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Mott insulator plateaus in optical lattices are a versatile platform to study spin physics. Using sites
occupied by two bosons with an internal degree of freedom, we realize a uniaxial single-ion anisotropy
term proportional to ðSzÞ2 that plays an important role in stabilizing magnetism for low-dimensional
magnetic materials. Here we explore nonequilibrium spin dynamics and observe a resonant effect in the
spin alignment as a function of lattice depth when exchange coupling and on-site anisotropy are similar.
Our results are supported by many-body numerical simulations and are captured by the analytical solution
of a two-site model.
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Mott insulators of ultracold atoms in optical lattices
comprise a widely used platform for quantum simulations
of many-body physics [1]. Since the motion of atoms is
frozen out, the focus is on magnetic ordering and spin
dynamics in a system with different (pseudo)spin states. As
suggested in 2003, Mott insulators with two-state atoms
realize quantum spin models with tunable exchange inter-
actions and magnetic anisotropies [2,3]. Experimental
achievements for spin-1=2 systems include the observation
of antiferromagnetic ordering of fermions [4] and the study
of spin transport in a Heisenberg spin model with tunable
anisotropy of the spin-exchange couplings [5]. Spin
dynamics for S > 1 has also been investigated [6].

However, all studies thus far have exclusively addressed
spin systems with occupations of one atom per site. This
limits spin Hamiltonians to spin-exchange terms between
different sites i, j proportional to

P
hiji Ski S

k
j (where

k ∈ fx; y; zg) and to Zeeman couplings to effective mag-
netic fields, proportional to

P
i S

z
i . For Mott insulators with

two or more atoms per site, the Hubbard model has direct
on-site interactions that can give rise to a nonlinear term
D
P

iðSzi Þ2, where D is the so-called single-ion anisotropy
constant. ðSzÞ2 terms, which are present for S ≥ 1 only, are
important for establishing nontrivial correlations such as in
spin squeezing [7]. In spin-1 models, such terms can lead to
a qualitatively new magnetic phase diagram [8,9]. For
example, for ferromagnetic spin-1 Heisenberg models, the
single-ion anisotropy gives rise to a gapped spin state
(the “spin Mott insulator”) that can be used as an initial
low-entropy state for an adiabatic ramp toward a highly
correlated gapless spin state (the XY ferromagnet) [10,11].
For antiferromagnetic systems in one dimension, the
single-ion anisotropy leads to a quantum phase transition
between a topologically trivial phase and a nontrivial phase
as predicted by Haldane [12–14]. The magnetic properties
of many materials crucially depend on crystal field

anisotropies that break rotational symmetry and can stabi-
lize ferromagnetism in two-dimensional materials by
avoiding the Mermin-Wagner theorem, which forbids
long-range order for continuous symmetries [15,16]. The
interest in spin-1 systems is demonstrated by various
studies on different platforms [17–19].
In this Letter, we use cold atoms in optical lattices to

implement a spin-1 Heisenberg Hamiltonian using a
Mott insulator of doubly occupied sites and demon-
strate dynamical features that arise from the single-ion
anisotropy. For spin-exchange interactions studied thus
far in optical lattices, the only timescale for dynamics is
second-order tunneling (i.e., superexchange), which
monotonically slows down for deeper lattices. In contrast,
as we show here, the single-ion anisotropy introduces a
new timescale, and we find a dynamical behavior that is
faster in deeper lattices due to a resonance effect when the
energies of superexchange and single-ion anisotropy are
comparable.
We present a protocol to directly measure the anisotropy

in the spin distribution and find a pronounced transient
behavior of this quantity when the resonance condition is
met. Transients change sign along with the single-ion
anisotropy. We find good agreement with theoretical
simulations and explain the most salient features using a
two-site model with an exact solution.
In the Mott insulator regime, the optical lattices are

sufficiently deep that the on-site interaction suppresses
first-order tunneling, and exchange processes are only
possible via second-order tunneling. For two atoms per site
with two internal states, the Bose-Hubbard Hamiltonian is
approximated by an effective spin Hamiltonian

H ¼ −J
X

hiji
Si · Sj þD

X

i

ðSzi Þ2 − B
X

i

Szi ; ð1Þ
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where Si are spin-1 operators, hiji are pairs of nearest-
neighboring sites, J is the exchange constant, D is the
uniaxial single-ion anisotropy constant, and B is a fictitious
magnetic bias field. The spin-1 operators are related to
the boson creation and annihilation operators via Szi ¼
ða†i ai−b†i biÞ=2, Sþi ¼ a†i bi, S

