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1 Introduction

1.1 Random Matrices Beyond Mean Field

In Wigner’s vision, random matrices play the role of a mean-field model for
large quantum systems of high complexity. His paradigm has been confirmed with
significant progress in understanding the universal behavior of many random graph
and random matrix models. However, regarding his core thesis that random ma-
trices can be used to model non-mean-field systems, our understanding is much
more limited. Even for one of the simplest non mean-field models, the random
Schrödinger operator, there is no result concerning the existence of the delocalized
regime in which random matrix statistics are expected to hold.

A slightly more tractable model is the random band matrix characterized by the
property that Hij becomes negligible if dist.i; j / exceeds a parameter W , called
the bandwidth. In general, i; j are lattice points in Zd , but in this article we con-
sider only the case d D 1. Based on numerics, it was conjectured [9, 10] that
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the eigenvectors of band matrices satisfy a localization-delocalization transition, in
the bulk of the spectrum, with a corresponding sharp transition for the eigenvalue
distribution [18]:

(i) for W �
p
N , delocalization and Gaussian orthogonal ensemble (GOE)

spectral statistics hold;
(ii) for W �

p
N , eigenstates are localized and the eigenvalues converge to a

Poisson point process.

This transition was also supported by heuristic arguments [36] and a nonrigorous
supersymmetry method [19].

There have been many partial results concerning localization-delocalization for
band matrices. For general distribution of the matrix entries, localization of eigen-
vectors was first shown for W � N 1=8 [28], and improved to W � N 1=7 for
Gaussian entries [26]. Delocalization was proved in some averaged sense, for
W � N 6=7 in [14], W � N 4=5 in [16], W � N 7=9 in [20]. The Green’s
function was controlled down to the scale Im ´� W �1 in [17], implying a lower
bound of order W for the localization length of all eigenvectors. We also mention
that at the edge of the spectrum, the transition for one-dimensional band matri-
ces (with critical exponent N 5=6) was understood in [33], thanks to the method of
moments.

When the entries of band matrices are Gaussian with some specific covariance
profile, one can apply supersymmetry techniques (see [13,34] for overviews). With
this method, for d D 3, precise estimates on the density of states [12] were first ob-
tained. Then, random matrix local spectral statistics were proved for W D �.N/

[30], and delocalization was obtained for all eigenvectors when W � N 6=7 and
the first four moments of the matrix entries match the Gaussian ones [2] (these
results assume complex entries and hold in a part of the bulk). Still with the super-
symmetry technique, a transition around N 1=2 was proved in [29, 31], concerning
moments of characteristics polynomials.

1.2 Mean Field Reduction and Quantum Unique Ergodicity

The main difficulties in analyzing spectral properties of band matrices with gen-
eral entries are twofold.

(i) There is currently no effective diagrammatical method to estimate the Green’s
function when Im ´ � W �1, while delocalization of eigenvectors requires
estimates up to Im ´� N�1.

(ii) For the universality of local spectral statistics, the comparison method used
for mean-field models does not apply to band matrices since the majority of
matrix elements (effectively) vanish.

In an earlier paper [4], we proposed a mean-field reduction method to prove
universality of local spectral statistics for band matrices with W D �.N/. This
method relies on a notion much stronger than delocalization, the probabilistic quan-
tum unique ergodicity (QUE). Historically, QUE was introduced by Rudnick and
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Sarnak [27], asserting that for negatively curved compact Riemannian manifolds,
all high energy Laplacian eigenfunctions become completely flat. Quantum ergod-
icity, essentially an averaged version of QUE, had previously been proved for more
general manifolds [11, 32, 38]. For d -regular graphs, the eigenvectors of the dis-
crete Laplacian also satisfy quantum ergodicity, under certain assumptions on the
injectivity radius and spectral gap of the adjacency matrices [1].

A probabilistic version of QUE was proposed and proved for Wigner matrices in
[7]. To state it, letH be a sizeN random matrix with eigenvectors j associated to
eigenvalues �j . Then, there exists " > 0 such that for any deterministic 1 � j � N
and I � J1;N K and for any � > 0 we have

(1.1) P

����X
i2I

j j .i/j2 �
jI j
N

��� � �� � N�"=�2:

To explain the mean-field reduction, we block-decompose a band matrix H and
its eigenvectors:

(1.2) H D
�
A B�
B D

�
;  j D

�
w
¯ jp
¯j

�
;

whereA is aW �W Wigner matrix. From the eigenvector equationH j D �j j ,

(1.3) Q�j wj D �jwj where Qe D A � B� 1

D � eB:
Thus wj is an eigenvector to Qe with eigenvalue �j when e D �j . The basic
observation from the earlier paper [4] can be summarized as follows. Suppose that
the probabilistic QUE for the eigenvectors of H holds. Then the eigenvalues of
H near a fixed energy E can be reconstructed from the eigenvalues of Qe near
the origin with e near E. Thus if we can prove the spectral universality for Qe,
the same statement holds for H . On the other hand, to establish QUE for the
band matrix H , assume first that it holds for the W � W operator Qe. If we
can substitute e by �j , then the eigenvector  j is flat in the first W coordinates.
Clearly, we can stitch together the flatnesses of j in sufficiently many windows of
sizeW to establish the global flatness of j provided that the error in each window
is sufficiently small.

To summarize, the mean-field reduction method reduces the universality and
QUE for the band matrixH to those ofQe. Thanks to the recent progress on these
topics [5, 22, 23], the inputs to prove these properties require precise estimates on
the Green’s function .Qe � ´/�1 only for Im ´ � N�". For probabilistic QUE, we
also need to establish the error probability in the sense of “very high probability.”
In the following, we start with a discussion on the Green’s function .Qe � ´/�1.

1.3 Generalized Green’s Functions

It is clear that, if we estimate the Green’s function .Qe � ´/�1 directly, some
bound on the matrix .D � e/�1 appearing in Qe will be needed. Since e is real,
estimating .D�e/�1 is clearly a much harder problem than estimating the original



RANDOM BAND MATRICES 1529

Green’s function .H � ´0/�1. Fortunately, we only need this estimate with Im ´ �
N�". Clearly, one can interpret .Qe�´/�1 as theW �W corner of the generalized

Green’s function

(1.4) G.´;w/ D
�
H �

�
´ IW 0

0 w IN�W

���1
when w D e. In [4], we use a somehow involved induction argument and an un-
certainty principle to estimate G.´; e/ for W D �.N/. In this work, we provide
accurate estimates, Theorem 4.5, on G.´; e/ for Im ´ � N�" when W � N 3=4.
Our method is to derive a self-consistent equation for the (off-diagonal) entries
of the generalized Green’s function (a similar equation for the standard Green’s
function was called the T equation [15]). Notice that Ward’s identity, which is in-
strumental in many random matrix estimations, is not valid for generalized Green’s
functions. More precisely, Ward’s identity asserts that for any Green’s function of
a Hermitian operator H ,

(1.5)
X
j

jGij .´/j2 � .Im ´/�1 ImGi i :

For the generalized Green’s function G.´;w/, the last property fails. Our strategy
is to establish an estimate on

P
j jGij .´/j2 by successively decreasing the imag-

inary part of w and using repeatedly the self-consistent T equation in each step.
Besides overcoming this difficulty, we also devise a new diagrammatic expansion
in deriving the T equation. Finally, we remark that the main condition W � N 3=4

is mainly used in estimating G.´; e/. Besides extending the region of validity from
W D �.N/ to W � N 3=4, our current approach allows the estimate on G.´; e/ to
be completely independent from all other arguments in this work (e.g., the mean-
field reduction). The proof of Theorem 4.5 will be delayed to parts 2 and 3 of this
series.

1.4 Probabilistic QUE with High Probability

The proof of the quantum unique ergodicity (1.1) for Qe in [4] relies on two
different tools.

(i) A priori estimates on the Green’s function .Qe � ´/�1 (for large Im ´)
provide flatness of eigenvectors on average. This a priori information is
necessary to obtain the following.

(ii) The eigenvector moment flow from [7] is a random walk in a dynamic
random environment whose relaxation means flatness of individual eigen-
vectors (quantum unique ergodicity).

We have just outlined our new estimates on the Green’s function .Qe � ´/�1 for
W � N 3=4. The main new technique developed in this work concerns (ii): Theo-
rem 2.5 states that
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Averaged quantum unique ergodicity implies a high probability

quantum unique ergodicity, after adding a small GOE compo-

nent.

Compared to (1.1), this new result is a strong probabilistic QUE, as it first allows
much more general observables of eigenvectors and is valid with probability 1 �
N�D for any D > 0. Therefore all bulk eigenvectors are now simultaneously
flat. The proof of Theorem 2.5 relies on a remarkable combinatorial identity: the
perfect matching observables defined in (2.15) satisfy the eigenvector moment flow
parabolic equation; see Theorem 2.6.

Thanks to this new strong version of QUE, the eigenvectors of Qe are flat for all
e in a discrete subset of size NC for any C fixed. Thus to establish flatness of  j
on the first W coordinates, we only need to compare eigenvectors of Qe and Q�j

for je � �j j � N�C with C a large constant. An eigenvector perturbation formula
is enough to compute the difference between these eigenvectors, with sufficient a
priori estimates given by a weak uncertainty principle as developed in [4].

Therefore, our work presents an improvement from W D �.N/ [4] to W �
N 3=4 thanks to new results both on (i) and (ii). As discussed in Remark 4.7, our
hypothesis W � N 3=4 for delocalization comes from the generalized Green’s
function estimates (ii). Heuristics for the transition at bandwidth N 1=2 are given in
the same remark.

1.5 The Model and Results

All results in this paper apply to both real and complex band matrices. For
the definiteness of notation, we consider only the real symmetric case, and we
use the convention that all eigenvectors are real. In the following definition, ZN
denotes the set of residues modN so that our matrices are assumed to have periodic
boundary condition.

DEFINITION 1.1 (Band matrix HN with bandwidth WN ). Let HN be a N � N

matrix with real centered entries (Hij , i; j 2 ZN / which are independent up to the
condition Hij D Hj i . We say that HN is band matrix with bandwidth W D WN

if

(1.6) sij WD EjHij j2D f .i � j /

for some f WZN ! R satisfying
P

x2ZN f .x/ D 1, and there exist a small posi-
tive constant cs and a large constant Cs such that

(1.7) csW
�1 � 1jxj�W � f .x/ � CsW

�1 � 1jxj�CsW ; x 2 ZN ;
where j � j is the periodic distance on ZN .

The method in this paper also allows us to treat cases with progressive decay of
the variance away from the diagonal (e.g., f .x/ � CsW

�1 � 1jxj�CsW instead of
f .x/ � CsW

�1 � 1jxj�W ), or variants with exponentially small mass away from
the bandwidth. We work under the hypothesis (1.7) for simplicity.
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For technical reasons we assume the following condition on the fourth moment
of the matrix entries: there is "m > 0 (here the subscript m indicates the moment
condition) such that for ji � j j � W ,

(1.8) min
ji�j j�W

�
E�4ij �

�
E�3ij

�2�1� � N�"m ;

where �ij WD Hij .sij /
�1=2 is the normalized random variable with mean 0 and

variance 1. It is well-known that for any real random variable � with mean 0

and variance 1, E�4 � .E�3/2 � 1 � 0, and the equality holds if and only if �
is a Bernoulli random variable (lemma 28 of [35]). Therefore, one simply has
"m D 0 when the �ij ’s (ji � j j � W ) all have the same law, different from the
Bernoulli distribution. In the more general setting (1.8), all our results are restricted
to 0 � "m < 1=2 because of the following condition (1.11).

We also assume that for some �d > 0 (subscript d stands for “decay”) we have

(1.9) sup
N;i;j

E
�
e�dWH2

ij
�
<1:

This tail condition can be weakened to a finite high moment condition. We assume
(1.9) mainly for the convenience of presentation. The constants in the following
theorems depend on the fixed parameters cs , Cs , "m, and �d , in (1.7), (1.8), and
(1.9), but we will only keep track of the dependence on "m.

Denote the eigenvalues of H by �1 � � � � � �N ; and let . k/
N
kD1 be the corre-

sponding L2-normalized eigenvector, i.e., H k D �k k . Thanks to the conditionP
f .x/ D 1, it is known that the empirical spectral measure 1

N

PN
kD1 ��k con-

verges almost surely to the Wigner semicircle law with density

�sc.x/ D
1

2�

q
.4 � x2/C :

The concept of localization/delocalization can be defined in many ways. For def-
initeness, we use the L1 norm. For any small constant c > 0 and � > 0, one
expects that

P
�
N�� � min.N;W 2/k kk21 � N � for all k 2 JcN; .1 � c/N K

�
D 1 � o.1/;

(1.10)

meaning that a localization-delocalization transition occurs at logN W D 1=2,
where logN W D logW= logN . Our first result proves (1.10) in the delocalization
regime logN W > 3=4.

THEOREM 1.2 (Delocalization for logN W > 3=4). Let .HN /N�1 be band ma-

trices with bandwidth WN satisfying the conditions (1.8) and (1.9). Recall that

"m > 0 is defined in (1.8). Suppose that for some constant a > 0,

(1.11) logN W � max

�
3

4
;
1

2
C "m

�
C a:
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For any (small) constants �; � > 0 and (large) D > 0, there exists N0 such that

for all N � N0 we have

(1.12) P
�k kk21 � N�1C� for all k 2 J�N; .1 � �/N K

� � 1 �N�D:

The above delocalization holds together with a local semicircle law down to the
optimal scale.

THEOREM 1.3 (Local semicircle law for logN W > 3=4). Under the same as-

sumptions as Theorem 1.2, there exists " > 0 such that for any (small) �, � > 0

and (large) D > 0 there exists N0 such that for any E1; E2 2 ��2C �; 2� �� and

any N � N0 we have

(1.13)
P

�����#f�k 2 �E1; E2�g �N

Z E2

E1

d�sc

���� < N � C jE1 �E2jN 1�"
�

� 1 �N�D:

In the following fixed energy universality statement, we denote by �
.k/
H the k-

point correlation function (understood in the sense of distributions) for the spectral
measure of an N �N random matrix H .

THEOREM 1.4 (Universality for logN W > 3=4). Under the same assumptions

as Theorem 1.2, for any � > 0, any integer k, and any smooth test function O 2
C1.Rk/ with compact support, there are constants c; C > 0 such that for any

jEj � 2 � � we have

(1.14)

����Z
Rk

O.a/�
.k/
H

�
E C a

N�sc.E/

�
da �

Z
Rk

O.a/�
.k/
GOE

�
E C a

N�sc.E/

�
da

����
� CN�c :

For the proof of Theorems 1.2, 1.3 and 1.4, the first step is to show that delo-
calization, the local semicircle law, eigenvalue universality, and quantum unique
ergodicity hold under the following additional assumption: H is a Gaussian divis-
ible band matrix; i.e., there exists independent band matrices H1 and H2 with the
same width W and c > 0 such that H1 satisfies (1.8) and (1.9), and

(1.15) H D H1 CH2

where .H2/ij D 1ji�j j�W � .1C 1ij /
1=2 �N .0; c W �1N�"m/:

Remember that "m is defined in (1.8). Here, c is a small enough constant depending
only on �d from (1.9).

