Random Band Matrices in the Delocalized Phase 1:
Quantum Unique Ergodicity and Universality

PAUL BOURGADE

Courant Institute

HORNG-TZER YAU

Harvard University
AND

JUN YIN
University of California, Los Angeles

Contents
1. Introduction 1526
2.  Quantum Unique Ergodicity for Deformed Matrices 1534
3. Analysis of the Eigenvector Moment Flow 1544
4. Mean-Field Reduction 1559
5. A Comparison Method 1581
Appendix A. Perfect Matching Observables for Hermitian Matrices 1586
Bibliography 1594

1 Introduction

1.1 Random Matrices Beyond Mean Field

In Wigner’s vision, random matrices play the role of a mean-field model for
large quantum systems of high complexity. His paradigm has been confirmed with
significant progress in understanding the universal behavior of many random graph
and random matrix models. However, regarding his core thesis that random ma-
trices can be used to model non-mean-field systems, our understanding is much
more limited. Even for one of the simplest non mean-field models, the random
Schrddinger operator, there is no result concerning the existence of the delocalized
regime in which random matrix statistics are expected to hold.

A slightly more tractable model is the random band matrix characterized by the
property that /;; becomes negligible if dist(i, j) exceeds a parameter W, called
the bandwidth. In general, i, j are lattice points in Z4, but in this article we con-
sider only the case d = 1. Based on numerics, it was conjectured [9, 10] that
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the eigenvectors of band matrices satisfy a localization-delocalization transition, in
the bulk of the spectrum, with a corresponding sharp transition for the eigenvalue
distribution [18]:
(i) for W > /N, delocalization and Gaussian orthogonal ensemble (GOE)
spectral statistics hold;
(ii) for W <« +/N, eigenstates are localized and the eigenvalues converge to a
Poisson point process.

This transition was also supported by heuristic arguments [36] and a nonrigorous
supersymmetry method [19].

There have been many partial results concerning localization-delocalization for
band matrices. For general distribution of the matrix entries, localization of eigen-
vectors was first shown for W <« N1/8 [28], and improved to W < N V7 for
Gaussian entries [26]. Delocalization was proved in some averaged sense, for
W > NO7in [14], W > N*5in [16], W > N7/° in [20]. The Green’s
function was controlled down to the scale Imz > W ™! in [17], implying a lower
bound of order W for the localization length of all eigenvectors. We also mention
that at the edge of the spectrum, the transition for one-dimensional band matri-
ces (with critical exponent N 5/ 6) was understood in [33], thanks to the method of
moments.

When the entries of band matrices are Gaussian with some specific covariance
profile, one can apply supersymmetry techniques (see [13,34] for overviews). With
this method, for d = 3, precise estimates on the density of states [12] were first ob-
tained. Then, random matrix local spectral statistics were proved for W = Q(N)
[30], and delocalization was obtained for all eigenvectors when W > N 6/7 and
the first four moments of the matrix entries match the Gaussian ones [2] (these
results assume complex entries and hold in a part of the bulk). Still with the super-
symmetry technique, a transition around N 1/2 was proved in [29,31], concerning
moments of characteristics polynomials.

1.2 Mean Field Reduction and Quantum Unique Ergodicity

The main difficulties in analyzing spectral properties of band matrices with gen-
eral entries are twofold.

(i) There is currently no effective diagrammatical method to estimate the Green’s
function when Imz <« W ™!, while delocalization of eigenvectors requires
estimates up to Imz > N1,

(ii) For the universality of local spectral statistics, the comparison method used
for mean-field models does not apply to band matrices since the majority of
matrix elements (effectively) vanish.

In an earlier paper [4], we proposed a mean-field reduction method to prove
universality of local spectral statistics for band matrices with W = Q(N). This
method relies on a notion much stronger than delocalization, the probabilistic quan-
tum unique ergodicity (QUE). Historically, QUE was introduced by Rudnick and
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Sarnak [27], asserting that for negatively curved compact Riemannian manifolds,
all high energy Laplacian eigenfunctions become completely flat. Quantum ergod-
icity, essentially an averaged version of QUE, had previously been proved for more
general manifolds [11,32,38]. For d-regular graphs, the eigenvectors of the dis-
crete Laplacian also satisfy quantum ergodicity, under certain assumptions on the
injectivity radius and spectral gap of the adjacency matrices [1].

A probabilistic version of QUE was proposed and proved for Wigner matrices in
[7]. To state it, let H be a size N random matrix with eigenvectors ¥ ; associated to
eigenvalues A;. Then, there exists & > 0 such that for any deterministicl < j < N
and / C [1, N] and for any § > 0 we have

1]

(1.1) P(\ ZI i (DI — mE 5) < N7¢/8°.

To explain the mean-field reduction, we block-decompose a band matrix H and
its eigenvectors:

(A B* AT
where A is a W x W Wigner matrix. From the eigenvector equation Hy; = A;¥;,
1
(1.3) Q)ijj =/\jo where Qe :A_B*D—eB.

Thus w; is an eigenvector to Q. with eigenvalue A; when e = A;. The basic
observation from the earlier paper [4] can be summarized as follows. Suppose that
the probabilistic QUE for the eigenvectors of H holds. Then the eigenvalues of
H near a fixed energy E can be reconstructed from the eigenvalues of Q. near
the origin with e near E. Thus if we can prove the spectral universality for Q,,
the same statement holds for H. On the other hand, to establish QUE for the
band matrix H, assume first that it holds for the W x W operator Q.. If we
can substitute e by A, then the eigenvector ¥; is flat in the first W coordinates.
Clearly, we can stitch together the flatnesses of ¥; in sufficiently many windows of
size W to establish the global flatness of ¥; provided that the error in each window
is sufficiently small.

To summarize, the mean-field reduction method reduces the universality and
QUE for the band matrix H to those of Q.. Thanks to the recent progress on these
topics [5,22,23], the inputs to prove these properties require precise estimates on
the Green’s function (Q. — z) ! only for Im z ~ N ~¢. For probabilistic QUE, we
also need to establish the error probability in the sense of “very high probability.”
In the following, we start with a discussion on the Green’s function (Q, — z) ™!,

1.3 Generalized Green’s Functions

It is clear that, if we estimate the Green’s function (Q, — z)~! directly, some
bound on the matrix (D — e)~! appearing in Q. will be needed. Since e is real,
estimating (D —e) ™! is clearly a much harder problem than estimating the original
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Green’s function (H — z’)~!. Fortunately, we only need this estimate with Im z ~
N 4. Clearly, one can interpret (Q, —z) ™" as the W x W corner of the generalized
Green’s function

. zlw 0 -1
(1.4) G(z,w) = (H — ( 0 U)IN—W))

when w = e. In [4], we use a somehow involved induction argument and an un-
certainty principle to estimate G(z,e) for W = Q(N). In this work, we provide
accurate estimates, Theorem 4.5, on G(z, ¢) for Imz ~ N ¢ when W > N3/4,
Our method is to derive a self-consistent equation for the (off-diagonal) entries
of the generalized Green’s function (a similar equation for the standard Green’s
function was called the 7" equation [15]). Notice that Ward’s identity, which is in-
strumental in many random matrix estimations, is not valid for generalized Green’s
functions. More precisely, Ward’s identity asserts that for any Green’s function of
a Hermitian operator H,

(1.5) 216G < dmz)™ Im Gy;.
J

For the generalized Green’s function G(z, w), the last property fails. Our strategy
is to establish an estimate on Zj |Gij (2)|? by successively decreasing the imag-
inary part of w and using repeatedly the self-consistent 7 equation in each step.
Besides overcoming this difficulty, we also devise a new diagrammatic expansion
in deriving the T equation. Finally, we remark that the main condition W > N 3/4
is mainly used in estimating G(z, ). Besides extending the region of validity from
W=QWN)toW > N 3/4 our current approach allows the estimate on G(z, ¢) to
be completely independent from all other arguments in this work (e.g., the mean-
field reduction). The proof of Theorem 4.5 will be delayed to parts 2 and 3 of this
series.

1.4 Probabilistic QUE with High Probability

The proof of the quantum unique ergodicity (1.1) for Q. in [4] relies on two
different tools.

(i) A priori estimates on the Green’s function (Q, — z)™! (for large Im z)
provide flatness of eigenvectors on average. This a priori information is
necessary to obtain the following.

(i) The eigenvector moment flow from [7] is a random walk in a dynamic
random environment whose relaxation means flatness of individual eigen-
vectors (quantum unique ergodicity).

We have just outlined our new estimates on the Green’s function (Q, — z)™! for
W > N3/4. The main new technique developed in this work concerns (ii): Theo-
rem 2.5 states that
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Averaged quantum unique ergodicity implies a high probability
quantum unique ergodicity, after adding a small GOE compo-
nent.

Compared to (1.1), this new result is a strong probabilistic QUE, as it first allows
much more general observables of eigenvectors and is valid with probability 1 —
N~P for any D > 0. Therefore all bulk eigenvectors are now simultaneously
flat. The proof of Theorem 2.5 relies on a remarkable combinatorial identity: the
perfect matching observables defined in (2.15) satisfy the eigenvector moment flow
parabolic equation; see Theorem 2.6.

Thanks to this new strong version of QUE, the eigenvectors of Q. are flat for all
e in a discrete subset of size N€ for any C fixed. Thus to establish flatness of ¥ b
on the first W coordinates, we only need to compare eigenvectors of Q, and 0,

forle—A;| <N —C with C alarge constant. An eigenvector perturbation formula
is enough to compute the difference between these eigenvectors, with sufficient a
priori estimates given by a weak uncertainty principle as developed in [4].

Therefore, our work presents an improvement from W = Q(N) [4] to W >
N3/4 thanks to new results both on (1) and (ii). As discussed in Remark 4.7, our
hypothesis W > N 3/4 for delocalization comes from the generalized Green’s
function estimates (ii). Heuristics for the transition at bandwidth N /2 are given in
the same remark.

1.5 The Model and Results

All results in this paper apply to both real and complex band matrices. For
the definiteness of notation, we consider only the real symmetric case, and we
use the convention that all eigenvectors are real. In the following definition, Z y
denotes the set of residues mod N so that our matrices are assumed to have periodic
boundary condition.

DEFINITION 1.1 (Band matrix Hpy with bandwidth Wy ). Let Hy bea N x N
matrix with real centered entries (H;;, i, j € Zy) which are independent up to the
condition H;; = Hj;. We say that Hy is band matrix with bandwidth W = Wy
if

(1.6) sij = E|H;j[*= fi —j)

for some f:Zy — R satisfying } .7 f(x) = 1, and there exist a small posi-
tive constant ¢g and a large constant Cs such that

(A7 W lyew < f(0) < G W Dy<cw. X € Zn,
where | - | is the periodic distance on Z y .

The method in this paper also allows us to treat cases with progressive decay of
the variance away from the diagonal (e.g., f(x) < C;W~!. lx|<c, w instead of
f(x) < Cc;wL. lix|<w), or variants with exponentially small mass away from
the bandwidth. We work under the hypothesis (1.7) for simplicity.
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For technical reasons we assume the following condition on the fourth moment
of the matrix entries: there is e,, > 0 (here the subscript m indicates the moment
condition) such that for | — j| < W,

1 4 3 2 —€m
(1.8) jmin (BEj — (Eg;)™—1) = N7
where &;; = Hjj(s; j)_l/ 2 is the normalized random variable with mean 0 and

variance 1. It is well-known that for any real random variable £ with mean 0
and variance 1, E£€* — (E£3)%2 — 1 > 0, and the equality holds if and only if &
is a Bernoulli random variable (lemma 28 of [35]). Therefore, one simply has
em = 0 when the &;;’s (|i — j| < W) all have the same law, different from the
Bernoulli distribution. In the more general setting (1.8), all our results are restricted
to 0 < &, < 1/2 because of the following condition (1.11).

We also assume that for some §; > 0 (subscript d stands for “decay”) we have

(1.9) sup E(esd WH'%') < 0.

Ni,j
This tail condition can be weakened to a finite high moment condition. We assume
(1.9) mainly for the convenience of presentation. The constants in the following
theorems depend on the fixed parameters cg, Cs, €, and 84, in (1.7), (1.8), and
(1.9), but we will only keep track of the dependence on &,.

Denote the eigenvalues of H by A1 < --- < Ay, and let (I/rk),]j:l be the corre-
sponding L2-normalized eigenvector, i.e., H ¥y = Ax¥x. Thanks to the condition
> f(x) = 1, it is known that the empirical spectral measure % Z,Icvzl 84, con-
verges almost surely to the Wigner semicircle law with density

pulx) = 54 =22

The concept of localization/delocalization can be defined in many ways. For def-
initeness, we use the L° norm. For any small constant ¢ > 0 and t > 0, one
expects that

P(N™" <min(N, W?)||¥x |3, < N" forallk € [cN, (1 —c)N])

(1.10) — 1 —o(l),

meaning that a localization-delocalization transition occurs at logy W = 1/2,
where logy W = log W/ log N. Our first result proves (1.10) in the delocalization
regime logy W > 3/4.

THEOREM 1.2 (Delocalization for logyy W > 3/4). Let (Hy)n>1 be band ma-
trices with bandwidth Wy satisfying the conditions (1.8) and (1.9). Recall that
em > 0is defined in (1.8). Suppose that for some constant a > 0,

31
(1.11) logy W Zmax(z,§+8m) +a.



1532 P. BOURGADE, H.-T. YAU, AND J. YIN

For any (small) constants k, v > 0 and (large) D > 0, there exists Ny such that
forall N > Ng we have
(1.12) P(|¥kll2 < N7'F forallk € [kN, (1 —k)N]) = 1 - NP,

The above delocalization holds together with a local semicircle law down to the
optimal scale.

THEOREM 1.3 (Local semicircle law for logy W > 3/4). Under the same as-
sumptions as Theorem 1.2, there exists ¢ > 0 such that for any (small) k, T > 0
and (large) D > 0 there exists No such that for any E1, E> € [-2 + k,2 — k] and
any N > Ny we have

E;
Pl |#{A Eq{,E3]}— N dpsc
(L13) ( {Ak € [E1, E2]} /E1 P

>1-N"D,

< N¥+ |E| — E2|N1_8)

In the following fixed energy universality statement, we denote by ,og,c) the k-
point correlation function (understood in the sense of distributions) for the spectral
measure of an N x N random matrix H.

THEOREM 1.4 (Universality for logyy W > 3/4). Under the same assumptions
as Theorem 1.2, for any k > 0, any integer k, and any smooth test function O €
€ (R¥) with compact support, there are constants ¢, C > 0 such that for any
|E| <2 —k we have

k) a (k) a
O(a) (E + —)da—/ O(a (E + )da‘
/Rk PH Npw(E) e C@rcoe\ B g0 T
<CNF.

(1.14)

For the proof of Theorems 1.2, 1.3 and 1.4, the first step is to show that delo-
calization, the local semicircle law, eigenvalue universality, and quantum unique
ergodicity hold under the following additional assumption: H is a Gaussian divis-
ible band matrix; i.e., there exists independent band matrices Hy and H, with the
same width W and ¢ > 0 such that H; satisfies (1.8) and (1.9), and

(115) H = Hy + H,
where (H2)ij = 1|i—j|§W . (1 + 1ij)1/2 . JV(O, ¢ W_IN_S’").

Remember that &, is defined in (1.8). Here, ¢ is a small enough constant depending
only on 64 from (1.9).

THEOREM 1.5. Assume that H is a band matrix of type (1.15), with bandwidth
Wy satisfying (1.11).
(1) The eigenvectors are delocalized as in (1.12).
(1) The eigenvalues satisfy the local semicircle law as in (1.13).
(iii) Fixed energy universality holds as in (1.14).
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(iv) For any (small) t,k > 0, and (large) D > 0, there exists Ny > O such that
forany N > Ng we have

{+W

Z |w1(a)|2 1l < N—%a-ﬁ-‘c

a={

N

Pl =
w

forall1 < j,£ < N suchthat |1j| <2—x)>1-N"P]|,

where a > 0 was given in (1.11) and all indices are defined modulo N .

1.6 Organization of the Paper

This work is essentially divided in two parts.

The first part (Sections 2 and 3) concerns quantum unique ergodicity for mean-
field blocks, and improves on the estimate (1.1): Theorem 2.5 gives flatness of
the eigenvectors with overwhelming probability (overwhelming probability refers
to the arbitrary large choice of D > 0, for example in Theorem 2.5), and with
optimal fluctuations scale for the L? mass of eigenvectors on subsets of [1, N].
This result is the main technical novelty of our work.

The first aspect of the proof is algebraic (Section 2). A new function of the
eigenvector overlaps is defined in equation (2.15), and it follows the eigenvector
moment flow dynamics; see Theorem 2.6. These dynamics of perfect matching
observables generalize an earlier observation from [7]. In this previous work, the
eigenvector evolution was related to a random walk in a dynamic random envi-
ronment, after dimension reduction through projection on a given fixed direction.
Projections can now occur on an arbitrary number of directions; see Remark 2.8.
The proof of Theorem 2.6 is combinatorial and given at the end of Section 2.

The second aspect of the proof of Theorem 2.5 is analytic (Section 3). As proved
by a sequence of maximum principles and approximations with short range dynam-
ics, the eigenvector moment flow reaches equilibrium after some time depending
on the initial condition. This allows us to identify the scale of the perfect matching
observables. Our proof is more involved than the Holder regularity of the eigen-
vector moment flow in [7], because our observables are more general: in [7], the
scale of observables was a priori known and the dynamics were used to identify
the distribution of fluctuations.