−
i ¼ b†i ai under the constraint

a†i ai þ b†i bi ¼ 2, where ai and bi are boson annihilation
operators at site i for state a and state b, respectively. In
terms of the tunneling amplitude t and interaction energies
Uσσ0 : J ¼ 4t2=Uab and D ¼ ðUaa þ UbbÞ=2 − Uab, where
Uσσ0 represents the on-site interaction energy between atoms
in two states σ; σ0 ∈ fa; bg. The term proportional to B can
be dropped if the total longitudinal magnetization

P
i S

z
i is

constant, as it is in the experiment.
For the species studied here, 87Rb, all Uσσ0 differ by less

than 1%, and therefore all spin-exchange couplings are
almost equal, resulting in isotropic spin Hamiltonians for
site occupancy ν ¼ 1. However, for ν ¼ 2, we can tune the
relevant anisotropy parameter D=J over a large range of
values because J decreases exponentially with lattice depth
while D—a differential on-site energy—slowly increases.
The experimental sequence begins by preparing a

Bose-Einstein condensate (BEC) of 87Rb atoms in the
jF ¼ 1; mF ¼ −1i hyperfine state inside a crossed optical
dipole trap. The sequence proceeds by loading the BEC
into a deep three-dimensional optical lattice formed by
retroreflected lasers with wavelengths of λ ¼ 1064 nm.
The lattices are ramped to final depths of 30ER in 250 ms,
where ER ¼ h2=ð2mλ2Þ is the recoil energy for atomic
mass m. Experimental parameters are chosen to maximize
the size of the ν ¼ 2 Mott-insulator plateau without
significant population of sites with ν ¼ 3 [see Fig. 1(a)
and Ref. [20]].

To allow for spin dynamics, all atoms are rotated
into an equal superposition of two hyperfine states
ðjai − ijbiÞ= ffiffiffi

2
p

using a combination of microwave pulses
[20]. This initial state is a simple product state. Negative
and positive values of D are realized with the pairs
jai ¼ j1;−1i, jbi ¼ j1; 1i and jai ¼ j1;−1i, jbi¼ j1;0i,
respectively [20]. The spin-exchange dynamics in one-
dimensional chains is initiated by a 3-ms quench, during
which we ramp down the longitudinal lattice to a variable
depth while the transverse lattices are ramped up to 35ER
[Fig. 1(b)]. After a variable evolution time, the final spin
configuration is “frozen in” by ramping the longitudinal
lattice to 35ER as well [Fig. 1(c)].
Our observable for the anisotropy in the spin distribution

is the longitudinal spin alignment A ¼ SðSþ 1Þ − 3hðSzÞ2i,
measured in the ν ¼ 2 plateau. hðSzÞ2i ¼ P

N
i¼1hðSzi Þ2i=N is

the average on-site longitudinal spin correlation. A is defined
to be zero for a random distribution of spins. Since Sz ¼
1; 0;−1 for the jaai, jabi, and jbbi doublons, respectively,
A can be obtained by measuring the relative abundance of
the different doublons. Specifically, we refer to the fraction
of jabi doublons as the “spin-paired doublon fraction” f.

Since hðSzÞ2i ¼ 1 − f, we obtain A ¼ 3f − 1. The doublon
statistics can be measured by selectively introducing a fast
loss process that targets a specific type of doublon and by
comparing the remaining total numbers of atoms, which are
measured via absorption imaging. Specifically, if Na is the
average total atom number in the whole cloud, Np the
average number of remaining atoms after removing jabi
doublons, and Nd the average number of remaining atoms
after removing all doublons, then f¼ðNa−NpÞ=ðNa−NdÞ
[Fig. 1(d)]. Fast losses of doublons are induced by trans-
ferring the atoms to hyperfine states for which inelastic two-
body loss is enhanced near two narrow Feshbach resonances
around a magnetic field of 9 G [20,28]. Since f and A are
obtained from the ratio of differences in atom numbers, good
atom number stability in the experiment (the deviation from
mean being typically < 4%) was crucial to measure A with
sufficiently small uncertainties.
For the initial state, f ¼ 1=2 and A ¼ 1=2. Over times

that are long compared to the spin-exchange timescale
ℏ=J, heating processes drive the system toward thermal
equilibrium with A ¼ 0. At short times, coherent spin
dynamics is observed: If D is negative, the jaai and jbbi
doublons are energetically favorable, and we expect f and
A to decrease. If D is positive, the jabi doublons are

(a) (b) (c) (d)

