! be such that d4(z) = r < ps and find z € A with
|z—z| = 84(2). Set B=B(z,7),u = —n(B,z),and w = z+r grad F(u)/p. Note that u € Tan(4, z)*.
We have 6% (w) = r/p < s so w € dmn&X and BF (w,r/p) N A = {z} and B(z,7) € B (w,r/p);
hence, z € dmné& 4.

Since z was arbitrary we see that {z : d4(x) < ps} C dmné&,4 which shows that reach A > ps.
The second part of the conclusion readily follows from [I7, 4.20]. O

5.8 Corollary. Suppose A C R"*! is closed and reach™ A > 0. Then SF(A,r) is a submanifold
of R of class €11 of dimension n for every 0 < r < reach’ A.

Proof. Since R = reach” A > 0, we have that R"*' N {y : §§(y) < R} C dmné&k. Therefore,
from it follows that 65§ |R" "1 N {y: 0 < 64 (y) < R} is of class €1 and

_ ¢F
grad 8% (y) = grad F* (w) £0 forye R with 0 < 6% (y) < R.

o4 (y)

Consequently, for every 0 < 7 < R we see that ST'(A,r) = (65)~{r} is a closed submanifold of  of

class €' of dimension n. Moreover, we have reach” S¥(A,7) > min{R — 7,7} > 0 so the conclusion
follows from [B.71 O

We prove now the anisotropic version of [23, Theorem 3], whose proof is essentially along the same
lines.

5.9 Theorem. Assume F is an elliptic integrand of class €** and A C R™*! is closed. Letr > 0 and
suppose that for every ™ measurable bounded function f : R"! x 3UF*(O, 1) = R with compact
support there are numbers c¢1(f),...,cn+1(f) € R such that

n+1

(16) / » Afoz,bf; “Liast ()<t dgmt! = ch(f)tj foroO<t<r.
R+l ~ =

Then reach® (4) > r.
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Proof. Let S = {(z,u,t) : (z,u) € NF(A), ri(z,u) >t} and define ¢ : NF'(A) x (0,00) — R"*!

(z,u,t) =x +tu  for (z,u,t) € NF(A) x (0,00).

Claim 1: " (dmn ¢f ~(AU ¢(S))) = 0; hence,
LUURI (AU B(S)) = 0.

Recalling we see that
dmn €} ~(AU¢(S)) = o({(z, u,1) : (z,u) € NT(A), t = r}i(z,u) > 0}).
Since ¢ is a locally Lipschitz map, it suffices to prove that
(17) AT {(wu,t) 2 (zyu) € K, M >t =71 (z,u) >0}) =0

for all M € N and K C N¥(A) bounded. By and [I8] 3.2.29] we know that N¥'(A) is countably
n rectifiable. Hence, it suffices to prove for all M € N and K C A being n rectifiable. Assume
K and M are such. Employing [I8] 3.2.23] we get

(18) HTHK x (0,M +1)) = (M +1)#"(K) < .
Recall For ¢ € R define the Borel set
Vy = {(z,u,t +q) : (z,u) € K, M >t =r}(x,u) >0}
and observe that
VoNV,=0 wheneverp#¢q, V,CKx(0,M+1) for0<g<1,

and "N (V,) =" (V) for any ¢ € R.

Therefore, if 7"+ (Vy) > 0, then 2" ((J{V, : 0 < ¢ < 1, g rational}) = co which contradicts (T8).
Claim 2:

(19) gt ({z 0 < 55(,2) <, Tf;('t/)i(z)) < r}) =0.

In the following sequence of estimates we have to deal with the problem that N¥'(A) might not
have locally finite measure so y = "L N¥(A) might not be Radon and (u, n) approximate Jacobian
of ¢ might not be well defined.

