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ABSTRACT

Recent advances in imaging technologies for generating large 
quantities of high-resolution 3D images, especially multispec-
tral labeling technology such as Brainbow, permits unambigu-
ous differentiation of neighboring neurons in a densely la-
beled brain. This enables, for the first time, the possibility 
of studying the connectivity between many neurons from a 
light microscopy image. The lack of reliable automated neu-
ron morphology reconstruction, however, makes data analysis 
the bottleneck of extracting rich informatics in neuroscience. 
Supervoxel-based neuron segmentation methods have been 
proposed to solve this problem, however, previous approaches 
have been impeded by the large numbers of errors which arise 
in the final segmentation. In this paper, we present a novel 
unsupervised approach to trace neurons from multispectral 
Brainbow images, which prevents segmentation errors and 
tracing continuity errors using two innovations: First, we for-
mulate a Gaussian mixture model-based clustering strategy 
to improve the separation of segmented color channels that 
provides accurate skeletons for the next steps. Then, a skeleton 
graph approach is proposed to allow the identification and cor-
rection of discontinuities in the neuron tree topology. We find 
that these innovations allow better performance over current 
state-of-the-art approaches, which results in more accurate 
neuron tracing results close to human expert annotation.

Index Terms— neuron tracing, neuron segmentation, 
Brainbow images

1. INTRODUCTION

Recent advances in light microscopy and genetic strategies 
for labeling defined groups of neurons have enabled neurosci-
entists to capture these dense volumetric images of neurons 
in the brain. Specifically, multispectral volumetric imaging 
of neurons, termed “Brainbow” , has emerged as a promis-
ing approach to produce densely labeled brain samples [1,2]. 
Briefly, individual neurons in a Brainbow sample each stochas-
tically express combinations of fluorescent proteins, effectively
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labeling each neuron a different composite color. This en-
ables unambiguous identification of individual axons and den-
drites within a given volume. The continued improvement of 
Brainbow-like tools [3], together with the advent of improved 
imaging technologies such as expansion microscopy [4, 5] and 
light-sheet microscopy [6, 7], makes Brainbow well-poised 
to make significant contributions to both connectomics and 
hypothesis-driven circuit analysis. Despite the technological 
advances for collecting these micrographs, approaches for reli-
ably analyzing and quantifying these rich datasets remain in 
their infancy. Along with large data sizes (sometimes several 
terabytes), this is a difficult problem due to a large number of 
channels and imaging noise in the Brainbow images.

The earlier methods [8, 9, 10] based on Brainbow directly 
operate in voxel-level, which can be extremely computation-
intensive and error-prone due to insufficient color consistency. 
Though the computation and color inconsistency issues are 
addressed in [9], we observed that this method results in frag-
mented (broken) neurite segmentations (Fig. 1D, red arrows). 
These fragmented segmentations can be caused by a flaw in the 
supervoxelization process or occlusions by other neurons in 
the raw Brainbow data. In addition, none of the segmentation 
methods provide a tree-like neural tracing structure, which is 
required for native neuroinformatics analysis.

In this work, we intend to adapt the computationally effi-
cient supervoxel-based segmentation used in [9] but to address 
its fragmented segmentation problem. Aware that the problem 
may be caused by its kernel k-means or spectral clustering, 
which are theoretically equivalent and tend to find circular or 
even-sized clusters [11], we instead use a probabilistic Gaus-
sian mixture model. This modification allows the modulation 
of the distribution of supervoxel-representation to form more 
robust clusters and thus reduces the segmentation errors. Next, 
we extract a neuron tree topology (tracing), represented as a 
graph, by skeletonization of the GMM-clustered segmenta-
tion. To address breaks in the neuron tracing which arise, we 
implement a graph-based method which utilizes the spatial re-
lationship of the segmentation skeleton to bridge broken links, 
producing a more reliable tracing result.
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Fig. 1: A, an overview of our pipeline. B, linkage bridging 
is used to repair broken trees. C, a raw Brainbow image. D, 
image C after GMM clustering is performed. E, image D after 
skeletonization is performed. F, the final reconstruction of the 
two neurites from E, pseudocolored for contrast.

