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Human-Aware Robot Task Planning Based on a
Hierarchical Task Model

Yujiao Cheng , Liting Sun , and Masayoshi Tomizuka , Member, IEEE

Abstract—When robots work with humans for collaborative
task, they need to plan their actions while taking humans’ actions
into account. However, due to the complexity of the tasks and
stochastic nature of human collaborators, it is quite challenging
for the robot to efficiently collaborate with the humans. To address
this challenge, in this letter, we first propose an algorithm to au-
tomatically construct a hierarchical task model from single-agent
demonstrations. The hierarchical task model explicitly captures
the sequential and parallel relationships of the task at all levels of
abstraction. We then propose an optimization-based planner, which
exploits the parallel relationships and prioritizes actions that are
parallel to the humans’ actions. In such a way, potential spatial
interfaces can be avoided, task completion time can be reduced,
and human’s satisfaction level can be improved. We conducted
simulations of a robot arm collaborating with a human for several
collaborative tasks. The comparison results with several baselines
proved that our proposed planner is better in terms of efficiency,
safety and human satisfaction.

Index Terms—Industrial robots, human-centered robotics,
assembly, task planning.

I. INTRODUCTION

ROBOTIC systems are increasingly integrated into human
workspace for collaborative tasks. In the assembly lines,

for example, there is a strong economic motivation to enable
robots and humans to cooperatively conduct work [1], [2].
Such integration raises two challenges for robotic systems: 1)
perceiving humans’ actions and predicting their intended tasks
such as in [3], [4], and 2) planning robot’s tasks while taking
humans’ actions into account, also known as human-aware task
planning. So far, there have been many research efforts on
human-aware task planning. Some works such as [5], [6], [7]
solve this problem by empowering a human worker or a central-
ized planner to be a supervisor. The existence of supervisors
makes the system less flexible and makes the human more
stressed. Other works do not include supervisors. They build
a robot planner which takes as input the human’s actions, the
human intention, environment states, task models, and etc., and
enables the robot to collaborate as a teammate. The mechanism
usually consists of two steps: offline obtaining task knowledge
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and online generating plans. In the literature, task knowledge can
be acquired via engineering by experts [8]–[12] or learning from
demonstration [13]. Online plans can be generated by techniques
such as search algorithms [8], [9], [11], [12], optimization of
the collaborative cost [10], or a Q-learning method [13]. In this
letter, we adopt this two-step mechanism, where task knowledge
is extracted from human demonstration offline, and robot actions
are planned by optimization online.

Task knowledge is often described by graphical task models.
Depending on the structure of the models, they can be catego-
rized as flat models, such as a plan network [9], or hierarchical
models, such as and/or graphs [14], [15]. Hierarchical models
have shown superiority over flat models for human-robot col-
laboration, because levels of abstraction in hierarchical models
are close to human intuitions, which can help predict actions
of human and plan predicable actions of the robot. To our
advantage, we propose a sequential/parallel task model which is
a hierarchical task model. This model inherits the feature from
the model in [16] that it explicitly models parallel relationships
of subtasks and actions. To learn the hierarchical task models,
Hayes and Scassellati in [17] proposed a conjugate task graph
and an aggregation algorithm for identification of underlying
structure of a task. Nevertheless, the introduction of conjugate
task graph shrinks the task space, which makes it less applicable
to some use cases. We propose to extract the sequential/parallel
task model using the idea of aggregation but without introducing
conjugate graphs.

Optimization-based planners formulate the planning problem
as finding a robot action from all feasible actions that minimizes
the collaborative costs including factors such as completion
time [18], human fatigue [19], spatial interfaces [18], and etc..
The more factors considered, the more complex the cost function
becomes, and it is nontrivial to decide on the weights for each
factor. With poor modeling, the planning results can be far below
expectations. We propose an optimization-based planner, the
objective of which is to minimize the task completion time.
Different from other methods, we give priorities to actions
that are parallel to the human’s. The perspective is that it is
worth sacrificing some completion time for conducting parallel
actions, because this has potential benefits in reducing spatial
interfaces and improving human’s satisfaction, which are not
explicitly included in the objective function.

The key contributions of this letter are:
� We propose the sequential/parallel task model and a

method to automatically extract the model from human
demonstrations.
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TABLE I
TABLE OF NOTATION

Fig. 1. The sequential/parallel task model for a desktop assembly task.