Recalling one readily infers that ¢|S is injective. Since N¥'(A) is Borel and countably

(see

n rectifiable 5.2) we may find a partition
NT(4) = UZ,N,
such that each N; is a Borel n rectifiable set (in particular, 5™ (N;) < co) and the family {N; : i € N}
is disjointed; cf. [I8 2.1.6]. For i € N w define
pi=HA"LN;, Si=S5n0(N;x(0,00), and J=Y [|A,l(1n)apDe]||Ls, .
i=1

We apply Claim 1 and the coarea formula [I8] 3.2.22] to find that

(20) / gdgmt! = / gdgmtt=3%" / gdgntt
Rrtl~ A #(S) i=1 v ¢(Si)
= /(; Z/N H/\n[(lu’lﬂn) apD¢(x7u7t)]Hg(x+tu)l{(w,v):ri(w,v)>t}(xuu) d(%ﬂn(m,l[,) de
—1 f
= / J(l‘, U, t)g(l‘ + tu)l{(w,v):ri (w,v)>t}(z7 U) d" (1‘, ’LL) dt
0
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whenever g : R"*! — R is a non-negative Borel function with compact support.
Let B C R™! be compact, 0 < 7 < r and 7 < t < r. We define

N, =NF(A) N {(x,u) : rf(z,u) <7, x € B},
and we apply to the function 1y, , and to the function g = (1y, , o ¥%) - Liw:sr (wy<ty O
compute

n+1
i (L6) n
@) Yar @ [ @R gz 427

j=1
@ [~ J 1 1 1 A dA™ (2, u)d
NP(A) (x,u, 5) {w:éi(w)gt}(‘r+su) {(w,v):ri(w,v)>s}(z7u) NT,B(¢A (I’+SU)) (x,u) S

(5]
S—

0

:/0 /NF(A) J(l‘7u7s)1{w:5£(w)§t}(‘x+Su)l{(w,v):ri(w7v)>s}(x?u)lNT,B(‘r7u) A" (x,u)ds
:/ / J(xvuas)l{w:di(w)gt}(x+su)l{(w,v):s<ri(w,v)§7}(x7u)lB(x) d%n(xau) ds
0 NF(A)
= J 1 . 1 dszem d
/0 /NF(A) (l‘,’U,,S) {(w,v).s<r£(w,v)§r}(xau) B(J?) (x,u) S,

where the last equality follows because 8% (z + su) = s < rf(z,u) < 7 < t, for every 7 < t < r.
Whence, we deduce that Zjill ¢;j(f)t is independent of ¢, for every 7 < t < r. Therefore, this
polynomial is identically zero, a condition that implies, by the first equality in ,

L ({z:0< 08 (2) < ph(z) € N;5}) =0.
Since the last equation holds for every 0 < 7 < 7 and for every compact set B C R"*!, we conclude

that holds.

Claim 3: reach” (4) > 7.

Let 2 € R""! ~ A satisfy 0 < §4(2) < 7. Then there exists a sequence {z; : i € N} C dmn¢&f
which converges to z and such that

0< 55(21') <r and Ti(t/)ﬁ(zl)) >r.

Noting that (£5(2;)) is a bounded sequence, and passing to a subsequence if necessary, we find p € A
and u € QU (0, 1) such that
Eh(z) = p,  vilz) - u.

In particular, z = p + 64 (2)u. We find ¢ € R such that % (2) < t < r, and notice that
U (&8 (z) +twh(z),)NA=@ fori>1; hence, U (p+tu,t)NA=0.

This shows that &% (p + tu) =t > §%(2); hence, yields z € dmn &’ and ¢4 (z2) = p. O

5.10 Remark. We point out that Claim 1 proves that the set of centers of maximal F-balls contained in
the complement of A has .#"*! measure zero. This set, in turn, contains the set of non-differentiability
points of the distance function 55 .

6 Heintze Karcher inequality

Here we prove our main theorem Firstly we need the following basic facts on sets of finite
perimeter.

6.1 Remark. Suppose E C R"*! is of finite perimeter. We recall that the reduced boundary (see
and the essential boundary (cf. [I8] 4.5.12] and [4, Def. 3.60]) of E are 2" almost the same (see [4,
Thm. 3.61]). Recalling [3| 4.7] we deduce that n(E,-)|0*E : 9*E — R""! equals the negative of the
generalised inner normal to E defined in [4, Def. 3.54].
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6.2 Lemma. Let E be a set of finite perimeter in R™! such that
H"(Clos0"E~O"E) =0.
Then there exists an open set P C R™! such that
LY (P~E)U(E~P))=0 and #"(OP~0"P)=
Proof. We define
P=R""'n{z: 2" (U(x,p)~E) = 0 for some p > 0},
Q=R""'n{z: 2" (U(x,p) N E) =0 for some p > 0},
and we notice that they are open subsets of R"*1. It follows from [18] 4.5.3] that
(22) spt #"LO*E =R"M ~(PUQ) .
Simple use of a Vitali covering lemma [I8, 2.8.18] yields
ZL"Y(P~E)=0, Z"NENQ)=0;
L"THE~P)=2"THENQ)+ 2L (spt SA"LO*E) = 0
From and [I8, 4.5.11] we deduce that 9*P = O0*FE and, since 0P C spt #"LO*E by ,