The second part of the paper (Sections 4 and 5) applies the strong form of quan-
tum unique ergodicity to delocalization for random band matrices. First, Theorem
1.5 is proved by the mean-field reduction technique from [4], then it is extended to
more general band matrices by a moment matching argument.

The proof of Theorem 1.5 (Section 4) is sketched in Section 4.2. Section 4.4
contains the first important input for the proof: the resolvent estimates for (Q, —
z)~!. As explained after (1.4), these estimates from Theorem 4.5 amount to an
averaged form of QUE for the eigenvectors of Q.. From this a priori estimate,



1534 P. BOURGADE, H.-T. YAU, AND J. YIN

quantum unique ergodicity is deduced for the Gaussian divisible version of Q.
(Section 4.5). To access flatness of eigenvectors of our original eigenvectors ¥,
we need to patch QUE estimates for eigenvectors of Q, when ¢ = A;. By a net
argument in e, with mesh size N ~C (C is fixed and arbitrarily large because Theo-
rem 2.5 holds with overwhelming probability), we only need to control eigenvector
shifts under tiny perturbations in e. This is the role of another input for the proof
of Theorem 1.5, the weak uncertainty principle. It is inspired by a more difficult
result from [4], and proved in Section 4.6. We refer to (4.58) for eigenvectors
bounds thanks to the weak uncertainty principle. Section 4.7 concludes the proof
of Theorem 1.5.

In Section 5, delocalization, the local semicircle law, and universality (Theo-
rems 1.2, 1.3, and 1.4) are obtained beyond the Gaussian divisible ensemble. The
proof relies on moment matching, exhibiting a matrix H of type (1.15) whose first
four moments of the entries match those of 1. This idea appeared in [35] for the
purpose of universality for Wigner matrices and required some a priori information
on delocalization and local semicircle law. In our work, such information is only
available for H, by Theorem 1.5. It is extended to / thanks to an implementation
of the moment matching strategy at the level of the Green’s functions [17], and a
self-consistent method to obtain these estimates by continuously interpolating from
H to H [21].

Finally, although this work focuses on symmetric matrices, the method applies
to the Hermitian class. The only substantial difference is the algebraic part of QUE
for mean-field models: the perfect matching observables are defined in a different
way for real and complex matrices, as explained in the Appendix.

2 Quantum Unique Ergodicity for Deformed Matrices

This and the next section are self-sufficient. In these sections, the size of the
matrices is denoted by #. The main result (Theorem 2.5) will then be applied to
mean-field blocks of type Q. from (1.3) (or more precisely its generalization Q¢ ;
see (4.10)), 1.e., forn = W.

2.1 Eigenvector Dynamics

In this subsection, we first recall the stochastic differential equation for the
eigenvectors under the Dyson Brownian motion, as stated in [7, sec. 2].

The matrix Brownian motion dynamics are defined as follows, either at the ma-
trix, eigenvalues, or eigenvectors level (remember we only consider the symmetric
case, the Hermitian one being detailed in the Appendix). Let B be an n x n matrix
such that B;; (i < j) and B;;/ /2 are independent standard Brownian motions,
and Bj;j = Bj;. We abbreviate Z(t) = B(t)/+/n. The n x n symmetric Dyson
Brownian motion K with initial value K(0) = V is defined as

2.1 K@=V + Z(@).
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LetAg € &y = {A1 <--- < An}, ug € O(n). The symmetric Dyson Brownian

motion/vector flow with initial condition Ay = (A1,...,Ay), uo = (U1, ..., Un),
is defined through the dynamics
dByj 1 1
(2.2) dh = —=% 4 (— > —)dt,
ﬁ n 2k A — Ay
1 dByy 1 dr
2.3) dup = — Z Up — — Z T Uk
ﬁé#klk_lz 211[#]( (A — Ayp)
With a slight abuse of notation, we will write A, either for (A1(¢),...,A(t)) or
for the n x n diagonal matrix with entries A1(¢), ..., A, (¢).

The link between the previously defined matrix and spectral dynamics is given
as follows. See [7] for a proof, with the main ideas being due to McKean [24] for
the existence and uniqueness of solutions, and Bru [8] for the eigenvector dynamics
in the Wishart case.

THEOREM 2.1. The following statements about the Dyson Brownian motion and
eigenvalue/vector flow hold.

(a) Existence and strong uniqueness hold for the system of stochastic differential
equations (2.2)—(2.3). Let (A, uy)s>0 be the solution. Almost surely, for any
t > 0wehave A; € Xy and uy; € O(n).

(b) Let (K(2))t>0 be a symmetric Dyson Brownian motion with initial con-
dition K(0) = ugkou(*;, Ao € X,. Then the processes (K(t));>o and
(usAu3)e=0 have the same distribution.

(c) Existence and strong uniqueness hold for (2.2). For any T > 0, let vT{{ ©
be the distribution of (A)o<i<T Wwith initial value the spectrum of a ma-
trix K(0). For 0 < T < Ty and any given continuous trajectory A =

(Ar)o<t<T, C XZn, existence and strong uniqueness holds for (2.3) on [0, T].
5(0)’)“ be the distribution of (us)o<¢<T With the initial matrix K(0)
and the path A given.

Let F be continuous bounded, from the set of continuous paths (on [0, T])
on n X n symmetric matrices to R. Then for any initial matrix K(0) we have

EXO (F((K(t))o<i<T)) = / dvE@3) f dp K OA ) F (g i )o<i<T).

Following [7], we introduce the notations (the dependence in ¢ will often be
omitted for cp, 1 <k <€ <n)

1
2.4 1) = ,
@4 wel) = D = A
(2.5) Uy = D ()i, (o)
a=1

XIE? = Up Oy, — UgOyy .
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We then have the following generator for the eigenvector dynamics. For a proof,
see [7].
LEMMA 2.2. For the diffusion (2.3) the generator acting on smooth functions
£:R"” > Ris
2
LY = Y a(x3)”
1<k<f<n

The above lemma means dE(g(u;))/dt = E(Lgs) g(uy)) for the stochastic differ-
ential equation (2.3).
2.2 Main Result

Let / be a deterministic subset of [1, n]. We denote the eigenvector overlaps as

pij = Y uil@u(@), i#je[ln]

ael

pii = Y _ui(@?—Co, i€[l.n],

acl

(2.6)

where Cj is an arbitrary but fixed constant independent of i. We will eventually
choose Cy = |I|/n so that the diagonal overlaps are properly normalized, but
many results in this section do not depend on the actual value of Cy. Moreover,
these overlaps are functions of 7 (u satisfies the dynamics (2.3)) but this dependence
is omitted in the notation.

Remember the notation (2.1) and denote

G(t,z) = m
For a matrix H, we abbreviate the Stieltjes transform as
1
H-z
Assumption 2.3 (Notations and conditions for relaxation flow). Fix a small number

a > 0. A matrix V is said to be bounded if the norm of V is bounded; i.e., there is
a constant C; > 0 such that

2.7) VI =V lop < 1€

mg(z) = ;Tr

A deterministic matrix V is called (g, B, r)-regular at Ey if 174, n* and r satisfy
(2.8) nTI < nen® < <nT%% p*n® <1

and there exists C» such that the imaginary part of the Stieltjes transform of V is
bounded from above and below by

2.9) ' <3y <G my(@) = LTV — o),
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uniformly for any
ze{E+in: E€[Eg—r.Eo+r]. e <y <n*}.

Our main result requires not only the above hypothesis about the Stieltjes trans-
form but also the following estimates on individual diagonal resolvent entries.

Assumption 2.4. The following holds uniformly in
ze€{E+in:Ec[Ey—r Eo+r].nx <n<n*l

(i) Diagonal entries all have the same order:
2
(2.10) ImG(0,z);; < —ImTrG(0,z).
n

(ii) There exists a constant 0 < ¢ < 1 such that the averages over / and [1, n]
coincide upton™*:
1 1 e
@.11) =2 G(0.2)ii = = TrG(0,2)| <n™",
|I| iel n
In the remainder of this article, to simplify the exposition we also assume that
the deterministic set I from (2.6) satisfies

(2.12) [I| > cn

for some small fixed constant ¢. This is enough for our purpose, as |/| ~ n/2 in
the next sections. We define, for any r > 0 and 0 < « < 1,

(2.13) L(E) =I5, a-)r» JEr=(E—r, E+r).

The main result of this section is the following, where we choose Cy = |I|/N in
(2.6).

THEOREM 2.5 (Quantum unique ergodicity for deformed matrices). Remember the
notation (2.6) for the centered partial overlaps, and take Co = |1|/n and assume
(2.12). Under Assumption 2.3 and Assumption 2.4, the following statement holds.
For any (small) k,& > 0, (large) D > 0, and i, j € [1,n] for any to, t1 such that
nny <to <t1 <n" ", we have

1

1
P 3t t 1 1,. R K i e > nél — -
2.14) ( 0 <t <it:1y,m).4@0elf (Eo)Ipii|l + |pij]) = n (n‘ + Tto))o

<n P

for large enough N. Here, the constant c is from (2.11). In other words, the errors
consist of the initial error n= and the dynamical error (nty)~"/2.
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2.3 Perfect Matching Observables

We will need the following notations.

First, as in [7], we define  : [1,n] — N where n; := n(j) is interpreted as
the number of particles at the site j. Thus 5 denotes the configuration space of
particles. We denote A () = )_ ;Nj = d the total number of particles. Define
>/ to be the configuration obtained by moving one particle from i to j. If there
is no particle at i then 5>/ = 7. Notice that there is a direction and the particle is
moved from i to j.

Second, for any given configuration 5, consider the set of vertices

Yy =A{G.a):1<i<nl1<a<2py}

Let ¢ be the set of perfect matchings of the complete graph on 7; i.e., this is the
set of graphs G with vertices V5 and edges &(G) C {{vi,v2} : v1 € Py, v2 €
Vn. V1 # v2} being a partition of 7.

] ]
: ® oo : . .
1 i1 in i3 n 1 i1 Ty i3 n
(A) A configuration 5 with .4 (n) = 6, (B) A perfect matching G € %,;. Here,
Miy = 2, Miy = 3, i3 = 1. P(G) = pi]i]pi]i2pi22i2pi2i3pi3i]'

Third, for any given edge e = {(i1,a1), (i2,a2)}, we define p(e) = pi, .i,»
P(G) = [lees(c) P(e), and

e Bm=— k(Y PG 13). = T]emnn

A (n) Ge%, i=1
where 2m)!! =[] k<2m.k odd k 18 the number of perfect matchings of the complete

graph on 2m vertices. Remarkably, the above function f satisfies a parabolic
partial differential equation.

THEOREM 2.6 (Perfect matching observables for the eigenvector moment flow:
symmetric case). Suppose that u is the solution to the symmetric eigenvector dy-

namics (2.3) and f A(st) (n) is given by (2.15). Then f. A(st) satisfies the equation
(2.16) 00 1) = B9 (1) 1),
(2.17) B0 f) = ke 2 (1 + 20) (f @) = f ().

k#L
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Remark 2.7. An important property of the eigenvector moment flow is the re-
versibility with respect to a simple explicit equilibrium measure:

k

(2.18) xm) =[] o0, ¢k) = H(l - %)
p=1

i=1
For any function f on the configuration space, the Dirichlet form is given by
.. s
S xmfmBO L) =Y 7)Y ciini(l+22)(f W) — f)”.
n n i

Remark 2.8. The above theorem is independent of our choice of Cy and of the
canonical basis and, more remarkably, the projection vectors don’t have to be or-
thogonal. More precisely, let (qq)qes be any family of fixed vectors. Define

pij = Y (Ui qa){uj. Qo). i # j€[ln],

ael

pii = ) _(4i.qq)> = Co. i €[l.n].

acl

and f; 5 accordingly. Then (2.16) holds. In particular, Theorem 2.6 generalizes [7,
theorem 3.1(i)] by just choosing |7| = 1.

2.4 Proof of Theorem 2.6
To start the proof of Theorem 2.6, let

(2.19) g(n) = % > P(G)
Ge9y,

and let 1 < k < £ < n be fixed for the rest of this subsection. We abbreviate
X=X ,ESE). Using Lemma 2.2, we only need to prove

(2.20) X2g(n) = 2ni(1+21¢) (g (0¥ — g () +2n¢ (1 +20) (g (*F) — g ().

We therefore want to calculate X2 P(G) for any G € %,. For that purpose, we first
need the following definition.

DEFINITION 2.9. Let 5 and k < £ be fixed. The following notations will be useful
for calculating X2 P(G).

(i) ¥; C 7y is the set of vertices of type (7,a), 1 <a < 2u;.

(ii) For any two vertices v, w € ¥, U ¥, we denote

( ) 1 if v, w are in the same ¥%;,i = k or £
g(v,w) = . o
—1 if v, w are in different ¥;’s.

(iii) Let G € 9y and v, w € ¥} U 7.



1540

P. BOURGADE, H.-T. YAU, AND J. YIN

Assume v € ¥, and w € ¥#;. Then we define Sy,»yG = Sy G € % as
the perfect matching obtained by transposition of v and w. More precisely,
let 7y be the permutation of 73 transposing v and w. Then

E(SvwG) = {{fv,w(vl)a Tv,w (v2)} : {v1,v2} € E(G)}.

Assume v = (k,a)and w = (k,b) (a < b) are both in ¥;. Then we define
SwvG = SywG € Yyxe as the perfect matching obtained by a jump of v and
w to £. More precisely, let jyw = jwy be the following bijection from 7y to
7/"“: Jow @) = (£, 2ng+1), jyw(w) = (€, 2n¢+2), jow ((k, ) = (k,c=2)
if b <c, jpw(k,c)) = (k,c —1)ifa < ¢ < b and jyy(vy) = vy in all
other cases. Then

E(SvuwG) = {{jv,w(vl)’jv,w(UZ)} {vi. v} € £(G)}.

A similar definition applies if both v and w are in ¥}, the jump now being

towards k.
va
/—N
v a) w
] 4

(A) The map Sy, in case of a transposition.

va
—
"

i r L

(B) The map Sy, in case of a jump.

In this proof, for any set A we denote A2 = {(a,b) € A% : a # b}. The
following result is the key step in our proof of Theorem 2.6.

LEMMA 2.10. For any G € ¥y, we have

(221)  X?%P(G) = > e, w) P(SywG) — 2ni + 2ng) P(G).

(v, w)e(Vh U3

We postpone the proof of the above lemma and first finish the proof of Theorem
2.6. Let

hay =3 P(G).

Gey
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Note thatif v € 7% and w € ¥}, Syw is a permutation of ¢, . Moreover, if v and w
are both in 7%, Sy is a bijection from ¥, to gnki. The summation of (2.21) over
all G € ¥, therefore gives

Xhmy = Y. D PGwG+ Y. Y P(SwG)

(v,w)e(¥)2 G<% (v,w)e(¥p)2 G<%

-2 Z Z P(SywG) —2(nk + neh(n)

(,w)EV XV GEYy

= ) @+ Y hm™

(v,w)e(¥)?2 (v.w)e(¥)2

-2 )" h(p) =20 + no)h(n)
(v,w)e¥i x 7
X2h(n) = 2k Qg — DR + 200200 — Dh(y)
— 2ne@2ng + 1) + 20 2nx + 1)0(n).

The above equation implies (2.20) after renormalization by .# (). This concludes
the proof of Theorem 2.6.

