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ABSTRACT

Recent advances in imaging technologies for generating large
quantities of high-resolution 3D images, especially multispec-
tral labeling technology such as Brainbow, permits unambigu-
ous differentiation of neighboring neurons in a densely la-
beled brain. This enables, for the first time, the possibility
of studying the connectivity between many neurons from a
light microscopy image. The lack of reliable automated neu-
ron morphology reconstruction, however, makes data analysis
the bottleneck of extracting rich informatics in neuroscience.
Supervoxel-based neuron segmentation methods have been
proposed to solve this problem, however, previous approaches
have been impeded by the large numbers of errors which arise
in the final segmentation. In this paper, we present a novel
unsupervised approach to trace neurons from multispectral
Brainbow images, which prevents segmentation errors and
tracing continuity errors using two innovations: First, we for-
mulate a Gaussian mixture model-based clustering strategy
to improve the separation of segmented color channels that
provides accurate skeletons for the next steps. Then, a skeleton
graph approach is proposed to allow the identification and cor-
rection of discontinuities in the neuron tree topology. We find
that these innovations allow better performance over current
state-of-the-art approaches, which results in more accurate
neuron tracing results close to human expert annotation.

Index Terms— neuron tracing, neuron segmentation,
Brainbow images

1. INTRODUCTION

Recent advances in light microscopy and genetic strategies
for labeling defined groups of neurons have enabled neurosci-
entists to capture these dense volumetric images of neurons
in the brain. Specifically, multispectral volumetric imaging
of neurons, termed “Brainbow™, has emerged as a promis-
ing approach to produce densely labeled brain samples [1, 2].
Briefly, individual neurons in a Brainbow sample each stochas-
tically express combinations of fluorescent proteins, effectively

Correspondence o dweai @ wmich. edu and yyan34 @iit. edu

978-1-6654-1246-9/21/831.00 ©2021 IEEE 1122

*Bioinformatics *Neuroscience Graduate Program
Cell and Developmental Biology, Michigan Medicine

labeling each neuron a different composite color. This en-
ables unambiguous identification of individual axons and den-
drites within a given volume. The continued improvement of
Brainbow-like tools [3], together with the advent of improved
imaging technologies such as expansion microscopy [4, 5] and
light-sheet microscopy [6, 7], makes Brainbow well-poised
o make significant contributions to both connectomics and
hypothesis-driven circuit analysis. Despite the technological
advances for collecting these micrographs, approaches for reli-
ably analyzing and quantifying these rich datasets remain in
their infancy. Along with large data sizes (sometimes several
terabytes), this is a difficult problem due to a large number of
channels and imaging noise in the Brainbow images.

The earlier methods [8, 9, 10] based on Brainbow directly
operate in voxel-level, which can be extremely computation-
intensive and error-prone due to insufficient color consistency.
Though the computation and color inconsistency issues are
addressed in [9], we observed that this method results in frag-
mented (broken) neurite segmentations (Fig. 1D, red arrows).
These fragmented segmentations can be caused by a flaw in the
supervoxelization process or occlusions by other neurons in
the raw Brainbow data. In addition, none of the segmentation
methods provide a tree-like neural tracing structure, which is
required for native neuroinformatics analysis.

In this work, we intend to adapt the computationally effi-
cient supervoxel-based segmentation used in [9] but to address
its fragmented segmentation problem. Aware that the problem
may be caused by its kernel k-means or spectral clustering,
which are theoretically equivalent and tend to find circular or
even-sized clusters [11], we instead use a probabilistic Gaus-
sian mixture model. This modification allows the modulation
of the distribution of supervoxel-representation to form more
robust clusters and thus reduces the segmentation errors. Next,
we extract a neuron tree topology (tracing), represented as a
graph, by skeletonization of the GMM-clustered segmenta-
tion. To address breaks in the neuron tracing which arise, we
implement a graph-based method which utilizes the spatial re-
lationship of the segmentation skeleton to bridge broken links,
producing a more reliable tracing result.
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Fig. 1: A, an overview of our pipeline. B, linkage bridging
is used to repair broken trees. C, a raw Brainbow image. D,
image C after GMM clustering is performed. E, image D after
skeletonization is performed. F, the final reconstruction of the
two neurites from E, pseudocolored for contrast.