THEOREM 1.5. Assume that H is a band matrix of type (1.15), with bandwidth

WN satisfying (1.11).

(i) The eigenvectors are delocalized as in (1.12).
(ii) The eigenvalues satisfy the local semicircle law as in (1.13).

(iii) Fixed energy universality holds as in (1.14).
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(iv) For any (small) �; � > 0, and (large) D > 0, there exists N0 > 0 such that

for any N � N0 we have

P

0@������NW
`CWX
�D`

j j .�/j2 � 1
������ < N� 3

2
aC�

for all 1 � j; ` � N such that j�j j � 2 � �
� � 1 �N�D

1A;
where a > 0 was given in (1.11) and all indices are defined modulo N .

1.6 Organization of the Paper

This work is essentially divided in two parts.
The first part (Sections 2 and 3) concerns quantum unique ergodicity for mean-

field blocks, and improves on the estimate (1.1): Theorem 2.5 gives flatness of
the eigenvectors with overwhelming probability (overwhelming probability refers
to the arbitrary large choice of D > 0, for example in Theorem 2.5), and with
optimal fluctuations scale for the L2 mass of eigenvectors on subsets of J1;N K.
This result is the main technical novelty of our work.

The first aspect of the proof is algebraic (Section 2). A new function of the
eigenvector overlaps is defined in equation (2.15), and it follows the eigenvector
moment flow dynamics; see Theorem 2.6. These dynamics of perfect matching

observables generalize an earlier observation from [7]. In this previous work, the
eigenvector evolution was related to a random walk in a dynamic random envi-
ronment, after dimension reduction through projection on a given fixed direction.
Projections can now occur on an arbitrary number of directions; see Remark 2.8.
The proof of Theorem 2.6 is combinatorial and given at the end of Section 2.

The second aspect of the proof of Theorem 2.5 is analytic (Section 3). As proved
by a sequence of maximum principles and approximations with short range dynam-
ics, the eigenvector moment flow reaches equilibrium after some time depending
on the initial condition. This allows us to identify the scale of the perfect matching
observables. Our proof is more involved than the Hölder regularity of the eigen-
vector moment flow in [7], because our observables are more general: in [7], the
scale of observables was a priori known and the dynamics were used to identify
the distribution of fluctuations.

The second part of the paper (Sections 4 and 5) applies the strong form of quan-
tum unique ergodicity to delocalization for random band matrices. First, Theorem
1.5 is proved by the mean-field reduction technique from [4], then it is extended to
more general band matrices by a moment matching argument.

The proof of Theorem 1.5 (Section 4) is sketched in Section 4.2. Section 4.4
contains the first important input for the proof: the resolvent estimates for .Qe �
´/�1. As explained after (1.4), these estimates from Theorem 4.5 amount to an
averaged form of QUE for the eigenvectors of Qe. From this a priori estimate,
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quantum unique ergodicity is deduced for the Gaussian divisible version of Qe

(Section 4.5). To access flatness of eigenvectors of our original eigenvectors  k ,
we need to patch QUE estimates for eigenvectors of Qe when e D �k . By a net
argument in e, with mesh size N�C (C is fixed and arbitrarily large because Theo-
rem 2.5 holds with overwhelming probability), we only need to control eigenvector
shifts under tiny perturbations in e. This is the role of another input for the proof
of Theorem 1.5, the weak uncertainty principle. It is inspired by a more difficult
result from [4], and proved in Section 4.6. We refer to (4.58) for eigenvectors
bounds thanks to the weak uncertainty principle. Section 4.7 concludes the proof
of Theorem 1.5.

In Section 5, delocalization, the local semicircle law, and universality (Theo-
rems 1.2, 1.3, and 1.4) are obtained beyond the Gaussian divisible ensemble. The
proof relies on moment matching, exhibiting a matrix �H of type (1.15) whose first
four moments of the entries match those of H . This idea appeared in [35] for the
purpose of universality for Wigner matrices and required some a priori information
on delocalization and local semicircle law. In our work, such information is only
available for �H , by Theorem 1.5. It is extended to H thanks to an implementation
of the moment matching strategy at the level of the Green’s functions [17], and a
self-consistent method to obtain these estimates by continuously interpolating from�H to H [21].

Finally, although this work focuses on symmetric matrices, the method applies
to the Hermitian class. The only substantial difference is the algebraic part of QUE
for mean-field models: the perfect matching observables are defined in a different
way for real and complex matrices, as explained in the Appendix.

2 Quantum Unique Ergodicity for Deformed Matrices

This and the next section are self-sufficient. In these sections, the size of the
matrices is denoted by n. The main result (Theorem 2.5) will then be applied to
mean-field blocks of type Qe from (1.3) (or more precisely its generalization Qg

e ;
see (4.10)), i.e., for n D W .

2.1 Eigenvector Dynamics

In this subsection, we first recall the stochastic differential equation for the
eigenvectors under the Dyson Brownian motion, as stated in [7, sec. 2].

The matrix Brownian motion dynamics are defined as follows, either at the ma-
trix, eigenvalues, or eigenvectors level (remember we only consider the symmetric
case, the Hermitian one being detailed in the Appendix). Let B be an n� n matrix
such that Bij .i < j / and Bi i=

p
2 are independent standard Brownian motions,

and Bij D Bj i . We abbreviate Z.t/ D B.t/=
p
n. The n � n symmetric Dyson

Brownian motion K with initial value K.0/ D V is defined as

(2.1) K.t/ D V CZ.t/:
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Let �0 2 �n D f�1 < � � � < �ng, u0 2 O.n/. The symmetric Dyson Brownian
motion/vector flow with initial condition �0 D .�1; : : : ; �n/, u0 D .u1; : : : ; un/,
is defined through the dynamics

d�k D
dBkkp

n
C
�
1

n

X
`¤k

1

�k � �`

�
dt;(2.2)

duk D
1p
n

X
`¤k

dBk`

�k � �`
u` �

1

2n

X
`¤k

dt

.�k � �`/
2
uk :(2.3)

With a slight abuse of notation, we will write �t either for .�1.t/; : : : ; �n.t// or
for the n � n diagonal matrix with entries �1.t/; : : : ; �n.t/.

The link between the previously defined matrix and spectral dynamics is given
as follows. See [7] for a proof, with the main ideas being due to McKean [24] for
the existence and uniqueness of solutions, and Bru [8] for the eigenvector dynamics
in the Wishart case.

THEOREM 2.1. The following statements about the Dyson Brownian motion and

eigenvalue/vector flow hold.

(a) Existence and strong uniqueness hold for the system of stochastic differential

equations (2.2)–(2.3). Let .�t ; ut /t�0 be the solution. Almost surely, for any

t � 0 we have �t 2 �n and ut 2 O.n/.
(b) Let .K.t//t�0 be a symmetric Dyson Brownian motion with initial con-

dition K.0/ D u0�0u
�
0 , �0 2 �n. Then the processes .K.t//t�0 and

.ut�tu
�
t /t�0 have the same distribution.

(c) Existence and strong uniqueness hold for (2.2). For any T > 0, let �
K.0/
T

be the distribution of .�t /0�t�T with initial value the spectrum of a ma-

trix K.0/. For 0 � T � T0 and any given continuous trajectory � D
.�t /0�t�T0 � �n, existence and strong uniqueness holds for (2.3) on �0; T �.

Let �
K.0/;�
T be the distribution of .ut /0�t�T with the initial matrix K.0/

and the path � given.

Let F be continuous bounded, from the set of continuous paths (on �0; T �)
on n�n symmetric matrices to R. Then for any initial matrix K.0/ we have

E
K.0/

�
F..K.t//0�t�T /

� D Z
d�K.0/

T .�/

Z
d�K.0/;�

T .u/F..ut�tu
�
t /0�t�T /:

Following [7], we introduce the notations (the dependence in t will often be
omitted for ck`, 1 � k < ` � n)

ck`.t/ D
1

n.�k.t/ � �`.t//
2
;(2.4)

uk@u` D
nX

�D1

uk.�/@u`.�/;(2.5)

X
.s/

k`
D uk@u` � u`@uk ;
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We then have the following generator for the eigenvector dynamics. For a proof,
see [7].

LEMMA 2.2. For the diffusion (2.3) the generator acting on smooth functions

f WRn2 ! R is

L.s/
t D

X
1�k<`�n

ck`.t/
�
X

.s/

k`

�2
:

The above lemma means dE.g.ut //=dt D E.L.s/
t g.ut // for the stochastic differ-

ential equation (2.3).

2.2 Main Result

Let I be a deterministic subset of J1; nK. We denote the eigenvector overlaps as

(2.6)

pij D
X
�2I

ui .�/uj .�/; i ¤ j 2 J1; nK;

pi i D
X
�2I

ui .�/
2 � C0; i 2 J1; nK;

where C0 is an arbitrary but fixed constant independent of i . We will eventually
choose C0 D jI j=n so that the diagonal overlaps are properly normalized, but
many results in this section do not depend on the actual value of C0. Moreover,
these overlaps are functions of t (u satisfies the dynamics (2.3)) but this dependence
is omitted in the notation.

Remember the notation (2.1) and denote

G.t; ´/ D 1

K.t/ � ´
:

For a matrix H , we abbreviate the Stieltjes transform as

mH .´/ D 1

n
Tr

1

H � ´
:

Assumption 2.3 (Notations and conditions for relaxation flow). Fix a small number
a > 0. A matrix V is said to be bounded if the norm of V is bounded; i.e., there is
a constant C1 > 0 such that

(2.7) kV k WD kV kop � nC1 :

A deterministic matrix V is called .��; ��; r/-regular at E0 if ��, �� and r satisfy

(2.8) n�1Ca � ��; ��na � r � n�a��; ��na � 1

and there exists C2 such that the imaginary part of the Stieltjes transform of V is
bounded from above and below by

C�12 � =.mV .´// � C2; mV .´/ WD
1

n
Tr.V � ´/�1;(2.9)
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uniformly for any

´ 2 fE C i� W E 2 �E0 � r; E0 C r�; �� � � � ��g:
Our main result requires not only the above hypothesis about the Stieltjes trans-

form but also the following estimates on individual diagonal resolvent entries.

Assumption 2.4. The following holds uniformly in

´ 2 fE C i� W E 2 �E0 � r; E0 C r�; �� < � < ��g:
(i) Diagonal entries all have the same order:

(2.10) ImG.0; ´/i i �
2

n
Im TrG.0; ´/:

(ii) There exists a constant 0 < c < 1 such that the averages over I and J1; nK
coincide up to n�c:

(2.11)

���� 1jI jX
i2I

G.0; ´/i i �
1

n
TrG.0; ´/

���� � n�c:

In the remainder of this article, to simplify the exposition we also assume that
the deterministic set I from (2.6) satisfies

(2.12) jI j � cn

for some small fixed constant c. This is enough for our purpose, as jI j � n=2 in
the next sections. We define, for any r > 0 and 0 < � < 1,

(2.13) I r� .E/ WD IE;.1��/r ; IE;r D .E � r; E C r/:

The main result of this section is the following, where we choose C0 D jI j=N in
(2.6).

THEOREM 2.5 (Quantum unique ergodicity for deformed matrices). Remember the

notation (2.6) for the centered partial overlaps, and take C0 D jI j=n and assume

(2.12). Under Assumption 2.3 and Assumption 2.4, the following statement holds.

For any (small) �; " > 0, (large) D > 0, and i; j 2 J1; nK for any t0; t1 such that

na�� � t0 � t1 � n�ar , we have

(2.14)
P

�
9 t0 < t < t1 W 1�i .t/;�j .t/2I�r .E0/.jpi i j C jpij j/ � n"

�
1

nc
C 1p

nt0

��
� n�D

0

for large enough N . Here, the constant c is from (2.11). In other words, the errors

consist of the initial error n�c and the dynamical error .nt0/
�1=2.



1538 P. BOURGADE, H.-T. YAU, AND J. YIN

2.3 Perfect Matching Observables

We will need the following notations.
First, as in [7], we define � W J1; nK ! N where �j WD �.j / is interpreted as

the number of particles at the site j . Thus � denotes the configuration space of
particles. We denote N .�/ D P

j �j D d the total number of particles. Define

�i;j to be the configuration obtained by moving one particle from i to j . If there
is no particle at i then �i;j D �. Notice that there is a direction and the particle is
moved from i to j .

Second, for any given configuration �, consider the set of vertices

V� D f.i; a/ W 1 � i � n; 1 � a � 2�ig:
Let G� be the set of perfect matchings of the complete graph on V�; i.e., this is the
set of graphs G with vertices V� and edges E .G/ � ffv1; v2g W v1 2 V�; v2 2
V�; v1 ¤ v2g being a partition of V�.

1 i1 i2 i3 n

(A) A configuration � with N .�/ D 6,
�i1 D 2, �i2 D 3, �i3 D 1.

1 i1 i2
i3 n

(B) A perfect matching G 2 G�. Here,
P.G/ D pi1i1pi1i2p

2
i2i2

pi2i3pi3i1 .

Third, for any given edge e D f.i1; a1/; .i2; a2/g, we define p.e/ D pi1;i2 ,
P.G/ DQe2E .G/ p.e/, and

(2.15) f
.s/
�;t

.�/ D 1

M .�/
E

� X
G2G�

P.G/ j �
�
; M .�/ D

nY
iD1

.2�i /��;

where .2m/�� DQk�2m;k odd k is the number of perfect matchings of the complete
graph on 2m vertices. Remarkably, the above function f satisfies a parabolic
partial differential equation.

THEOREM 2.6 (Perfect matching observables for the eigenvector moment flow:
symmetric case). Suppose that u is the solution to the symmetric eigenvector dy-

namics (2.3) and f
.s/
�;t

.�/ is given by (2.15). Then f
.s/
�;t

satisfies the equation

@tf
.s/
�;t

D B
.s/.t/f

.s/
�;t

;(2.16)

B
.s/.t/f .�/ D

X
k¤`

ck`.t/2�k.1C 2�`/
�
f .�k`/ � f .�/

�
:(2.17)
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Remark 2.7. An important property of the eigenvector moment flow is the re-
versibility with respect to a simple explicit equilibrium measure:

(2.18) �.�/ D
nY

pD1

�.�p/; �.k/ D
kY

iD1

�
1 � 1

2i

�
:

For any function f on the configuration space, the Dirichlet form is given byX
�

�.�/f .�/B.t/f .�/ D
X
�

�.�/
X
i¤j

cij�i .1C 2�j /
�
f .�ij / � f .�/

�2
:

Remark 2.8. The above theorem is independent of our choice of C0 and of the
canonical basis and, more remarkably, the projection vectors don’t have to be or-
thogonal. More precisely, let .q�/�2I be any family of fixed vectors. Define

pij D
X
�2I

hui ;q�ihuj ;q�i; i ¤ j 2 J1; nK;

pi i D
X
�2I

hui ;q�i2 � C0; i 2 J1; nK;

and ft;� accordingly. Then (2.16) holds. In particular, Theorem 2.6 generalizes [7,
theorem 3.1(i)] by just choosing jI j D 1.