2. METHODS

We start from a supervoxel-representation X  and leave out 
the details for denoising and supervoxelization as is similar 
in [9]. To solve the fragmentation problem in [9], we make 
two innovations: (i) to avoid biasing the segmentation as even-
sized, we replace the kernel fc-means with Gaussian mixture 
model to modulate the supervoxel features which we obtain 
from the supervoxelization; (ii) to mitigate the gap between 
fragmented neurites, we develop a skeleton graph method 
(Fig. 2) to reconstruct the structure.

2.1. Neuron Segmentation

Supervised learning methods (e.g., [12]) rely on a volumetric 
ground truth segmentation, which is difficult and, in many 
cases, infeasible. Thus, unsupervised approaches, such as 
kernel fc-means and spectral clustering, allow more efficient 
solutions. However, after applying kernel fc-means, we ob-
serve imperfect segmentation results, particularly with frag-
mentation near differences in neuron caliber (Fig. 3). Thus, 
instead of imposing hard clusters on X  via kernel fc-means or 
its variants [11], we approximate the distribution of the feature 
X  using mixture of Gaussians (GMM). We hypothesize that 
GMM will perform better because it does not bias the cluster 
sizes to have specific structures as does kernel A>means (Circu-
lar). We use the expectation-maximization (EM) algorithm to 
iteratively optimize the model and check the variational lower 
bound if  convergence is accomplished.

2.2. Neuron Tracing

Despite improvements in segmentation, we still observe frag-
mented structures (Fig. ID) among inferred neurons. To gen-
erate a compact tracing, we propose a method to merge frag-
mented topologies into one continuous tree. The fragmented 
neurites can be caused by the supervoxelization process and 
occlusions by the other neurons in the raw Brainbow data;

Fig. 2: A, a diagram of 27-point stencil in euclidean space. B, 
example constructed graph visualization under Definition 1. 
Note that, the black lines between two nodes are following the 
path of the connected components using 27-point stencil.

the former problem has been eased by the implementation of 
GMM, but the latter persists. Thus, we develop a graph-based 
method to “bridge” the broken links within the same neurite. 
We first skeletonize the segmentation using [13] and use the 
resulting skeleton in the following operations.
Definition 1. Given a skeleton represented by a set of points, 
using a 27-point stencil, we define core points with at least 
3 neighbors as branch points, and core points with only 1 
neighbor as end points. This is demonstrated in Fig. 2. 
Skeleton graph construction. We represent branch points Pb 
and end points Pe as the nodes (i.e., branch and end nodes) in 
the graph, where edges or links L between every two connected 
nodes are coded by the paths of the connected components 
between two nodes (Fig. 2B). In this way, the points with 2 
neighbors in the set of skeleton points can be well-represented 
by the links, and thus there is no need to represent these points 
as nodes. Abandoning the points with two neighbors also 
reduces the computation and improves efficiency. The skeleton 
graph is configured as G =  (P, L ), where P is the union set 
of branch nodes Pb and end nodes Pe.
Linkage bridging. Broken linkages occur when two end 
points are incorrectly formed on opposite ends of a fragmented 
segmentation. Here, our way of constructing the graph is 
well-suited for bridging these broken connections. First, we 
extract subgraphs based on the connectivity of all the nodes. 
Next, we examine every pair of end nodes within two differ-
ent subgraphs. When the distance, in our case a Euclidean 
distance, is less than threshold A s, we link the two end nodes, 
and thus we can obtain a more compact graph. The process is 
iterated until all pairs of subgraphs have been examined. 
Trace generation. In order to perform quantitative analysis 
from generated tracing, we developed a technique to generate 
SWC tracing files [14], a format used broadly by the neuroin- 
fonnatics community. Our technique makes full use of the 
properties of Gc. In general, a neurite starts from an end node 
and stops at an end node and the path between two connected 
end nodes can be interpreted as part of the neurite. In prac-
tice, we try to find the shortest paths from the seed node / / 1 
to following end nodes p‘e in the same subgraph, such that 
the union set of these found shortest paths can be interpreted 
as the final tracing result T  (Tracing) which is of the form
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Algorithm 1 Skeleton graph construction and linkage bridging
Require: skeleton point set Sp, distance threshold A s 