� We propose a robot planner that explicitly uses the parallel
information in the sequential-parallel task model.

� We provide simulations to compare our planner with base-
line planners, and show that our planner is better in terms
of efficiency, safety and human satisfaction.

� We use the planner on our robot to work with a human for
the desktop assembly task.

The main notation used in this letter is summarized in Table I.
The rest of the letter is organized as follows. Section II introduces
the sequential/parallel task model. Section III-A proposes the
algorithm for automatically constructing sequential/parallel task
model from human demonstrations, and Section III-B proposes
a planner that takes advantage of the parallel information in
our task model. In Section IV, simulations and experiments are
included. Finally, Section V concludes the letter.

II. A HIERARCHICAL TASK MODEL

Hierarchical task models surpass the flat models in the fields
of human-robot collaboration in three ways. First, hierarchical
task models provide more intuitive abstractions of the task for
the robots, which can help improve the human-robot commu-
nication about the intermediate goals of the task [20], [21].
Second, since humans follow the hierarchical abstractions when
accomplishing a task, hierarchical task models can help predict
the human’s actions [22], [23]. Finally, it has been found that
such hierarchical abstractions can be learned remarkably fast
from relatively little data compared with what is needed for
learning at lower levels due to overhypotheses [24], [25], [26].
Thus, in this work, we adopt a hierarchical task model named
a sequential/parallel task model. Fig. 1 shows an example of

the sequential/parallel task model for the desktop assembly
task. The root node represents the task, and all the other
nodes represents subtasks. Leaf nodes are atomic subtask, also
known as actions. Nodes can be categorized to the following
three types according to the relationship among their child
nodes.
� Sequential nodes: their child nodes must be executed in

the order from left to right, which is denoted by the operator
“→”. For example, the subtask “Install CPU fan” is a
sequential node, and its child “obtain CPU fan” must be
conducted before “Insert CPU fan”.

� Parallel nodes: their child nodes can be executed in par-
allel, which is denoted by “‖”. For example, the subtask
“Install motherboard” is a parallel node, its children “install
CPU fan,” “install memory” and “Tape cables” can be
executed simultaneously.

� Independent nodes: their child nodes can be executed
in any orders, which is denoted by “⊥”. Parallel nodes
are special case of independent nodes. For example, root
node is an independent node but not a parallel node. Its
child nodes “Applying labels to hood” and “Assemble main
body” have no fixed order, but they cannot be executed in
parallel if “close hood” is in progress.

Following the description of [3], [27], actions can be defined
as a = [{motion, object}, attribute], where motion indicates
types of the movement and object indicates the object of inter-
action. The pair of motion (e.g. inserting) and object (e.g. CPU
fan) is sufficient to distinguish different actions. In addition, the
attribute contains information such as completion time, energy
consumption, etc., which are useful in the planning process. For
assembly tasks, the relationships of actions also take three forms.
� Two actions a and b are independent (written as a ⊥ b or
b ⊥ a) if the occurrence of one action does not rely on the
occurrence of the other.

� Action a is dependent on the action b (written as a �⊥
b) if a can not occur in the absence of the occurrence of
action b.

� Actions a and b are parallel (written as ab) if a and b are
independent and they do not share objects of interaction.

An action a is dependent on the action b implies that b pro-
duces some consequences that a requires in order to be executed.
We use the execution indicator to represent this connection, each
component representing an action being executed or not. There
are totally 9 actions in the example, and thus the indicator is
s ∈ {0, 1}9. Note that for assembly tasks, the effects of several
actions are addictive, thus indicator vectors can be used as
procedural states of the assembly. Based on this, we define
two types of indicator vectors, req (·) to be requisite execution
indicator and prod(·) to be the resulting execution indicator
of an action or an action sequence. In this sense, action a is
dependent on action b (a �⊥ b) is equivalent to req(a)∧ prod(b)
= prod (b), where ∧ is a bit-wise AND operator. In addition,
that action d is dependent on action sequence bcd (d �⊥ abc) is
equivalent to req(d)∧ prod(abc) = prod (abc). As the effects of
actions are addictive, prod(abc) = prod(a)+ prod(b)+ prod(c),
hence req(d)∧ prod(abc) = prod (abc) is equivalent to req(d)∧
prod(a) = prod (a), req(d)∧ prod(b) = prod (b) and req(d)∧
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Fig. 2. System overview.

prod(c) = prod (c). Besides, for actions with independent re-
lationships, action a is independent of action b (a ⊥ b) if and
only if req(a)∧ prod(b) = 0 and req (b)∧ prod(a) = 0. Action
d and action sequence abc is independent if and only if req (d)∧
prod(abc) = 0 and req (abc)∧ prod(d) = 0. Similarly, by the
addition characteristic of the effect, req (d)∧ prod(abc) = 0 is
equivalent to req (d)∧ prod(a) = 0, req (d)∧ prod(b) = 0 and
req (c)∧ prod(abc) = 0.