2. METHODS

We start from a supervoxel-representation X and leave out
the details for denoising and supervoxelization as is similar
in [9]. To solve the fragmentation problem in [9], we make
two innovations: (i) to avoid biasing the segmentation as even-
sized, we replace the kernel k-means with Gaussian mixture
model to modulate the supervoxel features which we obtain
from the supervoxelization; (ii) to mitigate the gap between
fragmented neurites, we develop a skeleton graph method
(Fig. 2) to reconstruct the structure.

2.1. Neuron Segmentation

Supervised learning methods (e.g., [12]) rely on a volumetric
ground truth segmentation, which is difficult and, in many
cases, infeasible. Thus, unsupervised approaches, such as
kernel k-means and spectral clustering, allow more efficient
solutions. However, after applying kernel k-means, we ob-
serve imperfect segmentation results, particularly with frag-
mentation near differences in neuron caliber (Fig. 3). Thus,
instead of imposing hard clusters on X via kernel k-means or
its variants [11], we approximate the distribution of the feature
X using mixture of Gaussians (GMM). We hypothesize that
GMM will perform better because it does not bias the cluster
sizes to have specific structures as does kernel k-means (Circu-
lar). We use the expectation-maximization (EM) algorithm to
iteratively optimize the model and check the variational lower
bound if convergence is accomplished.

2.2, Neuron Tracing

Despite improvements in segmentation, we still observe frag-
mented structures (Fig. 1D) among inferred neurons. To gen-
erate a compact tracing, we propose a method to merge frag-
mented topologies into one continuous tree. The fragmented
neurites can be caused by the supervoxelization process and
occlusions by the other neurons in the raw Brainbow data;
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Fig. 2: A, a diagram of 27-point stencil in euclidean space. B,
example constructed graph visualization under Definition 1.
Note that, the black lines between two nodes are following the
path of the connected components using 27-point stencil.

the former problem has been eased by the implementation of
GMM, but the latter persists. Thus, we develop a graph-based
method to “bridge” the broken links within the same neurite.
We first skeletonize the segmentation using [13] and use the
resulting skeleton in the following operations.

Definition 1. Given a skeleton represented by a set of points,
using a 27-point stencil, we define core points with at least
3 neighbors as branch points, and core points with only 1
neighbor as end points. This is demonstrated in Fig. 2.
Skeleton graph construction. We represent branch points P,
and end points P. as the nodes (i.e., branch and end nodes) in
the graph, where edges or links L between every two connected
nodes are coded by the paths of the connected components
between two nodes (Fig. 2B). In this way, the points with 2
neighbors in the set of skeleton points can be well-represented
by the links, and thus there is no need to represent these points
as nodes. Abandoning the points with two neighbors also
reduces the computation and improves efficiency. The skeleton
graph is configured as G = (P, L), where P is the union set
of branch nodes P, and end nodes F..

Linkage bridging. Broken linkages occur when two end
points are incorrectly formed on opposite ends of a fragmented
segmentation. Here, our way of constructing the graph is
well-suited for bridging these broken connections. First, we
extract subgraphs based on the connectivity of all the nodes.
Next, we examine every pair of end nodes within two differ-
ent subgraphs. When the distance, in our case a Euclidean
distance, is less than threshold A,, we link the two end nodes,
and thus we can obtain a more compact graph. The process is
iterated until all pairs of subgraphs have been examined.
Trace generation. In order to perform quantitative analysis
from generated tracing, we developed a technique to generate
SWC tracing files [14], a format used broadly by the neuroin-
formatics community. Our technique makes full use of the
properties of G.. In general, a neurite starts from an end node
and stops at an end node and the path between two connected
end nodes can be interpreted as part of the neurite. In prac-
tice, we try to find the shortest paths from the seed node p
to following end nodes p’ in the same subgraph, such that
the union set of these found shortest paths can be interpreted
as the final tracing result 7' (Tracing) which is of the form
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Algorithm 1 Skeleton graph construction and linkage bridging

