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Abstracti—Human motion prediction, especially arm
prediction, is critical to facilitate safe and efficient human-
robot collaboration (HRC). This letter proposes a novel
human motion prediction framework that combines a recur-
rent neural network (RNN) and inverse kinematics (IK) to
predict human arm motion. A modified Kalman filter (MKF)
is applied to adapt the model online. The proposed frame-
work is tested on collected human motion data with up to
2 s prediction horizon. The experiments demonstrate that
the proposed method improves the prediction accuracy by
approximately 14% comparing to the state-of-art on seen
situations. It stably adapts to unseen situations by keep-
ing the maximum prediction error under 4 cm, which is 70%
lower than other methods. Moreover, it is robust when the
arm is partially occluded. The wrist prediction remains the
same, while the elbow prediction has 20% less variation.

Index Terms—Adaptive systems, human-in-the-loop con-
trol, kalman filtering.

[. INTRODUCTION

HE RAPID development of human-robot collaboration

(HRC) addresses contemporary needs by enabling more
efficient and flexible production lines. Working in such envi-
ronments, human workers collaborate with robot arms in a
confined workspace. Therefore, it is essential to ensure safety
while maximizing efficiency.

Human motion prediction is an important step to address
the challenge [1]. However, motion prediction is difficult due
to the stochastic and nonlinear nature of human behaviors.
Early approaches [2] addressed the problem in a proba-
bilistic way by using Hidden Markov Models to estimate
the possible areas that human arms are likely to occupy.
Assuming human motions are optimal, [3] intended to learn a
cost function of human behaviors by inverse optimal control
and made prediction according to the learned cost function.
Recent works [4], [5] addressed the prediction as a reach-
ing problem by specifically learning the motion of human
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hands using neural networks. The recent development of recur-
rent neural network (RNN) had outstanding performance in
motion prediction [6]. The Encoder-Recurrent-Decoder (ERD)
structure [7], which transformed the joint angles to higher-
dimensional features, was shown to be effective in motion
prediction. Reference [8] added the sequence-to-sequence
architecture to address the prediction as a machine trans-
lation problem. Recently, [9], [10] devoted to embedding
the structural information of human bodies into the neural
networks. However, existing methods suffer from several prob-
lems. First, neural networks are pre-trained and fixed, which
may have limited generalizability or adaptability to unseen sit-
uations. Second, the physical constraints of the human body
are encoded using complex neural network structures, which
is unintuitive and difficult to verify.

This letter focuses on human arm motion since the major
body parts involved in the collaboration on production lines are
arms. In general, hand motion carries contextual information
such as intentions, while the elbow motion mainly supports
the hand motion. Therefore, we divide the problem into two
subtasks: wrist prediction and full-arm prediction. This letter
proposes a novel RNNIK-MKF arm motion prediction frame-
work, which uses an RNN to predict the wrist motion and
inverse kinematics (IK) to predict the full-arm motion accord-
ing to the wrist prediction. A modified Kalman filter (MKF) is
used for adapting the model online. This decomposed approach
is related to planning-based prediction methods [11], [12].
Nonetheless, this letter is the first to decompose arm prediction
models.

The proposed method has several advantages. First, our
method uses 3D positions of human arms, hence can be eas-
ily deployed in the real world. Many current approaches, such
as [7], [13], consider the joint angles or Electromyography
signals generated by muscles as inputs. However, these mea-
surements either require extra transformation steps or spe-
cialized sensors, making them inconvenient and inefficient to
be applied to real applications. The 3D positions are easier
to be captured by regular sensors, such as depth cameras.
Second, the method is adaptable, hence can easily gener-
alize to unseen situations. Many existing approaches have
been proven to work well in trained environments, but have
limited generalizability. However, it is impossible to obtain
motion data from all workers and comprehensively validate
the model for all situations. The proposed method enables
online model adaptation using MKF to achieve better gener-
alizability. Third, the proposed structure can explicitly encode
the kinematic constraints into the prediction model. Current
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Fig. 1. llustration of the arm motion prediction problem. The problem
takes in the N-step historical arm frajectory and outputs the M-step
future arm trajectory. The human arm is modeled as a 5-DOF manip-
ulator.