III. APPROACH

Our goal is to develop a human-aware robot task planner
for industrial assembly scenarios. There are two aspects to be
addressed: (i) learning the knowledge of assembly plans from
human demonstrations, and (ii) designing a human-aware robot
task planner using the task knowledge. Fig. 2 shows the proposed
robotic system. We first learn a sequential/parallel task model
from human demonstrations at the offline learning phase. This
model represents the plans of a task with levels of abstraction,
which provides information about the parallel relationships that
could not be directly seen in a collection of action sequences.
At the online execution phase, the planner takes as input the
task model and human actions, then outputs the robot action
command to the controller to execute it. Our planner leverages
the parallel information in the sequential/parallel task model
to guide the robot towards performing actions parallel to the
human’s action, while optimizing over task efficiency.

A. Automatically Constructing Sequential/Parallel Task
Models From Human Demonstrations

As the fast development in computer vision techniques, ac-
tion recognition for videos can be accurate and fast using the
state-of-the-art methods such as [28], [29], [30]. Applying such
techniques to make annotations to each human demonstration
video, a set of action sequences Ξ = {ξ1, ξ2, . . ., ξn} can be
obtained, where n is the number of different plans demonstrated
and ξi = [ai1, a

i
2, a

i
3, . . ., a

i
mi ] is the i-th action sequence with

horizonmi. For industry assembly tasks, the number of steps for
any possible plan is often the same, thus we omit the superscript
of mi for simplicity. The set Ξ is complete if and only if it
includes all the possible plans.

To construct the sequential/parallel task model from Ξ, the
key is to discover the independent relationships and sequential
relationships at all levels of abstraction. Once the independent
relationships are identified, recognizing parallel relationships
is trivial by checking objects of interaction. In the following,
we first discuss how to find a sequential relationship among

actions, and second we explain how to discover an independent
relationship, and then we introduce a bottom-up algorithm which
iteratively aggregates actions and forms a sequential/parallel
task model. Finally we discuss whether there is a requirement on
the completeness of the demonstration set and then we display
time complexity.

1) Sequential Relationships: To identify the actions with se-
quential relationships is to find the longest common subsequence
(LCS). The longest subsequence is common to all the given
sequences ξi ∈ Ξ, i ∈ {1, 2, . . ., n}, provided that the elements
of the subsequence are required to occupy consecutive positions
within the original sequences. By saying so, we impose an
assumption that the sequential actions are not interrupted by
parallel actions in human’s demonstration. For example, “Apply
labels to hood” cannot take place in between “Obtain CPU
fan” and “Insert CPU fan”. This is a weak assumption because
reasonable humans follow this way when proceeding with tasks.

2) Independent Relationships: Identifying the independent
relationships is based on the following theorem.

Theorem 1: When Ξ is complete, for a subsequence η of ξ ∈
Ξ, and suppose η̄ is a reversed η, the following two statements
are equivalent:

a) There exists a γ ∈ Ξ such that η̄ is a subseqence of γ.
b) Each pair of actions in η are independent.
Proof: (a) “⇒” (b)
Suppose subsequence η = [b1, b2, . . ., bm],m ≥ 2, then η̄ =

[bm, bm−1, . . ., b1]. From η, we have

req(b1) ∧ prod(b2b3. . .bm) = 0

req(b2) ∧ prod(b3b4. . .bm) = 0

. . .

req(bm−1) ∧ prod(bm) = 0,

and from η̄, we have

req(bm) ∧ prod(bm−1bm−2. . .b1) = 0

req(bm−1) ∧ prod(bm−2bm−3. . .b1) = 0

. . .

req(b2) ∧ prod(b1) = 0.

Using the addition rule, we have req(bi) ∧ prod(bj) = 0, where
i, j ∈ {1, 2, . . .,m}. Thus, bi ⊥ bj , i �= j ∈ {1, 2, . . .,m},
which indicates (b).