PROOF OF LEMMA 2.10. Let G € ¥, and 1 < k < { < n be fixed. The

Leibniz rule applies: for any smooth functions f, g((#; (a))1<i,a<n): R” - R
we have X(fg) = fX(g) + gX(f), so that

X’P(G)= Y  XplenXplea) [  pleo

(2.22) (e1,e2)€6(G)3 e (G)\{er.e2}
+ Z X?p(er) l_[ ple).
e1€6(G) e€s(G)\{e1}

The above sums will be decomposed depending on the following edge group (sin-
gle, double or transverse):

(2.23) s =6(G)N{H{v,wh v e UV w e ¥ UV,
(2.24) & = EG)N{{v,w}: (v, w) € V2 U VAL,
(2.25) & =8G)N{{v,w}:ve W, we ¥}

For any v € ¥, let e, be the edge containing v, and v’ be the vertex such that
ey = {v,v’}. We denote

Ve ={ve WU {v,v}ed,

Ya={ve N U¥:{vv'}edyl,

Vo ={ve U {v,v)ed).
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Our calculations will be based on the following basic facts: if ¢ & & U &y U &7,
then X, p(e) = 0, and

(2.26) Xpki = —Dui»
(2.27) XPke = Pkk — Pee-
(2.28) Xpoe = 2pre-
From (2.22) we have

X2P(G) = (I) + (1) + (II) + (IV) + (V) + (VI) 4 (VII) + (VIII) 4 (IX)

where all terms are defined and calculated below. First,

M:= Y  XplXpe) [[ r

(e1,e2)€(&5)2 ec8(G)\{e1,e2}
= Z XPtw,w XP{o,w} l_[ ple).
(v,w)e(¥)2 ec&(G)\{ev,ew}

From (2.26), Xpgy, v XPgw,w’y = —Piw v/} P{v,w’} if v and w are in distinct 7;’s,
and Xpgy, oy XP{w,w'y = Py ®),07} Pljv.w(w),w’} if they are both in the same ¥;.
In all cases, we have proved

(2.29) M= Y e@wP(Sws).
(v,w)e(¥)2
‘We now consider

(I := > XpenXplex) [  plo

(e1,€2)EEsXEGUEG X8 ec&(G)\{e1,e2}
= Z Xpiww i XPtw,wy l_[ ple).
(v,w)e¥sx¥y ect(G)\{ey,ew}

For the second equality, note that vertices on a double edge need to be weighted by
a factor of 1/2. From (2.28) and (2.26), Xpyy, vy XPw,w'y = —2Pfw,v} XP{v,w’}
if v and w are in distinct ¥%;’s, and 2pg ) v/} P{jpw (w),w’} if they are in the same
¥;. We therefore have

(2.30) 1) = > e(v, W) P(Sy G).
(0, W)EVs X Vg UV X Vs
For the contribution of

Im:= > XplenXpex) ]  plo

(e1,e2)€(E4)2 ec&(G)\le1,e2}

1
= Z Z Xp{v,v’}Xp{w,w’} 1_[ p(e)

w,2w)e(¥y)2:w#v’ ecs(G)\ley,ew}
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from (2.28) we have Xpgy, v 1 Xpy wy = —4Pjw,vy XPiv,wy if v and w are in
distinct #;°s, and 2pg . ()07} P{jpw (w),w’} if they are in the same ¥;. We therefore
proved

(2.31) )= Y e wPSwG)— Y P(SwG).
(v,w)e(¥y)2 VEYy

We now calculate

V)= Y X?’pey [][ pr@©

(2.32) e1€&s . e€s(G)\{e1}
= Z X v,y l_[ ple) =— Z P(G)
vEY; ec&(G)\{ey} vEY

where we used (2.26) twice to obtain X2 pg, y1y = —piyuri-
For the term

1
V=), X’pler) ] r@=53 Xpowy [ p.
e1€8y ec&(G)\{e1} vEYy ec&(G)\{e1}
note that we have X2p{v,v/} = 2prr —2pee ifv € ¥, and 2 pyp —2 pri otherwise.
This yields
(2.33) (V)= D (P(Sy (@) — P(G)).
VEYy
We now consider cases where transverse edges appear:

(VD) := 3 XpenXplea) []  ple)

(e1,62)E€E5XE U X85 ecs(G)\{er,e2}

=2 Z Xp{v,v’}Xp{w,w’} 1_[ p(e).
veYs,{w,w/Ies, ec&(G)\{ey.ew}

(2.34)

Up to transposing w and w’, we can assume that v and w are in the same ¥;. With
(2.26) and (2.27), a calculation gives Xpgy, vy XPtw,wy = Pjyw @)’ Pjvw(w)w’ —
P, ()0 P, (wyw- This yields
(2.35) (VI) := > e(v, W) P(Spw (G)).
(v, w)e¥s XV U¥ X ¥
We also have

(VID := > XpenXpe) [ pe

(e1,e2)€6q XE VS X8y e€&(G)\{e1,e2}

= Z Xpw vy XP{w,w'} l_[ ple).

veYy,{w,w}es; e€&(G)\{ev.ew}

We can assume v and w are in the same #;. Then (2.27) and (2.28) give

Xp{v,v’}Xp{w,w’} = 2(pjvw(v)v’pjvw(w)w’ - prvw/(v)v’prvw/(w’)w)a
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so that
(2.36) (VII) := > e, w)P(Syw(G)).
(v, w)EVG XV UV X Vg

For two transverse edges, we have

(VI := Y XpleDXple) []  ple)

(e1,€2)€(81)2 ec&(G)\{e1,e2}
1
=1 ) XpwoyXpway [ P
(v,w)e(¥)?,w#v’ ec&(G)\{ev,ew}

Without loss of generality, assume v and w are in the same %;. Equation (2.27)
yields

XPwwd XP{w.w’s = Pljyw @)} Pow )’y Pl 0,03 P Ly o ()0}
- p{tv,w’(U)’v,}p{tv,w’(w/)’w} - p{tv’.w(U)av}p{tv’,w(w)aw/}'

‘We therefore have

(2.37) (VI = Y e.w)P(Suw(@) + Y P(G).

(v,w)e(#)z Ve

Finally, from (2.27) we have X2 pyy = —4pyy, so that
238)  (X)= ) X’ple) [[ re@=-2) PG

e1€8; ec&(G)\{er} veY;
By summing all the equations (2.29), (2.30), (2.31), (2.32), (2.33), (2.35), (2.36),
(2.37), and (2.38), the right-hand sides of (2.21) and (2.22) exactly coincide, con-
cluding the proof of Lemma 2.10. U

3 Analysis of the Eigenvector Moment Flow

Before getting into the details of the proof of Theorem 2.5, i.e., relaxation for
the eigenvector moment flow (2.17), we note substantial differences with the set-
ting and proof in [7]. The dynamics equation (2.17) already appeared in [7], but the
observables associated with equation (2.17) are now much more general (see Re-
mark 2.8), and their natural scale (i.e., the order of the sizes of these observables)
is not known a priori.

Indeed, in [7], the order of magnitude of f;(n) was a priori known: f;(5) =
E(|/7{q. ux)|? | A) < n® thanks to the local law. The eigenvector moment flow
was used in [7] to find fluctuations around this scale.

On the contrary, in the current paper, the eigenvector moment flow (2.17) allows
us to find the natural scale for a wider class of observables. For |/| ~ ¢n, local
laws only give the trivial estimate |p;;| < 1 for example, although the dynamics
yield Theorem 2.5, i.e., | p;;| < n~'/2%* for ¢ approaching 1.



RANDOM BAND MATRICES 1545

This differences about observables and scales require the following notable nov-
elties in the proof of Theorem 2.5:

(1) The decomposition between long-range and short-range dynamics is now
more intricate. In particular, our bound on the long-range contribution im-
proves in inductive steps (see Lemma 3.5 to be compared with [7, lemma
6.1]).

(i) The maximum principle, Proposition 3.7, also gives stronger results once
it is used inductively, on space-time embedded domains, while the ana-
logue [7, theorem 7.4] only required one time step.

In summary, the error terms in the finite speed of propagation and the maximum
principle estimates depend on the size of f;(n). In this paper, the a priori bound
on f;(n) is far from its real size. Hence we need to bootstrap our estimates in a
suitable way in order to get a sharp estimate at the end of the proof.

We now introduce a few notations that will be useful in the statement and proof
of the following lemma 3.1 and in following this section. For a fixed and arbitrarily
small @ > 0, we define the control parameter

¥ =n°
with @ < a/100, and the following time and spectral domains:
3.1 T r) ={t iy <t <y~ '),

3.1 A Priori Estimates

For K(¢) in (2.1), we denote the initial matrix V' = UpAoU., where Ay =
diag{A1(0), ..., A,(0)}, and Uy is the orthogonal matrix of its eigenvectors. Let
mic; be the Stieltjes transform of the free convolution between the empirical spec-
tral measure of V' and the Gaussian orthogonal ensemble Z;. Then my ; solves the
equation

(n)

mI(z) = my (2 + tm{)(2))

3.2) 1

2i(0) — 2z — tmge 1 (z)

1 n
= ;Zgi(l’z)’gi(taz) =

i=1

Here mg)t (z) is the Stieltjes transform of a measure with density denoted pgfz
For notational convenience we will suppress the superscript and use the notations
Mifc,t (Z)7 Pfe,t -

The typical location y;(s) of the i eigenvalue A;(s) is defined through
fl’éx(:) dpfe,s = ,’—l We also recall the following stability property of the typical
locations; see [23, lemma 3.4]: for any 0 < q; < ¢ < 1 and w > O, for large

enough n we have, for all 5,1 € Z,(n«, n*,r),

(3.3) {i 1 vi(s) € IEgq1r} CHi 1 yi(t) € IEyqur}-
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LEMMA 3.1 (Delocalization for deformed matrices). Let T > 0 and let u; ; denote
the normalized eigenvector of K(t) in (2.1), whose eigenvalues are A; s, 1 <i < n.
We assume thatt € Tp,(nx.n*, 1), V is (N« 0™, r)-regular at Ey and bounded as
in (2.7), and that there exists C > 0 such that for any D > 0, for large enough n
we have

(34) P@EE € Ig, e <n<rn®:ImG(0,E +in); = C)<n P

forany 1 <i <n. Here G(0, 2) is the Green function of the initial matrix V. Then
for any k,t, D > 0, provided that n is sufficiently large we have

P (113, ,—Eol<(—ryr Uk I3 = n7 17y <n™P
uniformlyinl <k <n.

Remark 3.2. This lemma is essentially a restatement of [5, theorem 2.1], which
holds in the domain {z = E +in: E € I[(Eo),¥*/n <n < 1 —«r} under the
(n«, 1, r)-regularity for V'; see [5, assumption 1.3].

In Lemma 3.1 the assumption is weaker: we only have (1x, n*, r)-regularity for
V. A simple inspection of the proof of [5, theorem 2.1] shows that its conclusion
remains, in the restricted domain ¥*/n < n < rn™® (which will be sufficient for
our purpose) under this (7«, n*, r)-regularity assumption.

PROOF. We bound the eigenvector coordinates by the diagonal entries of the
resolvent through

(3.5) g, (D? <n T Im G, A, +in )

If [Ak s — Eo| < (1 —«)r,denoting z = A, + in~177 we have

4
(3.6) Z,e{E—i—ir}:|E—E0|<(1—K)r,w—§n§rn*w_l}.
n

The local law from [5, theorem 2.1] with the domain adjustment from Remark 3.2
states that Up diag{g1(¢.z), g2(¢,2), ..., gn(t,2)}Uy is a good approximation for
G(t, z); i.e., for any 14 < ¢t < r and any unit vector q, uniformly for any z as in
(3.6), the following holds with overwhelming probability:

= f_nz_nlm<i(“i(0),Q)2gi (t,z)).

i=1

n

(@.G(1.2)a) — Y _(ui(0).q)%gi (1. 2)

i=1

3.7

Clearly, we can restate the last result as

{q.G(1,2)q) — (q. G0,z + tmye ¢ (2))q)|

Im ,(; O,Z e 1 \Z )
f (] N q

where G(0, z) is the Green’s function of V. Since ¥%/./n7 < 1, we have
(3.9)  |[ImG(t,2)i; —ImG(0, 2z 4 tmg,(2)ii| < IMmG(0, 2 + tmge s (2))ii.
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From [5, proposition 2.2], for some fixed constant C > 0 we have
c < Immy(z) <C and |Remy(z)| < Clogn,

so that Re(z + tmyc;(2)) € FE,,r and 0y < Im(z + tme(2)) < n~%r. With
(3.4), we deduce that

(3.10) ImG(0, z + tmees(2))ii < C

with overwhelming probability. Equations (3.5), (3.9), and (3.10) conclude the
proof. 0

Similarly to [5,7], we split the operator Z(¢) from (2.17) into a short-range part
and a long-range part through a short-range parameter £ : A(t) = #(t) + £ (¢),
with

M= > @21+ 20 f @) — fi().

0<|j—k|=t
LW =D c®2n;(1+20)(f @™ ) = fi(n).
|j—k|>£

Notice that . and .Z are also reversible with respect to the measure 7 from (2.18).
We denote by Ug(s, t), U (s, ), and U (s, t) the semigroup associated with %,
<, and Z, respectively, from time s to ¢, i.e.,

0:Uz(s, 1) = B(t)Ux(s,1).

For a fixed ¥ > 0, consider the following “distance" on n-particle configura-
tions:

@G.11) d(.§) = 1<mofl§d#{i € [1.n] : yi(to) € I (Eo). i € [Xa. ya] U [ya. xa]}.

where : 1 <xy1 <xp <:---<xy<mnandé:1<y; <y, <.--<y; <n,and
an initial time ¢( defined in the next lemma. Note that we use the notation d for d
defined in [5, equation (3.10)].

LEMMA 3.3. Assume the initial estimates (2.7), (2.8), (2.9), and (2.11) hold. We
fix times to, t1, and the range parameter £ such that

£ r
3.12 <tg<h < — < ——.
(3.12) ‘/’U*_O_l—nw—wlo
The matrix Brownian motion (K(s))o<s<z, defined in Section (2.1)) induces a mea-
sure on the space of eigenvalues and eigenvectors (A(s), u(s)) for 0 < s < t1 such
that, for any k > 0, the following event A holds with overwhelming probability:

(i) The eigenvalue rigidity estimate holds: sup;, <<, |Mms(2) — Mmie,s(2)] <

w(nn)_1 uniformly in z € 9, and SUPsy<s<t [Ai(s) — yvi(s)] < wn_l
uniformly for indices i such that y;(s) € I} (Eop).
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(ii) When we condition on the trajectory A € A, with overwhelming probabil-
ity, the following holds:

2
(3.13) sup |G(s,2)ii —G(0,2 + smee5(2))ii| <C 4 ,
to<s<ti A/ h
WZ cy?
(3.14) su G(s,z ——Terz ,
S 17 Z (s, 2)ii (s.2)] < -

uniformly in z € 9, where b, ¢ are defined in Assumption 2.4.

(iii) Finite speed of propagation holds: for any d there exists Cy,cq > 0 such
that uniformly, for any function h on the space of d particle configurations
and particle configuration &, which is away from the support of h in the
sense that d(n, &) > yrf, we have for any W in the support of h that

(3.15) sup  Us (s $)h(E) < Cqllhlloon?e V.
fo<s'<s<ty
PROOF. Statement (i) was proved in [23, theorem 3.3 and 3.5], and (3.13) and
(ii1) were given in theorem 2.1 and lemma 3.4 of [5], respectively. For the proof of
(3.14), we decompose

T ZG(S 2)ii — —TrG(s z)

iel

_ ! (G(s.2)ii — G0,z + smye,5(2))ii)

|I| iel

(|I| ZG(O Z 4+ smyg S(Z))” —% Z G,z +Smfc,s(Z))ii)

iel 1<i<n

_% 3 (Gls, 2)ii = GO, 2 + smpes(2))ir)

1<i<n

The second sum is exactly the left-hand side of (2.11), so it is bounded by n~*.
The third sum is just the difference between Stieltjes transforms, and it was proved
in [23, theorem 3.3] is of order at most n¥/(nn) thanks to (3.8). Notice that we
have used my s(z) = G(0. 2 + smy s(z)) by definition.

The first sum of the last displayed equation is of the same type as the third one
except that the average is over not all entries but a macroscopic fraction of them.
The proof in [23, theorem 3.3], based on a fluctuation averaging lemma, can be
replicated to yield that

1 n®
i > (G(s.2)ii — G(0. 2 + smpe,s(2))ii)| < e

iel

with overwhelming probability. This completes the proof of Lemma 3.3. U
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Remark 3.4. The following is an elementary consequence of the above rigidity
estimate (i) together with (3.3). For any to < s < #1 and interval I C I (Eyp) with
|| > v*/n, we have

(3.16) CUIn<#{i:yi(s)el}+#{i:Ai(s)el}<Cln.
3.2 Approximation with Short-Range Dynamics

‘We introduce the notation
S = sup fin)

nClu<s<v
for the following lemma. Fori € Z and J C Z, letd(i,J) = infjey |[i — j|.
Finally, from here we assume that the number of particles of the eigenvector mo-
ment flow is even, i.e.,
d =2m.

LEMMA 3.5. Under the assumptions of Lemma 3.3, consider A € A, with A de-
fined in the same lemma. Consider the perfect matching observables f from (A.3).
Then, for large enough n, for any intervals Jin C {i : yi(to) € 15,.(E)} and
Jout = {1 : d(i, Jin) < WL}, any d-particle configuration & supported on Ji,, and
anyty < u < v <ty we have

(U (u,v) = Uy (u,v)) fu) (§)]
— 1 -1 1 -2
<yt T (s 4 (s) 4 (s) ).
E out nC out /e out
PROOF. We first define, similarly to [5, 7], the following flattening operators on
the space of functions of configurations with d points:

S ifng C{i:d(@, Jin) <aj},
0 otherwise,

(Flata (1)) (n) = {
By Duhamel’s formula,

(Us(u,v) —Ug(u,v)) fu)(§) =/ Uy (s,0)ZL(s) fs(§)ds.

u

Notice that d (supp(-Z'(s) fs — Flaty¢(-Z(s) f5)), &) > ¥ {. Therefore by the finite
speed of propagation (3.15) in Lemma 3.3 of U &, we have

(U (s, 0).2(5) ) (E)] = |Us (s, v)Flaty (L(s) £:)(§)] + O(e~¥/?)

3.17 ~ _
G40 < max [Flaty ¢ (£(5) £2) ()] + O(e™V/2),
(]
where in the last inequality, we used that U & is a contraction in L°°,
Let 7 be a configuration {(i1, j1)...., (g, j4)} with support in Joy. In view of
(3.17), we only need to prove that
1

n d—1 1 =2
G19) 12O ] < v (S 4 L 50) T 55T,
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We have

iA@Y :

A 2°
l<p<d,)ip—k|=¢ n(Aip = k)

~ik
26 f@m=| Y naf](%

lj—k|=£

Notice that i € Jou, and thus A;,(s) € I, (Eq). We denote n; = 29¢/n. From
the local law and a dyadic decomposition we have

[logs n /4] .
v _n
k:|i,§c|z€ (A, _’\k)z a X_; Nq Xk:”((/\ —/\k)2 +n2) L

so that the second term on the right-hand side of (3.18) is bounded by the right-
hand side of (3.17), as desired.
More subtle bounds are required for

fo(7%)
e TR~ i)
fs(@7%) n
= > ==ag0(z) s A
|j—k|>£,7x =0 n(l-’ — k) 14 U<s<v,nCJout

where we used that ﬁjk C Jour if N # 0, and 1/(n(A; — A3 < 1/(n(t/n)?)
for |j — k| = £ by rigidity; see Lemma 3.3(i). For fixed p, we therefore want to

bound
E(P(G) | A
> > n(()L ( )/\| )2 @ + (1)
lip—k|=L,7x =0 GEZip i
where (I) corresponds to perfect matchings such that {(k, 1), (k,2)} is not an edge,
and (IT) corresponds to perfect matchings with an edge of type {(k, 1), (k,2)}.