approach, such as [9], used complex neural network structures
to encode the structural information, which is complicated
and implicit. The proposed method uses the physical model
derived from the human arm, which is simple and intuitive.
Fourth, the proposed method is robust when occlusion of the
arm happens. Few existing methods [14] considered the sit-
uation when a partial human body is not observable. Yet the
situation is common during collaboration as the robot could
go between the sensor and the human arm, and thus, occlud-
ing the body part. Our method using the physical arm model
can robustly predict the arm positions even when a portion
of the arm, e.g., elbow, is blocked from view. The proposed
method is tested on collected human motion data. The results
demonstrate that our method outperforms the existing methods
with the advantages mentioned above. Our code is available
at github.com/intelligent-control-lab/RNNIK-MKF.

The remainder of the letter is organized as follows.
Section II formulates the motion prediction problem.
Section III proposes the RNNIK-MKF method. Section IV
compares RNNIK-MKF with several existing methods.
Section V concludes the letter.

Il. PROBLEM FORMULATION

This letter tackles the prediction problem on production
lines, where humans collaborate with robot arms in confined
workspaces. In these environments, the trunk of the human
body tends to stay still and the major body parts interacting
with the robot are the human arms. Therefore, we focus on
predicting human arm motion, elbow and wrist, as shown in
Fig. 1. This letter discusses single-arm prediction, but the
methodology can be easily extended to dual-arm prediction.

This letter uses regular symbols and A to denote the
observation and prediction respectively. The wrist and elbow
positions at time k are denoted as wg, e € R3. The
position vector p € RO is constructed by stacking the posi-
tions of wrist and elbow. We define the observation and
prediction at time k as X; = [Pr_n41;...;Pk—1;pkl € ROV
and ¥ = [ﬁ’]‘;ﬁ’é; ...: P51 € R®M where [; ] means vertical
concatenation. The constants M, N € N are the prediction
and observation horizons. ﬁj“ is the jth step prediction at
time k. We need to build a prediction model, yx = f(x, ¥k—1),
which takes in the observed N-step historical trajectory and
the previous M-step prediction and outputs the M-step future
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Fig. 2. RNNIK-MKF Prediction Framework.

trajectory. Due to the stochastic and time-varying nature of
human motion, f can be a time-varying function.

[1l. RNNIK-MKF MOTION PREDICTION

Humans move their hands intentionally while the elbows
are mainly to support the hand motion. Hence, we use an
RNN for wrist prediction and IK to extend the wrist prediction
to full-arm prediction. MKF is used for online adapting the
models to different humans and tasks, and address the time-
varying nature of human motion. The proposed RNNIK-MKF
framework is shown in Fig. 2.

A. BNN for Wrist Motion Prediction

Human motion is complex and highly nonlinear. In addition,
the human motion has strong temporal connections. Therefore,
we choose RNN since it has hidden states to memorize
past information. In particular, the Long Short-term Memory
(LSTM) cell [15] is used since it has adequate gates to control
the memory either to remember or to forget. We use an N-to-1
structure [7], where the RNN takes in the N-step wrist history
and outputs the next step wrist prediction as shown in Fig. 2.
For an M-step prediction, the network iteratively appends the
new prediction to the input and then predicts for the next step,
until the M-step prediction is obtained as shown in (2). The
structure has the advantage to enable more flexibility on the
online adaptation since we can adapt the model as soon as a
new observation is available.

We use LSTM and RNN to denote the transition of a sin-
gle LSTM cell and the N-to-1 prediction respectively. Given
the N-step historical wrist trajectory at time k, the hidden
states of the LSTM cells are propagated as [h, c1] =
LSTM(Wi_ny1, 0, 0), [h2, c2] = LSTM(wi_ni2, h1, c1),
vovy [hy, eyl = LSTM(wy, hy_y, cy—_1). The first step wrist
prediction is obtained using a linear layer

WK = ey + by, (1)

where ¢ is the adaptable weight matrix of the linear layer at
time k and by is a constant bias. The LSTM cells and the linear
layer (1) construct the N-to-1 RNN. We solve the prediction
problem as