2.4 Proof of Theorem 2.6

To start the proof of Theorem 2.6, let

(2.19) g.�/ D 1

M .�/

X
G2G�

P.G/

and let 1 � k < ` � n be fixed for the rest of this subsection. We abbreviate
X D X

.s/

k`
. Using Lemma 2.2, we only need to prove

(2.20) X2g.�/ D 2�k.1C2�`/.g.�
k`/�g.�//C2�`.1C2�k/.g.�

`k/�g.�//:

We therefore want to calculate X2P.G/ for any G 2 G�. For that purpose, we first
need the following definition.

DEFINITION 2.9. Let � and k < ` be fixed. The following notations will be useful
for calculating X2P.G/.

(i) Vi � V� is the set of vertices of type .i; a/, 1 � a � 2�i .
(ii) For any two vertices v;w 2 Vk [ V`, we denote

".v; w/ D
(
1 if v;w are in the same Vi , i D k or `

�1 if v;w are in different Vi ’s:

(iii) Let G 2 G� and v;w 2 Vk [ V`.
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Assume v 2 Vk and w 2 V`. Then we define SwvG D SvwG 2 G� as
the perfect matching obtained by transposition of v and w. More precisely,
let �vw be the permutation of V� transposing v and w. Then

E .SvwG/ D ff�v;w.v1/; �v;w.v2/g W fv1; v2g 2 E .G/g:
Assume v D .k; a/ and w D .k; b/ (a < b) are both in Vk . Then we define

SwvG D SvwG 2 G�k` as the perfect matching obtained by a jump of v and
w to `. More precisely, let jvw D jwv be the following bijection from V� to
V�k` : jvw.v/ D .`; 2�`C1/, jvw.w/ D .`; 2�`C2/, jvw..k; c// D .k; c�2/
if b < c, jvw..k; c// D .k; c � 1/ if a < c < b and jvw.v1/ D v1 in all
other cases. Then

E .SvwG/ D ffjv;w.v1/; jv;w.v2/g W fv1; v2g 2 E .G/g:
A similar definition applies if both v and w are in V`, the jump now being
towards k.

v w

i k `

Svw

(A) The map Svw in case of a transposition.

v

w

i k `

Svw

(B) The map Svw in case of a jump.

In this proof, for any set A we denote A2� D f.a; b/ 2 A2 W a ¤ bg. The
following result is the key step in our proof of Theorem 2.6.

LEMMA 2.10. For any G 2 G�, we have

(2.21) X2P.G/ D
X

.v;w/2.Vk[V`/
2
�

".v; w/P.SvwG/ � .2�k C 2�`/P.G/:

We postpone the proof of the above lemma and first finish the proof of Theorem
2.6. Let

h.�/ D
X
G2G�

P.G/:
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Note that if v 2 Vk and w 2 V`, Svw is a permutation of G�. Moreover, if v and w
are both in Vk , Svw is a bijection from G� to G�k` . The summation of (2.21) over
all G 2 G� therefore gives

X2h.�/ D
X

.v;w/2.Vk/2�

X
G2G�

P.SvwG/C
X

.v;w/2.V`/2�

X
G2G�

P.SvwG/

� 2
X

.v;w/2Vk�V`

X
G2G�

P.SvwG/ � 2.�k C �`/h.�/

D
X

.v;w/2.Vk/2�
h.�k`/C

X
.v;w/2.V`/2�

h.�`k/

� 2
X

.v;w/2Vk�V`

h.�/ � 2.�k C �`/h.�/

X2h.�/ D 2�k.2�k � 1/h.�k`/C 2�`.2�` � 1/h.�`k/

� .2�k.2�` C 1/C 2�`.2�k C 1//h.�/:

The above equation implies (2.20) after renormalization by M .�/. This concludes
the proof of Theorem 2.6.

PROOF OF LEMMA 2.10. Let G 2 G� and 1 � k < ` � n be fixed. The

Leibniz rule applies: for any smooth functions f; g..ui .�//1�i;��n/WRn2 ! R

we have X.fg/ D fX.g/C gX.f /, so that

X2P.G/ D
X

.e1;e2/2E .G/2�

Xp.e1/Xp.e2/
Y

e2E .G/nfe1;e2g
p.e/

C
X

e12E .G/

X2p.e1/
Y

e2E .G/nfe1g
p.e/:

(2.22)

The above sums will be decomposed depending on the following edge group (sin-
gle, double or transverse):

Es D E .G/ \ ffv;wg W v 2 Vk [ V`; w 62 Vk [ V`g;(2.23)

Ed D E .G/ \ ffv;wg W .v; w/ 2 V
2
k [ V

2
` g;(2.24)

Et D E .G/ \ ffv;wg W v 2 Vk; w 2 V`g:(2.25)

For any v 2 V�, let ev be the edge containing v, and v0 be the vertex such that
ev D fv; v0g. We denote

Vs D fv 2 Vk [ V` W fv; v0g 2 Esg;
Vd D fv 2 Vk [ V` W fv; v0g 2 Ed g;
Vt D fv 2 Vk [ V` W fv; v0g 2 Etg:
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Our calculations will be based on the following basic facts: if e 62 Es [ Ed [ Et ,
then Xk`p.e/ D 0, and

Xpki D �p`i ;(2.26)

Xpk` D pkk � p``;(2.27)

Xp`` D 2pk`:(2.28)

From (2.22) we have

X2P.G/ D .I/C .II/C .III/C .IV/C .V/C .VI/C .VII/C .VIII/C .IX/

where all terms are defined and calculated below. First,

.I/ WD
X

.e1;e2/2.Es/2�
Xp.e1/Xp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D
X

.v;w/2.Vs/2�
Xpfw;w0gXpfv;v0g

Y
e2E .G/nfev;ewg

p.e/:

From (2.26), Xpfv;v0gXpfw;w0g D �pfw;v0gpfv;w0g if v and w are in distinct Vi ’s,
and Xpfv;v0gXpfw;w0g D pfjv;w.v/;v0gpfjv;w.w/;w0g if they are both in the same Vi .
In all cases, we have proved

(2.29) .I/ D
X

.v;w/2.Vs/2�
".v; w/P.SvwG/:

We now consider

.II/ WD
X

.e1;e2/2Es�Ed[Ed�Es

Xp.e1/Xp.e2/
Y

e2E .G/nfe1;e2g
p.e/

D
X

.v;w/2Vs�Vd

Xpfv;v0gXpfw;w0g
Y

e2E .G/nfev;ewg
p.e/:

For the second equality, note that vertices on a double edge need to be weighted by
a factor of 1=2. From (2.28) and (2.26), Xpfv;v0gXpfw;w0g D �2pfw;v0gXpfv;w0g
if v and w are in distinct Vi ’s, and 2pfjvw.v/;v0gpfjvw.w/;w0g if they are in the same
Vi . We therefore have

(2.30) .II/ D
X

.v;w/2Vs�Vd[Vd�Vs

".v; w/P.SvwG/:

For the contribution of

.III/ WD
X

.e1;e2/2.Ed /2�
Xp.e1/Xp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D 1

4

X
.v;w/2.Vd /2�Ww¤v0

Xpfv;v0gXpfw;w0g
Y

e2E .G/nfev;ewg
p.e/
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from (2.28) we have Xpfv;v0gXpfw;w0g D �4pfw;v0gXpfv;w0g if v and w are in
distinct Vi ’s, and 2pfjvw.v/;v0gpfjvw.w/;w0g if they are in the same Vi . We therefore
proved

(2.31) .III/ D
X

.v;w/2.Vd /2�
".v; w/P.SvwG/ �

X
v2Vd

P.Svv0G/:

We now calculate

.IV/ WD
X
e12Es

X2p.e1/
Y

e2E .G/nfe1g
p.e/

D
X
v2Vs

X2pfv;v0g
Y

e2E .G/nfevg
p.e/ D �

X
v2Vs

P.G/
(2.32)

where we used (2.26) twice to obtain X2pfv;v0g D �pfv;v0g.
For the term

.V/ WD
X

e12Ed

X2p.e1/
Y

e2E .G/nfe1g
p.e/ D 1

2

X
v2Vd

X2pfv;v0g
Y

e2E .G/nfe1g
p.e/;

note that we have X2pfv;v0g D 2pkk�2p`` if v 2 V`, and 2p``�2pkk otherwise.
This yields

(2.33) .V/ D
X
v2Vd

.P.Sv;v0.G// � P.G//:

We now consider cases where transverse edges appear:

.VI/ WD
X

.e1;e2/2Es�Et[Et�Es

Xp.e1/Xp.e2/
Y

e2E .G/nfe1;e2g
p.e/

D 2
X

v2Vs ;fw;w0g2Et

Xpfv;v0gXpfw;w0g
Y

e2E .G/nfev;ewg
p.e/:

(2.34)

Up to transposing w and w0, we can assume that v and w are in the same Vi . With
(2.26) and (2.27), a calculation gives Xpfv;v0gXpfw;w0g D pjvw.v/v0pjvw.w/w0 �
p�vw0 .v/v0p�vw0 .w 0/w . This yields

(2.35) .VI/ WD
X

.v;w/2Vs�Vt[Vt�Vs

".v; w/P.Svw.G//:

We also have

.VII/ WD
X

.e1;e2/2Ed�Et[Et�Ed

Xp.e1/Xp.e2/
Y

e2E .G/nfe1;e2g
p.e/

D
X

v2Vd ;fw;w0g2Et

Xpfv;v0gXpfw;w0g
Y

e2E .G/nfev;ewg
p.e/:

We can assume v and w are in the same Vi . Then (2.27) and (2.28) give

Xpfv;v0gXpfw;w0g D 2.pjvw.v/v0pjvw.w/w0 � p�vw0 .v/v0p�vw0 .w 0/w/;
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so that

(2.36) .VII/ WD
X

.v;w/2Vd�Vt[Vt�Vd

".v; w/P.Svw.G//:

For two transverse edges, we have

.VIII/ WD
X

.e1;e2/2.Et /2�
Xp.e1/Xp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D 1

4

X
.v;w/2.Vt /2�;w¤v0

Xpfv;v0gXpfw;w0g
Y

e2E .G/nfev;ewg
p.e/:

Without loss of generality, assume v and w are in the same Vi . Equation (2.27)
yields

Xpfv;v0gXpfw;w0g D pfjv;w.v/;v0gpfjv;w.w/;w0g C pfjv0;w0 .v0/;vgpfjv0;w0 .w 0/;wg
� pf�v;w0 .v/;v0gpf�v;w0 .w 0/;wg � pf�v0;w.v/;vgpf�v0;w.w/;w0g:

We therefore have

(2.37) .VIII/ D
X

.v;w/2.Vt /2�
".v; w/P.Svw.G//C

X
v2Vt

P.G/:

Finally, from (2.27) we have X2pk` D �4pk`, so that

(2.38) .IX/ WD
X
e12Et

X2p.e1/
Y

e2E .G/nfe1g
p.e/ D �2

X
v2Vt

P.G/

By summing all the equations (2.29), (2.30), (2.31), (2.32), (2.33), (2.35), (2.36),
(2.37), and (2.38), the right-hand sides of (2.21) and (2.22) exactly coincide, con-
cluding the proof of Lemma 2.10. �

3 Analysis of the Eigenvector Moment Flow

Before getting into the details of the proof of Theorem 2.5, i.e., relaxation for
the eigenvector moment flow (2.17), we note substantial differences with the set-
ting and proof in [7]. The dynamics equation (2.17) already appeared in [7], but the
observables associated with equation (2.17) are now much more general (see Re-
mark 2.8), and their natural scale (i.e., the order of the sizes of these observables)
is not known a priori.

Indeed, in [7], the order of magnitude of ft .�/ was a priori known: ft .�/ D
E.jpnhq; ukijd j �/ � n" thanks to the local law. The eigenvector moment flow
was used in [7] to find fluctuations around this scale.

On the contrary, in the current paper, the eigenvector moment flow (2.17) allows
us to find the natural scale for a wider class of observables. For jI j � cn, local
laws only give the trivial estimate jpi i j � 1 for example, although the dynamics
yield Theorem 2.5, i.e., jpi i j � n�1=2C" for t approaching 1.
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This differences about observables and scales require the following notable nov-
elties in the proof of Theorem 2.5:

(i) The decomposition between long-range and short-range dynamics is now
more intricate. In particular, our bound on the long-range contribution im-
proves in inductive steps (see Lemma 3.5 to be compared with [7, lemma
6.1]).

(ii) The maximum principle, Proposition 3.7, also gives stronger results once
it is used inductively, on space-time embedded domains, while the ana-
logue [7, theorem 7.4] only required one time step.

In summary, the error terms in the finite speed of propagation and the maximum
principle estimates depend on the size of ft .�/. In this paper, the a priori bound
on ft .�/ is far from its real size. Hence we need to bootstrap our estimates in a
suitable way in order to get a sharp estimate at the end of the proof.

We now introduce a few notations that will be useful in the statement and proof
of the following lemma 3.1 and in following this section. For a fixed and arbitrarily
small ! > 0, we define the control parameter

 D n!

with ! � a=100, and the following time and spectral domains:

(3.1) T!.��; ��; r/ D
�
t W �� � t �  �1 r	;

3.1 A Priori Estimates

For K.t/ in (2.1), we denote the initial matrix V D U0�0U
�
0 , where �0 D

diagf�1.0/; : : : ; �n.0/g, and U0 is the orthogonal matrix of its eigenvectors. Let
mfc;t be the Stieltjes transform of the free convolution between the empirical spec-
tral measure of V and the Gaussian orthogonal ensembleZt . Thenmfc;t solves the
equation

m
.n/
fc;t .´/ D mV

�
´C tm

.n/
fc;t .´/

�
D 1

n

nX
iD1

gi .t; ´/; gi .t; ´/ WD
1

�i .0/ � ´ � tmfc;t .´/
:

(3.2)

Here m.n/
fc;t .´/ is the Stieltjes transform of a measure with density denoted �.n/fc;t .

For notational convenience we will suppress the superscript and use the notations
mfc;t .´/, �fc;t .

The typical location 
i .s/ of the i th eigenvalue �i .s/ is defined throughR 
i .s/
�1 d�fc;s D i

n
. We also recall the following stability property of the typical

locations; see [23, lemma 3.4]: for any 0 < q1 < q2 < 1 and ! > 0, for large
enough n we have, for all s; t 2 T!.��; ��; r/,

(3.3) fi W 
i .s/ 2 IE0;q1rg � fi W 
i .t/ 2 IE0;q2rg:
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LEMMA 3.1 (Delocalization for deformed matrices). Let � > 0 and let ui;t denote

the normalized eigenvector ofK.t/ in (2.1), whose eigenvalues are �i;t , 1 � i � n.