More precisely,

0= Z [E(P(m,th)(p(e)ee(%) Z Dig kPig,k ‘ A),

nA; —Ai)?
1<q1,q2<d |k—ip|>£,7x =0 ( 4 k)

I = ]E(P(p)((p(e)eegﬁ)) _ Pkk )L)
|k—ip§ﬁk=0 I’l(/\ o Ak)z ‘

with &% the set of all possible edges between between vertices from 73, P (P js a

finite sum of monic monomials of degree d — 2, and P (P) is a finite sum of monic
monomials of degree d — 1.
To bound (I), we simply write

Pig kPig,k 1 ’ 5 el
Z n(hi, — Ak )2 (n(@/n)z Xk:(qulk + P;qzk) n 2 )

lk—ip|>£,7x =0
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where we slightly changed the meaning of pg; (only in the equation above and
the equation below, pxx = Y ,er ug(a)?, ie., Co = 0in (2.6)) and used the
elementary identity

(3.19) Zplk—Zu((x)z ( ||)

acl

The above second equality follows from Lemma 3.1. Moreover, with Lemma 3.6,
we have

(1P (p(e)eesy) | 4) =0(  sup 1L y=d—2)

U< <v,7CJou
_ )\ 472
=o((s5) ™).
where we used Holder’s inequality and Lemma 3.6. This concludes our estimate
for (I).

The term (II) is more complicated to bound. For fixed p and s, let £1 = y;,—,
El_ = VYip,—t—ns> Eii_ = Yi,—tl+n®> E; = Vip+Ls E2_ = VYip+i—n®> and E;_ =
Yip+e+ne- We also define the contour I' as the rectangle with vertices £1 + i%,
E> +if. Let

Pkk
) = —_—,
f(2) > G-t
kwyk€lE| . E) ]

_ Pkk
g(Z) - Z+ N n(z—kk)
k:yk€lE, E\"JUIE, ES']

(3.20)

We now assume |z — A;,| <n~° ﬁ. By Cauchy’s formula, we have

@ = [ F = [ 58

27i -z 2ri ré—z

§.

where for the second equality we used that, for any A (and z) inside I' we have

e ="
rE—rE—-2
from a residue calculus. Define
INm={z=E+in: E=Ejor Ey, |n| <n®/n} and Tex = I'/Tin.

We first bound the contribution due to small #: we have

g | Pk
[ 5‘ )k
nt ml k<ip—ﬁ—n8,
ip+l+nf<k,

ip—L+nf<k<ip+L—n®
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We simply bound | p| by 1 and obtain that the corresponding integral is at most

g®) | _mnt~ 1 (n
I w2t -o(%)

‘We now bound the contribution from ['ex;. On this domain, we can afford extending
the definition of g to the full sum 1 < k < n, up to an error of order

/ _prl _n®
Moo 1E—Ex| ~ £

8

Pkk
g A Z o Id§|+—
(3.21) U ETE

n v W né . 1
NG )'df'+——0<">( “)

where we used (3.14) in the second inequality. We conclude that d; f(A;,) =
O(n®)% (3 + 7). so that

(0 = 075 + ) (s5:) T

where we used Holder’s inequality and Lemma 3.6. This concludes the proof of
(3.18) and the lemma (note that 25 (S5°”)“T" = O(Z (S3-") “T*)). 0

We therefore proved

@) =

LEMMA 3.6. Denote by y the configuration with m particles at site i, m particles
at site j, and no particles elsewhere. Moreover, denote by 71(1) ( 71(2) resp.) the
configurations with d = 2m particles on the site i (resp., site j) and no particles
elsewhere. Then there exists Cy, Ca, C > 0 depending only on d such that for any
i < J and any time s we have

E(pij () | X) < C1 fas(@D) + Cafa s(®) + Cfi s(n).

PROOF. From (A.3), we have

(322)  fas) =asE(pE 1A+ Y bap,E(pEphpl | A)
a+B+y=d,a<d

for some coefficients ag > 0, by g, > 0. From Young’s inequality, for any & > 0
we have

g2 B
(3‘23) ‘E pl]pllpjj ‘A)‘ d (pl] ‘A’) d (pll ‘A) d (plj ‘A’)
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Equations (3.22) and (3.23) imply

d
E(pfj | 4)
< fl,s(ﬂ)
T
d d
baﬂ y ae? d IBIE(pii | 4) + VE(P,',' | 4)
* Z ag ( d (p” )+ de )
at+B+y=d,
a<d
The result follows by choosing ¢ = ¢(d) small enough. O

3.3 Maximum Principle

Iterations of the following proposition will give the main result, Theorem 2.5.

PROPOSITION 3.7. For any eigenvalue trajectory (A(s))o<s<t, € A defined in
Lemma 3.3, let f be a solution of the d-particle eigenvector moment flow (2.16)
with initial matrix K(0). For any C > 0, there exists ng such that for any n > ny
the following holds. For any intervals Jiy C {i : yi(to) € 13, (Eo)}, Jouw = i :
d(i, Jwn) <nr/y}, and [t t + u] C [to, 1] withu > t /W, we have
u 3 —
S(f+5,t+u) < W3 u 1/2 + i S(t,t+u) 4 W_(S(t,tJru))%
Jm r nt Jout n [ Jout
(3.24) 5
d—2
+ f—t(s(j;ff”)) T 40 €.

PROOF. For a general number of particles d, consider now the following mod-
ification of the eigenvector moment flow (2.16). We only keep the short-range
dynamics (depending on the short-range parameter £, chosen later) and modify the
initial condition to be 0 when there is a particle far from Jj,:

dsgs = L(5)gs.
(3.25) t<s<rtr+u,
g:(m) = (Av fr) (),

where

A =2 F Ba().

We can write

AV(f)() = aqy f(n)
for some coefficient ay € [0, 1] (ay = 0if § & Jou, ay = 1if y C Jin). We will
only use the elementary property

(3.26) lay —ag| < id(m £),
nr

where the distance is defined in (3.11).
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For any 5 C Ji,, we have

o) — g5
a7y S NUEf =Us(t.s) )] + U (1) fo — AY fi)(0)]

1 -1 ] _
< w“%(sg;ui*") + (ST 4 Z(SS’;T”’W) eV,
where we bounded the first term by Lemma 3.5, and the second term by finite
speed of propagation (3.15), since f;, — Av f, vanishes for any & such that § C
{i :d(i,Jin) <nr/3¢} (note that Y& < nr/3y).
In the following we will prove that for large enough n we have
sup gs(n)

NCTin,t+ 4 <s<t4u
nu LY et
< — + —+— Sy

(3.28) - W( £  nr  nt ) Jou

R nu Y\ iR

‘i‘;(s‘]ouI )d +1ﬁ E_2+E (SJOul )d +n

by a maximum principle argument. Equations (3.27) and (3.28) together give the
expected result (3.24) by choosing

L= m/fz(ur)l/z,

which satisfies (3.12) If the left-hand side of (3.28) is smaller than n~C, there
is nothing to prove. If it is greater than n~C by the finite speed of propagation
property (3.15) for any ¢ < s < ¢ + u, the configuration(s) 7 such that

gs() = sgp gs(n)

3nr

need to be supported in {i : d(i, Jin) < 7 it

From the dynamics (3.25), for any parameter ¥*/n < n < £/n to be chosen,
we have

dgs( = D> 21+ 27 (g5 GF) — g5 ()
0<|j—k|<t

C gs(;iipk) - gs(ﬁ)

S (Ai, — A% + 12

n
l<p=d,
k:0<lip—k|<¢t

1 3 gs(77%)
= — Im222 2

nn Zi, — Ak

(3.29)

1<p=d,
k:0<l|ip—k|<t

! ~
- %gs(ﬁ) Z J'.—

1<p=<d,
k:0<|i,—k|<¢
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where we define z;, = A;, + in. For the second term in (3.29), note that

5 n
2 “z—>2 VR A

1<p<d, p=1k:0<|ip—k|<l
k:0<li,—k|<{

where we used (3.16). For the first term in (3.29), we claim that for any fixed p we
have

1 Z I gs(ﬁi”k)
— m—

" ko<lip—kie ST M
1 £
B30 —ow(o o+ ) YL+ o) (85T

o (4 5 )55

For this, we can bound the left-hand side of (3.30) by (3.31) + (3.32) + (3.33)
where

G3) Im Y I(Uw S)AVft)(ﬁ”’k)—iAva(t SO
— Ak

k:0<|k—ip|§é
(AvU (1, s)ft)(ﬁ’ﬂ’w — (AvUg(t, S)ft)(ﬁ"’")

332 Im > %

k:0<lip—k| <t — Ak
1 AvUg(t, 7ink
(333 Im Y (Av z( 9).SOG)
, n i) — Ak
k:0<|ip—k|<t

The term (3.31) will be controlled by finite speed of propagation; (3.32) will be
controlled by Lemma 3.5, and (3.33) by the local law.
To bound (3.31), we write

(U (t,5) Av f) (7% — (AvU s (1, 5) f1) (i)

2 .
:% Z Uy(t,S)Flataft—FlataUy/(l‘,s)ft)(ﬁlpk)‘

%j <a<’11//r
For fixed a, let L1 C L, be defined as L = {l d(l Jn) <a—vyl}, Ly = {i:
d(i, Jin) < a + V). We consider three cases: 77% ¢ Lo, ?* < Ly, or neither.

For n’!’k ¢ L», by our definition, FlataU/(t,s)ft(n’”k) = 0. By the finite
speed of propagation (3.15), the total mass of U (7, s)Flat, f; outside L» is expo-
nentially small. In particular, |U.» (¢, s)Flat, f; (77%)| < exp(—cy/2).
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For 77k C L1, we have
(U (2. 5)Flaty f; — FlataU s (2, ) ) (i77%)]
= |(Us(t.5)Flatg f; — U (t.5) f) (775)]
— (U (1. 9)(fs — Flata f0) (§7%)| < exp(—cy/2).

We used the finite speed of propagation (3.15) in the last inequality, since f; —
Flat, f; vanishes for any & supported in {i : d(i, Jin) < a}.

For the last case, we have ﬁil’k C L5, and some particle(s) of ﬁil’k isin L/Lq.
There are at most 2n1£ such a. Moreover, since U is a contraction in L°°, we
have

|(Us (2, 5)Flaty f; — FlataU s (2, 5) f2) Gi7F)|
< |U(¢t,s)Flat, f;] + ‘FlataUy(z,s)FlataHMft(ﬁip,k)‘
+ [FlataU s (1, $)(f; — Flatyoye £1) (77F))|
< ||Flaty f+lloo + [[Flaty sy filloo + e <¥/2.

We bound ||Flat, f; ||eo. |Flatg 4oy filloo < S(Jtiﬂ)- From these estimates, we
have (3.31) < wZ 4 S(to,to+u)

We now bound (3.32). For |k —ip| < ¢, 77k is supported in {i : y;(fo) €
13, (E)}, so that we can apply Lemma 3.5:
(AVU(2.9) [ (%) — (AV Uz (1. 5) f) 75|
< |Us(t.9) fi — U(@a $) SO G5
w4nu( gt L ( (Jtt+u)) n ;(Sf’toiJru))ddz)

Oth out

As a consequence, we have

(3.32) < 1# (S(to:Jru) 4+ — - (S(JtoiJru)) + g(S(Jtoi+u))

Finally, for (3.33), note that ik s supported on Joy, so that

l Im Z (Av ft)(ﬁi"’k)

ko<lip—kl<t ST Ak
¥ az o (7%) + (agipr — ag) fi (%)
" ko<lip—k|<t Zip ~ Ak

ay ft (ﬂlpk) (¢,t+u)
=_771 @) S ,
mo ) vo(v- S

n —)L
k:0<lip—k|<t k
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where we used that |agi,x — ag| < ¥d (7, iKY/ (nr) < €/ (nr) from (3.26).
In the above imaginary part, the contribution of all k € {i1,...,ig} is of order
1 S(t t+u)

o , so that (here kg is any index not in {i1,...,iz})

1 ~ipk
Ly
n - Zi — Ak
k:0<lip—k|<t 77

1 1 IE(P(G) | l) gtt+u)
—n M (Fipko) m Z Z (”77 Jou )

k:0<l|ip—k|<t G€/~,p1\

ut

(D) + (1) + o( s(fo”“))

where (I) corresponds to perfect matchings for which {(k, 1), (k, 2)} is not an edge,
and (I) corresponds to perfect matchings for which {(k, 1), (k,2)} is an edge.
More precisely,

Piy kPi
(I) = Im Z E(P(ql’qZ)(p(e)eegﬁ) Z g kPiay k. | A),

1=q1,92<d k:0<|i,,—k|§en(z‘i1’ _Ak)
() = ImE(P@N(p(e)eegﬁ)) > x)
k:0<lip—k|<t  ip T K

with &% the set of all possible edges between between vertices from 75, P (P is a

finite sum of monic monomials of degree n — 2, and P (P) is a finite sum of monic
monomials of degree n — 1.
To bound (I), we simply write

Dig k Pig,k 1 5 1 ||
Im Z — =2 =O( Z(pl e+ i k)] =0 —n"—).
ko<iipoki<e " Zin ~AE) n ok T Tz neon
Here we slightly changed the meaning of pgj (in both equations above and below,
Pkk = Dgel ug(a)?, ie., Co = 0 in (2.6)) and used the elementary identity
(3.19). The above second equality follows from Lemma 3.1.

Moreover, with Lemma 3.6, we have

E(IPO 9 (p@)ecs) [4)=0(  sup AL ya=n—2)

t<s<t+u,nCJou
= o((s51") ™).
where we used Holder’s inequality and Lemma 3.6. This concludes our bound for
. (S5
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More subtle bounds are required for the term (II).
1 1
m Y s =ol ) X ey
ko<iip—i<e " Gip = ) o kelimr¢ MEin — 20

where we used (3.14). This last term can be bounded exactly as between (3.20)
and (3.21), and we obtain

Z Pkk 1 )

Im - = O(_ + — s
.o C

k:0<lip—k|<t (i, = M) mnen

where we used that n < £/n. This concludes the proof of (3.30).
We define /(s) = sup, gs(17). Equations (3.29) and (3.30) yield

Cy 1 ¢ U\ @+ ) (t,t+u)\ 4
h/(S)ST((—"F—-FT)SJm “ c(S Jon u)

nn  nr n

1 nu (t.t+u)\ 452 h(s)
+(_+ gz)(stout[ u) ' )_C_

n
forany ¢ < s <t + u. We now choose = /2, so that u/n > v, and obtain

V4 nu d—1
h(s) < cw( +—+ —)S(Jff“’ + Cfc(sgfo’jf“’) a

14
’W (t,t+u)n & -C
—|—C1ﬂ( 62)(5 b ) e +n
forany t + u/2 < s <t 4+ u, which is (3.28) and concludes the proof. g

PROOF OF THEOREM 2.5. We proceed by iterating the bound from Proposition
3.7. We are given a small ¢ such that ¢ < a/5 and alarge D > 0, as in the statement
of Theorem 2.5.

We first choose d = |5D/&] and define (implicitly, for J; 1)

so = to, Jo = {i : yi(to) € I, (Ep)},
sith Ji=1{i:d@,Jit) < ’f/fr}

Si41
A direct application of Proposition 3.7 together with the bounds n7 179 < 5 <
t; < n % yields
S(Jsiij-ll,tl) < 1p?,(n—a/2 +2in—a)s(sz',l1)
V2 eyt VY P —c
+ —(SY' Sy! +n .
P55 T+ L (se) T
In particular, we have
(JS,::ll 1) < n—e/SS(S:,tl)
provided that .
(S(Si,to))l/d > n®/220  pel2

I .
Ji T oW/ntf nt
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This implies that for k = [4e~!| we have

n38/4 n38/4

(sk,11) l/d‘
S < —
(85 < Jito T
For each fixed i, by choosing # as the configuration with d = 2m particles on

the site / and no particles elsewhere, we have |p;; (s)|? < Cy fs(n). Hence by
Markov’s inequality, the last displayed equation implies that

1 1
) . €
IP)(Elsk <t<if: 1)L,~(t)eI£K(E0)|pll| zn (; + ﬁ))

< (nS)—d(n38/4)d < I’l_D.

Here we used that {7 : y;(fo) € 1;,(Eo)} C Ji because k% < krfork = |4e7 |
and n large enough.

Finally, by Lemma 3.6, pldj can be estimated in terms f;, p;;, and p;;. Hence
the previous estimate also holds if we replace

Liwer (B |Piil bY L), el (B Pijl.

This concludes the proof of the theorem, up to redefining 79 and « by a constant
factor. 0

4 Mean-Field Reduction

This section proves Theorem 1.5. We actually just need to prove it when a tiny
GOE regularization is added, as explained in the next paragraph.

4.1 Small Regularization

Consider matrices of type

@.1) H=H +H+N4HS where HG 2 (1 + 1,)Y2. 4 (0, N 7Y,

where Hq{ and H, are defined in (1.15). Our main result in this section is the
following:

THEOREM 4.1. Let A > 10 be any fixed constant. Assume that H is a band matrix
of type (4.1), with bandwidth Wy satisfying (1.11).