W = RNN(k., Wen41. - .-
W = RNN(¢x, [Wk—n+2, ---

, wilD),
cwe WD, @

until M-step wrist prediction is obtained.
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B. IK for Arm Motion Prediction

A general human arm can be decomposed into a 5-DOF
manipulator as shown in Fig. 1. The shoulder is decomposed
into 3 revolute joints and the elbow is decomposed into 2
revolute joints. The wrist is considered as the end effector.
The state of the arm in the joint space is 6 € R The end-
effector state is w € R3. The IK problem solves for 6 under
the predicted wrist position W where 6 = IK (W6, w), given
the current states 8 and w. A popular approach to solve the IK
problem is using the Jacobian [16]. The Jacobian J(£) R3xn
for an n-DOF robot manipulator is

dFK(6) _ [afK(w)]—‘

J©) = (3)

a0 aw
where FK(0) : R* — R? is the forward kinematics. Using
matrix transpose to replace matrix inverse, we can solve the
IK problem as

6=0+AJO) (W—w), “)

where A € R"*" is an adaptable parameter matrix that encodes
the individual differences on the joint velocities, e.g., some
workers tend to place elbow on table, while others prefer to
move with wrist. We can solve the arm prediction by solving
the IK for each predicted wrist position.

C. Online Adaptation With MKF

Human motion is time-varying. For instance, a worker might
initially move the entire arm. But after a while, the worker
would probably rest the elbow on the table and only move the
wrist. Moreover, different individuals can perform the same
task very differently. Therefore, online adaptation is impor-
tant to make the method robust and generic. In the proposed
framework, the wrist predictor has a linear output layer (1)
in ¢, and the arm predictor (4) is linear in A. Therefore, we
apply linear adaptation to the system.

Many existing online adaptation algorithms are based
on stochastic gradients [17]. However, these methods have
no guarantee of optimality. Thus, we use a second-order
method in order to achieve better convergence and optimality.
Recursive least-squares parameter adaptation algorithm (RLS-
PAA) [18] is an optimal method. However, since the regular
RLS-PAA does not consider noise models, it is inefficient to
tune. In addition, we need to apply smoothing techniques to
the internal adaptation parameters to ensure stable adaptation
and prediction under noisy measurements. Moreover, we want
the more recent information to have more impact on the cur-
rent estimation. Hence, we propose to use MKF for online
adaptation. We add a forgetting factor, A, to the conventional
Kalman filter to prevent the estimation from saturation. Also,
we apply the Exponential Moving Average (EMA) filtering
method discussed in [19] to smooth the adaptation process.

The linear prediction system can be written as

D = D1 + i,
Vi = OXk + Vi (5)

For wrist prediction, ¥ is the wrist prediction. ® and X are
the parameter matrix ¢ and hidden feature hy in (1). For arm
prediction, %! is the arm prediction, ® and X are equivalent to
A and J(8)' (W —w) in (4). wr ~ N(0, 0y,) and v; ~ N(0, oy)
are virtual Gaussian white noises. The MKF adaptation algo-
rithm is summarized in Algorithm 1. There are two internal

Algorithm 1 Modified Kalman Filter

1: Input: MKF parameters: A > 0, oy, = 0, 0y, > 0.

2: Input: EMA parameters: 0 < p, < 1, 0 < pp < 1.
3: Input: @1, Ex = (1 — k—1)> Xi—1-

4: Output: P.

5: Internal State: Z, V.

6 K =2 1 X[ (X 1Zea Xy + oD

7: Vi = Vi1 + (1 — iy )KE;

8: @) =DPp_1 + Vi

9: Z* = 3 (Zi1 — KXk 1Zk—1 + oul)

10: Zj = P'prk—l +(1 - !—Lp)z*

variables: the covariance matrix Z and the parameter update
step V. The learning gain, K, is calculated on line 6 using
Kalman filter’s formula. V is calculated using the EMA filter-
ing on line 7. The parameter matrix @ is updated on line 8.
Then Z is updated using the forgetting factor on line 9 and
then smoothed using EMA on line 10.