We assume that t 2 T!.��; ��; r/, V is .��; ��; r/-regular at E0 and bounded as

in (2.7), and that there exists C > 0 such that for any D > 0, for large enough n

we have

(3.4) P .9E 2 IE0;r ; �� < � < rn
�! W ImG.0;E C i�/i i � C/ � n�D

for any 1 � i � n. HereG.0; ´/ is the Green function of the initial matrix V . Then

for any �; �;D > 0, provided that n is sufficiently large we have

P
�
1j�k;t�E0j�.1��/rkuk;tk21 � n�1C�

� � n�D

uniformly in 1 � k � n .

Remark 3.2. This lemma is essentially a restatement of [5, theorem 2.1], which
holds in the domain f´ D E C i� W E 2 I r� .E0/;  

4=n � � � 1 � �rg under the
.��; 1; r/-regularity for V ; see [5, assumption 1.3].

In Lemma 3.1 the assumption is weaker: we only have .��; ��; r/-regularity for
V . A simple inspection of the proof of [5, theorem 2.1] shows that its conclusion
remains, in the restricted domain  4=n � � � rn�! (which will be sufficient for
our purpose) under this .��; ��; r/-regularity assumption.

PROOF. We bound the eigenvector coordinates by the diagonal entries of the
resolvent through

(3.5) juk;t .i/j2 � n�1C� ImG.t; �k;t C in�1C� /i i :

If j�k;t �E0j � .1 � �/r , denoting ´ D �k;t C in�1C� we have

(3.6) ´ 2
�
E C i� W jE �E0j < .1 � �/r;

 4

n
� � � r�� �1

�
:

The local law from [5, theorem 2.1] with the domain adjustment from Remark 3.2
states that U0 diagfg1.t; ´/; g2.t; ´/; : : : ; gn.t; ´/gU �0 is a good approximation for
G.t; ´/; i.e., for any �� � t � r and any unit vector q, uniformly for any ´ as in
(3.6), the following holds with overwhelming probability:

(3.7)

�����hq; G.t; ´/qi �
nX

iD1

hui .0/;qi2gi .t; ´/
����� �  2

p
n�

Im

 
nX

iD1

hui .0/;qi2gi .t; ´/
!
:

Clearly, we can restate the last result as

(3.8)

jhq; G.t; ´/qi � hq; G.0; ´C tmfc;t .´//qij

�  2

p
n�

Imhq; G.0; ´C tmfc;t .´//qi;

where G.0; ´/ is the Green’s function of V . Since  2=
p
n� � 1, we have

(3.9) jImG.t; ´/i i � ImG.0; ´C tmfc;t .´//i i j � ImG.0; ´C tmfc;t .´//i i :
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From [5, proposition 2.2], for some fixed constant C > 0 we have

C�1 < Immfc;t .´/ < C and jRemfc;t .´/j < C logn;

so that Re.´ C tmfc;t .´// 2 IE0;r and �� < Im.´ C tmfc;t .´// < n�!r . With
(3.4), we deduce that

(3.10) ImG.0; ´C tmfc;t .´//i i � C

with overwhelming probability. Equations (3.5), (3.9), and (3.10) conclude the
proof. �

Similarly to [5,7], we split the operator B.t/ from (2.17) into a short-range part
and a long-range part through a short-range parameter ` W B.t/ D S .t/C L .t/,
with

.S ft /.�/ D
X

0<jj�kj�`
cjk.t/2�j .1C 2�k/.ft .�

jk/ � ft .�//;

.L ft /.�/ D
X

jj�kj>`
cjk.t/2�j .1C 2�k/.ft .�

jk/ � ft .�//:

Notice that S and L are also reversible with respect to the measure � from (2.18).
We denote by UB.s; t/, US .s; t/, and UL .s; t/ the semigroup associated with B,
S , and L , respectively, from time s to t , i.e.,

@tUB.s; t/ D B.t/UB.s; t/:

For a fixed � > 0, consider the following “distance" on n-particle configura-
tions:

(3.11) d.�; �/ D max
1���d

#
�
i 2 J1; nK W 
i .t0/ 2 I r� .E0/; i 2 Jx�; y�K [ Jy�; x�K

	
;

where �: 1 � x1 � x2 � � � � � xd � n and �: 1 � y1 � y2 � � � � � yd � n, and
an initial time t0 defined in the next lemma. Note that we use the notation d for zd
defined in [5, equation (3.10)].

LEMMA 3.3. Assume the initial estimates (2.7), (2.8), (2.9), and (2.11) hold. We

fix times t0, t1, and the range parameter ` such that

(3.12)  �� � t0 � t1 �
`

n 
� r

 10
:

The matrix Brownian motion .K.s//0�s�t1 defined in Section (2.1)) induces a mea-

sure on the space of eigenvalues and eigenvectors .�.s/;u.s// for 0 � s � t1 such

that, for any � > 0, the following event A holds with overwhelming probability:

(i) The eigenvalue rigidity estimate holds: supt0�s�t1 jms.´/ � mfc;s.´/j �
 .n�/�1 uniformly in ´ 2 D� and supt0�s�t1 j�i .s/ � 
i .s/j �  n�1
uniformly for indices i such that 
i .s/ 2 I �r .E0/.
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(ii) When we condition on the trajectory � 2 A, with overwhelming probabil-

ity, the following holds:

sup
t0�s�t1

jG.s; ´/i i �G.0; ´C smfc;s.´//i i j � C
 2p
n�
;(3.13)

sup
t0�s�t1

����� 1jI jX
i2I

G.s; ´/i i �
1

n
TrG.s; ´/

����� � C 2

nc
C C 4

n�
;(3.14)

uniformly in ´ 2 D� , where b; c are defined in Assumption 2.4.

(iii) Finite speed of propagation holds: for any d there exists Cd ; cd > 0 such

that uniformly, for any function h on the space of d particle configurations

and particle configuration �, which is away from the support of h in the

sense that d.�; �/ �  `, we have for any � in the support of h that

sup
t0�s0�s�t1

US .s
0; s/h.�/ � Cdkhk1nde�cd :(3.15)

PROOF. Statement (i) was proved in [23, theorem 3.3 and 3.5], and (3.13) and
(iii) were given in theorem 2.1 and lemma 3.4 of [5], respectively. For the proof of
(3.14), we decompose

1

jI j
X
i2I

G.s; ´/i i �
1

n
TrG.s; ´/

D 1

jI j
X
i2I

�
G.s; ´/i i �G.0; ´C smfc;s.´//i i

�
C
�
1

jI j
X
i2I

G.0; ´C smfc;s.´//i i �
1

n

X
1�i�n

G.0; ´C smfc;s.´//i i

�
� 1

n

X
1�i�n

�
G.s; ´/i i �G.0; ´C smfc;s.´//i i

�
The second sum is exactly the left-hand side of (2.11), so it is bounded by n�c.
The third sum is just the difference between Stieltjes transforms, and it was proved
in [23, theorem 3.3] is of order at most n"=.n�/ thanks to (3.8). Notice that we
have used mfc;s.´/ D G.0; ´C smfc;s.´// by definition.

The first sum of the last displayed equation is of the same type as the third one
except that the average is over not all entries but a macroscopic fraction of them.
The proof in [23, theorem 3.3], based on a fluctuation averaging lemma, can be
replicated to yield that���� 1jI jX

i2I

�
G.s; ´/i i �G.0; ´C smfc;s.´//i i

����� � n"

n�

with overwhelming probability. This completes the proof of Lemma 3.3. �
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Remark 3.4. The following is an elementary consequence of the above rigidity
estimate (i) together with (3.3). For any t0 � s � t1 and interval I � I r� .E0/ with
jI j �  4=n, we have

C�1jI jn � #fi W 
i .s/ 2 I g C #fi W �i .s/ 2 I g � C jI jn:(3.16)

3.2 Approximation with Short-Range Dynamics

We introduce the notation

S.u;v/I D sup
��I;u�s�v

fs.�/

for the following lemma. For i 2 Z and J � Z, let d.i; J / D infj2J ji � j j:
Finally, from here we assume that the number of particles of the eigenvector mo-
ment flow is even, i.e.,

d D 2m:

LEMMA 3.5. Under the assumptions of Lemma 3.3, consider � 2 A, with A de-

fined in the same lemma. Consider the perfect matching observables fu from (A.3).
Then, for large enough n, for any intervals Jin � fi W 
i .t0/ 2 I r2�.E/g and

Jout D fi W d.i; Jin/ �  `g, any d -particle configuration � supported on Jin, and

any t0 < u < v < t1 we have

j..UB.u; v/ � US .u; v//fu/.�/j

�  4
nju � vj

`

�
S.u;v/Jout

C 1

nc

�
S.u;v/Jout

�d�1
d C 1

`

�
S.u;v/Jout

�d�2
d

�
:

PROOF. We first define, similarly to [5,7], the following flattening operators on
the space of functions of configurations with d points:

.Flata.f //.�/ D
(
f .�/ if � � fi W d.i; Jin/ � ag;
0 otherwise;

By Duhamel’s formula,

..US .u; v/ � UB.u; v//fu/.�/ D
Z v

u

US .s; v/L .s/fs.�/ds:

Notice that d.supp.L .s/fs � Flat `.L .s/fs//; �/ �  `. Therefore by the finite
speed of propagation (3.15) in Lemma 3.3 of US , we have

j.US .s; v/L .s/fs/.�/j D jUS .s; v/Flat `.L .s/fs/.�/j C O.e�c =2/

� max
z�

jFlat `.L .s/fs/.z�/j C O.e�c =2/:(3.17)

where in the last inequality, we used that US is a contraction in L1.
Let z� be a configuration f.i1; j1/; : : : ; .id ; jd /g with support in Jout. In view of

(3.17), we only need to prove that

(3.18) j.L .s/fs/.z�/j �  4
n

`

�
S.u;v/Jout

C 1

nc

�
S.u;v/Jout

�d�1
d C 1

`

�
S.u;v/Jout

�d�2
d

�
:
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We have

L .s/fs.z�/ �
���� X
jj�kj�`

fs.z�jk/
n.�j � �k/

2

����C jfs.z�/j
X

1�p�d;jip�kj�`

1

n.�ip � �k/
2
:

Notice that ip 2 Jout, and thus �ip .s/ 2 I r� .E0/. We denote �q D 2q`=n. From
the local law and a dyadic decomposition we have

X
kWjip�kj�`

1

n.�ip � �k/
2
�

dlog2 n=`eX
qD1

1

�q

X
k

�q

n..�ip � �k/
2 C �2q/

� n

`
;

so that the second term on the right-hand side of (3.18) is bounded by the right-
hand side of (3.17), as desired.

More subtle bounds are required forX
jj�kj�`

fs.z�jk/
n.�j � �k/

2

D
X

jj�kj�`;z�kD0

fs.z�jk/
n.�j � �k/

2
C O

� n

`2

�
sup

u�s�v;��Jout

jfs.�/j

where we used that z�jk � Jout if z�k ¤ 0, and 1=.n.�j � �k/
2/ � 1=.n.`=n/2/

for jj � kj � ` by rigidity; see Lemma 3.3(i). For fixed p, we therefore want to
bound X

jip�kj�`;z�kD0

X
G2G

z�ipk

E.P.G/ j �/
n.�ip � �k/

2
D .I/C .II/

where .I/ corresponds to perfect matchings such that f.k; 1/; .k; 2/g is not an edge,
and .II/ corresponds to perfect matchings with an edge of type f.k; 1/; .k; 2/g.
More precisely,

.I/ D
X

1�q1;q2�d
E

�
P .q1;q2/.p.e/e2Ez�

/
X

jk�ip j>`;z�kD0

piq1k
piq2k

n.�ip � �k/
2

��� ��;
.II/ D E

�
P .p/..p.e/e2Ez�

//
X

jk�ip j>`;z�kD0

pkk

n.�ip � �k/
2

��� ��;
with Ez� the set of all possible edges between between vertices from Vz�, P .p;q/ is a
finite sum of monic monomials of degree d � 2, and P .p/ is a finite sum of monic
monomials of degree d � 1.

To bound .I/, we simply writeX
jk�ip j>`;z�kD0

piq1k
piq2k

n.�ip � �k/
2
D O

�
1

n.`=n/2

X
k

�
p2
iq1k

C p2
iq2k

�� D O

�
n"
jI j
`2

�
;
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where we slightly changed the meaning of pkk (only in the equation above and
the equation below, pkk D P

�2I uk.�/2, i.e., C0 D 0 in (2.6)) and used the
elementary identity

(3.19)
X
k

p2
ik D

X
�2I

ui .�/
2 D O

�
n"
jI j
n

�
:

The above second equality follows from Lemma 3.1. Moreover, with Lemma 3.6,
we have

E
�jP .q1;q2/.p.e/e2Ez�

/j
�� �� D O

�
sup

u�s�v;��Jout

jfs.�/j1N .�/Dd�2
�

D O
��

S.u;v/Jout

�d�2
d

�
;

where we used Hölder’s inequality and Lemma 3.6. This concludes our estimate
for (I).

The term (II) is more complicated to bound. For fixed p and s, let E1 D 
ip�`,

E�1 D 
ip�`�n" , EC1 D 
ip�`Cn" , E2 D 
ipC`, E�2 D 
ipC`�n" , and EC2 D

ipC`Cn" . We also define the contour � as the rectangle with vertices E1 � i `

n
,

E2 � i `
n

. Let

(3.20)

f .´/ D
X

kW
k 62�E�1 ;E
C
2
�

pkk

n.´ � �k/
;

g.´/ D
X

kW
k 62�E�1 ;E
C
1
�[�E�

2
;E
C
2
�

pkk

n.´ � �k/
:

We now assume j´ � �ip j � n�" `
n

. By Cauchy’s formula, we have

f .´/ D 1

2� i

Z
�

f .�/

� � ´
d� D 1

2� i

Z
�

g.�/

� � ´
d�;

where for the second equality we used that, for any �k (and ´) inside � we haveZ
�

d�

.� � �k/.� � ´/
D 0;

from a residue calculus. Define

�int D f´ D E C i� W E D E1 or E2; j�j < n"=ng and �ext D �=�int:

We first bound the contribution due to small �: we have����Z
�int

g.�/

� � ´
d�

���� � n

`

Z
�int

X
k<ip�`�n";
ipC`Cn"<k;

ip�`Cn"<k<ipC`�n"

jpkkj
nj�k � �j :
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We simply bound jpkkj by 1 and obtain that the corresponding integral is at most����Z
�int

g.�/

� � ´ d�

���� � n

`

n"

n

X
k�`

1

n.k=n/
D O

�
n"

`

�
:

We now bound the contribution from �ext. On this domain, we can afford extending
the definition of g to the full sum 1 � k � n, up to an error of order

n"
n

`

Z
�Ext

jpkkj
nj� �E1j

� n"

`
:

We therefore proved

(3.21)

f .´/ � n

`

Z
�Ext

����1n X
1�k�n

pkk

� � �k

����jd�j C n"

`

� n

`

Z
�Ext

�
 4

n Im �
C  

nc

�
jd�j C n"

`
D O.n"/

�
1

`
C 1

nc

�
;

where we used (3.14) in the second inequality. We conclude that @´f .�ip / D
O.n"/n

`

�
1
`
C 1

nc

�
, so that

.II/ D O
� n
`2
C n

`nc

��
S.u;v/Jout

�d�1
d

where we used Hölder’s inequality and Lemma 3.6. This concludes the proof of

(3.18) and the lemma (note that n
`2
.S.u;v/Jout

/
d�1
d D O. n

`2
.S.u;v/Jout

/
d�2
d /). �

LEMMA 3.6. Denote by � the configuration with m particles at site i , m particles

at site j , and no particles elsewhere. Moreover, denote by �.1/ (�.2/ resp.) the

configurations with d D 2m particles on the site i (resp., site j ) and no particles

elsewhere. Then there exists C1; C2; C > 0 depending only on d such that for any

i < j and any time s we have

E.pij .s/
d j �/ � C1f�;s.�.1//C C2f�;s.�

.2//C Cf�;s.�/:

PROOF. From (A.3), we have

(3.22) f�;s.�/ D adE
�
pdij j �

�C X
�C�C
Dd;�<d

b�;�;
E
�
p�ijp

�
iip



jj j �

�
for some coefficients ad > 0, b�;�;
 � 0. From Young’s inequality, for any " > 0
we have

(3.23)
���E�p�ijp�iip
jj �� ����� � �"2

d
E
�
pdij

�� ��C �

d"
E
�
pdii

�� ��C 


d"
E
�
pdjj

�� ��:



RANDOM BAND MATRICES 1553

Equations (3.22) and (3.23) imply

E
�
pdij

�� ��
� f�;s.�/

ad

C
X

�C�C
Dd;
�<d

b�;�;


ad

�
�"2

d

�
pdij

�� ��C �E.pdii j �/C 
E.pdjj j �/
d"

�
:

The result follows by choosing " D ".d/ small enough. �

3.3 Maximum Principle

Iterations of the following proposition will give the main result, Theorem 2.5.