(1) The eigenvectors are delocalized as in (1.12).
(11) The eigenvalues satisfy the local semicircle law as in (1.13).
(iii) Fixed energy universality holds as in (1.14).
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(iv) For any (small) T,k > 0 and (large) D > 0, there exists No > 0 such that
forany N > Ng we have

L+w

N
4.2) P(‘W 2 WP -1
a={

< N—%a—i—r

forall 1 < j, € < N such that |A;| 52—1{) >1-N"P,

where a > O was given in (1.11) and all indices are defined modulo N .

The same results hold for all submatrices of H of type H® = (Hij)i,je[1,N]\ik}-

The following simple lemma shows that all properties of delocalization only
need to be established for the slightly regularized matrices. It is proved by pertur-
bative arguments.

LEMMA 4.2. Theorem 4.1 implies Theorem 1.5.

PROOF. Let H' = Hj + H, have distribution (1.15)and H = H' + N~4HGE,
with respective ordered eigenvalues and eigenvectors k;c, ‘./,//C’ Ak, V. Let o =

{(|HC|oec < N~A-Y2+€} By Gaussian decay of the entries of HC, for any
e, C > 0, for large enough N we have

(4.3) P(«)>1—-N"C.

The conclusions (ii) and (iii) of Theorem 1.5 for H’ therefore follow from the
Hoffman-Wieland inequality:

sup A = Mg Ly = NY2(3 1 = 44 2) 1
(4.4) k k

< NY>(Te(H' — H)»)V?1,, < N~43,

Moreover, the conclusion (i) of Theorem 1.5 also hold for H’. Indeed, we have
n 'y, (0)]* < Im GJ; (A, + in) and the simple inequality

_ - N?
I(H = 2) " oo = I(H = 2) " loo +O(?”H/_H”oo)

obtained by resolvent expansion. From the local law and eigenvector delocalization
for H,forany z = E +1in, n > N7+ E ¢ [-2 + k,2 —«], forany D > 0 we
have P(||(H —2) Y|oo < N%) > 1 — N~P for some C > 0 for large enough N .
Moreover, on </ we have ?”—22 |H’' — H||oo < N2, which concludes the proof of
(i) for H'.

The proof of (iv) is more involved. We want to obtain (4.2) for H’ for a given
large D > 0. Take A = 4D in (4.1) and denote t = N~4. The perturbation
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formula for the ¥4 (s)’s, eigenvectors of H’ 4 sHS associated to eigenvalues
Ak (s)’s, is

d oy ) HOi(9))
a"’k“)—g 3 6)—hee) e

On o7, we therefore have

@5 e — il <N2/tds( ! 4 ! )
2 Wi = Villoo = N7 S\ e o T e — A o)1)

Consider eigenvalues Ay < A4 for H, with /\,(j) € (Ag, Ar41) an eigenvalue for

the minor H @), with associated normalized eigenvector ¥ ,(Ci). Denote
@ _ @2 - W
o) = { Z v (@)?] > ION}'
la—i|<W
By QUE for H® | for any C > 0, for large enough N we have
(4.6) (N A ES T
i,k:Ax€[—24k,2—k]
By a Schur complement as in [25, sec. 4], for any § > 0 we have
N
P({Aegr — Al <8 NP n-n ™)
< NP{[{HD, ) < svNyn V)

where H@ = (Hjj)j+i. Take § = N~=2P_ On sz/k(l), (ﬁ(l), '/f;(cl)) is a random
variable with density bounded by N2, so that

IED({|)Uc+1 — Al <8} N ngfk(l) NN ‘Q{k(N)) < NT2D+4

Moreover, similarly to (4.4), we have supgos<; [Ax (1) — Ax(s)|1y < N—A+3,

which together with the previous equation gives

P({Ak41(5) — Ak ()] < 8 forsome 0 < s < 1} N/ N---N ™) N o)

“.7) < N~2D+4 +N_A+3.

From equations (4.3), (4.5), (4.6), and (4.7), for any C > 0 we have, for large
enough N,
P(”'ﬁk _ ,![,]/CHOO < N—A+2+2D) > 1— N—2D+4 _N—A+3 _ N—C

This concludes the proof of QUE for ¥ , knowing QUE for ¥. O
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4.2 Notations

We now explain the ideas for the proof of Theorem 4.1. We start with the follow-
ing definition, which generalizes band matrices by allowing diagonal perturbations.

DEFINITION 4.3 (Definition of H g.”). For any positive constant ¢ and any g € RV,

H¢ and H f will denote real symmetric N x N matrices satisfying the following
properties.

The matrix H¢ is centered, it has independent entries up to the symmetry con-
dition that satisfy (1.8) and (1.9) and is of the form

_ (A B*
4.8) H;_(B D)’
where A¢ isa W x W matrix and
¢(1 + 8i5)

Var((He)ij) = (s¢)ij = Sij —
where s;j = f(i —j)and } .z f(x) = 1.

The matrix H f is defined by

W Lijeq,wys

Az B*
49) (Hf),; = (He)ij—gidiy.  Hf = (Bg Dg), g=(81,82.-.-.8N)-

We denote the eigenvalues and eigenvectors of H gg by Ai and

we
1/},% = gk where Wi e RY.
A
In the special case g; = gl;~w, we will denote H? by HE, and for = 0we

abbreviate Hf (resp., Hg‘.g) by HE (resp., H®).

In fact, the matrices H 2 we consider will always be of type H &, up to a translation
of the basis indices mod N.

We now define some curves, illustrated in Figure 4.1. The eigenvector equation
H gw/ri = Ail/f,% immediately implies that

(A% — BE*(DE — A5)" 1 BHwi = ASwi.
Hence we will consider the eigenvector equation
410)  Qfui(e) = E(euf(e). Qf = (A*— BE*(D* — )" ' BY),

where £ i (e) and ui (e) are eigenvalues and normalized eigenvectors. From now
on, we assume that k is an index in the bulk of the spectrum for H&, i.e., for some
k>0,kN <k <(—x)N.

Since the matrix elements have Gaussian components (4.1), it is easy to check
that the eigenvalue flows g — )Li are smooth and nonintersecting with probabil-
ity 1. Assuming that the function g — e = )Lf + g has a regular inverse (for the
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existence of such an inverse, see Section 4.7), for any e close enough to Ay, there
exists a g such that e = )ti + g, so that we can define

Gi(e) = AL,

The curves (6% (e))1<k<nare labeled in increasing order by their intersections
with the diagonal € (e) = e. We refer to [4, equation (4.16)] for a detailed discus-
sion of the domain of €.

We defined &;(e) (1 < i < W), the eigenvalue of Q, = §=O. A simulation
of the curves ¢ — £(e) is given in Figure 4.1. Since &;(e) is also an eigenvalue
of He%(®) it is equal to %j(e) for some j. We follow the convention in [4]
to denote k" € [1, W] to be the index given by the relation & /(e) = €% (e).
Here k¥’ = k’(e) depends on the energy e, and &/(.)(e) is increasing in k. As
e approaches an eigenvalue of D, one eigenvalue from &(¢) tends to =co. The
other eigenvalues follow the smooth curves %} and the labels k’(e) gets shifted by
41 whenever e crosses an eigenvalue of D. Since the curve %} passes through
(Ak, Ax), we have

HYr = MYk, SiwAp) = Aks Vi = (VVV:)
“4.11) Wi

IWill2”

O = Epugr,  up(Ag) =

4.3 Outline of Proof of Theorem 4.1

We explain the main steps of the proof, with QUE for mean-field blocks, QUE
for H from (4.1), and its application to local law, universality, and delocalization.

Step 1. QUE for mean-field blocks Q5. Remember the definition of H from
(4.1) and denote H = 1+ N_A%)_IMH. Consider a parameter { = T =
N ¢ where ¢ > &, is defined in (4.22). Then, thanks to the Gaussian matrix H,
defining H, we can write

" G
H :HT—i—ﬁ(th 8)

for some Hr as defined in (4.8), and HI(‘/E/ is a W x W GOE matrix. To this Hr
we associate H7g~ from formula (4.9), and denote V' = AgT — B&* (D& —¢)" 1 BE,
Consider the flow

(4.12) K2(t) =V + Z(1)
as in (2.1). Notice that we have the equality in distribution

@

(4.13) KS°(t) = K5°,(0) = A5 _, — B¥*(D® — )" ' B&.

In particular, the distributions of Q3 = A8 — B®*(D& — ¢)~! B2 from (4.10) are
the same as for K%’e(T).
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We therefore obtain QUE for the mean-field blocks Q% by using Theorem 2.5,
i.e., by interpreting this matrix ensemble as the result of the flow K(7) = K %’e (T).
As an hypothesis for Theorem 2.5, some estimates on V' = K(0) are necessary and
given in Section 4.4.

Step 2. QUE for H&. To simplify the notations we set g = 0, but QUE will be
obtained similarly for any small enough g. For the proof, we combine an g-net
argument with perturbations of eigenvectors.

For this, we first need to choose good points for our net. Let M = N with C a
large constant that will be chosen in the rigorous proof. We will prove that there is
another large number C’ such that for each n € Z fixed such that £, = nN =
[-2 4+ Kk, 2 — k], there is a deterministic e, € [Ej, E+1] (i.e., the choice of ¢, may
depend on the law of D but is independent of the random matrix elements of D)

inf[AP —e,| = M~!
J

with high probability, where the A ]D ’s are eigenvalues of D (recall that A; denotes
an eigenvalue of H). In other words, the bulk eigenvalues of D will stay away
from the grid points (e, ) ez by at least N ~C: the norm of Qe, is polynomially
bounded, a hypothesis necessary to prove QUE by flow methods.

We now consider QUE for these good points (e, )sez. Let J be the W x W
matrix defined by

(4.14) (N)ij = 8ij - Li<i<wy2-

By the QUE property for mean-field blocks (see Lemma 4.8) for all n and [ satis-
fying |£;(en) — en| < W we have

) 1 N 1/2+47 N F’Tn +7
(4.15) 17 wenl3 = 3| < =5+ i
with overwhelming probability, where ¢ > 0 is an arbitrarily small positive con-
stant and &, is defined in (1.8).

For a given bulk index k, let e = sup, {e, : e, < Ar}. Recall that 63 (Ax) = Ag
and k' € [1, W] is the index given by the relation £/ (¢) = %% (e) for all e, as
explained in Section 4.2. By the eigenvector perturbation formula for the matrix
Qe, we have

d . llg/(e) * 1
(4.16) guk/(e) = g}; M(‘W(@, B (D——e)zB le/(é’))-

Notice that we used the labeling associated with the curve 4 since 6% (e) is con-
tinuous, i.e., the label k, £ does not change as e pass through the eigenvalues of D.
However, the label k” for the eigenvector depends on e.

Our goal is to approximate uys(Ax), which is proportional to the first W com-
ponents of the eigenvector ¥ of H, by the eigenvector ug/(¢) which satisfies the
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QUE by (4.15). Integration gives

417 lug @) —up (AR <
1

N_C/ su —
M;;%k le) = %e(e)]

(u@/(e),B* 5B uk/(e))‘.

1
(D —e)
We will show that for some C; > 0 the following two estimates hold with high
probability.

(i) Level repulsion: for fixed k& we have

i in |%k(e) — Gule)| > N~CV/2,
(S z‘?&%' k(e) —Cu(e)] =

(i) A consequence of the weak uncertainty principle from Section 4.6,

(uz/(e),B* 5B uk/(e))

(D : ) SO
— e

sup
Ap<e<e

If these two bounds hold then (4.17) gives stability of the eigenvector under pertur-
bation in e, provided that C’ 3> C;. Delocalization and QUE of uy(¢) therefore
imply the same properties for ug, (Az).

Thus, denoting by ¢ the right-hand side of (4.15) and

Xo= Y |l +nW/2)%,

1<i<W/2
we have
X
(4.18) 2l — 1 4+ 0Gew)
X3

with overwhelming probability. Now we can shift the indices by /2 and repeat
the same argument, so that forany 1 < £ <m < 2N/ W, we have

Xy —¢ N
T = (0™ =1 +0( fren )
provided that %8 ~ = o(l). Summing over £ for fixed m gives, with overwhelming
probability,

(4.19) Ny, =1iofX
. —_— = — —€& .
womT g woN

This concludes the outline that QUE for the eigenvector ¥ holds, when %s N =

o(1).

Step 3. Applications of QUE. We successively outline the proofs of delocaliza-
tion, universality, and local law for H from (4.1).

Delocalization for the mean-field blocks Q% holds thanks to a priori resolvent
estimates from Section 4.4, and regularization of the resolvent by Dyson Brownian
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motion, as in (3.13). By stability as in (4.17), this delocalization is extended to
|1 V2% (Ak) As

(e A)Oi<i<w = WreO<i<w /| VklL2qu,w-

delocalization for ¥ follows from both delocalization of ug (1) to the QUE es-
timate (4.19) about || ¥k |21, wp)-

For universality, remember that for any e, % (¢) = &,/(e) denotes the eigen-
values of O, and that the intersection points of the curves ¢ — & (e) with the
diagonal e = £ are eigenvalues for H (see Figure 4.1). Thus A; can be determined
by the spectrum £ (e) for a fixed e, and the slope of the curves ¢ — £/(e). On
the one hand, & (¢) follows GOE statistics as a consequence of [22]. On the other
hand, a simple calculation yields

1
YV wE@)

where ¥ is the corresponding eigenvector of H8 with g the solution to ¢ =
)Li + g. From the QUE (4.19) for H¥, all slopes are equal at leading order, so
that the statistics of A; will be given by those of & up to some trivial scaling. In
the same way, the local law for H follows from a local law for Q. by parallel
projection.

|
S B

deCrle) =1 —

Ae
(A) A simulation of eigenvalues of () Framed region of Figure (a) for
Q.= A—B*(D—e) ' B, i.c., func- large N, W': the curves &; are almost
tions e > &j(e). Here N = 12 and parallel, with slope 1 — N/W. The
W = 3. The A;’s are the abscissas eigenvalues of Q. and H are related
of the intersections with the diago- by a projection to the diagonal.
nal.

FIGURE 4.1. The idea of mean-field reduction, from [4]: universality of
gaps between eigenvalues for fixed e implies universality on the diagonal
through parallel projection. For e fixed, we label the curves by & (¢).
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4.4 Generalized Resolvent Estimates

In this subsection, we do not need to assume (1.8).

Recall that we have added a GOE regularization of size N 4 in (4.1). Since
N4 s tiny, all resolvent estimates cited in this paper for matrices are valid after
adding this small regularizing GOE. A formal proof can be obtained by the standard
resolvent identity (B — C)™! = B~ + B~1CB~! + ..., which we will skip. In
this section, all results will be proved without this regularization so as to simplify
the notations.

Our first goal is to show that K%”f (4.13) is (n«, n*, r)-regular at e = Ey, in the
sense of Assumption 2.3, for some range of 7. The precise choice of the parameters
r, T, nx, n* will be given in (4.22). Recall the matrix H %’t is defined by

Hg_6ﬁ+zt37
e~ B R

As in (1.4), define the “generalized resolvent" of H % , by

zlw 0 -
g =(H: — [~
GT,t (Z’ e) - (HTat ( 0 eIN_W)) .

The distribution of H7g~t is the same as H%_t defined in (4.9), so we will also
denote G%t(z, e) by G%_t (z,e).

Clearly, the W x W component of G%t(z,, e) is the resolvent (K%iit -z~ L
We will state estimates on this generalized resolvent in Theorem 4.5, an important
input for our mean-field reduction method. The proof appears in the companion
papers [6,37]. On the one hand, the absence of imaginary part on most of the
diagonal elements of the generalized resolvent is a major obstacle to estimate it. On
the other hand, Theorem 4.5 assumes n = Im z is large (almost of order 1), which
is a sufficient input to apply Theorem 2.5 and obtain quantum unique ergodicity.

Define M f’g (z,7) as the solution of the self consistent equation

(Mf’g)_l(z,f) = —(Z—Z)li>W—Z—gi—Z(Sg)ijMf’g(z,Z), 7,ZeCtUR

J

with the constraint that
MPP(E.Z) = me@ +i07),
the Stieltjes transform of the semicircle law. For simplicity of notations, we denote
by M%£(z,Z) the matrix with entries
§.g . arbigs
M= = M, 8ij-

We will show that M%£(z, %) is the limit of the generalized resolvent G? (z,2).
For this purpose, we first collect basic properties of M in the following lemma,
which is proved in [6].
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LEMMA 4.4. Assume |ReZ| < 2 — « for some k > 0. There exist ¢,C > 0 such
that the following hold:

(i) Existence and Lipschitz continuity. If
(4.20) +lglloo +lz—Z] =c,

then Mf’g(z, 7) exists and
max| M#(2.2) = mee(@ +i01)] = € + lgloo + |2~ 2D).
If, in addition, we assume {' + ||g'|loco + 12" —Z| < ¢, then

max| M (2.2) = MPEE D] = C(lg— oo + 12— 2l + 1 = £1).