find points in Sp with at least 3 neighbors as branch points 
Pb and points with 1 neighbor as end points Pe 
for every two nodes {pi ,pj } in {Pb, Pe} do

represent the link L ij  as the path of connected compo-
nents between pi and pj 

end for
construct the skeleton graph G =  (P, L), where P is the
union set of Pb and Pe
for every two subgraphs Gi and Gj in G do
for every pair of end nodes p%e in Gi and pe in Gj do 
if distance between p\ and pe < distance threshold A s 
then

link pe and pe (e.g., using A* search algorithm, Di- 
jkstra algorithm, etc.) 
remove pie and pje from Pe 
update skeleton graph G 

end if 
end for 

end for
return updated G, denoted as compact skeleton graph Gc * 3 * 3

T =  {p0 ^  pe}, i E {1, • • • , n — 1}, where n is the num-
ber of end nodes in the compact skeleton graph Gc. We note 
that p0 can be randomly selected from any end node, deter-
mined using a set of criteria (e.g., the end node furthest to the 
left of the image), or manually input. For our comparisons, 
we manually selected the end nodes to be consistent with our 
human annotation or chose pe0 to be the end node with the 
smallest coordinate in unannotated data.

3. DATASETS

We generated two test images for validation of our method in 
this report. Expansion microscopy [15] was applied to phys-
ically expand brain tissue by 4x from a Brainbow-labeled 
PV/Som-Cre mouse. A 3-channel image was collected, fol-
lowed by manual channel alignment and histogram matched 
using Fiji [16]. The resulting image was then cropped to 
364 x 372 x 169 voxels, representing an effective voxel size of 
75 nm x 75 nm x 175 nm and a physical volume of 27.3 pm x 
27.9 pm x 29.6 pm, to form a manageable test case. This image 
is used in Fig. 1, 3, and 5.

We collected a second image (Fig. 4) by injecting the 
Brainbow viral reporter into the hippocampal CA1 region of a 
POMC-Cre reporter mouse. 3-channel imaging was performed 
as above, without the use of sample expansion. This image was 
cropped to 300 x 300 x 300 voxels to encompass the branches 
of approximately a single neuron for demonstration purposes, 
and represents a voxel size of 0.42 pm x 0.42 pm x 1.00 pm 
and a physical volume of 126 pm x 126 pm x 300 pm. We use 
DIADEM metric [17] to quantify differences between different
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Fig. 3: A1, B1, selected GMM segmentation results. A2, B2, 
selected kernel k-means segmentation results.

neuron tracings where a maximum value of 1 for perfectly- 
matching reconstruction, and 0 for a reconstruction which has 
no matched nodes to the gold standard.

4. RESULTS

We first compare our neuron segmentation method (Methods 
2.3) against the state-of-the-art method of [9] by applying it 
to the first Brainbow image described above (Fig. 3). Other 
than the number of clusters, the remaining parameters are 
held constant between the two methods, to ensure that differ-
ences observed are the result of algorithm changes. Overall, 
compared with the previous method, more continuous neuron 
processes are easily observed using GMM clustering. Chan-
nels which are well spectrally separated in the image result 
segmentations which are equivalent between the two methods 
(e.g., Fig. 3A1 and A2). When neurons of different color inter-
sect, we find that our method results in fewer “extra” voxels 
being segmented to the wrong channel (Fig. 3B1 and B2; see 
arrows in insets). These improvements result in segmentations 
that are more coherent and is crucial to accurate downstream 
automated data analyses.