PROPOSITION 3.7. For any eigenvalue trajectory .�.s//0�s�t1 2 A defined in

Lemma 3.3, let f be a solution of the d -particle eigenvector moment flow (2.16)
with initial matrix K.0/. For any C > 0, there exists n0 such that for any n � n0
the following holds. For any intervals Jin � fi W 
i .t0/ 2 I r3�.E0/g, Jout D fi W
d.i; Jin/ � nr= g, and �t; t C u� � �t0; t1� with u > t= , we have

S
.tCu

2
;tCu/

Jin
�  3

��u
r

�1=2
C 1

nt

�
S.t;tCu/
Jout

C  3

nc

�
S.t;tCu/
Jout

�d�1
d

C  3

nt

�
S.t;tCu/
Jout

�d�2
d C n�C :

(3.24)

PROOF. For a general number of particles d , consider now the following mod-
ification of the eigenvector moment flow (2.16). We only keep the short-range
dynamics (depending on the short-range parameter `, chosen later) and modify the
initial condition to be 0 when there is a particle far from Jin:

(3.25)
@sgs D S .s/gs;

gt .�/ D .Av ft /.�/;
t � s � t C u;

where

Av.f / D 3 

nr

X
1
3
nr
 
<a< 2

3
nr
 

Flata.f /:

We can write
Av.f /.�/ D a�f .�/

for some coefficient a� 2 �0; 1� (a� D 0 if � 6� Jout, a� D 1 if � � Jin). We will
only use the elementary property

(3.26) ja� � a� j �
 

nr
d.�; �/;

where the distance is defined in (3.11).
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For any � � Jin, we have

(3.27)

jfs.�/ � gs.�/j
� j.UB.t; s/ft � US .t; s/ft /.�/j C jUS .t; s/.ft � Avft /.�/j

�  4
nu

`

�
S.t;tCu/Jout

C 1

nc

�
S.t;tCu/Jout

�d�1
d C 1

`

�
S.t;tCu/Jout

/
d�2
d

�
C e�c =2;

where we bounded the first term by Lemma 3.5, and the second term by finite
speed of propagation (3.15), since ft0 � Avft0 vanishes for any � such that � �
fi W d.i; Jin/ � nr=3 g (note that  ` � nr=3 ).

In the following we will prove that for large enough n we have

sup
��Jin;tCu

2
�s�tCu

gs.�/

�  

�
nu

`
C `

nr
C  2

nt

�
S.t;tCu/Jout

C  

nc

�
S.t;tCu/Jout

�d�1
d C  

�
nu

`2
C  2

nt

��
S.t;tCu/Jout

�d�2
d C n�C

(3.28)

by a maximum principle argument. Equations (3.27) and (3.28) together give the
expected result (3.24) by choosing

` D n 2.ur/1=2;

which satisfies (3.12) If the left-hand side of (3.28) is smaller than n�C , there
is nothing to prove. If it is greater than n�C by the finite speed of propagation
property (3.15) for any t < s < t C u, the configuration(s) z� such that

gs.z�/ D sup
�
gs.�/

need to be supported in fi W d.i; Jin/ � 3
4
nr
 
g.

From the dynamics (3.25), for any parameter  4=n � � � `=n to be chosen,
we have

@tgs.z�/ D
X

0<jj�kj�`
cjk2z�j .1C 2z�k/

�
gs.z�jk/ � gs.z�/

�
� C

n

X
1�p�d;

kW0<jip�kj�`

gs.z�ipk/ � gs.z�/
.�ip � �k/2 C �2

D 1

n�

X
1�p�d;

kW0<jip�kj�`

Im
gs.z�ipk/
´ip � �k

� 1

n�
gs.z�/

X
1�p�d;

kW0<jip�kj�`

= 1

´ip � �k

(3.29)
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where we define ´ip D �ip C i�. For the second term in (3.29), note that

X
1�p�d;

kW0<jip�kj�`

= 1

´ip � �k
�

dX
pD1

X
kW0<jip�kj�`

�

.�ip � �k/2 C �2

�
dX

pD1

X
kWj�k��ip j��

�

2�2
& n;

where we used (3.16). For the first term in (3.29), we claim that for any fixed p we
have

1

n

X
kW0<jip�kj�`

Im
gs.z�ipk/
´ip � �k

D O. /

�
1

n�
C `

nr
C nu

`

�
S.t;tCu/
Jout

C O. /
1

nc

�
S.t;tCu/
Jout

�d�1
d

C O. /

�
1

n�
C nu

`2

��
S.t;tCu/
Jout

�d�2
d :

(3.30)

For this, we can bound the left-hand side of (3.30) by (3.31) C (3.32) C (3.33)
where

Im
X

kW0<jk�ip j�`

1

n

.US .t; s/Av ft /.z�ipk/ � .Av US .t; s/ft /.z�ipk/
´ip � �k

;(3.31)

Im
X

kW0<jip�kj�`

1

n

.Av US .t; s/ft /.z�ipk/ � .Av UB.t; s/ft /.z�ipk/
´ip � �k

;(3.32)

Im
X

kW0<jip�kj�`

1

n

.Av UB.t; s/ft /.z�ipk/
´ip � �k

:(3.33)

The term (3.31) will be controlled by finite speed of propagation; (3.32) will be
controlled by Lemma 3.5, and (3.33) by the local law.

To bound (3.31), we write

.US .t; s/Avft /.z�ipk/ � .Av US .t; s/ft /.z�ipk/

D 2 

nr

X
nr
2 

<a<nr
 

�
US .t; s/Flataft � FlataUS .t; s/ft

�
.z�ipk/:

For fixed a, let L1 � L2 be defined as L1 D fi W d.i; Jin/ � a �  `g, L2 D fi W
d.i; Jin/ � aC  `g. We consider three cases: z�ipk 6� L2, z�ipk � L1, or neither.

For z�ipk 6� L2, by our definition, FlataUS .t; s/ft .z�ipk/ D 0. By the finite
speed of propagation (3.15), the total mass of US .t; s/Flataft outside L2 is expo-
nentially small. In particular, jUS .t; s/Flataft .z�ipk/j � exp.�c =2/.
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For z�ipk � L1, we have��.US .t; s/Flataft � FlataUS .t; s/ft /.z�ipk/
��

D
��.US .t; s/Flataft � US .t; s/ft /.z�ipk/

��
D
��.US .t; s/.ft � Flataft //.z�ipk/

�� � exp.�c =2/:
We used the finite speed of propagation (3.15) in the last inequality, since ft �
Flataft vanishes for any � supported in fi W d.i; Jin/ � ag.

For the last case, we have z�ipk � L2, and some particle(s) of z�ipk is in L2=L1.
There are at most 2n ` such a. Moreover, since US is a contraction in L1, we
have ��.US .t; s/Flataft � FlataUS .t; s/ft /.z�ipk/

��
� jUS .t; s/Flataft j C

��FlataUS .t; s/FlataC2 `ft .z�ip;k/
��

C
��FlataUS .t; s/.ft � FlataC2 `ft /.z�ipk/

��
� kFlataftk1 C kFlataC `ftk1 C e�c =2:

We bound kFlataftk1; kFlataC2 `ftk1 � S.t;tCu/Jout
. From these estimates, we

have (3.31) �  2 `
nr

S.t0;t0Cu/Jout
.

We now bound (3.32). For jk � ipj � `, z�ipk is supported in fi W 
i .t0/ 2
I r2�.E/g, so that we can apply Lemma 3.5:��.Av US .t; s/ft /.z�ipk/ � .Av UB.t; s/ft /.z�ipk/

��
�
��.US .t; s/ft � UB.t; s/ft /.z�ipk/

��
�  4

nu

`

�
S.t;tCu/Jout

C 1

nc

�
S.t;tCu/Jout

�d�1
d C 1

`

�
S.t;tCu/Jout

�d�2
d

�
:

As a consequence, we have

(3.32) �  4
nu

`

�
S.t;tCu/Jout

C 1

nc

�
S.t;tCu/Jout

�d�1
d C 1

`

�
S.t;tCu/Jout

�d�2
d

�
:

Finally, for (3.33), note that z�ipk is supported on Jout, so that

1

n
Im

X
kW0<jip�kj�`

.Av ft /.z�ipk/
´ip � �k

D 1

n
Im

X
kW0<jip�kj�`

az�ft .z�ipk/C .az�ipk � az�/ft .z�ipk/
´ip � �k

D az�
n

Im
X

kW0<jip�kj�`

ft .z�ipk/
´ip � �k

C O

�
 
`

nr
S.t;tCu/Jout

�
;
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where we used that jaz�ipk � az�j �  d.z�; z�ipk/=.nr/ �  `=.nr/ from (3.26).
In the above imaginary part, the contribution of all k 2 fi1; : : : ; id g is of order

1
n�

S.t;tCu/
Jout

, so that (here k0 is any index not in fi1; : : : ; id g)

1

n
Im

X
kW0<jip�kj�`

ft .z�ipk/
´ip � �k

D 1

n

1

M .z�ipk0/
Im

X
kW0<jip�kj�`

X
G2G

z�ipk

E.P.G/ j �/
´ip � �k

C O

�
1

n�
S.t;tCu/
Jout

�

D .I/C .II/C O

�
1

n�
S.t;tCu/
Jout

�
where .I/ corresponds to perfect matchings for which f.k; 1/; .k; 2/g is not an edge,
and .II/ corresponds to perfect matchings for which f.k; 1/; .k; 2/g is an edge.
More precisely,

.I/ D Im
X

1�q1;q2�d
E

�
P .q1;q2/.p.e/e2Ez�

/
X

kW0<jip�kj�`

piq1k
piq2k

n.´ip � �k/
j �
�
;

.II/ D ImE

�
P .p/..p.e/e2Ez�

//
X

kW0<jip�kj�`

pkk

n.´ip � �k/
j �
�
;

with Ez� the set of all possible edges between between vertices from Vz�, P .p;q/ is a
finite sum of monic monomials of degree n � 2, and P .p/ is a finite sum of monic
monomials of degree n � 1.

To bound (I), we simply write

Im
X

kW0<jip�kj�`

piq1k
piq2k

n.´ip � �k/
D O

�
1

n�

X
k

�
p2iq1k

C p2iq2k
�� D O

�
1

n�
n"
jI j
n

�
:

Here we slightly changed the meaning of pkk (in both equations above and below,
pkk D P

�2I uk.�/2, i.e., C0 D 0 in (2.6)) and used the elementary identity
(3.19). The above second equality follows from Lemma 3.1.

Moreover, with Lemma 3.6, we have

E
�jP .q1;q2/.p.e/e2Ez�

/j
�� �� D O

�
sup

t�s�tCu;��Jout

jfs.�/j1N .�/Dn�2
�

D O
��

S.t;tCu/
Jout

�d�2
d

�
;

where we used Hölder’s inequality and Lemma 3.6. This concludes our bound for

(I), 1
n�

�
S.t;tCu/
Jout

�d�2
d .
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More subtle bounds are required for the term (II).

Im
X

kW0<jip�kj�`

pkk

n.´ip � �k/
D O

�
1

n�
C 1

nc

�
� Im

X
kWjip�kj>`

pkk

n.´ip � �k/
where we used (3.14). This last term can be bounded exactly as between (3.20)
and (3.21), and we obtain

Im
X

kW0<jip�kj�`

pkk

n.´ip � �k/
D O

�
1

n�
C 1

nc

�
;

where we used that � � `=n. This concludes the proof of (3.30).
We define h.s/ D sup� gs.�/. Equations (3.29) and (3.30) yield

h0.s/ � C 

�

��
1

n�
C `

nr
C nu

`

�
S.t;tCu/Jout

C 1

nc

�
S.t;tCu/Jout

�d�1
d

C
�
1

n�
C nu

`2

��
S.t;tCu/Jout

�d�2
d

�
� c h.s/

�

for any t < s < t C u. We now choose � D t= 2, so that u=� >  , and obtain

h.s/ < C 

�
1

n�
C `

nr
C nu

`

�
S.t;tCu/Jout

C C
 

nc

�
S.t;tCu/Jout

�d�1
d

C C 

�
1

n�
C nu

`2

��
S.t;tCu/Jout

�d�2
d C n�C

for any t C u=2 < s < t C u, which is (3.28) and concludes the proof. �

PROOF OF THEOREM 2.5. We proceed by iterating the bound from Proposition
3.7. We are given a small " such that " < a=5 and a largeD > 0, as in the statement
of Theorem 2.5.