we conclude

AP~ P) = 0. O

6.3 Remark. Let F be an elliptic integrand. Recalling [18] 5.1.1] we define ® : R"™!' x A R"*! — R,
a parametric integrand of degree n on R"*!, by setting

P(2,8) = F(x£) forze R"™ and £ € A\, R,

where * denotes the Hodge star operator associated with the standard scalar product and orientation
on R"1; see [18, 1.7.8]. By and [I8 5.1.2] we see that ® is elliptic in the sense of [I8] 5.1.2].
Moreover, if ®% is the nonparametric integrand associated with ® (see [18, 5.1.9]) and ®%(¢) = ®8(z, &)
for (2,£) € R"™ x A\, R""L, then D?®}(¢) is strongly elliptic in the sense of [I8, 5.2.3] for all
(z,€) e R"T x A\, R""! by [18] 5.2.17].

Let W C R" be open and bounded, V € V,(W x R), p : R*"' — R"” and q : R*""! = R
be given by p(21,...,2n41) = (21,...,2n) and q(21,. .., 2n41) = Zns1 for (21,...,2,41) € R
Assume f : R™ — R is of class €', and V is the unit density varifold associated to the graph of f,
ie., V =v,(im(p* + q* o f)). Recalling [18, 5.1.9] we see that for any 6 : W — R of class ¢! with
compact support there holds

5pV(q 00 op) = / ((0,6(2), D6(x)), DB (z, f(x), Df (x))) &L (x).

Suppose a € (0,1), F is of class €%, f is of class €%, |6V || is a Radon measure, |05V ||sing = O,
and hp(V,-) : spt||[V] — R"" is of class €%, Define n : W — R"™! and H : W — R by the
formulas

n(z) = (a*(1) — p*(grad f(2))) - (1 + | grad f(z)[*) />
and H(z)=—F(n(z)) -qohr(V,(p* +q" 0 f)(z)) - 1+ |grad f|?

for z € W. Note that n(z) is the unit normal vector to the graph of f at (p*+q* o f)(z) for z € W.
Employing the area formula [I8] 3.2.3] we get

5FV(q*oaop)=—/ 0(p(2)) - a(h(V,2)) - F(n(p(2)) d#™ (= / 0(x z)d.ZL"(z)
spt [|V]|
so that
) [ (0.06).D0(), DV (z, (). DJ (@) 42" (o) = [ 0(0) - H() 02" (2)
w

for any 0 € 2(W,R).
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Since H is of class €% and F of class €% a slight modification of the proof of [I8, 5.2.15] shows
that f is actually of class €%

To support the last claim recall the proof of [18, 5.2.15] with 2, n + 1, n, a?, W, ®% in place of
q, n, m, §, U, G. Using all the symbols defined in [I8, 5.2.15], for any integer v such that v > 1/d,
define R, : B(b, p — d) — Hom(R"™,R) so that

1
ceR,(x)= / ole;)  H(x +te;/v)dL(t) for 0 € Hom(R",R) and 2 € B(b,p —d).
0

We remark that we intentionally refer to [I8, 5.2.15] with «? in place of §, since in this case the
estimates for the §-Holder constants of @), and A, from page 556 can be adjusted by replacing the
supremum norm of D3G with the a-Hélder norm of D2G. Moreover, since in our case f satisfies
rather than [I8] 5.2.15(4)] the displayed equation in the middle of page 556 of [1§], i.e.,

/ (Df,(x) ® Do), Ay(2))dL"(2) = (P, — Qur DOYypa
U(b,p—d)
turns into
/ <Df,/($) © De(x)v Au(x)> df"(m) = (PV - Ql/ - RI/) Da)b,pfd~
U(b,p—d)

Clearly R, is a-Holder continuous with Holder constant independent of v so all the estimates from
the upper half of page 557 of [I§] hold in the modified case with an additional term coming from R,.
Thus, one can still use [I8] 5.2.2] to conclude that D; f is of class €*%; hence, f is of class €>°.