(ii) Uniqueness. The vector Mf’g(z,Z) (1 <i < N) is unique under the
constraints (4.20) and

max| M %(z2,7) — my(Z +i07)| < c.
1

Since s;; from (1.6) is a periodic function of i — j, by the uniqueness of the
previous lemma, we have Mf’o(z, 2)=M ng’O—i (z,Z), so that
w/2 w
4.21) > MP0.7) = % > Mz 3).

i=1 i=1

This equation will be necessary to obtain the averaged QUE estimate for Q% in
g

(4.28). Our main results on the generalized resolvent of H ¢ is the following, proved
in a companion paper.
THEOREM 4.5 (Generalized resolvent estimate). Recall n«, n*, and r from As-
sumptions 2.3 and 2.4. Suppose these parameters are of the form

Ny = N &, 77* — N—e*’ r = N—6*+38*’
4.22) .
T =N"5% ) 0<e* <e,/20,

where T is a new parameter used in the equation (4.24) below. Assume that

3 *1 *
4.23) logy W > max Z+8’§+8*+8 .

For any small t,x > 0 and large D, uniformly in |e| < 2 — «, for large enough N
the following holds. For any deterministic z, ¢, and g satisfying

424) [Rez—e|<r, nu<Imz<n*, 0<(<T, |glo<W™*

we have (we denote || Al|max = max;,; |Aij|)

N1/2 1
425) PG4z, e) — M%E(z, e > Nt( + )) <N D,
( ) (H C( ) ( )Hmax - 7% W —
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The following corollary is an immediate consequence of the above generalized
resolvent estimate, the deterministic Lemma 4.4, and (4.21). In the statement, we
use the notation .%, , = (e —r,e + r) asin (2.13).

COROLLARY 4.6. We follow the assumptions and conventions of Theorem 4.5.
Then for any z = E + in with E € S, and n« < n < n*, any t satisfying
0 <t < T and any fixed (large) number D > 0 the following statements hold for
N large enough:

(4.26) IP’(EIE € Iop |Im (K2, —2)in| = %ImTr (K2°, —z)_l) <wP,

1 _
(4.27) P (‘ 7 (K&, —2)7 = mye(2)

> N—S*/z) <wP,

4.28) P (Emax

€Ie.r

1 , -1 1 , -1
w Z (K%it - Z)kk - WTr (K%it - Z)

1<k<W/2
1/2
er(N + ! ))SW—D.
w W Imz

In particular, K%’it satisfies the regularity assumptions (2.9), (2.10), and (2.11) in
the range 0 <t <T.

Remark 4.7. This corollary gives control of the error in QUE for mean-field blocks
and therefore controls the range of W for which delocalization can be proved.
More precisely, assume &, = 0 to simplify. The error N ~° in Assumption 2.4,

which governs the error in Theorem 2.5, is of order N 7° ~ %/2, from (4.28).
In order to patch this estimate to get QUE for the band matrix H, we will need
% . NVIV/2 <« 1. This explains our condition W > N3/4,

However, the error */—Wﬁ in (4.28) is taken from (4.25); this error in (4.28) usually

can be improved by taking into account the average of the index k. We believe that
the key error term in Theorem 2.5 comes from the last term in (2.14). If we take f¢
close to 1 and replace n by W, this error is of order W—1/2_ We therefore expect
that for % . ﬁ <1l 1e, W > N2/3, the QUE for band matrices holds. If we
additionally assume that these errors associated to different blocks are centered and
asymptotically independent, then the total error for the QUE of the band matrix I
would be (§7)1/2 - W, which is much smaller than 1 when W > N1/2,

4.5 Eigenvector and Eigenvalue Estimates for Mean-Field Blocks

The following lemma concerns the QUE and related properties of the W x W
matrix Q3 from (4.10). It is an important building block for the proof of Theorem
4.1.

For the statement, recall the notations from Section 4.2. In particular, the matrix
0% and its eigenvalues and eigenvectors SI‘E (e) and ui (e) are defined in (4.10).



1570 P. BOURGADE, H.-T. YAU, AND J. YIN

LEMMA 4.8. Let H satisfy the assumptions in Theorem 4.1 and «, v > 0 be small
constants. Fore e R, | <k < W, and C > 0, denote by y the set

(4.29) Ak.e.C.g):i={|DE—e| > N"C}n{|&i(e) —e| =W}
Uniformly in deterministic |e| < 2 — k, the following statements hold.

(i) Delocalization. For any C, D > 0, for N large enough, we have

g 2 -1+ -D
(4.30) ||g||oon§1%’§—s/4p({uuk(e) Iz W N x(k.e.C.9))0 < N™°.

(ii) Level repulsion. For any C, D > 0, there exists No = No(C, D) such that
for N = No(C, D) and for any x > O we have

g g X
@3k el P({lehe @ - @] = 5} nxee.C0)

<WTx2 T4 NP,

(iii) QUE. Recall that &, is defined in (1.11) and J in (4.14). Forany C,D > 0
for N large enough,

=

N1/2+T N€’2”+r}

1
g 2
(4.32) max P({‘HJ -uk(e)||2 N W + iz

lglloo<W—3/4 2

N )((k,e,C,g)) < NP,

(iv) Local law. Take g = 0. There exists € > O that does not depend on t such
that for any C, D > 0 and for sufficiently large N we have

IP’({ sup #{k:gk(e)e[e,e’]}—W/ pse(x)dux
O<e/—e<W—1te e

> W’}
(4.33)
N{|D —e| > N‘C}) <N~D,

—l+e
Notice that for t < &, we have WT < W f:+W psc (x)dx.

Remark 4.9. The constraint |EI§ (e) —e| < W1 in (4.29) can be replaced by
|§,§(e) —e| < W™ for some ¢ > 0, with little change in the proof. In the

application of this lemma in our paper, we only need to use AW ~! for any large
fixed constant A.

PROOF. Recall the operator K%"; in (4.13) and n4, n*, r, and T in (4.22). De-
note the eigenvalues and eigenvectors of K %’e (t) by )LZ(I) and u,{ (t). Hence the
distributions of the eigenvalue & ;'E (e) and eigenvector ui (e) of QF are given by

£ Lar@), v Lure.
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By definition of K%’e (1), it is trivial to prove that for any Cy > 0 there exists C;
such that

(4.34) 1 pe—esn—Co lKEC@)] < WE

holds with a very high probability for any 0 < ¢ < 7. Corollary 4.6 and (4.34)
imply that K%’e(t) is (n«,n*, r)-regular (Assumption 2.3) at £y = e for any
0 < ¢ = T (under the condition 1|p,_,> y—Co). In addition, the conditions in
Assumption 2.4 are guaranteed by (4.26) and (4.28). By Theorem 2.5, for any
small ¢ > 0, with overwhelming probability we have

1/2
1‘ < WS(N / + (WN—S*+S*)—1/2)
a— W b

2

|- ut @) -

where we have used T defined in (4.22). We now choose ¢4 = &, + ¢ and ¢* = «.
For small enough ¢, thanks to (1.11), the constraint (4.23) is satisfied. Together
with the above equation, this proves (4.32). Moreover, by (3.13), (K;gi; — z)i_il is
uniformly bounded for z € %, and this implies (4.30).

To prove (4.31), we need a level repulsion result from [23].

LEMMA 4.10 (Theorem 3.5 and 3.6 of [23]). Let A;; denote the eigenvalues of
K@) Q.1) with V (n«, n*, r)-regular at Ey and bounded as in Definition 2.3. As-
sume that there exists ¢ < 1 such that

(4.35) llog n*| < c|log n«|.
Let t > 0. Then for large enough N and for any x > 0 we have

max P({[Ais = Eol < W70 {Ais = Aisrgl = WTl}) < WHT,
[SH%%

where T, is defined in (3.1).

We now apply Lemma 4.10 to the flow (4.12). The condition (4.35) is trivially
verified by the choice of e, ¢* in Lemma 4.5. Hence Lemma 4.10 implies the level
repulsion estimate (4.31).

It remains to prove (4.33). From Lemma 3.3(i) applied to K %e (t)attimer =T,
we have

P ({ sup > W
O<e/—e<W—1te

#isgee) el =W [ pr(odr

N{|D—e| > N‘C}) <N7P.

We therefore just need to prove

’ /

e (4
/ pre.r (x)dx — / pre()dx
e e

(4.36) < wTtT,
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Recall the following relation between m.; and V':
1 _
437) mies(2) = my (2 + tmiey(2) = 2 Tr(V =2 =t mies ()7

where V = A% — B&*(D® —e)7!1B = K§° . Forz = E +inwith [E —e| <7
and n« < 1 < n*, (4.27) implies that

mfc,O(Z) —mg(2) = % Tr(V — Z)_l —mge(z) = O(N—s*/Z)

holds with high probability. Similarly, by (4.27) and (4.37), for any ¢ > 0 we have

Mfc,t (Z) — Mg (Z +  Myc s (Z))

4.38 _ *
@38 _ % Tr(V — z —t mge,(2)) Y e (z + tmes(2)) = O(NE7/2)

provided that

ne <Im(z + tmes(2)) = 0+t Immye 1 (2) < 1%,

4.
39 Re(z + tmies(2)) — | < 7.

For t = T as defined in Lemma 4.5, we have

440) LT K, T<Kr/2, |[E—el<r/2, 0<n<n*/2.
Moreover, as proved in [23, lemma 7.2], for any 0 < 1 < n*, we have

(4.41) ¢ <Immer(z) <C',  |mgr(z)] < C'logN,

for some positive constants ¢, C’. Equations (4.40) and (4.41) show that the as-
sumption (4.39) holds for + = T, and the proof of (4.36) is concluded by taking
n =07 in (4.38). O

4.6 Regularity and the Weak Uncertainty Principle

The GOE component in (4.1) implies the following regularity property and weak
uncertainty principle. This lemma does not require the decomposition (1.15), i.e.,
the Gaussian divisibility for the band matrix elements; we state it under this as-
sumption for simplicity.

LEMMA 4.11. Let H be as in Theorem 4.1 for some fixed A > 10. Let ¢ € RY be
defined by

¢ =lw<i<n.
Recall the notatons from Definition 4.3. Then there exists a (large) constant C, =

Cy(A) (the subscript r is used to indicate that the constant is related to the regu-
larity) such that for any fixed D > 0

max ]P’(Elt S 11] <20, k € Zy such that

(442) lglloco<WO9/N

A <20,

Wi < NG ) < NP,
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(4.43)
max IP’(EIe el <10,
leloo<WO2/N
1 c 2 D
*—— —B>N“|{B*—B) + N )| <N ",
(DE—e)* — ( (Dt —e) ) )_

The proof of this lemma follows the one for [4, proposition 3.1]. Lemma 4.11
is weaker in the sense that the error N*C was originally given by order 1 quan-
tities in [4]. In addition, [4, proposition 3.1] applies to any approximate eigenvec-
tor without assuming the small GOE regularization N ™4 HS. On the other hand,
Lemma 4.11 works for W > N3/4+¢ (in fact, W > N 1/2+¢ is enough), while [4]
required W = Q(N).

PROOF OF LEMMA 4.11. We first note that 0.9 in (4.42) and (4.43) can be re-
placed by any fixed number less than 1 in the following arguments.

We will first prove the following form of an uncertainty principle: approximate
eigenvectors for D& have some weight on the first W coordinates in the sense that
there exists C > 0 such that for any fixed D > 0,

max ]P’(EIV e RNV with |v|; = 1, ¢ € R,

IB*v|2 + [[(DE —e)v]2 < N—C) <N-D.

We first consider B*v. Thanks to the component N ™4 HS in (4.1), for any
fixed vand | < n < W, there is an aq independent of HS such that (B*v), =
ap+ N4, -vwith &1,....Ew having independent Gaussian entries of variance
order 1/N. Thus there exists C > 0 such that for any ||v|l» = 1, we have

P(I(B*V)a| < N"€) <1/2

for all 1 < n < W. Taking the intersection of these independent events, we have
proved that there exist C > 0 and ¢ > 0 such that for any v as above,

(4.45) P(|B*v]» < N7C¢) <e7.
The matrix D in H is itself a band matrix of size N — W and band width W'.

Denote by )L]? the eigenvalues of D. The local law in [17, theorem 2.1] was estab-

lished up to the scale W17 for any constant v > 0, strictly speaking for random

band matrices satisfying > j 8ij = 1. For D, this assumption is violated for i in a

set of size at most 2W, but [17, theorem 2.1] still holds by elementary adjustments

left to the reader. This theorem implies in particular that with probability 1 — N —2
#{k, )L,? €le,e+ W‘H’]}

4.46 < 10.
(4.46) eeR NW-1+ =

Denote by )\,? ® and w,? .1 <k < N — W, the eigenvalues and eigenvectors of

.« . . . . g
D&, A trivial bound on the eigenvalue perturbation gives |)L£ — k,? | = |Iglleo <
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W9-2/N, so that /\,?g € [e,e + N~!]implies )L,? cle—WO%/N,e+2W%9/N].
Hence with high probability we have

(k22" elee+ N7 < [{j: AP e le— WOP/N.e + 2W°/N1}|
S IOWO.Q’

where we have used (4.46) and W°°/N > W~1%7 Hence for any D > 0, for
large enough N we have

P(de e R, |{k: AP" € e.e + N7} = 30w %%) < N7P.

As a consequence, if we define S, = span{w/f,?g : )L]?g € [e.e + N7}, then
dim(S,) = O(W%?) with high probability. For such an S, of dimension O(W %),
we can choose a finite set .4 in the unit sphere of S, with | 4| = N OW*?) uch
that for any v in the unit sphere there is a p € .4 such that [v — p| < N~¢~1
with C being the constant in (4.45). Together with (4.45) and the fact that || B|| <
N holds with very high probability, we obtain that there exists C > 0 such that for
any fixed D > 0,

P(AveSe, |B*v[ <N €)<NP,

where we have used e W N owo?) < e~ <'"W for some ¢/ > 0. Therefore there
exists C > 0 such that for any fixed e and D > 0, for large enough N we have
P(A4e) < NP where

(447) Ao = {FIve RN W with |v]| = 1, [|B*V]2 + (D& —e)v]2 < N7C}.

By union bound, we also have P(ﬂeeN*ZCZ,|e|<NC A.) < N~P. Moreover,
| D&|| < N€ with high probability, so that (4.44) follows easily.
We now show how (4.42) follows from (4.44). By definition Detté = pg ¢
and A8T7% = A%, so the eigenvector equation is
g+t¢ g+t _ gt+tp g+t
Afw T 4+ B T = A Tw
+ + +1¢ g+
BwiT? 4 (DE - Vit = pETOyETe

If ||wi+t¢||2 < N~C for some C > 0, then ||Agwi+t¢ | + ||Bwi+t¢|| < N~€/2

with very high probability. Hence Vi+t¢, after normalization, realizes the condi-

tion (4.47) withe = + )Li+t¢. Therefore, (4.42) follows from (4.44).
We now prove (4.43). The event in (4.43) means that for some normalized
ve RN W and |e| < 10,
n 1).
2

1

(4.48) Dol

Bv A

=]

1
H (Dg—e) ||,
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Denoting V = (D& —e) "' Bv/| (D& — e) "L Bv||2, it follows from (4.48) that

~ | Bvl|2
[(D¥ —e)¥|l2 =
(D& —e)~1Bvl|2
| Bv||2 _
= e ey = V1BV,
(1 B* pe=gy v, +1)
* g _ —1

(D& —e)~'Bv[2 ~

Since || Bl|op < N with high probability, v realizes the event (4.47), so that (4.44)
implies (4.43). Il

4.7 Proof of Theorem 4.1

We make rigorous our proof sketch from Section 4.3. We consider the full band
matrix H, the proof for the minors H (&) being the same up to trivial adjustments.

Recall the notations from Section 4.2. There, we assumed that the map g —
e = )Li + g has a regular inverse, which enables us to define the curve 6% (e) =
/\i. To prove this, a simple perturbation calculation yields that 3(ki + g)/dg =
Zizl ‘w,‘f (i)‘2 By (4.42), 1/[,? (i)‘2 > N~Cr for all |g| < 20 for some constant
C, > 0, with high probability. Thus the invertibility is proved with high proba-
bility, and from now on we shall restrict ourselves to this case. By differentiating
w.r.t. g in the identity 6% ()Lf +g) = )Li, we have

- (owgor)”

i=1

(4.49) ‘i%k (e) <N
de

We now complete the proof of Theorem 4.1, successively considering QUE for
some small mean-field matrices, then QUE and delocalization for band matrices,
the semicircle law, and universality.

Part 1A: QUE for a small matrix. We will prove that a slightly more general form
of (1.12) holds for eigenvectors Y& of HE with any ||gllec < W~3/4. But for
simplicity, we present the proof for g = 0, and point out the modification for the
general case whenever it is needed.