We first choose d D b5D="c and define (implicitly, for JiC1)(
s0 D t0;

siC1 D siCt1
2
;

(
J0 D fi W 
i .t0/ 2 I r3�.E0/g;
Ji D fi W d.i; JiC1/ � nr

 
g:

A direct application of Proposition 3.7 together with the bounds n�1Ca � t0 �
t1 � n�ar yields

S
.siC1;t1/

JiC1
�  3.n�a=2 C 2in�a/S.si ;t1/Ji

C  3

nc

�
S.si ;t1/Jout

�d�1
d C  32i

nt0

�
S.si ;t1/Ji

�d�2
d C n�C :

In particular, we have

S
.siC1;t1/

JiC1
� n�"=3S.si ;t1/Ji

provided that �
S.si ;t0/Ji

�1=d � n"=22ip
nt1

C n"=2

nc
:
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This implies that for k D b4"�1c we have����S.sk ;t1/Jk

�1=d ��� � n3"=4p
nt0

C n3"=4

nc
:

For each fixed i , by choosing � as the configuration with d D 2m particles on
the site i and no particles elsewhere, we have jpi i .s/jd � Cdfs.�/. Hence by
Markov’s inequality, the last displayed equation implies that

P

�
9 sk < t < t1 W 1�i .t/2I r4�.E0/jpi i j � n"

�
1

nc
C 1p

nt0

��
� .n"/�d .n3"=4/d � n�D:

Here we used that fi W 
i .t0/ 2 I r4�.E0/g � Jk because k nr
 

< �r for k D b4"�1c
and n large enough.

Finally, by Lemma 3.6, pdij can be estimated in terms ft , pi i , and pjj . Hence
the previous estimate also holds if we replace

1�i .t/2I r4�.E0/jpi i j by 1�i .t/;�j .t/2I r4�.E0/jpij j:

This concludes the proof of the theorem, up to redefining t0 and � by a constant
factor. �

4 Mean-Field Reduction

This section proves Theorem 1.5. We actually just need to prove it when a tiny
GOE regularization is added, as explained in the next paragraph.

4.1 Small Regularization

Consider matrices of type

(4.1) H D H1 CH2 CN�AHG where HG
ij

.d/D .1C 1ij /
1=2 �N .0;N�1/;

where H1 and H2 are defined in (1.15). Our main result in this section is the
following:

THEOREM 4.1. Let A > 10 be any fixed constant. Assume that H is a band matrix

of type (4.1), with bandwidth WN satisfying (1.11).

(i) The eigenvectors are delocalized as in (1.12).
(ii) The eigenvalues satisfy the local semicircle law as in (1.13).

(iii) Fixed energy universality holds as in (1.14).



1560 P. BOURGADE, H.-T. YAU, AND J. YIN

(iv) For any (small) �; � > 0 and (large) D > 0, there exists N0 > 0 such that

for any N � N0 we have

(4.2) P

 �����NW
`CWX
�D`

j j .�/j2 � 1
����� < N� 3

2
aC�

for all 1 � j; ` � N such that j�j j � 2 � �
!
� 1 �N�D;

where a > 0 was given in (1.11) and all indices are defined modulo N .

The same results hold for all submatrices ofH of typeH .k/ D .Hij /i;j2J1;N Knfkg.

The following simple lemma shows that all properties of delocalization only
need to be established for the slightly regularized matrices. It is proved by pertur-
bative arguments.

LEMMA 4.2. Theorem 4.1 implies Theorem 1.5.

PROOF. LetH 0 D H1CH2 have distribution (1.15) andH D H 0CN�AHG,
with respective ordered eigenvalues and eigenvectors �0

k
; 0

k
, �k; k . Let A D

fkHGk1 � N�A�1=2C"g. By Gaussian decay of the entries of HG, for any
"; C > 0, for large enough N we have

(4.3) P .A / � 1 �N�C :

The conclusions (ii) and (iii) of Theorem 1.5 for H 0 therefore follow from the
Hoffman-Wieland inequality:

(4.4)
sup
k

j�k � �0kj1A � N 1=2
�X

k

j�k � �0kj2
�1=2

1A

� N 1=2.Tr.H 0 �H/2/1=21A � N�AC3:

Moreover, the conclusion (i) of Theorem 1.5 also hold for H 0. Indeed, we have
��1j 0

k
.i/j2 � ImG0

i i .�
0
k
C i�/ and the simple inequality

k.H 0 � ´/�1k1 D k.H � ´/�1k1 C O

�
N 2

�2
kH 0 �Hk1

�
obtained by resolvent expansion. From the local law and eigenvector delocalization
for H , for any ´ D E C i�, � > N�1C", E 2 ��2C �; 2 � ��, for any D > 0 we
have P .k.H � ´/�1k1 � N "/ � 1 �N�D for some C > 0 for large enough N .
Moreover, on A we have N 2

�2
kH 0 �Hk1 � N�2, which concludes the proof of

(i) for H 0.
The proof of (iv) is more involved. We want to obtain (4.2) for H 0 for a given

large D > 0. Take A D 4D in (4.1) and denote t D N�A. The perturbation
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formula for the  k.s/’s, eigenvectors of H 0 C sHG associated to eigenvalues
�k.s/’s, is

d

ds
 k.s/ D

X
`¤k

h `.s/;H
G k.s/i

�k.s/ � �`.s/
 `.s/:

On A , we therefore have

(4.5) k k � 0kk1 � N 2

Z t

0

ds

�
1

j�k.s/ � �kC1.s/j
C 1

j�k.s/ � �k�1.s/j

�
:

Consider eigenvalues �k < �kC1 for H , with �.i/
k

2 .�k; �kC1/ an eigenvalue for

the minor H .i/, with associated normalized eigenvector  .i/

k
. Denote

A
.i/

k
D
� X
j��i j<W

�� .i/

k
.�/2

�� > W

10N

�
:

By QUE for H .i/, for any C > 0, for large enough N we have

(4.6) P

� \
i;kW�k2��2C�;2���

A
.i/

k

�
� 1 �N�C :

By a Schur complement as in [25, sec. 4], for any � > 0 we have

P
�fj�kC1 � �kj < �g \A

.1/

k
\ � � � \A

.N/

k

�
� NP

����
 �H .1/; 
.1/

k

�j < �pN g \A
.1/

k

�
where �H .i/ D .Hij /j¤i . Take � D N�2D . On A

.1/

k
, h �H .1/; 

.1/

k
i is a random

variable with density bounded by N 2, so that

P
�fj�kC1 � �kj < �g \A

.1/

k
\ � � � \A

.N/

k

� � N�2DC4:

Moreover, similarly to (4.4), we have sup0�s�t j�k.t/ � �k.s/j1A � N�AC3,
which together with the previous equation gives

(4.7)
P
�fj�kC1.s/ � �k.s/j < � for some 0 < s < tg \A

.1/

k
\ � � � \A

.N/

k
\A

�
� N�2DC4 CN�AC3:

From equations (4.3), (4.5), (4.6), and (4.7), for any C > 0 we have, for large
enough N ,

P
�k k � 0kk1 < N�AC2C2D

� � 1 �N�2DC4 �N�AC3 �N�C :

This concludes the proof of QUE for  0
k

, knowing QUE for  k . �
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4.2 Notations

We now explain the ideas for the proof of Theorem 4.1. We start with the follow-
ing definition, which generalizes band matrices by allowing diagonal perturbations.

DEFINITION 4.3 (Definition of H g
�

). For any positive constant � and any g 2 RN ,

H� and H
g
�

will denote real symmetric N � N matrices satisfying the following
properties.

The matrix H� is centered, it has independent entries up to the symmetry con-
dition that satisfy (1.8) and (1.9) and is of the form

(4.8) H� D
�
A� B�
B D

�
;

where A� is a W �W matrix and

Var..H� /ij / D .s� /ij D sij �
�.1C �ij /

W
1i;j2J1;W K;

where sij D f .i � j / and
P

x2ZN f .x/ D 1.
The matrix H g

�
is defined by

(4.9)
�
H

g
�

�
ij
WD .H� /ij �gi�ij ; H

g
�
DW
�
A

g
�

B�

B Dg

�
; g D .g1; g2; : : : ; gN /:

We denote the eigenvalues and eigenvectors of H g
�

by �g
k

and

 
g
k
D
 

w
g
k

v
g
k

!
where w

g
k
2 RW :

In the special case gj D g1j>W , we will denote H
g
�

by H
g
�

, and for � D 0 we

abbreviate H g
�

(resp., Hg
�

) by H g (resp., Hg ).

In fact, the matrices H g we consider will always be of type Hg , up to a translation
of the basis indices mod N .

We now define some curves, illustrated in Figure 4.1. The eigenvector equation
H g 

g
k
D �

g
k
 

g
k

immediately implies that

.Ag � Bg;�.Dg � �
g
k
/�1Bg/w

g
k
D �

g
k

w
g
k
:

Hence we will consider the eigenvector equation

(4.10) Q
g
eu

g
k
.e/ D �

g
k
.e/u

g
k
.e/; Q

g
e WD .Ag � Bg;�.Dg � e/�1Bg/;

where �
g
k
.e/ and u

g
k
.e/ are eigenvalues and normalized eigenvectors. From now

on, we assume that k is an index in the bulk of the spectrum for H g, i.e., for some
� > 0; �N < k < .1 � �/N .

Since the matrix elements have Gaussian components (4.1), it is easy to check
that the eigenvalue flows g ! �

g
k

are smooth and nonintersecting with probabil-
ity 1. Assuming that the function g ! e D �

g
k
C g has a regular inverse (for the
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existence of such an inverse, see Section 4.7), for any e close enough to �k , there
exists a g such that e D �

g
k
C g, so that we can define

Ck.e/ D �
g
k
:

The curves .Ck.e//1�k�N are labeled in increasing order by their intersections
with the diagonal C .e/ D e. We refer to [4, equation (4.16)] for a detailed discus-
sion of the domain of Ck .

We defined �i .e/ (1 � i � W ), the eigenvalue of Qe D Q
gD0
e . A simulation

of the curves e ! �.e/ is given in Figure 4.1. Since �i .e/ is also an eigenvalue
of H e��i .e/, it is equal to Cj .e/ for some j . We follow the convention in [4]
to denote k0 2 J1;W K to be the index given by the relation �k0.e / D Ck.e /.
Here k0 D k0.e/ depends on the energy e, and �k0.e/.e/ is increasing in k. As
e approaches an eigenvalue of D, one eigenvalue from �.e/ tends to �1. The
other eigenvalues follow the smooth curves Ck and the labels k0.e/ gets shifted by
�1 whenever e crosses an eigenvalue of D. Since the curve Ck passes through
.�k; �k/, we have

(4.11)
H k D �k k; �k0.�k/ D �k;  k D

�
wk

vk

�
;

Q�kuk0 D �k0uk0 ; uk0.�k/ D
wk

kwkk2
:

4.3 Outline of Proof of Theorem 4.1

We explain the main steps of the proof, with QUE for mean-field blocks, QUE
for H from (4.1), and its application to local law, universality, and delocalization.

Step 1. QUE for mean-field blocks Q
g
e. Remember the definition of H from

(4.1) and denote �H D .1 C N�ANC1
N

/�1=2H . Consider a parameter � D T D
N�c where c > "m is defined in (4.22). Then, thanks to the Gaussian matrix H2

defining H , we can write

�H D HT C
p
T

�
HG
W 0

0 0

�
for some HT as defined in (4.8), and HG

W is a W � W GOE matrix. To this HT

we associate H g
T from formula (4.9), and denote V D A

g
T � Bg;�.Dg � e/�1Bg:

Consider the flow

(4.12) K
g;e
T .t/ D V CZ.t/

as in (2.1). Notice that we have the equality in distribution

(4.13) K
g;e
T .t/

.d/D K
g;e
T�t .0/ D A

g
T�t � Bg;�.Dg � e/�1Bg:

In particular, the distributions of Qg
e D Ag � Bg;�.Dg � e/�1Bg from (4.10) are

the same as for Kg;e
T .T /.
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We therefore obtain QUE for the mean-field blocks Qg
e by using Theorem 2.5,

i.e., by interpreting this matrix ensemble as the result of the flowK.T / D K
g;e
T .T /.

As an hypothesis for Theorem 2.5, some estimates on V D K.0/ are necessary and
given in Section 4.4.

Step 2. QUE for H g. To simplify the notations we set g D 0, but QUE will be
obtained similarly for any small enough g. For the proof, we combine an "-net
argument with perturbations of eigenvectors.

For this, we first need to choose good points for our net. Let M D NC with C a
large constant that will be chosen in the rigorous proof. We will prove that there is
another large number C 0 such that for each n 2 Z fixed such that En D nN�C 0 2
��2C�; 2���, there is a deterministic en 2 �En; EnC1� (i.e., the choice of en may
depend on the law of D but is independent of the random matrix elements of D)

inf
j

���Dj � en
�� �M�1

with high probability, where the �Dj ’s are eigenvalues of D (recall that �j denotes
an eigenvalue of H ). In other words, the bulk eigenvalues of D will stay away
from the grid points .en/n2Z by at least N�C : the norm of Qen is polynomially
bounded, a hypothesis necessary to prove QUE by flow methods.

We now consider QUE for these good points .en/n2Z. Let J be the W � W

matrix defined by

(4.14) .J /ij D �ij � 11�i�W=2:

By the QUE property for mean-field blocks (see Lemma 4.8) for all n and l satis-
fying j�l.en/ � enj � W �1 we have

(4.15)

����kJ � ul.en/k22 �
1

2

���� � N 1=2C�

W
C N

"m
2
C�

W 1=2

with overwhelming probability, where � > 0 is an arbitrarily small positive con-
stant and "m is defined in (1.8).

For a given bulk index k, let ze D supnfen W en < �kg. Recall that Ck.�k/ D �k
and k0 2 J1;W K is the index given by the relation �k0.e/ D Ck.e/ for all e, as
explained in Section 4.2. By the eigenvector perturbation formula for the matrix
Qe, we have

(4.16)
d

de
uk0.e/ D

X
`¤k

u`0.e/

Ck.e/ � C`.e/

�
u`0.e/; B�

1

.D � e/2
B u

¯k
0.e/

�
:

Notice that we used the labeling associated with the curve C since Ck.e/ is con-
tinuous, i.e., the label k; ` does not change as e pass through the eigenvalues of D.
However, the label k0 for the eigenvector depends on e.

Our goal is to approximate uk0.�k/, which is proportional to the first W com-
ponents of the eigenvector  k of H , by the eigenvector uk0.ze/ which satisfies the
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QUE by (4.15). Integration gives

(4.17) kuk0.ze/ � uk0.�k/k �

N�C 0

sup
�k�e�ze

X
`¤k

1

jCk.e/ � C`.e/j

�����u`0.e/; B� 1

.D � e/2B uk0.e/

�����:
We will show that for some C1 > 0 the following two estimates hold with high
probability.

(i) Level repulsion: for fixed k we have

min
e2� ze;�k�

min
`W`¤k

jCk.e/ � C`.e/j � N�C1=2:

(ii) A consequence of the weak uncertainty principle from Section 4.6,

sup
�k�e�ze

�����u`0.e/; B� 1

.D � e/2B uk0.e/

����� � NC1=2:

If these two bounds hold then (4.17) gives stability of the eigenvector under pertur-
bation in e, provided that C 0 � C1. Delocalization and QUE of uk0.ze/ therefore
imply the same properties for uk0.�k/.