Following the approach in [20] that applies RLS-PAA to
the linear output layer of a fully connected neural network
(FCNN), we apply the MKF to (1) with respect to ¢ as well
as to (4) with respect to A. The virtual noises w and v are
tunable in the adaptation.

The proposed RNNIK-MKF framework is then summarized
in Algorithm 2. MKF denotes the adaptation in Algorithm 1.
The superscripts w and a distinguish the variables for wrist and
arm predictions. FK,,, = [FK; FK,] where FK and FK, are the
forward kinematics to wrist and elbow. IK,,, solves for the arm
state 8, when both wrist and elbow positions are known. For
each time step, the algorithm obtains the current configuration
in line 6. The parameters are updated using MKF on lines 11,
13. If occlusion happens, the adaptation is turned off on line
16. Then the algorithm iteratively predicts the future wrist and
elbow trajectories for M steps on lines 20 and 22.

IV. EXPERIMENTS AND RESULTS

We had humans sitting at a table doing assembly tasks
using LEGO pieces as shown in Fig. 1. The experiments
had 3 humans doing 5 assembly tasks for 3 trials each. Each
task required 4 LEGO pieces. For each trial, the human was
given a set of usable pieces on the table and pictures of
the desired assembled object. The duration of the tasks var-
ied from 30s to 90s. The data was recorded using an Intel
RealSense D415 with 30Hz. The OpenPose [21] was used
to extract human pose as shown in Fig. 1. We compared
our method to several state-of-art methods, including FCNN,
FCNN with RLS-PAA (NN-RLS) [20], ERD [7], and LSTM-
3LR [7]. The data used in the experiment is available at
github.com/intelligent-control-lab/Human_ Assembly_Data.

The proposed RNNIK-MKF has one recurrent layer with
128 hidden size. To establish a fair comparison, we designed
the FCNN with two ReL.U layers and a linear output layer [19].
We decreased the hidden size of the ERD and LSTM-3LR
to match the size of ours. All models have the loss function
set to be the Huber loss [22] and the post-training loss for
all models was around 5 x 10~3. All models were trained
using the trajectories randomly selected from humans 1 and
3 doing tasks 1, 2, 3. Since the regular human reaction time
to visual stimulus is around 0.25s, we set the input horizon
be 10, which is equivalent to 0.3s. The experiments tested
the prediction horizon from 1 to 60, which is equivalent to
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Algorithm 2 RNNIK-MKF Motion Prediction

1: Input: Pre-trained RNN, Arm Model, ¢y = qu,med,

: Input: MKF parameters: 0 < AY < 1, o)y = 0, o)/
0<A=<1,05>0,0=0.

3: Input: EMA parameters: Y, ,u“;’, na, ,u.g c [0,1).

4: Output: Full arm trajectory prediction

5: fori=1,2,...,kdo

6: Obtain current configuration w;, e;.

7

8

9

(o]

X = [Wi_N415 - s Wisls Wil, Wpre = Wi,

forj=1,2,...,M do
if j =1 then

10: if Observation Available then
i: ¢i = MKF(§i_1, i - Wi hisy)
12: X¢ , =J"0i_)wi —Wi—1)
13: Ai = MKF(Ai_1, 6; — 017", X2 )
14: gpre =K, ([wis €])
15: else
16: ¢ =0di_1, A —Ax l
17: Opre — K., (Iw:: é=1)
18: end if
19: end if
20: v‘vj RNN(¢i, x}¥) _
21: X = WisNags - Wis . W
2: 8] = Opre + Aid Opre) " (W — Wpre)
23: [w,,m, &1 = FKow(8)), Opre = 6
24: end for
250 Ji =[5 8. Wy 8yl
26: end for

0.033s to 2s. We deﬁne the average predletlon error for each
prediction step as, E; = ¢ Z{ ollIPig; p t|2), to quantitatively
evaluate the predlctlon accuracy. T denotes the total time steps.
In the following plots, RNNIK represents the proposed method
with wrist MKF turned off.