Next, we evaluated our method on a more complexly- 
branched sample as shown in Fig. 4. Along with large color 
variance in the same neuron, the interweaving neural struc-
ture of this image can be hard even for human annotation. 
Fig. 4B shows the result of bridging the fragmented segmen-
tation into a compact tracing. We observe that even for the 
neurites with low intensity, our method can trace the neurites 
and add them into the reconstructed neuron tree. It is apparent 
that several branches are oversegmented, as a result of seg-
mentation cross-talk with the green channel. This behavior 
can be tuned by parameter choice, however, we found that 
neuron “pruning” requires less human intervention time when 
proofreading a tracing as compared to adding missed branches. 
We also conduct robustness study for our method. Briefly, we 
calculated the skeletons for the two neurites found in Fig. 3A1, 
after the random removal of between 0 and 50 points out of 
each 100, resulting in fragmented skeletons. Upon evalua-
tion, we find that both reconstructions are visually robust to 
large amounts of data loss, however, several loop structures 
are formed due to the loss of connectivity in dense regions 
(red arrows). The artificially-fragmented skeletons were then 
compared against the non-removal control using the DIADEM
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Fig. 4: A , the projection of test image with interweaving neu-
ral branches along the z-axis. B, the tracing result using the 
proposed method for the purple neuron in the test image. Both 
images are maximum projections along the z-axis. The study 
on robustness of our proposed method to loss of image infor-
mation. C and D, robustness study for neurite in Fig. 3A1. 
E, the DIADEM quality score of each setting for C and D . 
Tracings have been rotated and rescaled to fit plotting area.

metric [17] (Fig. 4E). The quantification of the top neurite, 
as indicated by the DIADEM scores close to 1 indicates that 
there our linkage bridging method is robust against the loss of 
data in this case. We observe a similar trend in accuracy loss 
in the bottom neurite, however, the loop structures formed in 
error cause the DIADEM metric to be lower. Together, these 
results suggest that the qualitative structure of tracing is highly 
robust to the loss of data.

Finally, as a test of the accuracy of our algorithm and 
applicability for large-scale neural circuit reconstruction ex-
periments, we generated 7 neuron tracings from our test image 
(Fig. 5A, B) and also reconstructed the same neurons by man-
ual tracing (a process which took approximately 2 hours). The 
automatically-generated tracings agree well with the human 
“gold standard” results (Fig. 5C-G ), with an average DIADEM 
score of 0.82. There are several features to be noted within 
these reconstructions: First, we find that there are some fea-
tures which are reconstructed by the proposed method are not 
annotated by our human tracing (e.g., Fig. 5E , arrow). Upon 
manual inspection, some of these small features represent 
spines that are difficult to resolve in the image. Additionally, 
one outlier reconstruction (Fig. 5F) performed poorly, due to 
a small loop introduced by a nearby similarly-colored neurite 
(arrow)1. Overall, this experiment suggests the ability to per-

1 Please refer to our bioRxiv version [18] for more results.

Fig. 5: A , an overview z-projection of the test image, for refer-
ence. B, high caliber neurons (N =  7) were automatically re-
constructed and their structures are visualized as z-projections 
of the resultant tracing files. C-F , several example neurons 
from B are shown next to manual human tracing. The DIA-
DEM quality score for each pair is shown below each panel. 
Red arrows are discussed within the text. Note in C that slight 
differences exist between the two reconstructions, however, 
because they are smaller than the size limit for the algorithm, it 
reports a complete reconstruction. Neurons have been rotated 
and rescaled to fit the plotting area. G, the DIADEM scores of 
all 7 neurons in B (p =  0.82; Range =  [0.53, 1.0]).

form large, automated reconstructions of Brainbow-labeled 
neurons with accuracy comparable to human annotation.

5. DISCUSSION

In this paper, we present a method that enables the efficient 
generation of neuron structural traces from densely labeled 
multispectral Brainbow images. Specifically, our use of GMM 
clustering, as well as a graph-theoretic method for neuron 
trace repair, prevent fragmentation errors which result from 
the application of previous methods. We show by comparison 
to the human annotation of the same images that our method 
is robust and efficient while introducing minimal errors.

We hope that this work will find application with the many 
worldwide efforts to create whole-organism neural maps. Hu-
man proofreading time in these experiments can be astronom-
ical, so improving automation has the potential to accelerate 
science by increasing its efficiency.
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6. COMPLIANCE W ITH ETHICAL STANDARDS

Here, we present an unsupervised approach for neural tracing 
on densely labeled multispectral Brainbow images. To best 
of our knowledge, our method may not be possible to raise 
ethical issues.
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