Thus, denoting by "N the right-hand side of (4.15) and

Xn D
X

1�i�W=2

j k.i C nW=2/j2;

we have

(4.18)
X1

X2
D 1C O."N /

with overwhelming probability. Now we can shift the indices by W=2 and repeat
the same argument, so that for any 1 � ` < m � 2N=W , we have

X`

Xm
D .1C O."N //

m�` D 1C O

�
N

W
"N

�
:

provided that N
W
"N D o.1/. Summing over ` for fixedm gives, with overwhelming

probability,

(4.19)
N

W
Xm D 1

2
C O

�
N

W
"N

�
:

This concludes the outline that QUE for the eigenvector  k holds, when N
W
"N D

o.1/.

Step 3. Applications of QUE. We successively outline the proofs of delocaliza-
tion, universality, and local law for H from (4.1).

Delocalization for the mean-field blocks Qg
e holds thanks to a priori resolvent

estimates from Section 4.4, and regularization of the resolvent by Dyson Brownian
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motion, as in (3.13). By stability as in (4.17), this delocalization is extended to
uk0.�k/. As

..uk0.�k//.i//1�i�W D . k.i//1�i�W =k kkL2.J1;W K/;

delocalization for  k follows from both delocalization of uk0.�k/ to the QUE es-
timate (4.19) about k kkL2.J1;W K/.

For universality, remember that for any e, Ck.e/ D �k0.e/ denotes the eigen-
values of Qe, and that the intersection points of the curves e ! �k.e/ with the
diagonal e D � are eigenvalues forH (see Figure 4.1). Thus �j can be determined
by the spectrum �.e/ for a fixed e, and the slope of the curves e ! �k0.e/. On
the one hand, �.e/ follows GOE statistics as a consequence of [22]. On the other
hand, a simple calculation yields

@eCk.e/ D 1 � 1PW
iD1

�� g
k
.i/
��2 ;

where  g is the corresponding eigenvector of Hg with g the solution to e D
�
g
k
C g. From the QUE (4.19) for Hg , all slopes are equal at leading order, so

that the statistics of �j will be given by those of �k up to some trivial scaling. In
the same way, the local law for H follows from a local law for Qe by parallel
projection.

e

(A) A simulation of eigenvalues of
Qe D A�B�.D�e/�1B , i.e., func-
tions e 7! �j .e/. Here N D 12 and
W D 3. The �i ’s are the abscissas
of the intersections with the diago-
nal.

e�0�

(B) Framed region of Figure (a) for
largeN;W : the curves �j are almost
parallel, with slope 1 � N=W . The
eigenvalues ofQe andH are related
by a projection to the diagonal.

FIGURE 4.1. The idea of mean-field reduction, from [4]: universality of
gaps between eigenvalues for fixed e implies universality on the diagonal
through parallel projection. For e fixed, we label the curves by �k.e/.
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4.4 Generalized Resolvent Estimates

In this subsection, we do not need to assume (1.8).
Recall that we have added a GOE regularization of size N�A in (4.1). Since

N�A is tiny, all resolvent estimates cited in this paper for matrices are valid after
adding this small regularizing GOE. A formal proof can be obtained by the standard
resolvent identity .B � C/�1 D B�1 C B�1CB�1 C � � � , which we will skip. In
this section, all results will be proved without this regularization so as to simplify
the notations.

Our first goal is to show that Kg;e
T;t (4.13) is .��; ��; r/-regular at e D E0, in the

sense of Assumption 2.3, for some range of t . The precise choice of the parameters
r; T; ��; �� will be given in (4.22). Recall the matrix H g

T;t is defined by

H
g
T;t D

�
A

g
T CZt B�
B Dg

�
As in (1.4), define the “generalized resolvent" of H g

T;t by

G
g
T;t .´; e/ D

�
H

g
T;t �

�
´IW 0

0 eIN�W

���1
:

The distribution of H g
T;t is the same as H g

T�t defined in (4.9), so we will also

denote Gg
T;t .´; e/ by Gg

T�t .´; e/.
Clearly, the W � W component of Gg

T;t .´; e/ is the resolvent .Kg;e
T�t � ´/�1.

We will state estimates on this generalized resolvent in Theorem 4.5, an important
input for our mean-field reduction method. The proof appears in the companion
papers [6, 37]. On the one hand, the absence of imaginary part on most of the
diagonal elements of the generalized resolvent is a major obstacle to estimate it. On
the other hand, Theorem 4.5 assumes � D Im ´ is large (almost of order 1), which
is a sufficient input to apply Theorem 2.5 and obtain quantum unique ergodicity.

Define M �;g
i .´; ź/ as the solution of the self consistent equation�

M
�;g
i

��1
.´; ź/ D �.ź�´/1i>W �´�gi�

X
j

.s� /ijM
�;g
j .´; ź/; ´; ź 2 CC[R

with the constraint that

M
0;0
i .ź; ź / D msc.ź C i0C/;

the Stieltjes transform of the semicircle law. For simplicity of notations, we denote
by M �;g.´; ź/ the matrix with entries

M
�;g
ij WDM

�;g
i �ij :

We will show that M �;g.´; ź/ is the limit of the generalized resolvent Gg
�
.´; ź /.

For this purpose, we first collect basic properties of M in the following lemma,
which is proved in [6].
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LEMMA 4.4. Assume jRe źj � 2 � � for some � > 0. There exist c; C > 0 such

that the following hold:

(i) Existence and Lipschitz continuity. If

(4.20) � C kgk1 C j´ � źj � c;

then M
�;g
i .´; ź/ exists and

max
i

��M �;g
i .´; ź/ �msc.ź C i0C/

�� � C.� C kgk1 C j´ � źj /:

If, in addition, we assume �0 C kg0k1 C j´0 � źj � c, then

max
i

��M � 0;g0

i .´0; ź/ �M
�;g
i .´; ź/

�� � C
�kg � g0k1 C j´0 � ´j C j�0 � �j�:

(ii) Uniqueness. The vector M
�;g
i .´; ź/ .1 � i � N/ is unique under the

constraints (4.20) and

max
i

��M �;g
i .´; ź/ �msc.ź C i0C/

�� � c:

Since sij from (1.6) is a periodic function of i � j , by the uniqueness of the

previous lemma, we have M �;0
i .´; ź/ DM

�;0
W�i .´; ź/; so that

(4.21)
W=2X
iD1

M
�;0
i .´; ź/ D 1

2

WX
iD1

M
�;0
i .´; ź/:

This equation will be necessary to obtain the averaged QUE estimate for Qg
e in

(4.28). Our main results on the generalized resolvent ofH g
�

is the following, proved
in a companion paper.

THEOREM 4.5 (Generalized resolvent estimate). Recall ��; ��, and r from As-

sumptions 2.3 and 2.4. Suppose these parameters are of the form

(4.22)
�� D N�"� ; �� D N�"� ; r D N�"�C3"� ;

T D N�"�C"� ; 0 < "� � "�=20;
where T is a new parameter used in the equation (4.24) below. Assume that

(4.23) logN W > max

�
3

4
C "�;

1

2
C "� C "�

�
:

For any small �; � > 0 and large D, uniformly in jej < 2 � �, for large enough N

the following holds. For any deterministic ´, �, and g satisfying

(4.24) jRe ´ � ej � r; �� � Im ´ � ��; 0 � � � T; kgk1 � W �3=4;
we have (we denote kAkmax D maxi;j jAij j)

(4.25) P

�

Gg
�
.´; e/ �M �;g.´; e/




max � N �

�
N 1=2

W
C 1p

W Im ´

��
� N�D:
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The following corollary is an immediate consequence of the above generalized
resolvent estimate, the deterministic Lemma 4.4, and (4.21). In the statement, we
use the notation Ie;r D .e � r; e C r/ as in (2.13).

COROLLARY 4.6. We follow the assumptions and conventions of Theorem 4.5.

Then for any ´ D E C i� with E 2 Ie;r and �� � � � ��, any t satisfying

0 � t � T and any fixed (large) number D > 0 the following statements hold for

N large enough:

(4.26) P

�
9E 2 Ie;r

��Im �
K

g;e
T�t � ´

��1
kk

�� � 2

W
Im Tr

�
K

g;e
T�t � ´

��1� � W �D;

P

����� 1W Tr
�
K

g;e
T�t � ´

��1 �msc.´/

���� � N�"�=2
�
� W �D;(4.27)

(4.28) P

�
max

E2Ie;r

���� 1W X
1�k�W=2

�
K

g;e
T�t � ´

��1
kk
� 1

2W
Tr
�
K

g;e
T�t � ´

��1����
� N �

�
N 1=2

W
C 1p

W Im´

��
� W �D:

In particular, K
g;e
T�t satisfies the regularity assumptions (2.9), (2.10), and (2.11) in

the range 0 � t � T .

Remark 4.7. This corollary gives control of the error in QUE for mean-field blocks
and therefore controls the range of W for which delocalization can be proved.

More precisely, assume "� D 0 to simplify. The error N�c in Assumption 2.4,

which governs the error in Theorem 2.5, is of order N�c � N 1=2

W
, from (4.28).

In order to patch this estimate to get QUE for the band matrix H , we will need
N
W
� N 1=2

W
� 1. This explains our condition W � N 3=4.

However, the error
p
N
W

in (4.28) is taken from (4.25); this error in (4.28) usually
can be improved by taking into account the average of the index k. We believe that
the key error term in Theorem 2.5 comes from the last term in (2.14). If we take t0
close to 1 and replace n by W , this error is of order W �1=2. We therefore expect
that for N

W
� 1
W 1=2 � 1, i.e., W � N 2=3, the QUE for band matrices holds. If we

additionally assume that these errors associated to different blocks are centered and
asymptotically independent, then the total error for the QUE of the band matrix H
would be .N

W
/1=2 � 1

W 1=2 , which is much smaller than 1 when W � N 1=2.

4.5 Eigenvector and Eigenvalue Estimates for Mean-Field Blocks

The following lemma concerns the QUE and related properties of the W � W

matrix Qg
e from (4.10). It is an important building block for the proof of Theorem

4.1.
For the statement, recall the notations from Section 4.2. In particular, the matrix

Q
g
e and its eigenvalues and eigenvectors �g

k
.e/ and u

g
k
.e/ are defined in (4.10).
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LEMMA 4.8. Let H satisfy the assumptions in Theorem 4.1 and �; � > 0 be small

constants. For e 2 R, 1 � k � W , and C > 0, denote by � the set

(4.29) �.k; e; C; g/ WD �jDg � ej � N�C 	 \ ����g
k
.e/ � e

�� � W �1	:
Uniformly in deterministic jej � 2 � �, the following statements hold.

(i) Delocalization. For any C;D > 0, for N large enough, we have

(4.30) max
kgk1�W �3=4

P
��

u

g
k
.e/



21� W �1C�	 \ �.k; e; C; g/
�
0 � N�D:

(ii) Level repulsion. For any C;D > 0, there exists N0 D N0.C;D/ such that

for N � N0.C;D/ and for any x > 0 we have

max
k

max
kgk1�W �3=4

P

�n���g
k�1.e/ � �

g
k
.e/

�� � x

W

o
\ �.k; e; C; g/

�
� W �x2�� CN�D:

(4.31)

(iii) QUE. Recall that "m is defined in (1.11) and J in (4.14). For any C;D > 0

for N large enough,

(4.32) max
kgk1�W �3=4

P

������kJ � u
g
k
.e/k22 �

1

2

���� � N 1=2C�

W
C N

"m
2
C�

W 1=2

�
\ �.k; e; C; g/

�
� N�D:

(iv) Local law. Take g D 0. There exists " > 0 that does not depend on � such

that for any C;D > 0 and for sufficiently large N we have

(4.33)

P

�n
sup

0�e0�e�W �1C"

����#fk W �k.e/ 2 �e; e0�g �W

Z e0

e

�sc.x/dx

���� � W �

�
\�jD � ej � N�C 	� � N�D:

Notice that for � < ", we have W � < W
R eCW �1C"

e �sc.x/dx.

Remark 4.9. The constraint j�g
k
.e/ � ej � W �1 in (4.29) can be replaced by

j�g
k
.e/ � ej � W �1C" for some " > 0, with little change in the proof. In the

application of this lemma in our paper, we only need to use AW �1 for any large
fixed constant A.

PROOF. Recall the operator Kg;e
T;t in (4.13) and ��, ��, r , and T in (4.22). De-

note the eigenvalues and eigenvectors of Kg;e
T .t/ by �T

k
.t/ and uT

k
.t/. Hence the

distributions of the eigenvalue �g
k
.e/ and eigenvector u

g
k
.e/ of Qg

e are given by

�
g
k
.e/

.d/D �k;T .t/; u
g
k
.e/

.d/D uk;T .t/:
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By definition of Kg;e
T .t/, it is trivial to prove that for any C0 > 0 there exists C1

such that

(4.34) 1jDg�ej�N�C0kKg;e
T .t/k � W C1

holds with a very high probability for any 0 � t � T . Corollary 4.6 and (4.34)
imply that Kg;e

T .t/ is .��; ��; r/-regular (Assumption 2.3) at E0 D e for any
0 � t � T (under the condition 1jDg�ej�N�C0 ). In addition, the conditions in
Assumption 2.4 are guaranteed by (4.26) and (4.28). By Theorem 2.5, for any
small " > 0, with overwhelming probability we have����

J � u

g
k
.e/



2
2
� 1

2

���� � W "

�
N 1=2

W
C .WN�"�C"�/�1=2

�
;

where we have used T defined in (4.22). We now choose "� D "mC " and "� D ".
For small enough ", thanks to (1.11), the constraint (4.23) is satisfied. Together
with the above equation, this proves (4.32). Moreover, by (3.13), .Kg;e

T;t � ´/�1i i is
uniformly bounded for ´ 2 D� and this implies (4.30).

To prove (4.31), we need a level repulsion result from [23].

LEMMA 4.10 (Theorem 3.5 and 3.6 of [23]). Let �i;t denote the eigenvalues of

K.t/ (2.1) with V .��; ��; r/-regular at E0 and bounded as in Definition 2.3. As-

sume that there exists c < 1 such that

(4.35) jlog ��j � cjlog ��j:
Let � > 0. Then for large enough N and for any x > 0 we have

max
t2T!

P
��j�i;t �E0j � W �1	 \ �j�i;t � �i�1;t j � W �1x

	� � W �x2�� ;

where T! is defined in (3.1).

We now apply Lemma 4.10 to the flow (4.12). The condition (4.35) is trivially
verified by the choice of "�; "� in Lemma 4.5. Hence Lemma 4.10 implies the level
repulsion estimate (4.31).