(a) (b) (c) (d)

FIG. 1. Experimental sequence for the measurement of spin
alignment and doublon fractions. (a) The lattices are ramped up to
initialize a single-component Mott insulator with a maximal site
occupancy of two. (b) Microwave pulses prepare a superposition of
two hyperfine states ðjai − ijbiÞ= ffiffiffi

2
p

. Ramping down the longi-
tudinal lattice initiates spin-exchange dynamics. (c) Ramping up
the lattices stops the exchange dynamics. Microwave pulses
transfer the two components to a pair of states with a Feshbach
resonance. (d) Either jabi doublons or all doublons are removed
with the help of Feshbach-enhanced inelastic losses. The remain-
ing atoms are transferred back to theF ¼ 1 hyperfine states and are
counted via absorption imaging to measure Np or Nd.
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favorable, and we expect f and A to increase. If D is zero,
the system is described by an isotropic spin-1 Heisenberg
Hamiltonian of which the initial state is an eigenstate. By
fixing the hold time and scanning the value of the lattice
depth for the spin chains, we can monitor the impact of
D=J on the dynamical change in A. For positive (negative)
D, we chose a hold time of 70 ms (25 ms). These
hold times are chosen to be comparable to ℏ=J when
jD=Jj ∼ 1 [20].
Figure 2 shows that for jD=Jj ≪ 1 or jD=Jj ≫ 1, A stays

near its initial value of 1=2. However, when D=J ∼ 2,
which corresponds to a longitudinal lattice depth of 14ER
(11ER) for positive D (negativeD), we see that A reaches a
maximum (minimum). This nonmonotonic change of A
with lattice depth is indicative of the interplay between
spin-exchange and single-ion anisotropy. In addition, we
observe that the change in A is smaller for positive D than
for negative D.

Several aspects of the observed spin dynamics can be
captured by a two-site model. Although states on two spin-
1 sites span a 9-dimensional Hilbert space, we can reduce
the spin dynamics to a beat note between two states. Since
exchange interactions do not change the total magnetiza-
tion

P
N
i¼1 S

z
i , the Hilbert space factorizes to subspaces with

the same total magnetization (although Szi can differ within
a subspace). Furthermore, the initial superposition state is
symmetric between the left and right wells, and any change
in A comes from the two coupled states: jabiLjabiR and
ðjaaiLjbbiR þ jbbiLjaaiRÞ=

ffiffiffi
2

p
, for which A equals 2 and

−1, respectively (Fig. 3). By describing these two states as
two poles on a Bloch sphere, we see that the initial state is
represented by a vector pointing somewhere between the
north pole and the equator with a vertical fictitious external
field. The quench in J andD suddenly changes the strength
and the orientation of this external field and induces a
precession of the state vector around the new external field
[20]. This results in an oscillation of A with amplitude

FIG. 2. Transient enhancement and reduction of the spin
alignment A by coherent spin dynamics. The change in A is
strongest when jD=Jj ∼ 2. Measurements were done for both
positive (top) and negative (bottom) values of D=J. The atoms
were held for 70 ms and 25 ms, respectively (also see Fig. 4). The
top axis in both figures indicates theD=J ratio. Solid lines are the
results of matrix-product state–time-evolving block decimation
(MPS-TEBD) calculations. The error bars represent the standard
error of the mean for A, obtained by error propagation after
averaging three measurements for each of Na, Np, and Nd. We
found the error bars to be dominated by fluctuations in prepared
atom number over systematic errors. For the lowest lattice depths,
the spin model may not fully represent the Bose-Hubbard model.

FIG. 3. Coherent spin oscillations in a two-site model. While
the full basis contains nine states, the oscillations in the spin
alignment A involve only a 2 × 2 block of the Hamiltonian. This
allows us to illustrate the dynamics on Bloch spheres (left), where
the initial state is represented by the open circle. If J ¼ 0, the
effective magnetic field points along ẑ, and the purely azimuthal
precession will not change A. If J > 0, the effective magnetic
field is tilted, resulting in a precession along the dashed
circle, which is observed as an oscillation in A (right). The
frequency of the oscillation, in units of J=ℏ, is given by
Ω ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4D=J þ 4ðD=JÞ2