(b) “⇒” (a) since bi ⊥ bj , i �= j ∈ {1, 2, . . .,m}, then
req(bi) ∧ prod(bj) = 0, where i, j ∈ 1, 2, . . .,m, therefore,
any orders of {b1, b2, . . ., bm} are feasible. Hence (a) holds. �

Therefore, an independent relationship can be identified
by checking each pair of the sequences {ξi, ξj}, i �= j ∈
{1, 2, . . ., n}. If there is a common subsequence of ξi and ξ̄j ,
where ξ̄j is a reversed ξj , actions in this common subsequence
are recognized as independent actions.

3) Algorithm: We propose the algorithm shown in Algorithm
1. It takes as input Ξ, the set of action sequences labeled
from demonstrations, and outputs a table T , which stores the
information about meta-actions. A meta-action is a fake action
by compacting atomic actions or meta-actions into one, which
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Algorithm 1: Sequential/Parallel Task Model Construction.
Input Ξ
Output T

1: init T = ∅
2: while True do
3: ψ = findLCS(Ξ)
4: if |ψ| > 1 then
5: create meta-action Am

6: Ξ.refresh(Am)
7: T.update(Am,relation=‘s,’ψ)
8: end if
9: for each pair {ξi, ξj} ∈ Ξ, i �= j do

10: ψ = findLCS(reverse(ξi), ξj)
11: if |ψ| > 1 then
12: create meta-action Am

13: Ξ.refresh(Am)
14: T.update(Am,relation=‘i,’ψ)
15: end if
16: end for
17: if T is not updated in this iteration then
18: break
19: end if
20: end while
21: for each entry t in T with relation=‘i’ do
22: Ao = retrieveAtomicActions(T, t.ψ)
23: if actions in Ao share no objects of interaction then
24: update t.relation=‘p’
25: end if
26: end for

corresponds to the intermediate node in the model. Line 1 initial-
izes the table T to be empty. Line 2–20 constructs a hierarchical
tree from bottom to top by iteratively discovering the sequential
and independent relationships. Line 3–8 identifies the sequential
relationship. First, the longest common subsequence ψ is found.
If the length of ψ is greater than 1, the actions in subsequence
are compacted to a meta-action Am, subsequence ψ is replaced
withAm for every sequence in Ξ by the function refresh, and in
the meantime repeated sequences inΞ are discarded. Finally, the
table T is updated by adding an entry of Am with information
of the relation type and the replaced subsequence ψ, where
relation types ‘s,’ ‘i’ and ‘p’ denotes sequential, independent
and parallel relationships. Line 9–16 identifies the independent
relationships. The function refresh works differently in Line 13.
Replacement takes place not for all sequences but for those
sequences that contain the subsequence ψ or varying orders
of subsequence ψ. The procedure of finding sequential and
independent relationships alternates until T table remains the
same. Finally, Line 21–26 discovers parallel relationships by
checking the objects of interaction among independent actions.
Function retrieveAtomicActions retrieves all the atomic actions
that a meta-action represents. Fig. 3 shows the T table and the
updating demonstration set for the desktop assembly task when
running this algorithm.

Fig. 3. T table and the updating demonstration set Ξ′for the desktop assembly
task when running algorithm 1. Action identifier 1-9 corresponds to the atomic
action ‘Obtain CPU fan,’ ‘Insert CPU fan,’ ‘Obtain memory,’ ‘Insert memory,’
‘Obtain tape,’ ‘Wrap cables,’ ‘close hood,’ ‘Obtain label’ and ‘Apply label’.

4) Demonstration Set Requirement: Our algorithm does not
require that the demonstration set to be complete for successfully
constructing the task model. Suppose the number of independent
nodes in the sequential/parallel task graph isp, and the number of
children for ith independent node is li ∈ N for i = {1, 2, . . .p}.
If p ≥ 1, which is often true, the minimum number of different
plans required by our algorithm is 2, while the number of all
possible plans is

∏p
i=1 li. Since li ≥ 2 and p ≥ 1, thus 2 ≤ 2p ≤∏p

i=1 li holds, indicating that complete demonstration set is not
a must for our algorithm.

5) Complexity: The dominating complexity factor through-
out the algorithm is the discovery of the independent relation-
ship. The step of finding the longest common subsequence can be
accomplished in time O(mlog(m)) using the algorithm in [31],
where m is the length of the sequence, in our case the number
of actions in a demonstration. Therefore, the time complexity
of our algorithm is O(mn2log(m)), where n is the number of
demonstrations.