6.4 Definition. Let A C R""! k € N, a € [0,1]. We say that z € A is a €% *-regular point of A
if there exists an open set W C R™*! such that z € W and AN W is an n-dimensional submanifold
of class €% of R™!. The set of all €% regular points of A shall be called the €% regular part
of A. If a = 0 we omit it in the notation.

6.5 Theorem. Suppose
n>2, cc(0,00), ac(0,1), F isan elliptic integrand of class €>*,
E CR"! is a set of finite perimeter, " (Clos(@*E) N@*E) =0,
V =v,(0"E) e RV,,(R"), 65V ||sing =0,
hp(V,)|K is of class €%* for each compact subset K of the €4 regular part of spt||V||,
0< —hp(V,z)en(E,z) <c for |V| almost all x.

Then

n+1 L 1 (o
24 LB < n+1/8*E (Vo)

and equality holds if and only if here there exists a finite union Q of disjoint open Wulff shapes with
radii not smaller than n/c such that L™ ((Q~E)U(E~Q)) = 0.

Proof. First we employ to obtain an open set 2 C R™*! such that
L Q~E)U(E~Q)) =0 and #"(00~0"Q)=0.

Directly from the definition (see [I8, 4.5.12, 4.5.11]) it follows that the essential boundaries of §2
and E coincide; hence, recalling we obtain V' = v, (0*Q). We shall consider 2 instead of E in
the sequel. Let us define

H :spt||V] = [0,¢] sothat H(z)= —~hp(V,z)en(E,z) for |V| almost all x,
C=R""~Q, Q=0Cn{z:zisa %¢*regular point of IC} .
Note that 9*C = 9*Q, n¥'(C,-) = —n¥'(Q, ), and H(x) = F(n(E,))|hr(V,z)| for ||V almost all x.
Claim 1: If z € Q, y € Q, and ¢5(y) = x (in other words: y € QN (€5)71(Q)), then

0< %H(x) < —kp(WE W) < 8EW) "
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We clearly have
U™ (y,86(y)NC =2 and 9UT (y,6((y) NC = {a};

hence, recalling 2.27] and that x is a €2-regular point of OC, wee see that

CH() < kb BEW) < b s (BEW) = 0E()

and the claim is proven.
Claim 2: £ (Q~(e5)71(Q)) =0.

Note that F(hp(V,z)) = H(z)F(n(Q,z)) for |V almost all z so applying Lemma we
conclude that 99 is an (n,cC(F)) subset of R"™1. Tt follows by Theoremthat JT(N(0Q)]S) =
0 whenever S C R"*! satisfies 5#"(S) = 0. Combining this with Lemma we deduce that
H(NT(09)|S) = 0 whenever S C R"T! satisfies #7(S) = 0. Since N¥'(C) C N¥(99), one readily
infers that s#"(N¥(C)|S) = 0 whenever S C R""! satisfies #(S) = 0. We also observe that
for ||[V|| almost all z there exists a radius > 0 such that V satisfies all the assumption of [2| The
Regularity Theorem, pp. 27-28] inside U(z,r). This implies that for 5™ almost all z € 9C' there
exists an open set G C R"™! with z € G and such that 9C NG coincides with a rotated graph of some
function f : R™ — R of class ¥“. However, employing we see that f is actually of class €2’
Therefore,

(25) H(OC~Q)=0 and HA"(NF(C)(0C~Q)) =
Since & (ST (C,r) N (dmn&l) ~(€5)71(Q)) € N(C)|(0C ~ Q) for every r > 0, we get
A" (PE(SF(Cor) N (dmnglh) ~(€65)71(Q))) =0 for every r > 0.
Moreover, we have (£|(SF(C,r) ndmnéE ~C)) ™" € ¢" and we deduce that
A" (SF(C,r) N (dmn &) ~(€6)71(Q)) =0 for every r > 0.
Combining [2.3§(f J(a}(d)| with the coarea formula [I8], 3.2.22], we get
A" (ST (Cor) ~dmngl) =0 for £ almost all > 0.