Require: skeleton point set .S, distance threshold A,
find points in S}, with at least 3 neighbors as branch points
P, and points with 1 neighbor as end points F,
for every two nodes {p;, p;} in {Fp, P.} do
represent the link L;; as the path of connected compo-
nents between p; and p;
end for
construct the skeleton graph G = (P, L), where P is the
union set of P, and P,
for every two subgraphs G; and G; in G do
for every pair of end nodes p; in GG; and pJ in G; do
if distance between p: and p! < distance threshold A
then
link p! and p’ (e.g., using A* search algorithm, Di-
jkstra algorithm, efc.)
remove p! and pJ from P,
update skeleton graph G
end if
end for
end for
return updated G, denoted as compact skeleton graph G

T={p—p}, ie{l,---,n— 1}, wheren is the num-
ber of end nodes in the compact skeleton graph G.. We note
that p? can be randomly selected from any end node, deter-
mined using a set of criteria (e.g., the end node furthest to the
left of the image), or manually input. For our comparisons,
we manually selected the end nodes to be consistent with our
human annotation or chose p to be the end node with the
smallest coordinate in unannotated data.

3. DATASETS

We generated two test images for validation of our method in
this report. Expansion microscopy [15] was applied to phys-
ically expand brain tissue by 4x from a Brainbow-labeled
PV/Som-Cre mouse. A 3-channel image was collected, fol-
lowed by manual channel alignment and histogram matched
using Fiji [16]. The resulting image was then cropped to
364 x 372 x 169 voxels, representing an effective voxel size of
75nm X 75nm x 175 nm and a physical volume of 27.3 pm x
27.9 pm x 29.6 pm, to form a manageable test case. This image
is used in Fig. 1, 3, and 5.

We collected a second image (Fig. 4) by injecting the
Brainbow viral reporter into the hippocampal CA1 region of a
POMC-Cre reporter mouse. 3-channel imaging was performed
as above, without the use of sample expansion. This image was
cropped to 300 x 300 x 300 voxels to encompass the branches
of approximately a single neuron for demonstration purposes,
and represents a voxel size of 0.42um x 0.42 pm x 1.00 ym
and a physical volume of 126 pm x 126 ym x 300 ym. We use
DIADEM metric [17] to quantify differences between different

Fig. 3: A1, B1, selected GMM segmentation results. A2, B2,
selected kernel k-means segmentation results.

neuron tracings where a maximum value of 1 for perfectly-
matching reconstruction, and 0 for a reconstruction which has
no matched nodes to the gold standard.

4. RESULTS

We first compare our neuron segmentation method (Methods
2.3) against the state-of-the-art method of [9] by applying it
to the first Brainbow image described above (Fig. 3). Other
than the number of clusters, the remaining parameters are
held constant between the two methods, to ensure that differ-
ences observed are the result of algorithm changes. Overall,
compared with the previous method, more continuous neuron
processes are easily observed using GMM clustering. Chan-
nels which are well spectrally separated in the image result
segmentations which are equivalent between the two methods
(e.g., Fig. 3A1 and A2). When neurons of different color inter-
sect, we find that our method results in fewer “extra” voxels
being segmented to the wrong channel (Fig. 3B1 and B2; see
arrows in insets). These improvements result in segmentations
that are more coherent and is crucial to accurate downstream
automated data analyses.