B. A Robot Planner

In this section, we will present a human-aware robot task
planner. For simplicity, we assume that there is one robot and one
human. However, with a slight modification, the algorithm can
be applied to a team of multiple humans and multiple robots. The
input of the algorithm includes sequential/parallel task model
T , the execution indicator s, capability of the human Ch and
capability of robots Cr, which is a set of actions that the human
or the robot is capable of doing. The planner optimizes a plan,
and then sends the robot first action to the controller to execute,
and plans again, repeatedly.

The key of our planner is the planning horizon, which is a
collection of subtasks including: 1) the sequential subtask the
human is currently conducting, and 2) the subtasks that are
parallel to the human’s current subtasks and are not executed
yet, which is illustrated in Fig. 4. Thus, the planning horizon is
part of the remainging task and it varies as the task proceeds.
Since humans follow abstract hierarchies while doing a task, it
is very likely that the human conducts the following actions in
the sequential subtasks after finishing the current action, thus we
assign the whole sequential subtask to the human to avoid that
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Fig. 4. Two examples of planning horizons. These are two sequential/parallel task model. Red edges are with sequential relationships and black edges are with
independent relationships. “done” and “isDoing” in the atomic action node represents that the action is executed already and that the action is being executed by the
human. The subtasks with orange shades are the human’s current subtasks, and the the subtasks with blue shades are the parallel subtasks to the human’s current
subtasks. These two kinds of subtasks constitute the planning horizon.

the robot chooses the same action as the human’s. The planning
problem then becomes a scheduling problem, which is to assign
those parallel subtasks to the human and the robot such that
the completion time for the planning horizon is minimized. The
optimization problem is formulated as follows.

min
xh,xr

t

s.t. xTh t1 + to ≤ t

xTr t2 ≤ t

xh + xr = 1

xh, xr ∈ {0, 1}k

xh{C−Ch} = 0

xr{C−Cr} = 0

(1)

Decision variables xh and xr ∈ {0, 1}k are binary vectors for
the assignment of subtasks, where k is the number of subtasks
in the planning horizon. Objective function t is the completion
time for the planning horizon, which is the upper bound of the
human’s completion time and the robot’s completion time. to
is the remaining time for the human to complete his current
subtask. t1 and t2 are the empirical completion time for subtasks,
which are obtained based on Attribute of an action. {C − Ch}
denotes the indices of the actions that the human is unable to do,
and {C − Cr} denotes the indices of the actions that the robot
is unable to do.

This planner is suitable to be integrated into a robot system
which has two modes of interaction. One mode is “command”
mode, where the human explicitly asks the robot to perform an
action through communication. The other mode is “automation”
mode. The human and the robot collaboratively do tasks without
communication. Our planner can work under this “automation”
mode, and it is switched to the other planner when humans make
commands.

IV. SIMULATIONS AND EXPERIMENTS

A. Three Scenarios

We use the following three different scenarios to decrease the
impact of different tasks for a fair comparison.

Fig. 5. The book shelving scenarios. The solid boxes represent books, and the
gray frames constitute the bookshelf.

1) A Desktop Assembly Scenario: We evaluate our proposed
planning algorithm in a desktop assembly task whose sequen-
tial/parallel task model is shown in Fig. 1.

2) Two Book Shelving Scenarios: We device two book shelv-
ing scenarios, corresponding to the two models in Fig. 4. The
initial state of the task is that the shelf is empty, and the goal
state is shown in Fig. 5. Difference of the two scenarios is the
constraints on the shelving order. For first scenario, books must
be shelved from bottom to top, which means that books must
be shelved at 1st layer first and then 2nd layer and finally 3 rd
layer. This constraint still holds to small layers such as the left
two layers at the 1st layer. This task corresponds to the left model
in Fig. 4. For the second scenario, there is no constraint on the
vertical axis, however, within each layer, books must be shelved
from left to right. This corresponds to the right model in Fig. 4.

B. Hypothesis

We evaluate the effectiveness of the proposed planing al-
gorithm through simulations by verifying the following four
hypotheses.
� H1: The proposed algorithm generates efficient plans.
� H2: The proposed algorithm generates safe plans.
� H3: The performance of the proposed algorithm is robust

to different levels of incompleteness in demonstrations.
� H4: The human subjects are more satisfied with our collab-

orative robot planning than with other baseline planners.