From it follows that F(grad 65 (z)) = 1; hence, recalling we obtain | grad 85 (z)| > ﬁ
Using the coarea formula, we compute

Wgnﬂ(gw(gg)*l(cg))

< / | grad 65 ()| dz = / A (SF(Cor) ~(€5)H(Q)) dr = 0.
~(EE)-1(Q) 0

In particular we get that £ (Q~(£€5)71(Q)) = 0, which settles Claim 2.
We define

Z=(Q@xR)N {(xﬂf) 0<t< —ﬁg’l(x,nF(C,x))_l},
C:Z =R, ((z,t) =z +tnf(C,x).

For brevity of the notation we also set

Tus1C(a,t) = | Apys (7T L Zim + 1) ap DC(a, 1)]| - whenever (z,t) € Z.

Claim 3: There holds

Jnt1€(z,t) = H (1+trH,(z,n"(C,2))) for (z,t) € Z.
i=1
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Let (z,t) € Z and v = nf'(C,z). Recalling we find a basis 71(z),..., 7 (x) of Tan(Q,x)
consisting of eigenvectors of D(nf(C,-))(z) and such that

<Ti(l‘), Dn’'(C, )(z)> = Hg’i(x,u) 7i(x) forie{l,2,...,n},
[Ti(z) A ATp(z)] = 1.
Noting that Tan(Z, (z,t)) = Tan(Q, x) X
<(0 1), D¢(x, t)> =n’(C,z) = grad F(n(C, z)),
<(Tl( ),0), D¢(x, t)> (1+ t/cgi(x,u)) Ti(z) forie{l,...,n},
we compute

n

Tn1C(z,t) = [+ ta§ (2, w) 0" (CLx) ATi(2) Ao Ao (2)]

i=1

=grad F(n(C,z)) en(C, H 1—|—t,l-cQz z,u)) In(C,x) Ami(x) A AT ()]
i=1

and Claim 3 follows from and [I8] 1.7.5].
Claim 4: Inequality holds.

Employing Claim 1 and Claim 2 we see that 2" (Q ~ ((Z)) = 0. Hence, using the area formula
and then Claim 3, we get

(26) £"H(Q) < 2"TH(2)) < %O(C’l(y))dof"“(y):/Jn+1Cdﬁf"+1
¢(2) z

—l/mle(zn (C,x))
= n(C,r kE (x,nF x ().
—/QF( (@, ))/0 [+ 66 (20" (C, 2))) dt dot™ ()

i=1

Using again Claim 1, then the standard inequality between the arithmetic and the geometric mean,
and finally we obtain

l/nle(wn (C,x))
F(n(C,x))/O (%Z (1+t55 (2,07 (C,2))) ) dtd ™ ()

/F C’x))/n/H(l)<1—tH(x)> dt 4.7 ()
0 n

[ EmCa)
7n+1/,9 H(zx) A" (@),

ey @< |

Q

which implies by

We assume now that equality holds in . Since the chains of inequalities and become
chains of equalities, we deduce that

(28) LmH(2)~Q) =0,
(29) A Hy)) =1 for Z" almost all y € ((2),
_ L F F -1__" n _
(30) kg (2,07 (C,2)) ) for 7" almost all z€ Q and all j =1,...,n

Our goal is to prove that € is a finite union of disjoint open Wulff shapes. We need two preliminary
claims, whence the conclusion will be easily deduced.

Claim 5: reach” C' > n/e.

Recall that H(z) < ¢ for 5™ almost all z € 9C. Let 0 < p < n/c and

Q,=QN{z:p< —/ig,l(z,nF(C, 2)) 7.
It follows from , , and the fact that 0C is an (n,cC(F)) subset of R"!, that
AMOC~Q,) =0 and H"(N(C)IC~Q,)=0;
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hence, we argue as in Claim 2 to conclude that 2"+ (Q~€;'(Q,)) = 0. We define
Cl={z:60(z)<p} and Z,=Q,x{t:0<t<p}
and we notice that
£1(@Q)nancy ci(z,)ccy, £2HaNC) ~((Z,) =0.
Let f: R*"1 x 9U” (0,1) — R be a Borel measurable function with compact support. Then we use