We will prove the following delocalization and QUE for the eigenvector ug (Ax)
of QF defined in (4.10):

]P’(Elk e[LW].jeZy: A <2—k &)= A,
(4.50)
o )% = W) < NP,
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]P’(3k c[LW].jeZn Al =2—k, §Aj) =4,
(4.51)

1 N Liz NHB+r
1wl = 5| = N+ ) <N
The difference between (4.50)-(4.51) and (4.30)—(4.32) is the randomness of
their arguments, i.e., e in (4.30)—(4.32) is replaced by A; in (4.50)-(4.51). To
prove (4.50) and (4.51), our basic strategy is combining an g-net argument with a
perturbation theory of eigenvectors. Let M = N2€1+2D; here D is the constant
appearing in (4.50) and (4.51) (not to be confused with the notation that D was also
used to denote a matrix) and C; = D + 6C, where C, is the constant in (4.49).
We denote E, = nN~C" and claim that for each fixed n satisfying

[En, Ent1] C[-2+x,2 —«],
there is a deterministic e, with £, < e, < En4+1 such that
(4.52) P(inf|lAP —e,| < M™') < N7P

jn

where the )LJD ’s are the eigenvalues of D. To see this, note that for any n > 0
En+1
/ IEIm[D—E—in]—ldEgE/ Im[D — E —in]"'dE < N.
n R

Hence there is an e, € [E,, E,41] such that, with n = M ™1,
EIm[D — e, —in] ! < CNC1 1,
By the Markov inequality,
P(il}f\xj’? —ep| <MY < NOFIMT!

and (4.52) holds, so that we can restrict our consideration to the set |[D —e| > N ™€
for any C > 2C; + 2D. By Lemma 4.8, equations (4.30), (4.31), and (4.32) hold.
In particular, (4.31) holds with x = N~€1/2 Hence for all n and ! satisfying
€1 (en) — en| < WL we have

N2+t NB+r

1
2 —l47 . 2 1
sy el = WL I wen) - 5| = S

(Er21(en) — E1(en)| = N™C/2,

with probability larger than (1 — N =2 — N=C10=D2+7) > | _2N~D Here
we have used the choice C; = D + 6C;, and 7 can be an arbitrarily small number.
We define

(4.54) m(Ag) = sup{n : e, < A}
n

For simplicity we denote € = ep,(3,). Recall that €3 (1;) = A, and thus (4.49)
and (4.42) assert that [3%) (e)/de|] < N holds with high probability. Since
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ent1 —en < 2N~C1 (4.54) implies |& — Ag| < 2N~C1. Since C; > 6C; so that
N-GONG « N_O'scl, we have

Cr(€) —e| = |Ck(€) = Cr(A)] + [Ax — €]

4.55
( ) < NC,|Ak_g| < 2N—C1Ncr < N—0.8C1 < W—l

with probability larger than 1 — N =2,

Recall that k" € [[1, W] is the index given by the relation & (e) = %% (e) for
all e. Applying (4.53) with e, set to be ¢ and using C; > D, we obtain the level
repulsion bound

P (|6 21@) — & (@) = N~/ = 1-N"P.

Together with the continuity argument used in (4.55), the level repulsion holds
between %} and %% 1 in the interval [€, A ], i.e.,

1
(4.56) P(Ele € [6, k] s.t. |€rr1(e) — Grle)| < EN—CI/Z) <N P,

Integrating the perturbation formula (4.16), we get
ug(Ag) = ugr(e)

(457 Y s (e

B uy(e) |de.
K 42k Cr(e) —Cyle) > b ug (9)) e

(D —e)

Inserting (4.56) into (4.57) and using |& — Ax| < 2N ~C1, we obtain
lug (Ak) — g (€) [l oo
(4.58)

* o\ 2 ,
< CN~C1/2 max max ‘(u% B(D —e) " Bu )
ecle,Ai] L#£k |Cy(e)| + 1
The numerator of the last term can be bounded by using (4.43) so that

|(ué/, B*(D — e)_zBukr)

(4.59)
2+ 1)'2(|B*(D - o) Buy 12,

2
2+ 1)
Inserting the identity B*(D —e)~!Buy = Q.uy — Auy = £p(e)uy — Auy into
the right-hand side of (4.59), we obtain
(g, B*(D — ) Bupr)| < N (Ee(e) + | Allop + 1) (Exr(e) + [ Allop + 1).
It is easy to prove that [|A]lo, = O(N) with high probability. Together with the
fact that £x/(e) € [Aj, & (€)] for e € [€, Ax], which follows from 0. (e) < 0,
we have proved
|(ugr. B(D — ) > Bup)| < NOF2(|gp(e)] + 1).

Inserting this bound into (4.58) and using that £;/(e) = %¢(e) in the denominator
and the choice C; = D + 6C,, we have proved (4.50) and (4.51).

Notice that the constant C; is associated with the uncertainty principle in (4.43)
and N~C1 is the grid size. We can make the grid size small by choosing large

< NG (

|B*(D —e)~' Buy
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C1; the price to pay is that the initial data in the stochastic flow argument becomes
large; i.e., the constant Cy in (2.7) is large. However, the results we use on the
stochastic flow (e.g., 4.10) are insensitive to this constant, which is the main reason
we can choose C; large.

Part 1B: Delocalization and QUE for the band matrices. By definition (4.11),
uy(Ax) = Wi /||wr||2. Equations (4.50) and (4.51) can be written in the following
form: for any fixed large D > 0 and small 7 > 0,

. )2
P(Elk €EZN || =2 —k, max; <i<w [Vi ()] > W_HI) <N7P,

SF w2
(4.60) P(Hk ELN Ak 22—k,

S )P 1‘ i}

P @ 2

Clearly we can shift the indices so that

w + wl/2

N1/2+t N tT
<NP,

IP’(EIk €ZnN Akl £2—xk,

S e+ D1

w . -
Yo Wk +))2 2
and a similar shifted version of (4.60) holds. Since W, N, and &, are related by

(1.11), we have ¥ 20° 4 N2 T = o(W/N), so that exactly as in (4.18)~(4.19)

we obtain

max
nezZn

N1/2+T N Htr b
> + < N™
|7% wl/2 ) - ’

P(Hk ELN,: || £2—xk,

W/2 1/247 &m g
N _ , 1|_ N[N N2 D
W;Wk(wnn _E‘ZW( i ))szv :

max
neZn

when N/W is an integer. If N/ W is not an integer, the delocalization estimate
(4.60) can be used to lead to the same conclusion. Moreover, from (1.11) we have

N N2+t N NF+T
— <N72% and —. —r
wow W w2
with a > 0 given in (1.11). We have thus proved the QUE part of Theorem 4.1.
Finally, note that the above QUE for length interval W/2 obviously implies the
same estimate for length W'.
Finally, the proof of Theorem 4.1 just given above holds for all ||g|| < W
since all lemmas were proved under this assumption. We have thus proved that for

3
< N72¢

—3/4
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any fixed 7, D > 0, for large enough N we have

min P(3; €Zp: |28 <2 —«k,
lgll<w—3/4 (] v A=
4.61)

N v 3
W YO =1+ O(N—‘z““)) >1-N"P.

i=1

Part 2: The semicircle law. Following the mean-field reduction method, we first
prove the following lemma.

LEMMA 4.12. Recall the definition of the constant a in (1.11). Under the assump-
tion of Theorem 4.1, for any fixed ey with |eg| < 2 — k we have

maxP(Mj —eg| < N™"% gnd
(4.62) N
(¢j(e0) — eo) — W(lj —eo)

> W‘l‘f'O) <N D,

PROOF. Recall the definition of the matrix /18 from (4.9) and the relation

Wg+215) X _
g -2l

i=1

Integrating this relation from gg to 0 with g¢ defined by the equation g¢ + )Lfo =
eo, we have

o W )
(4.63) / Y owEO[ dg = 2; —eo.
&

0j=1

By (4.61), for each |g| < W—3/4 fixed, we have

w
(2 _
Y WEO]T =W/N(I+O0(NTY)
i=1
with high probability. The left side of (4.63) is equal to —goW/N (1 + O(N ™))
with high probability. By definition, €;(eg) = )Lf-"’ = eop — go- Inserting this
relation into (4.63), we have proved (4.62). O

We now prove the local semicircle law by using (4.33). For ¢ > 0 small enough,
we consider E, > Eq with A := E» — E; < N71F¢, Clearly, we can assume
A > 1/N. We apply Lemma 4.12 with the choice ¢g = E1: for any D > 0, for
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large enough N we have

{k G (ep) € [60,60 + AW — %]}

<#k: A €[EL E2]}

1
< #{k ©r(ep) € [60,60 + AW + W]}

with probability 1—N ~P. Since %} = & represents the same curve, we can apply
(4.33) with the choices e = Ey, ¢/ —e = AN/W —1/W,or AN/W + 1/ W.
Hence the estimate (4.33) implies the local semicircle law and we have completed
the proof of Theorem 4.1.

Part 3: Eigenvalue local statistics. We rely on a fixed energy universality result for
a matrix flow from [22] (note that the constraint wg > 2/3 below is probably not
optimal but sufficient in our setting).

THEOREM 4.13 (Fixed energy universality for the Dyson Brownian motion [22]).
Let V be an n x n deterministic matrix and Z be a n x n standard GOE matrix.
Consider H = V + \/toZ with to = n®/n. Assume that V is (n_‘glto, n—%,
PRE to) regular at E (see Assumption 2.3) with (c is a universal small constant)

2 1l —w
3 <wp <1, 8 <min( 1 0,83,0).

Remember the notation ,ofc 1o for the density corresponding to the Stieltjes trans-
form mg’)to defined in (3.2).

For any smooth test function O € € (RK) with compact support, there are
constants ¢, C > 0 such that

‘/ O(a)p(k)( (:)‘ (E))da_/]R O(a)pggE( ++(E))da

fc to fc to

We apply this result to the W x W matrix flow t — K%’it att = T with the
initial data V = K%’e, i.e.,, n = W. By Corollary 4.6, V is (1., n*.r) regular
with the parameters defined in Theorem 4.5. With 1, n*,r, T defined in (4.22),
we have the following identifications:

83 =2&*logy N, 81 =" logy N,
8y =&*logw N, 1 —wp = logy N(ex —&™).
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The above theorem with ¢ = E gives (we consider the case k = 2 to simplify the
presentation)

a ) a
0@)p?®. (E + —)da—/ O(@a)p (E + —)da‘
[1;2 O Npsc (E) R2 GOE Npsc (E)
<CN~€.

(n)

fc,to

2 a
[1‘@2 O(a)pQE (E + Npsc(E))da

- % Z EOWpsc(E)(Exr — E), Wops(E)(Ejr — E))
KA

1
= 3 D EOWp( E)GL(E) — E). Wpsc(E)(€ (E) — E)).
k#j
Recall that there is a shift of indices k — k’ (depending on the randomness) so
that 6% (E) = &. In the expression above, we have summed over all indices, and
thus this shift is irrelevant for our purpose.

Applying (4.62) with e9 = FE, we can substitute Wo(E)(¢,(E) — E) with
Npg(E)(Ag — E)+O(W~2/10) in the above equation. Note that (4.62) holds only
for eigenvalues in a small neighborhood of E. Since O is compactly supported,
this restriction does not affect the usage of (4.62) in the last equation. Finally, the
error term O(W_“/ 10 is negligible, which concludes the the proof.

where we replaced p;, with py. by taking 7 = 07 in (4.38). We can write

5 A Comparison Method

In this section, we prove the theorems 1.2, 1.3, and 1.4. The basic idea follows
the Green function comparison method in [17], interpolating between resolvents
of two matrices H and H. However, contrary to the setting from [17], we only
have a priori estimates on the Green’s function for H, and not for H. A self-
consistent Green function comparison method for band matrices was developed in
[2], which only requires estimates on the Green’s function of one of both matrices.
Our a priori estimates on the Green’s function are different so that we proceed with
another self-consistent method from [21].

5.1 Elementary Facts
Recall that the resolvent of a matrix H can be written as

Y (Y (j) . vk ())?
5.1) Gij = —————= ImG;y;(E = ,
(5.1 j(2) ; A —2 m G (E + in) ;(E_kk)z_i_nz

where ¥ is the k' eigenvector with eigenvalue Ax. The following lemma is a
classical fact connecting the Green function with delocalization of eigenvectors
and local laws.
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LEMMA 5.1. Let (HN)N>1 be a sequence of N X N random symmetric matrices.
Suppose that for any ¢ > 0 there exists a constant k. > 0 € R such that for any
D >0

(5.2) P(A;j| <2—ke) > 1—NP

inf
J€[eN,(1—c)N]

provided that N is large enough. Consider the following assertion: for any small
k,t>0and D > 0

(5.3) sup max(Im G;;(z)) = O(N7),
|E|<2—k,N-l<p=<1 !
(5.4) sup max |G;;(z)| = O(NF),

|E|<2—k,N~l<p=<l %/

hold with probability larger than 1 — N~P_ Then

(1) (5.3) implies (1.12).
(1) (1.12) and (1.13) imply (5.4).

PROOF. Forany k € [¢N, (1 — ¢)N], by (5.2), we can assume [Ag| < 2 — k.
for some k. > 0. Then (5.3) implies that, with high probability,

Ve ()]? <ImGi; (A +in) = O(N®), n=N"1,

which is (1.12). On the other hand, the bound (1.12) on ¥ (i) and the eigenvalue
distribution estimate (1.13) inserted in (5.1) yield (5.4) by a simple dyadic decom-
position. O

5.2 Proof of Theorem 1.2

By Theorem 1.5, (1.12) of Theorem 1.2 is just a corollary of the following
lemma. In the remainder of this section, we will prove Lemma 5.2.

LEMMA 5.2. If the statement (5.3) holds for all H in (1.15), then (5.3) holds for
any H in Theorem 1.2.

To prove Lemma 5.2, note that for each H in Theorem 1.2, there is H of type
(1.15) such that the first four moments of the entries of H and H coincide. A
precise statement is the following lemma, about a single random variable. The
proof is easily adapted from [35, corollary 30] and is left to the reader.

LEMMA 5.3. Let H be a band matrix satisfying the conditions in Theorem 1.2.
Then there exists a matrix ensemble H of the form (1.15) satisfying the assumptions
of Theorem 1.5 such that

E(H;j)" = E(H;)". |i—jl<W. n=1234.

PROOF OF LEMMA 5.2. Let H be the matrix in Theorem 1.2 and H the one
given in Lemma 5.3. Denote by G(z) = (H — z)™! the Green function of H.
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By Theorem 1.5, (1.12) and (1.13) hold for the eigenvalues and eigenvectors of H.
Together with Lemma 5.1, we get

(5.5) sup 1G(2)lmax = O(NT), z = E +in,
|E|<2—k, N~ l<n<1

with probability 1 — N =2, We now prove that the same estimate holds for G, i.e.,
(5.6) sup ”G(Z)”max = O(NI)'
|E|<2—k,N~l<p=<1

We follow the self-consistent comparison method from [21]. We start with a
very weak estimate ||G(2)||lmax < 771, i.e., (5.6) holds for  ~ 1. For n < 1, let
go > 0 be a small parameter and define

anN_mso, Zm = E +inm, 1 =<m =< ¢go.

Our goal is to prove by induction that for z = z;,, 1 <m < 80_1, (5.6) holds, which
implies (5.5). Thus it remains to prove that if (5.6) holds for z = z,, 0 <m’ < m,
then (5.6) holds for z = zm11, 1 <m + 1 < g5

As in [21], we define the symmetric interpolation matrix 1 0 by

67 (H)y = (=) H) + 31y, H'=H, H°=H,

where fori < j, X?j are i.i.d. Bernoulli random variables such that IP( X?j =1)=
6. Denote G?(z) = (H? — z)~1. We can now recast the induction as follows: if
for any (small) 7 and (large) D, and |E| < 2 — k, we have

max max [|G%(zm)lmax = ON®),  Zm = E + iy,

0<f<1m'<m

then for any 7 and D, and |E| < 2 — k, we have

(5.8) max |G (Zmt1) lmax = ON®),  Zmi1 = E + i1
0<f<1

We know that (5.8) holds for & = 0 and all m < 80_1. Our aim is to prove (5.8) for
0<6<l.

From [3, lemma 10.2], we have ||G(E +in/7)||max < 7||G(E + in)||max for any
r > 1. As a consequence,

max |G (zn)lmax = O(NT)  implies |G (@m+1) lmax = O(NTH0).

0<n<m

Thus it remains to show that, under the assumption (5.5), if we have

(5.9) max [[G?(Zms1)max = O(NTT40),
0<6<1

then (5.8) also holds.
By (5.5), for any p € N and for any t > 0, we have

(5.10) n]lca;xIE‘G,ffo(zmH)‘Zp = O(N2P7),
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We will use the following lemma from [21] to extend the above bound to general
6 €10,1]:

(5.11) mglxrrllcellxIE‘G,fl(szrl)‘Zp = O(N?PY),

which completes the proof of (5.8) by Markov’s inequality.

LEMMA 5.4. Forfixedi, j € Zy and A € R, we define the matrix

(HGA) _ )4 if{a.b} ={i, j}.
@)ab =V HE ifta,by £}

For bounded and smooth F:RN*N — C we have

oy 0.H}, 0.H),
dEF(H®) = Z(IEF(H(U) ,) —IEF(H(Z.J.) ,))

We now return to prove (5.11). Choose the function F as follows:

F(X) = Frp po(X) = [(X =27,

By (5.10), forany t > O and p € N, EF(H®) = O(N?%). Thus, (5.11) for
HY 0 < 6 < 1, follows from Gronwall’s inequality and the following inequality,
to be proved in the remainder of this paragraph (here and below, z = z;,41): for
any p > 100, there exists ¢ > 0 such that

1

st =[S (e (ng") - (")
L]

<N~°(1+EF(H?))

(5.12)

for any 0 < 8 < 1. Note that the above equality is Lemma 5.4.
H! 6,H?.

N . . .
The matrices H i) “ and H i) " are identical except for the entries (i, j) and

(j.i) when |[i — j| < W, so we now compare them by a perturbative argument.
We fix i, j and define

FO) = fikt.pz0 ) = Frrpz (HE).