p
, and its peak-to-peak amplitude

is 6ðD=JÞ=½9þ 4D=J þ 4ðD=JÞ2� (see inset). This shows that
the direction of oscillation depends on the sign of D=J (compare
top and bottom rows, where D=J ¼ 0.5 and −0.5, respectively).
Note that while the initial value of A for this subspace is 1, the
contribution of other states sets the initial A of the whole system
to 1=2.
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6ðD=JÞ=½9þ 4D=J þ 4ðD=JÞ2�. This function has local
extrema for D=J ¼ �3=2 but is not symmetric around
D=J ¼ 0. This explains the nonmonotonic behavior as a
function of lattice depth and shows why the contrast is
smaller for positive D=J than for negative D=J.
One would expect that, for a larger number of sites,

additional precession frequencies appear, turning the peri-
odic oscillation for two sites into a relaxation toward an
asymptotic value, which, according to the eigenstate
thermalization hypothesis, represents a low-temperature

equilibrium [29]. Comparison between the two-site model
and a many-site model numerically simulated using the
time-evolving block decimation for matrix-product states
(MPS-TEBD) shows that the initial change in A is indeed
well captured by the two-site model [20]. Because of the
spin dynamics, the system evolves from a product state into
a highly correlated state with entanglement between sites;
this has been the focus of recent theoretical works [30,31].
In the two-site model, the von Neumann entanglement
entropy can reach up to ∼0.9 × lnð3Þ due to the interplay
between single-ion anisotropy and exchange terms. This
corresponds to an almost maximally entangled state since
lnð3Þ is the maximum entropy for a spin-1 site.
To show that changes in the spin alignment A result from

competition between the exchange interaction and the
single-ion anisotropy, we study the time evolution of A
at two different lattice depths (Fig. 4). For positive D,
MPS-TEBD simulations predict very little change in A at a
lower lattice depth, where the exchange constant is rela-
tively large, but the anisotropy is small, while it predicts a
noticeable change in A at a higher lattice depth, where the
exchange constant and the anisotropy term become com-
parable. While the simulation predicts equilibration of A to
an asymptotic value (thin lines), measurements show that it
decays toward a lower value for positive D and does not
decrease as much as the simulation predicts for negativeD.
The measurements are consistent with the fact that at high
spin temperatures, the spin distribution becomes isotropic
and A vanishes. Indeed, when we ramp down the lattices
and retrieve a BEC, we observe a significant reduction of
the condensate fraction after 300 ms. This represents the
timescale over which entropy is either transported through
the cloud or created by heating. It could possibly be
extended by better stabilizing ambient field fluctuations
or by adding a tilt to suppress entropy transport by
holes [32].
In conclusion, we have implemented a spin-1 Heisenberg

model with a single-ion anisotropy using the ν ¼ 2 plateau
of a Mott insulator and have observed the subtle interplay
between spin-exchange and on-site anisotropy in coherent
spin dynamics. Much larger values of D can be imple-
mented with spin-dependent lattices, which will allow us to
observe much faster anisotropy-driven dynamics and will
also enable mapping out the phase diagram of the aniso-
tropic spin Hamiltonian [11]. It should also be noted that it
is possible to change the sign of J with the gradient of an
optical dipole potential [32,33], which will permit explo-
ration of the antiferromagnetic sector with bosons.
Interesting dynamical features of anisotropic spin models
have been predicted [34], including transient spin currents,
implying counterflow superfluidity.
Regarding quantum simulations, single-ion anisotropies

play a crucial role in magnetic materials (e.g., monolayers
containing chromium [35,36]). In such materials, crystal
field effects lift the degeneracy of d orbitals, and spin-orbit

FIG. 4. Coherent dynamics of the spin alignment A after a
quench in D=J. Varying the hold time at characteristic lattice
depths for both positive and negative values of D=J (top and
bottom pairs of panels, respectively) reveals that strong transients
in A only occur at intermediate lattice depth for whichD and J are
comparable. The vertical dash-dotted lines indicate the hold times
used for these pairs in Fig. 2. Dashed lines are the results of the
MPS-TEBD simulation. The shaded regions denote the
MPS-TEBD results with �0.5ER uncertainty in the lattice depths
and include exponential decay toward a thermal spin state with
A ¼ 0 with empirical 1=e times of 350 ms (D > 0) and 175 ms
(D < 0), the ratio of which reflects the relative sensitivity to
ambient magnetic field fluctuations of the pairs. The error bars
are computed in the same manner as those in Fig. 2.
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interaction transfers this anisotropy to the electronic spins
responsible for the magnetism [37]. Here we have simulated
this anisotropy by selecting a pair of atomic hyperfine states
where the interspecies scattering length is different from the
average of the intraspecies values. This illustrates the
potential for ultracold atoms in optical lattices to implement
idealized Hamiltonians describing important materials.
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