A. Prediction Experiments

We used trajectories from humans 1 and 3 doing tasks
1, 2, 3 but different trials to evaluate the prediction quality.
Fig. 3 shows the predicted trajectories from different methods
at one time instance, where RNNIK-MKF outperforms oth-
ers in terms of prediction accuracy. Figure 4 demonstrates
the overall prediction accuracy quantitatively. As shown in
Fig. 4, the proposed RNNIK-MKF and RNNIK had very close
performance, which was shown in Fig. 3 as well. In general,
the RNNIK-MKF had the lowest prediction error. It had 14%
lower prediction errors on average comparing to LSTM-3LR,
which had the lowest errors among the comparing methods.
Fig. 5 shows the ratio of prediction error over the motion
range. When predicting within 1s, RNNIK-MKF can main-
tain the error at around 10% relative to the motion range.
For longer prediction step, the percentage can be maintained
at around 15%. From the experiments, we can see that the
proposed RNNIK-MKF can generate high-fidelity human arm
motion predictions that are competitive to state-of-art methods.

B. Unseen Humans Experiments

We tested the methods with trajectories from human 2 doing
tasks 1, 2, 3, to verify the effect of MKF. Figure 6 indi-
cates that NN-RLS and RNNIK-MKF had significantly smaller

(0:0912, 0.0518) m §(0.0809, 0.0322) m

(0.0434, 0.0430) m

(b) LSTM-3LR (c) FCNN

(d) NN-RLS (e) RNNIK

(f) RNNIK-MKF

Fig. 3. Visualizations of the predicted trajectories (10 steps)
using different methods. Green: wrist ground-truth trajectories. White:
elbow ground-truth trajectories. Red: wrist predictions. Purple: elbow
predictions. Due to projection, the errors might appear to be larger than
the true errors. True errors are labeled as (Wrist Error, Elbow Error) m.
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Fig- 4. Prediction Error for 1-60 Prediction Steps. Training and test data
are from the same person doing the same tasks but different trials.
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Fig. 5. Prediction Error Relative to Motion Range.

prediction errors. Methods without adaptation had large errors
and did not achieve similar performance as in the trained
environment. In terms of adaptation, the RLS-PAA effectively
reduced the error generated in FCNN when the prediction step
was less than 20. But it exploded for longer prediction steps.
On the other hand, RNNIK-MKF stably reduced the error
comparing to RNNIK. It kept the maximum prediction error
under 4cm, which was at least 70% lower than other meth-
ods without adaptation. Since the data contains humans with
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Fig. 6. Prediction Error for 1-60 Prediction Step. Training and test data
are from different people doing the same tasks.
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Fig. 7. RMSE of the error for online adaptation.

different heights and arm lengths, the results demonstrate that
the method is robust across different scales of motion.

To directly compare the performance of MKF and RLS-
PAA, we applied the MKF to FCNN. Figure 6 demonstrates
that NN-RLS and NN-MKF performed similarly for short
prediction horizon. NN-MKF was able to maintain the error
stable for a longer prediction. However, it still exploded for
predicting more than 35 steps. Thus, we can conclude that the
proposed MKF is more robust than RLS-PAA for online adap-
tation since it has a virtual noise model and internal smoothing
techniques. In addition, RNNIK outperformed FCNN since
NN-MKF was still unstable for longer prediction comparing
to RNNIK-MKFE

In addition, we investigated the adaptation error of MKF.
Figure 7 shows the root mean square error (RMSE) for wrist
and arm predictor with and without MKF. There existed a peak
at time 200 for both, which was caused by sudden direction
change by the human. But the peak was much smaller when
MKF was turned on. There existed multiple smaller spikes for
wrist. This was because we didn’t encode the context (e.g., task
state), while the wrist motion heavily depends on the context.
On the other hand, there were fewer spikes for the elbow,
since the behavior remained relatively stable throughout the
task. The plot demonstrates that MKF effectively reduced the
error caused by model mismatch. Figure 7 also indicates a fast
convergence by MKF. The RMSE for arm settled within 100

Prediction Error
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Fig. 8. Prediction Error for 1-60 Prediction Step. Training and test data
are from the same person doing different tasks.

steps, which was equal to 3.3s. The RMSE for wrist settled
faster within 20 steps, which was around 0.67s. The settling
times were different because the wrist adaptation started with
a parameter matrix ¢ = ¢yineq. Which had prior knowledge
encoded, while the arm adaptation started with A = 1.