C. Simulation Setup

We test our algorithm on a simulator built in MATLAB. Hu-
man subjects manipulate the objects by using a mouse, dragging
and dropping the objects with mouse bottom held down and
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released. Complex actions such as inserting and wrapping in
the desktop assembly scenario are simplified by dropping the
objects. The robot actions are expressed by object moving and
a sentence shown in the interaction window. The capability of
both the human and the robot is set to the whole action space for
all the tasks.

Six human subjects participated in the simulation. After in-
structed about the task and the simulation environment, they
operated each action for practice, and that was when the com-
pletion time of actions for humans were collected. For robots, the
completion time of actions are manually set in the simulations.

D. Manipulated Variables

To evaluate the effectiveness of the proposed algorithm, we
manipulated two controlled variables in our simulations. The
first one is planing schemes. Our algorithm is compared with
the following three baselines:

1) Random policy: This planner models the task as a set of
action sequences, which is a single-level plan library. It
tries to recognize the human’s plan by aligning the current
procedure/ action sequence to the action sequences in the
plan library, and chooses the most likely action sequences
as the human’s intended plans, which can be many. After
that, the robot action is generated uniformly at random
from the set of next actions of those possible human’s
plans.

2) Anticipatory planning [13]: This algorithm models the
human’s and the robot’s behavior with an MDP and learns
the policy from demonstrations by reinforcement learning.
At the execution time, it also models that human may not
take the optimal action by predicting the ratio of the human
taking optimal action and human following habits.

3) Shortest completion time optimizer: Similar to our algo-
rithm, this algorithm also aims to minimize the completion
time, but the planning horizon is the whole task to go.

The other manipulated variable is level of incompleteness
of the demonstration set. The levels are set to be 0%, 30%,
50% which means these percentages of action sequences in the
demonstration set will be randomly dismissed. Since the third
baseline assumes the task model is already known, it does not
rely on the demonstration set. Thus, by manipulating the two
variables, we have 10 groups of simulations for each scenario.
Under each group, every human subject performs the task using
any plan for twice. Thus, there will be 20 trials in each simulation
group and in total 120 trials for each scenario.

To have a fair comparison, all the algorithms use the same
sets of action sequence as inputs under all the incompleteness
conditions for each scenario. For the hyperparameters in the
algorithm of anticipatory planning, grid search cross-validation
is utilized to choose the hyperparameters that perform the best.

E. Dependent Measures

To quantify the safety of the proposed framework, we measure
the percentage of robot actions that conflicts with the human’s.
For efficiency, we set a timer to keep track of the task completion
time. The timer starts when a human subject starts to act, and

ends when the task is finished. As for the measurement of
human’s satisfaction with our collaborative robots, we ask the
six human subjects to rate the following statements on Likert
scale from 1 (strongly disagree) to 5 (strongly agree), similar
to [13]: 1. The robot was collaborative and helped; 2. The robot
did the right thing at the right time; 3. I am satisfied working
with the robot; 4. I will work with this robot again in the future.

F. Results

H1: Table II shows the average task completion time for
the three scenarios using different planners. Our planner is
significantly more efficient than the planners of random pol-
icy and anticipatory planning under all situations1 (p < 0.01).
Compared with shortest completion time optimizer, our planner
can achieve similar results, as the average task completion time
is close and there is no significant difference among all trials
(p > 0.1). Possible reasons are that: 1) although shortest time
optimizer computes the most efficient plan, the human subject
may not follow that plan; 2) shortest time optimizer does not
consider humans’ preference of doing the next actions with a
sequential relationship. Thus, this planner is more likely to cause
conflicts, which increases the task completion time. Random
policy is most inefficient. Opposite to our algorithm, random
policy has no knowledge of the parallel relationships, and it
strictly plans the next actions of the current plan, which results in
a lot of waiting time. Compared with random policy, anticipatory
planning has shorter task completion time, as it enables the robot
to anticipate more in the collaboration. However, its limitation is
that it utilizes learned policies from single-agent demonstrations.
In the two-agent scenarios, humans can follow a different reward
model, which makes the learned policies less effective. Although
this planner tries to adapt to the human on the fly, it takes time.