Next, we evaluated our method on a more complexly-
branched sample as shown in Fig. 4. Along with large color
variance in the same neuron, the interweaving neural struc-
ture of this image can be hard even for human annotation.
Fig. 4B shows the result of bridging the fragmented segmen-
tation into a compact tracing. We observe that even for the
neurites with low intensity, our method can trace the neurites
and add them into the reconstructed neuron tree. It is apparent
that several branches are oversegmented, as a result of seg-
mentation cross-talk with the green channel. This behavior
can be tuned by parameter choice, however, we found that
neuron “pruning”’ requires less human intervention time when
proofreading a tracing as compared to adding missed branches.
We also conduct robustness study for our method. Briefly, we
calculated the skeletons for the two neurites found in Fig. 3A1,
after the random removal of between 0 and 50 points out of
each 100, resulting in fragmented skeletons. Upon evalua-
tion, we find that both reconstructions are visually robust to
large amounts of data loss, however, several loop structures
are formed due to the loss of connectivity in dense regions
(red arrows). The artificially-fragmented skeletons were then
compared against the non-removal control using the DIADEM
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Fig. 4. A, the projection of test image with interweaving neu-
ral branches along the z-axis. B, the tracing result using the
proposed method for the purple neuron in the test image. Both
images are maximum projections along the z-axis. The study
on robustness of our proposed method to loss of image infor-
mation. C and D, robustness study for neurite in Fig. 3A1.
E, the DIADEM quality score of each setting for C and D.
Tracings have been rotated and rescaled to fit plotting area.

metric [17] (Fig. 4E). The quantification of the top neurite,
as indicated by the DIADEM scores close to 1 indicates that
there our linkage bridging method is robust against the loss of
data in this case. We observe a similar trend in accuracy loss
in the bottom neurite, however, the loop structures formed in
error cause the DIADEM metric to be lower. Together, these
results suggest that the qualitative structure of tracing is highly
robust to the loss of data.

Finally, as a test of the accuracy of our algorithm and
applicability for large-scale neural circuit reconstruction ex-
periments, we generated 7 neuron tracings from our test image
(Fig. 5A, B) and also reconstructed the same neurons by man-
ual tracing (a process which took approximately 2 hours). The
automatically-generated tracings agree well with the human
“gold standard” results (Fig. 5C-G), with an average DIADEM
score of 0.82. There are several features to be noted within
these reconstructions: First, we find that there are some fea-
tures which are reconstructed by the proposed method are not
annotated by our human tracing (e.g., Fig. 5E, arrow). Upon
manual inspection, some of these small features represent
spines that are difficult to resolve in the image. Additionally,
one outlier reconstruction (Fig. 5F) performed poorly, due to
a small loop introduced by a nearby similarly-colored neurite
(arrow) !. Overall, this experiment suggests the ability to per-

I Please refer to our bioRxiv version [18] for more results.
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Fig. 5: A, an overview z-projection of the test image, for refer-
ence. B, high caliber neurons (N = 7) were automatically re-
constructed and their structures are visualized as z-projections
of the resultant tracing files. C-F, several example neurons
from B are shown next to manual human tracing. The DIA-
DEM quality score for each pair is shown below each panel.
Red arrows are discussed within the text. Note in C that slight
differences exist between the two reconstructions, however,
because they are smaller than the size limit for the algorithm, it
reports a complete reconstruction. Neurons have been rotated
and rescaled to fit the plotting area. G, the DIADEM scores of
all 7 neurons in B (12 = 0.82; Range = [0.53, 1.0]).

form large, automated reconstructions of Brainbow-labeled
neurons with accuracy comparable to human annotation.

5. DISCUSSION

In this paper, we present a method that enables the efficient
generation of neuron structural traces from densely labeled
multispectral Brainbow images. Specifically, our use of GMM
clustering, as well as a graph-theoretic method for neuron
trace repait, prevent fragmentation errors which result from
the application of previous methods. We show by comparison
to the human annotation of the same images that our method
is robust and efficient while introducing minimal errors.

We hope that this work will find application with the many
worldwide efforts to create whole-organism neural maps. Hu-
man proofreading time in these experiments can be astronom-
ical, so improving automation has the potential to accelerate
science by increasing its efficiency.
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6. COMPLIANCE WITH ETHICAL STANDARDS

Here, we present an unsupervised approach for neural tracing
on densely labeled multispectral Brainbow images. To best
of our knowledge, our method may not be possible to raise
ethical issues.
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