Claim 1, , 7 , and [36, 5.4] to compute
[ rwEeazm e = [ juEe)aettie
ancr

QN¢(Z,)

- / / (20 (C, 2)) A (z) L™ (y)
QN¢(Z,) J ¢ (y)

_ / / F(z,0"(C, 2)) d#°(2) A2 (y)
¢(Z,) JC1(y)
_ / TuirClent) f(zn(C, 2)) A+ (2, 1)

Zp

) 2 HEN L
_ pr(z,nF(C’,z))F(n(C,z))/O (1-t=2) atarn(z)

= z,n"(C, z n(C, z ’ — & ! " (z
= [ seafcapmes) [ (1= ) war )
n+1
:Zci(f)Pi7
where, for i =1,...,n+1,
1yt n! i—1 n
@ =(=7%) T irm L G0 CAEmEC)HE) T 4 ().

Therefore, reach C' > n/c by Theorem

Claim 6: Let 0 <7 < n/c < reach? C. Then SF(C,r) is a finite union of Wulff shapes of radii
not smaller than c¢=*(n — rc).

Since reach’ C' > n/c we employmto find that S¥'(C,r) is a submanifold of R"*! of dimension n
of class €11, We define
C, =R"™ N {z:6E(z) <r}.

Noting that nf'(C,.,-)|SF(C,r) = grad F o n(C,,-)|ST(C,r) and grad F is a ¢ function, we deduce
that nf'(C,., )|SF(C,r) is a Lipschitzian vector field. We define

T=Qn{z: ngd(z) =—H(z)/n for j=1,...,n},
and we notice that s#"(0C ~T) = 0 by and ([30); then the Lusin (N) condition implies
(31) A" (ST (Cr)~(€6)TH(T)) = 0.
Recalling [2.38(h)| we see that
F 2 —&6(2) F F F
n (Cyp,z) = = grad F(n(C,{(2))) =n" (C,-) 0 €6(z)  whenever z € S7(C,r).

Let us set
o =&E61ST(Cor) N (€6)~HT) and @ =(|T x {r}.
Observe that if 2 € T, then 2 = x + rnf(C,z) € SF(C,r), ¢£(2) = x, and Tan(SF(C,r),2) =

Tan(T, z); hence, 0 = ¢! and we get
(32) (u, Dp(z)) = (1 —rH(z)/n)u for x € T and u € Tan(T,z),
(u, Do(2)) = (1 —rH(EL(2))/n) 'u for z € dmno and u € Tan(T, &5 (2)),
—H(&6(2))

Dn?'(C,, ) (2)u = for A" a.a. z € ST (C,r) and u € Tan(T,£5(2)) .

n—rH(EE(2) "
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Employing we conclude that S¥'(C,r) is a union of at most countably many boundaries of Wulff
shapes with radii not smaller than ¢=*(n — rc¢). Since E has finite perimeter we have " (9€)) < oo
S0 using and we conclude that " (S¥(C,r)) < ™ (0*Q) < oo and Claim 6 follows.

We are now ready to conclude the proof. We notice from [I7, 4.20] that
0C = {x : dimNor(C,z) > 1}
and by Lemma [5.2 we also get that
dC = {z : dim Nor® (C, z) > 1} .
We claim that
eL(SF (o, r) =00  for0<r<nje.

Indeed, since 0 < r < reach? C, for every x € OC there exists v € NorF(C,a:) such that z + rv €
SE(C,r)Ndmn ¢E and consequently & (z+7rv) = 2. We deduce that dC C ¢E(SF(C,r)). The reverse
inclusion is trivial.

Consider a connected component Sy of S¥(C,r). By Claim 6 we obtain s > n/c—r and z € R"*!
such that S; = OBF " (z,s). Observe that

SR ~ABT (2,5 +7),1) = S ;

hence, i
OB (2,5 +7) = ¢L(S)) coC

and, using, e.g., the constancy theorem [I8, 4.1.7], we deduce that UF (z,s + ) is a connected
component of 2. Since S7 was chosen arbitrarily we see that 2 must be a finite union of open disjoint
Wulff shapes of radii at least n/c. O

6.6 Remark. This theorem extends to sets of finite perimeter the analogous result for smooth bound-
aries in [22, Theorem 4].