H2: The average percentages of conflicts are 2.7 ± 0.2 %,
15.0 ± 0.7%, 8.1 ± 0.4% and 6.2 ± 0.2% for our algorithm,
random policy, anticipatory planning and shortest completion
time optimizer correspondingly. Our planner is the safest plan-
ner among the other planners, as the robot conflicts with the
human the least with significant difference (p < 0.01). The
planner guides the robot to do subtasks that are parallel to the
human’s current action, which naturally decreases the possibility
of conflicts. This result also validates the assumption stated in
Section III-A that humans complete sequential actions consecu-
tively without switching to another parallel subtask. The planner
with random policy is the most unsafe one, as it causes conflicts
the most with significant difference (p < 0.01). This planner
has no knowledge of the parallel relationships and it always
plans the next actions of the current recognized plan. However,
when humans are conducting subtasks with sequential actions,
they also prefer to do the next actions, which can cause conflicts.
The planners with anticipatory planning and shortest completion
time optimizer do not explicitly utilize parallel information, nor
do they explicitly utilize sequential information, and their results
are in-between.

1We use paired t-test for all the statistical tests.
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TABLE II
THE RESULT TABLE FOR THE AVERAGE TASK COMPLETION TIME (UNIT: SECOND). M1, M2 AND M3 ARE METHODS OF RANDOM POLICY, ANTICIPATORY

PLANNING AND OPTIMIZATION RESPECTIVELY

Fig. 6. Human subjects’ ratings for the four robot planners on four different statements. M1, M2 and M3 are for planners of random policy, anticipatory planning
and optimization correspondingly. Score 1 to 5 corresponds to 1. strongly disagree, 2. disagree, 3. neutral, 4. agree and 5. strongly agree.

H3: Through various simulations on different levels of in-
completeness of demonstrations, we show that our method
consistently delivers comparable performance as shown in Ta-
ble II. The average task completion times do not increase as the
level of the incompleteness increases. For example, when 30%
of the demonstrations are deleted from the desktop assembly
scenario, the average task completion time even drops by 0.8
seconds. Besides, through statistical tests, we find that there
is no significant difference in the task completion time and
percentage of conflicts among all levels of incompleteness for
each scenario (p < 0.01). Actually, the sequential/parallel task
models retrieved from the demonstration set are the same for
all the tasks with different incompleteness levels. Thus, our
algorithm is robust to the incomplete demonstrations.

H4: Fig. 6 shows the comparison of human subjects’ ratings
for the four types of planners on the four criteria: 1. The robot
was collaborative and helped; 2. The robot did the right thing at
the right time; 3. I am satisfied working with the robot; 4. I will
work with this robot again in the future. Human subjects rated
the our planner significantly higher than the other planners on
all four criteria (p < 0.01). This indicates that human subjects
are more satisfied with our planner. It is also interesting to note
that scores of the anticipatory planning are significantly higher
than that of random policy (p < 0.01), and scores of shortest
completion time optimizer are significantly higher than that of
anticipatory planning (p < 0.01).

G. Experiments

We test our planner on an industrial robot FANUC LR Mate
200iD/7 L. A Kinect V2 for windows is placed close to the table
for detecting the human and the objects. Fig. 7 shows that the
robot is collaborating with the human to complete the desktop
assembly task, where the human is assembling the CPU fan,
while the robot is going to assemble the memory based on the

Fig. 7. Robot and human collaborate to assemble a desktop.

plan computed by our planner. The video of the experiment is
available at: https://msc.berkeley.edu/research/serocs.html.

V. CONCLUSION

To solve the collaborative task planning problem, we first
propose an algorithm to automatically construct a hierarchical
task model from human demonstrations, which captures the
sequential and parallel relationships of the task at all levels of
abstraction. This algorithm is very robust to the levels of incom-
pleteness of demonstration. Actually, for any task, two specific
demonstrations are enough to retrieve the sequential/parallel
task model. We then propose an optimization-based planner,
which exploits the parallel relationships in the task model and
gives priorities to the actions that are parallel to the humans,’
since conducting parallel actions can reduce spatial interfaces,
reduce task completion time and improve human’s satisfaction.
These benefits are verified through various simulations for three
different scenarios when compared with other three baselines.
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We can slightly modify our proposed algorithm for planning
with multiple objectives, such as improving safety while reduc-
ing task completion time. The solution to this multi-objective
problem is optimization over our proposed planning horizon
by using methods such as weighted sum method, ε−constraint
method, weighted metric method, which could be our future
work.
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