By definition, f(HS) = F(H®) with H® as in (5.7). The n™ derivative of f,

f ™) is a sum of products of some 2p 4 n matrix entries of the resolvent and its
conjugate. From (5.9), we therefore have

f(") (Hf,)-) — O(N(r+€o)(2p+n))

with high probability. By standard iterated resolvent identities, the same bound
holds for any y = O(W ~1/2+7);

f(n) (y) = O(N(r+8o)(2p+n))
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with overwhelming probability. Hence, by Taylor’s expansion with respect to
y = 0, for any m > 1, we have

EF(HZ}?"IJ') - EF(HS}?PJ) _ S;m w@((b{i})n) ~E((H))"))

+ O(N(T+80)(2P+m+1)(W—%—t)m—l-l)

where we used that the first four moments of Hl.} and Hi(j’. are the same. On the
one hand, we choose m = p so that the above error term is at most O(N —p/10y
when 7 4+ g9 < 1/100. On the other hand, f ) (0) is a sum of products of some
2p + n matrix entries of the resolvent and its conjugate, among which at least
2p — n are either (H 8](; — z),:ll or its conjugate. With the resolvent identity, these
two quantities are easily bounded by |G,€l| + W=Y24e for any & > 2(1 + &),
with high probability. The remaining 2n resolvent entries are bounded using (5.9).
Therefore, forn < p,

|1Ef(”)(0)| < CpNZn(r—i-so)(EﬂGgl|2p—n) + W(—1/2+8)(2p—n))
< CpNZn(r—i-so) (1 + E(F(Ho)))
The above estimates together give
‘39EF(H9)‘ < CPNW1—%+10(H-80)(1 + EF(HG)) + CPNI—%W

As W > N3/*and p > 100, this concludes the proof of the inequality in (5.12)
(and Lemma 5.2). Il

5.3 Proof of Theorem 1.3

We keep the notations from the proof of Lemma 5.2 for A and H. On the
one hand, from the local law in Theorem 1.5, for any x, t > 0 there exist ¢ > 0
suchthatforanyz = E + N7 with 2+ k < E <2 —k, InN"' TrG(z) —
Immy.(z) = O(N ). On the other hand, by repeating exactly the proof of Lemma
5.2, the estimate (5.12) also holds for

F(X) = [Im N7 Tr(X — )" — Imme(2)[*7,

so that Im N "L Tr G(z) — Imm.(z) = O(N~°) for some ¢ > 0. In turn, this
implies the local law for H.

5.4 Proof of Theorem 1.4

Again, we follow the notations from the proof of Lemma 5.2 for A and H.
Theorem 1.5 gives universality for H, so that Theorem 1.4 follows by applying
the Green’s functions comparison theorem from [17]. The input for this theorem is
the four-moment matching of the matrix entries, given by construction of H, and
resolvent bounds as proved for our band matrices in (5.6).
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Appendix A Perfect Matching Observables for Hermitian Matrices

Although the main results of this paper are stated for symmetric matrices, they
can be adapted to the Hermitian class. The only major modification concerns the
definition of the perfect matching observables. We explain below the Hermitian
counterpart of Section 2.

A.1 Eigenvector Dynamics

Let B be a n x n matrix such that EH(Bi(}Z)), ;“S(Bl.(]h)) (i < j)and Bi(l.h)/ﬁ

are independent standard Brownian motions, and B}l}.’) = (Bl.(}’))*. The n x n
Hermitian Dyson Brownian motion K with initial value K (0) is K™ (r) =
) _1_p®
KW(0) + «/ﬂB ).
Let Ag € 2,, ug € U(n). The Hermitian Dyson Brownian motion/vector flow

with initial condition (A1, ..., Ay) = Ao, (U1,...,Un) = U, iS
(h)
dB 1 1
dAp = Xk 4 (— —)dz,
k V2n n g,; Ak — Ag
(A.1) 15"
1 1 dr
duk: Z ket ug——Z—zuk.
Van Ak — Ag 2n oy (Ak — A0)

With the above definitions, the strict analogue of Theorem 2.1 holds in this Her-
mitian setting.
In addition to (2.4) and (2.5), we define

n
wieda, = Y uk (@) (),
a=1
h — =(h —
Here d,, and 05, are defined by considering u; as a complex number; i.e., if we

write uy = x + iy, then 0y, = %(Bx —1dy). The analogue of Lemma 2.2 for the
generator is then (see [7])

n _ 1 W) gt | k) y ()
(A2) LY =5 > Ckg([)(sz X+ X5 Xké),

1<k<f<n

meaning that dE(g(u,))/dt = E(Lgh) g(u;))) for the stochastic differential equa-
tion (A.1).
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A.2 The Observables

As in Section 2, let I be a fixed subset of [1,n], and denote the eigenvector
overlaps

pij = Y ui@)i; (@), i # je[ln],
acl
pii = y_ui(@ij(@) — Co, i€ [L,n],

ael

where Cy is an arbitrary but fixed constant independent of i. Note that contrary to
the real case, we now have p;; # pj; fori # j.

With this definition, Theorem 2.5 still holds. For the proof, we keep the same
definition for our configuration space as in the real case: 5:[1,n] — N where
nj = n(j) is interpreted as the number of particles at the site j. For any given
configuration 3, consider the set of vertices

Yy ={(.a.¢):1<i<n/1<a<mn.ec{bwl.

We represent vertices corresponding to ¢ = b (resp., &€ = w) by a black (resp.,
white) disk. Let <% be the graph with vertices #3 and with edges all possible
{v1, va} with &1 # &3, where v1 = (i1,a1, €1), v2 = (i2, a2, &2). In words, 7, is
the complete graph on 73 except that edges between vertices of the same color are
forbidden. Let ¢, be the set of perfect matchings of «%,. Let &(G) be the set of
edges of a graph G € ¥4,.

L A

1 i ip i3 n 1 i in I3 n
(A) A configuration 5 with .4 (n) = (B) A perfect matching
6, N, = 2, Ni, = 3, Niy = 1. G € gﬂ. Here, P(G) =

Diyiy Piyis Piziy Pisin Pisis Pizis-

Moreover, for any given edge ¢ = {(i1,a1,¢€1), (i2,a2, &)}, we define p(e) =
Di1i» if &1 = b, and p(e) = pj, i, if &2 = b. Let P(G) = ]_[eeg(G) p(e) and

a3y =Y PG ). 2w =[]
Ge4y i=1

We have the following complex analogue of Theorem 2.6.
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THEOREM A.1 (Perfect matching observables for the eigenvector moment flow:
Hermitian case). Suppose that u is the solution to the Hermitian eigenvector dy-

namics (A.1), and f. ),(ht) is given by (A.3). Then it satisfies the equation
h h
00 [ = W1y 1,1,
A4
AD D@ ) = 3 cre@ne L+ ) (F@5Y) — f()).
k#L
As in the real case, the above theorem is independent of our choice of the canonical
basis; see Remark 2.8. It therefore generalizes the class of observables for the
eigenvector moment flow from [7, theorem 3.12(ii)].
A.3 Proof of Theorem A.1
We naturally replace the definition (2.19) with
P(G).

Ge%y

gln) = %

and let 1 < k < £ < n be fixed for the rest of this subsection. We abbreviate

X=X IEZ)’ X=X ,EZ) With (A.2) the proof reduces to

SXX 4 KX0g() = me1 -+ n) (&) — g(a)

+1e(1+ 1) (g () — g(m)).

To calculate %(X X + XX)P(G) for any G € %y, we first need the following
definition.

(AS)

DEFINITION A.2. Let 5 and k < £ be fixed.
(i) 7 C Yy is the set of vertices of type (i,a,¢), 1 <a < n;, e € {b, w}.
(ii) 7/ib C ¥; is the set of vertices of type (i,a,b), 1 < a < n;, and similarly
for 7.
(iii) For any two sets, denote A - B = (A x B) U (B x A). We define
L if (uiva) € -V LI,
e(v1.v2) = 3—1 if (vi.v2) € (V2 - VD) U (KX - V).

0 otherwise.

(iv) Let G € 9y and (v1,v2) € (¥, U )2,
Assume (vy,v3) € (7/kb . 7/eb) U2 - 7;“). Then we define Sy, G =
Svov, G € 9y as the perfect matching obtained by transposition of v1 and
v2. More precisely, let 7y, , be the permutation of 7y transposing v1 and
va. Then

éa(Svlsz) = {{Tvl,vz(wl)a Tvl,vz(WZ)} {wy, wat € éa(G)}
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Assume (vy, v3) € ”I/kb~“//kw,and write vy = (k,a1,b),v2 = (k,a2,w),
for example, where 1 < ay, a2 < ng. Then we define Sy, 4, G = Sp,0,G €
¢,ke as the perfect matching obtained by a jump of vy and v to £. More
precisely, let jy,u, = juv, be the following bijection from 7 to ¥jke:
jvlvz(vl) = (ﬁ, Ne + Lb)? jvlvz(UZ) = (Ev Ne + 17 U)), jvlvz((k, C,b)) =
(k,e = 1,b)ifa; < ¢, jou,((k,c,w)) = (k,c —1,w)ifa; < ¢, and
Juivs (w1) = wy in all other cases. Then

E(Sv1v,G) = {1 (W1), Juyv, (W2)} : {wr1, w2} € E(G)}.

A similar definition applies if (vy,v2) € 7/€b - VY, the jump now being
towards k.

Finally, if (v1, v2) & (V- 7)Y U (- I U - 1Y UL - 1),
we define Sy,4,G = G (or any arbitrary function).

7N e

(8) The map Sy, 4, in case of a jump.

Below is the main result for the proof of Theorem A.1.

LEMMA A.3. Forany G € %y, we have

%(X)? + XX)P(G)

A.6
(A.6) = % Z e(v1,v2) P(Sv1v,G) — Mk + ng) P(G).

(v1,v2)e(VUT0)3

Assuming the above lemma we can complete the proof of Theorem A.1. Let

hy =3 P(G).

Gey
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Note that if (v1, v2) € (“//kb . “//gb) U (%" - 7,”), then Sy, is a permutation of &.
Moreover, if (v1,v2) € ”ka . "I/kw (resp., 7/€b . ”l/zw) then S, y, is a bijection from
Gy 10 Gyre (resp., Gyex ). Summing (A.6) over all G € & therefore gives

%(x;? + X X)h(n)

= %(M%h(nke) + 207 h(n™*) — @ngeng + 2neni)h () — 201k + neh())

= n2h(*) + n2h(@**) — (ke (e + 1) + ne(nx + DYr(y).

The above equation implies (A.5) after renormalization by .’ (). This concludes
the proof of Theorem A.1.

PROOF OF LEMMA A.3. Let L = 1(X X + X X). We have

LP(G)= > XplenXpe) [  plo

(e1,2)€£(G)2 e€s(G)\le1,e2}
(A7)
+ > Lpey ] ple.
e1€6(G) ec&(G)\{e1}

We keep the notations (2.23), (2.24), and (2.25) for the single, double, and trans-
verse edges. Remember that for any v € 74, e, is the unique edge containing v,
and v’ is the unique vertex such that e, = {v, v’}. We still denote

Vs ={v e Y U {v,v'} € &1,
Ya={ve N U¥: {vv'}edyl,
Ve ={v eV UY:{v,v'} e &),

and “//kbs are the single, black vertices in ¥% (and similarly for 7', etc.). We will
need the following elementary rules: if i # £ and j # k, Xp;; = 0 and

(A.8) Xpik = —pit,  Xpej = Pkj-
(A.9) Xpek = Pkk — Pees
(A.10) Xpkk = —pre.  Xpee = Prk-

We also obviously have X p = X p. Equation (A.7) can be written as
LP(G) = (I) + (D) 4+ (II1) 4+ (IV) + (V) + (VD + (VID + (VIID) + (IX)
where all terms are defined and calculated below. First,

M:= Y XplenXpex) []  ple)

(e1.,e2)€(85)2 ec&(G)\{e1,e2}

- Z XPw, >U/1}Xp{vz,u’2} l_[ ple).

(v1,v2)e(#)3 e€&(G)\{ev,  ev,}
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From (A.8), Xp{vl,v’l})?p_{vz,v’z} = TP} Plur v} if (vi,v2) € (q//gl:s X q//kljs) U
T X Vi) XPwr w3 X Plus,vg) = Pl p 00013 Plivy oy )05 1 (V1,02) €
(“//kbs X ”//kws) U (7/;’3 X 7/Zws) In all other cases, Xp{ul,u/l}Xp{Uz’U/z} = 0. We
therefore have proved

M= Z e(v1,v2) P(Sy,0,G)
W1 XS IV )
(A.11) VORIV T

1
=5 ) 1) P(Syu0).

(v1,v2)€(¥)?

We now consider

m:= > Xpe)Xple) [] plo

(e1,€2)€65-84 ec&(G)\{e1,e2}
1 _
) Z XPw1.v3 X Pios.vs) 1_[ ple).
(v1,v2)€%5Ya ec(G)\lev  ev,}

We used that vertices on a double edge need to be weighted by a factor 1/2. From
(A.8) and (A.10),

XP{or w3 X Plua,vyy = ~Piua.v]} Plo1.vh}
i (v1.v2) & (55 > 5) O (s < ) U Ua < V) DU < Vi),

Xp{m,v’l}XP{vz,v’z} = Py @103 Pl v (v2),05}

i b b b b

if (1, 02) € (Kg X ) U (g x V) U (05 < ) U (FE, x 7))
‘We therefore have

1
(A.12) = > &1 v2) P(Sy0,G).

1,v2)€%:Ya

Concerning
= > XpenXpe ] e
(e1,€2)€(54)% e€&(G)\{e1,e2}
1 —
- Z Z Xp{vlﬂv/l}xp{vbv/z} l_[ p(e)’
(v1,v2)E(¥g) 3014 e€&(G)\{ev, v, }

using (A.10) we have Xp{vl,v’l})?p{vz,vg} = = Pva,v}} Plvr vl if v1 and v, are in
fiistinct ¥;’s and .With. th.e same color, and py Juuy @043 Pl v (v2),05} if they are
in the same ¥; with distinct colors. All together, we always have

Xp{vl,v’l})?p{vz,vé} = 8(1)1, UZ)P(Svlsz) + 8(01’ UZ)P(SU’IUZG)'
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We have therefore proved

Iy := élt Z (s(vl, v2) P(Sy,v,G) + &(v], vz)P(Sv/1 sz))

(w1,v2)€(¥q)3

1
(A.13) —5 2 PBwG)
VEYy
1 1
= 5 Z 8(U1,U2)P(SUIUZG) - E Z P(va’G)-
(v1,v2)e(¥y)3 vETY

Our next estimate is a diagonal term, namely

aVy:= > Lpe) [[ r@©=> Lpwwy [ »rl@

€18 ec&(G)\{e1} vEY ec&(G)\{ey}
(A.14) 1
=—3 ) P(G)
VEY
where we used (A.8) twice to obtain Lpy, ,y = _%p{v,v’}-

Another diagonal term is

W= Y Loy ] p@=3 3 Lrwwy [1 rle)

e1€8y, ec&(G)\fer} veYy ec&(G)\{e1}

Note that we have Lpyy vy = pik — pee if v € ¥4, and pgy — piy otherwise. This
proves

(A15) V) =5 Y (P(Sw(6) - PG))

VEYy
We now consider cases where transverse edges appear:

(VD := > XpenXplea) []  plo

(e1,62)€65XE UE X8 ecs(G)\{er,e2}

= Z (Xp{vl,vi}fp{vz,vé}+Xp{v1,v’l}Xp{vz,v§})
'1)167/5,
{Ust/z}egt

X 1_[ ple).

ecs(G)\fev, .ev,}

Up to transposing v, and v’z, we can assume that v and v, are in the same ¥;. With
(A.8) and (A.9) a calculation gives Xp{vl,vxl}Xp{vzyv/Z} + Xp{vl,v/l}Xp{vz’v/Z} =
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Py vy @DV} Py vy (02)05 — prvl,/z (v)v] prvlvfz (v})v,- This yields

(VD) = Z e(v1, v2) P(Sy,v,(G))

(v1,v2)€Y XY,

=2 Y P,

(v1,v2)€% 7,

(A.16)

We also consider

(VID := > XpenXpe) [ p@
(e1,e2)EEIXEUE XEy ec8(G)\{e1,e2}

= Y (X3 X Py + X Pl w3 X1 043)

v1€Y4,{v2,05}€8
X 1_[ ple).
ec&(G)\lev,ew}

Without loss of generality we can assume v; and v, are in the same 7;. Assume
they also have a different color. Then (A.9) and (A.10) give
XPgw1,w3 X Pioy gy T X Pioy0p3 XPios05)
= Pjvy vy DV Py vy (v2)05 prvlv/z(vl)v’l prvlv/z(vé)vz'

If v; and v, have the same color, a similar equation holds, permuting vy and v].
This implies

(VID = > su1,02)P(Su,0,(G))
(v1,v2)€74 x4

= % Z 8(1)1, vz)P(Svlvz(G))-

(v1,v2)€%4 74

(A17)

For two transverse edges, with (A.9) we first compute

1 _ _
E(XPHXPH + X preXpre) =0,

and indeed £(vy,v2) = 0 when vy, vy are the same color on the same site, or
. . . 1 > o
different colors on different sites. Moreover, 5(Xpr¢X pox + X preXper) =

%(p]%k + pezz — 2prk Pee), so that in all cases we have proved

(VI := Y XplenXple) []  »plo
(e1.2)€(&1)3 ec8(G)\{e1,e2}
(A.18) 1

= E Z 8(1)1, vz)P(Svlvz(G)-

(v1,02)€(¥P)
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Finally, from (A.9) we have Lpyy; = — pgy, so that
1
(A.19) X):= > Lper) [ ply==33 P@©G)

e1€6; ec&(G)\{e1} vEY;

By summation of all equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16),
(A.17), (A.18), and (A.19), the right-hand sides of (A.6) and (2.22) are the same.
This concludes the proof of Lemma A.3. U
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