C. Unseen Tasks Experiments

We also tested the online adaptation using trajectories from
humans 1 and 3 doing tasks 4 and 5. Figure 8 shows that
the proposed RNNIK-MKF achieved the lowest prediction
errors among all. The tasks in training and testing have dif-
ferent high-level features, but likely to share similar low-level
features, since they were done by the same humans. From
the results in Fig. 8, the adaptation successfully adapted the
network to the new tasks, hence, made the model generalize
to new tasks.

D. Motion Occlusion Experiments

We used the same data from Section IV-A to test the situa-
tion with occlusion. Several random segments were blocked to
the pipeline. We mainly consider the occlusion on the elbow
joint. When occlusion happens, the framework assumes that
the observation aligns with the prediction and turns off the
adaptation as shown in Algorithm 2. Hence, the occlusion
problem is essentially equivalent to a longer-term prediction
problem under the N-to-1 structure. For instance, when at
time k, the second step predictions, ﬁ:’z‘ and é’z‘, are predicted
with input being [wi_n42; €k_Ny2; -+ ; WS ek;fv’]‘; é’]‘]. This
is equivalent to when occlusion happens at time k + 1. The
first step predictions at time k+1, fv}f“ and é‘l‘“, are predicted
with input being [wi_n42; ek_ny2; - - - ; Wi; €k; ﬁrk; @’f].

Therefore, we only considered the error for the first step
prediction and we used the error metric E = %Z?(Hﬁ‘i -
l6‘1||2) to describe the variation between the predictions. T
denotes the total steps of occlusion and &) denotes the
prediction with occlusion. The algorithm is considered robust
if the variation is small between the predictions with and
without occlusion.

Table I shows the variation for the wrist and elbow
predictions of each algorithm. ERD and LSTM-3LR had sig-
nificantly larger variations for wrist predictions than elbow
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TABLE |
PREDICTION VARIATION WITH OCCLUSION
Algorithm Wrist Variation (m)  Elbow Variation (m)
ERD 0.05537 0.02591
LSTM-3LR 0.03059 0.01468
FCNN 0.01795 0.01619
RNNIK 0.0 0.03042
RNNIK-MKF 0.0 0.01164

predictions although the occluded joint was elbow. This is
because the models coupled the wrist and elbow in prediction.
The elbow is determined by the upper three joints while the
wrist is affected by all five joints. Thus, the wrist predictions
had larger accumulated variation. On the other hand, since
RNNIK and RNNIK-MKF decoupled the predictions with
arm model, the occlusion of the intermediate arm would not
influence the prediction of the wrist. However, RNNIK had
the largest elbow variation while RNNIK-MKF had the low-
est elbow variation, which was 20% lower than others. This
demonstrated that MKF successfully reduced the error by mis-
matched models. From Table I we can infer that the proposed
RNNIK-MKEF is more robust compared to the existing methods
when the arm motion is partially blocked from view.

V. CONCLUSION

This letter proposed a novel RNNIK-MKF human arm
motion prediction framework. The method uses the RNN to
predict the wrist motion and IK to extend the wrist prediction
to full-arm prediction based on the physical arm model. The
proposed MKF adapts the model in real-time to the current
user or task. By comparing to several state-of-art methods,
our method outperforms by showing that it can predict the
arm motion with 14% lower prediction errors; it is generic
to unseen humans or tasks since it has 70% lower prediction
errors; it is more robust when partial arm motion is blocked as
the occlusion has no impact on wrist prediction and has 20%
less influence on elbow prediction.

The proposed RNNIK-MKF motion prediction frame-
work can also be extended to robot-robot collaboration for
predicting the motion of the co-robot. The prediction can help
the ego robot to interpret the control policy of the other robots,
and thus, collaborate more efficiently and safely. In the future,
the wrist prediction could be extended to embed contextual
information as mentioned in Section IV-B for potential better
prediction.
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