We use now Theorem to study the critical points of the anisotropic surface area for a given
volume.

6.7 Definition (cf. [3, 4.1]). A smooth function h : (—¢,€) x R*™t — R"*! is called local variation
if and only if

(a) h(0,z) =z for every z € R" T}
(b) h(t,-) : R*"*! — R"*! is a diffeomorphism for every t € (—¢,€),
(c) the set {x : h(t,z) # x for some t € (—¢,€)} has compact closure in R" 1.
We set by = h(t,-) and hy(x) = limy_o L (hygu(z) — hy(x)) for every (¢,2) € (—e,€) x R,

Given an integrand F' we define the F-perimeter functional as

Pr(E) = /8*EF(n(E,m)) ds#"x

for every E C R"*! with finite perimeter, and the F-isoperimetric functional as

o) = HEN
for every E C R™! with finite perimeter and finite volume.
6.8 Corollary. Let E C R be a set of finite perimeter and finite volume such that
A" (Clos(0"E)~0*"E) =0.
If a € (0,1), F is an elliptic integrand of class €** and for every local variation h it holds that

d
%IF(ht(E)) =0 - Oa

then there exists a finite union €0 of disjoint open Wulff shapes with equal radii such that
L Q~E)U(E~Q))=0.
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Proof. Let h be a local variation and V = v(9*E). Define p(t) = Pr(hi(E)) and v(t) = Z" T (h(E))
for —e < t < e. We observe that

P'(0) = 8¢V (o),
v'(0) = /Ediv hod.gm ! = ho(z) e n(E, ) dA" ().

O*E

n+1
Noting that the derivative of the function pvn equals

UM ) — PO _
(v(t)) [(n—i—l)p (t) nv(t)v(t)] for —e <t <e,
it follows that ()
reny o Py
(n+ 1)p'(0) nv(o)v (0)=0
and the arbitrariness of h implies that

n PF(E)
n+1.2"(E)

167V ||sing =0 and hp(V,z) = — n(E, x).

It follows that the hypothesis of Theorem and the equality in are realized. Henceforth, the
conclusion follows from Theorem O
6.9 Corollary. Let E C R™"! be a set of finite perimeter and finite volume such that

A" (Clos(0"E)~0*"E) =0.

If a € (0,1), F is an elliptic integrand of class €*<, and for every local variation h

(33) /6*15 ho(x) e n(E,z)ds™ (x) =0  implies %Pp(ht(E)) o 0,

then there exists a finite union Q of disjoint open Wulff shapes with equal radii such that
LTHQ~E)U(E~Q)) =0.

Proof. Let V = v(0*E). Given g € 2" (R""!) such that [, . g(x)en(E, z) ds#"(x) = 0ande € (0,1)
define h : (—¢,e) x R — R"*! by the formula h(t,z) = x + tg(x) and observe that h is a local
variation provided e is small enough. Moreover, it satisfies [, ho(z) e n(E, z) d#"(x) = 0; hence,
by , we deduce that

(34) 6rV(g) =0 whenever g€ 2 (R"™') and / g(x)en(E,z)d#"(x) =0.
9°E

Given g1,92 € 2 (R"!) such that [, . gi(z) en(E,2) d#"(x) # 0 for i € {1,2}, we define

_ Jyp9i(@) en(E,z) A" (a)
g3 =0 fa*EgQ(x) en(F, x)dst(x) 9

and observe that
/ g3(z) en(E,x)ds" (x) =0;
o*E
hence, by (34), we get 67V (g3) = 0, which in turn reads

J/ Dgi(z) @ Bp(v)dV (z,v) _ J/ Dga(z) @ Bp(v)dV (z,v)
f(’)*E g1(z) en(E,z)d#" () fa*E go(z) en(E,z)d#"(x)

In particular, there exists A € R such that

[ Dg(z) ¢ Bp(v) dV (z,v)
Joep 9(z) o n(E, z) A" (x)

=\ for ge 2Z(R") with / g(x)en(E, x)ds" (x) #0.
O*E

Hence, recalling Definition the hypothesis of Theorem [6.5] and the equality in are realized
as in the proof of Theorem provides the desired conclusion. O
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