It remains to prove (4.33). From Lemma 3.3(i) applied to K0;e
T .t/ at time t D T ,

we have

P

��
sup

0�e0�e�W �1C"

����#�k W �k.e/ 2 �e; e0�
	 �W

Z e0

e

�fc;T .x/dx

���� � W �

�
\ fjD � ej � N�C g

�
� N�D:

We therefore just need to prove

(4.36)

�����
Z e0

e

�fc;T .x/dx �
Z e0

e

�sc.x/dx

����� � W �1C� :



1572 P. BOURGADE, H.-T. YAU, AND J. YIN

Recall the following relation between mfc;t and V :

(4.37) mfc;t .´/ D mV .´C tmfc;t .´// D
1

W
Tr.V � ´ � t mfc;t .´//

�1

where V D A
g
T � Bg;�.Dg � e/�1Bg D K

g;e
T . For ´ D E C i� with jE � ej � r

and �� � � � ��, (4.27) implies that

mfc;0.´/ �msc.´/ D
1

W
Tr.V � ´/�1 �msc.´/ D O.N�"�=2/

holds with high probability. Similarly, by (4.27) and (4.37), for any t � 0 we have

(4.38)
mfc;t .´/ �msc.´C t mfc;t .´//

D 1

W
Tr
�
V � ´ � t mfc;t .´/

��1 �msc.´C tmfc;t .´// D O.N�"�=2/

provided that

(4.39)
�� � Im.´C tmfc;t .´// D �C t Immfc;t .´/ � ��;

jRe.´C tmfc;t .´// � ej � r:

For t D T as defined in Lemma 4.5, we have

(4.40) �� � T � ��; T � r=2; jE � ej � r=2; 0 � � � ��=2:

Moreover, as proved in [23, lemma 7.2], for any 0 < � < ��, we have

(4.41) c � Immfc;T .´/ � C 0; jmfc;T .´/j < C 0 logN;

for some positive constants c; C 0. Equations (4.40) and (4.41) show that the as-
sumption (4.39) holds for t D T , and the proof of (4.36) is concluded by taking
� D 0C in (4.38). �

4.6 Regularity and the Weak Uncertainty Principle

The GOE component in (4.1) implies the following regularity property and weak
uncertainty principle. This lemma does not require the decomposition (1.15), i.e.,
the Gaussian divisibility for the band matrix elements; we state it under this as-
sumption for simplicity.

LEMMA 4.11. Let H be as in Theorem 4.1 for some fixed A > 10. Let � 2 RN be

defined by

�i D 1W�i�N :
Recall the notatons from Definition 4.3. Then there exists a (large) constant Cr D
Cr.A/ (the subscript r is used to indicate that the constant is related to the regu-

larity) such that for any fixed D > 0

(4.42)
max

kgk1�W 0:9=N
P

�
9 t W jt j � 20; k 2 ZN such that���gCt�

k

�� � 20;


w

gCt�
k



2
2
� N�Cr

�
� N�D;
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(4.43)

max
kgk1�W 0:9=N

P

�
9 e W jej � 10;

B�
1

.D g � e/2
B � NCr

�
B�

1

.D g � e/
B

�2
CNCr

�
� N�D:

The proof of this lemma follows the one for [4, proposition 3.1]. Lemma 4.11
is weaker in the sense that the error N�Cr was originally given by order 1 quan-
tities in [4]. In addition, [4, proposition 3.1] applies to any approximate eigenvec-
tor without assuming the small GOE regularization N�AHG. On the other hand,
Lemma 4.11 works for W � N 3=4Cc (in fact, W � N 1=2Cc is enough), while [4]
required W D �.N/.

PROOF OF LEMMA 4.11. We first note that 0:9 in (4.42) and (4.43) can be re-
placed by any fixed number less than 1 in the following arguments.

We will first prove the following form of an uncertainty principle: approximate
eigenvectors for Dg have some weight on the first W coordinates in the sense that
there exists C > 0 such that for any fixed D > 0,

(4.44)
max

kgk1�W 0:9=N
P

�
9v 2 RN�W with kvk1 D 1; e 2 R;

kB�vk2 C k.Dg � e/vk2 � N�C
�
� N�D:

We first consider B�v. Thanks to the component N�AHG in (4.1), for any
fixed v and 1 � n � W , there is an a0 independent of HG such that .B�v/n D
a0CN�A�n � v with �1; : : : ; �W having independent Gaussian entries of variance
order 1=N . Thus there exists C > 0 such that for any kvk2 D 1, we have

P
�j.B�v/nj � N�C � � 1=2

for all 1 � n � W . Taking the intersection of these independent events, we have
proved that there exist C > 0 and c > 0 such that for any v as above,

(4.45) P
�kB�vk2 � N�C � � e�cW :

The matrix D in H is itself a band matrix of size N � W and band width W .
Denote by �D

k
the eigenvalues of D. The local law in [17, theorem 2.1] was estab-

lished up to the scale W �1C� for any constant � > 0, strictly speaking for random
band matrices satisfying

P
j sij D 1. For D, this assumption is violated for i in a

set of size at most 2W , but [17, theorem 2.1] still holds by elementary adjustments
left to the reader. This theorem implies in particular that with probability 1�N�D

(4.46) max
e2R

#
�
k; �D

k
2 �e; e CW �1C� �

	
NW �1C� � 10:

Denote by �D
g

k
and  Dg

k
, 1 � k � N � W , the eigenvalues and eigenvectors of

Dg. A trivial bound on the eigenvalue perturbation gives j�Dg

k
� �D

k
j D kgk1 �
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W 0:9=N; so that �D
g

k
2 �e; eCN�1� implies �D

k
2 �e�W 0:9=N; eC 2W 0:9=N �.

Hence with high probability we have���k W �Dg

k 2 �e; e CN�1�
	�� � ���j W �Dj 2 �e �W 0:9=N; e C 2W 0:9=N �

	��
� 10W 0:9;

where we have used (4.46) and W 0:9=N � W �1C� . Hence for any D > 0, for
large enough N we have

P
�9e 2 R; ���k W �Dg

k 2 �e; e CN�1�
	�� � 30W 0:9

� � N�D:

As a consequence, if we define Se D spanf Dg

k
W �Dg

k
2 �e; e C N�1�g, then

dim.Se/ D O.W 0:9/ with high probability. For such an Se of dimension O.W 0:9/,
we can choose a finite set N in the unit sphere of Se with jN j D NO.W 0:9/ such
that for any v in the unit sphere there is a p 2 N such that jv � pj � N�C�1
with C being the constant in (4.45). Together with (4.45) and the fact that kBk �
N holds with very high probability, we obtain that there exists C > 0 such that for
any fixed D > 0,

P
�9v 2 Se; kB�vk2 � N�C � � N�D;

where we have used e�cWNO.W 0:9/ � e�c0W for some c0 > 0. Therefore there
exists C > 0 such that for any fixed e and D > 0, for large enough N we have
P .Ae/ � N�D where

(4.47) Ae D
�9v 2 RN�W with kvk D 1; kB�vk2 C k.Dg � e/vk2 � N�C 	:

By union bound, we also have P .
T

e2N�2CZ;jej<NC Ae/ � N�D . Moreover,

kDgk � NC with high probability, so that (4.44) follows easily.
We now show how (4.42) follows from (4.44). By definition DgCt� D Dg � t

and AgCt� D Ag, so the eigenvector equation is

Agw
gCt�

k
C B�v

gCt�

k
D �

gCt�

k
w

gCt�

k
;

Bw
gCt�

k
C .Dg � t /v

gCt�

k
D �

gCt�

k
v

gCt�

k
:

If kw
gCt�

k
k2 � N�C for some C > 0, then kAgw

gCt�

k
k C kBw

gCt�

k
k � N�C=2

with very high probability. Hence v
gCt�

k
, after normalization, realizes the condi-

tion (4.47) with e D t C �
gCt�

k
. Therefore, (4.42) follows from (4.44).

We now prove (4.43). The event in (4.43) means that for some normalized
v 2 RN�W and jej < 10,

(4.48)





 1

.Dg � e/
Bv






2

� NCr

�



B� 1

.Dg � e/
Bv






2

C 1

�
:
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Denoting zv D .Dg � e/�1Bv=k.Dg � e/�1Bvk2, it follows from (4.48) that

k.Dg � e/zvk2 D
kBvk2

k.Dg � e/�1Bvk2
� kBvk2
NCr

�

B� 1
.Dg�e/Bv




2
C 1

� � N�CrkBvk2;

kB�zvk2 D
kB�.Dg � e/�1Bvk2
k.Dg � e/�1Bvk2

� N�Cr :

Since kBkop � N with high probability, zv realizes the event (4.47), so that (4.44)
implies (4.43). �

4.7 Proof of Theorem 4.1

We make rigorous our proof sketch from Section 4.3. We consider the full band
matrix H , the proof for the minors H .k/ being the same up to trivial adjustments.

Recall the notations from Section 4.2. There, we assumed that the map g !
e D �

g
k
C g has a regular inverse, which enables us to define the curve Ck.e/ D

�
g
k

. To prove this, a simple perturbation calculation yields that @.�g
k
C g/=@g DPW

iD1
�� g

k
.i/
��2 By (4.42),

�� g
k
.i/
��2 � N�Cr for all jgj < 20 for some constant

Cr > 0, with high probability. Thus the invertibility is proved with high proba-
bility, and from now on we shall restrict ourselves to this case. By differentiating
w.r.t. g in the identity Ck.�

g
k
C g/ D �

g
k

, we have

(4.49)

���� @@eCk.e/

���� D ����1 � � WX
iD1

�� g
k
.i/
��2��1���� � NCr :

We now complete the proof of Theorem 4.1, successively considering QUE for
some small mean-field matrices, then QUE and delocalization for band matrices,
the semicircle law, and universality.

Part 1A: QUE for a small matrix. We will prove that a slightly more general form
of (1.12) holds for eigenvectors  g of H g with any kgk1 � W �3=4. But for
simplicity, we present the proof for g D 0, and point out the modification for the
general case whenever it is needed.

We will prove the following delocalization and QUE for the eigenvector uk0.�k/

of Qg
�k

defined in (4.10):

(4.50)
P

�
9k 2 J1;W K; j 2 ZN W j�j j � 2 � �; �k.�j / D �j ;

kuk.�j /k21 � W �1C�
�
� N�D;
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(4.51)

P

�
9k 2 J1;W K; j 2 ZN W j�j j � 2 � �; �k.�j / D �j ;����kJ � uk.�j /k22 �

1

2

���� � N
1
2
C�

W
C N

"m
2
C�

W 1=2

�
� N�D:

The difference between (4.50)–(4.51) and (4.30)–(4.32) is the randomness of
their arguments, i.e., e in (4.30)–(4.32) is replaced by �j in (4.50)–(4.51). To
prove (4.50) and (4.51), our basic strategy is combining an "-net argument with a
perturbation theory of eigenvectors. Let M D N 2C1C2D; here D is the constant
appearing in (4.50) and (4.51) (not to be confused with the notation that D was also
used to denote a matrix) and C1 D D C 6Cr where Cr is the constant in (4.49).

We denote En D nN�C1 and claim that for each fixed n satisfying

�En; EnC1� � ��2C �; 2 � ��;

there is a deterministic en with En < en < EnC1 such that

(4.52) P
�
inf
j;n

���Dj � en
�� � M�1� � N�D

where the �Dj ’s are the eigenvalues of D. To see this, note that for any � > 0Z EnC1

En

E Im�D �E � i���1 dE � E

Z
R

Im�D �E � i���1 dE � N:

Hence there is an en 2 �En; EnC1� such that, with � D M�1,

E Im�D � en � i���1 � CNC1C1:
By the Markov inequality,

P
�
inf
j

���Dj � en
�� � M�1� � NC1C1M�1

and (4.52) holds, so that we can restrict our consideration to the set jD�ej � N�C
for any C � 2C1 C 2D. By Lemma 4.8, equations (4.30), (4.31), and (4.32) hold.
In particular, (4.31) holds with x D N�C1=2. Hence for all n and l satisfying
j�l.en/ � enj � W �1 we have

(4.53)
kul.en/k21 � W �1C� ;

����kJ � ul.en/k22 �
1

2

���� � N 1=2C�

W
C N

"m
2
C�

W 1=2
;

j�l�1.en/ � �l.en/j � N�C1=2;

with probability larger than .1 � N�D � N�C1.1��/W 2C� / � 1 � 2N�D . Here
we have used the choice C1 D DC 6Cr , and � can be an arbitrarily small number.

We define

(4.54) m.�k/ D sup
n
fn W en < �kg:

For simplicity we denote ze D em.�k/. Recall that Ck.�k/ D �k , and thus (4.49)
and (4.42) assert that j@Ck.e/=@ej � NCr holds with high probability. Since
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enC1 � en � 2N�C1 , (4.54) implies jze � �kj � 2N�C1 . Since C1 � 6Cr so that
N�C1NCr � N�0:8C1 , we have

(4.55)
jCk.ze / � ze j � jCk.ze / � Ck.�k/j C j�k � ze j

� NCr j�k � ze j � 2N�C1NCr � N�0:8C1 � W �1

with probability larger than 1 �N�D .
Recall that k0 2 J1;W K is the index given by the relation �k0.e/ D Ck.e/ for

all e. Applying (4.53) with en set to be ze and using C1 � D, we obtain the level
repulsion bound

P
�j�k0�1.ze / � �k0.ze /j � N�C1=2

� � 1 �N�D:
Together with the continuity argument used in (4.55), the level repulsion holds
between Ck and Ck�1 in the interval �ze; �k �, i.e.,

(4.56) P

�
9 e 2 �ze; �k� s.t. jCk�1.e/ � Ck.e/j �

1

2
N�C1=2

�
� N�D:

Integrating the perturbation formula (4.16), we get

(4.57)

uk0.�k/ D uk0.ze/

�
Z ze

�k

X
`¤k

u`0.e/

Ck.e/ � C`.e/

�
u`0.e/; B�

1

.D � e/2
B uk0.e/

�
de:

Inserting (4.56) into (4.57) and using jze � �kj � 2N�C1 , we obtain

kuk0.�k/ � uk0.ze/k1

� CN�C1=2 max
e2� ze;�k�

max
`¤k

���u`0 ; B�.D � e/�2Buk0

���
jC`.e/j C 1

:
(4.58)

The numerator of the last term can be bounded by using (4.43) so that

(4.59)

���u`0 ; B�.D � e/�2Buk0

���
� NCr

�

B�.D � e/�1Bu`0



2
2
C 1

�1=2�

B�.D � e/�1Buk0



2
2
C 1

�1=2
:

Inserting the identity B�.D � e/�1Bu`0 D Qeu`0 �Au`0 D �`0.e/u`0 �Au`0 into
the right-hand side of (4.59), we obtain���u`0 ; B�.D � e/�2Buk0

��� � NCr
�
�`0.e/C kAkop C 1

��
�k0.e/C kAkop C 1

�
:

It is easy to prove that kAkop D O.N / with high probability. Together with the
fact that �k0.e/ 2 ��j ; �k0.ze /� for e 2 � ze; �k�, which follows from @eCj .e/ < 0,
we have proved���u`0 ; B�.D � e/�2Buk0

��� � NCrC2.j�`0.e/j C 1/:

Inserting this bound into (4.58) and using that �`0.e/ D C`.e/ in the denominator
and the choice C1 D D C 6Cr , we have proved (4.50) and (4.51).

Notice that the constant Cr is associated with the uncertainty principle in (4.43)
and N�C1 is the grid size. We can make the grid size small by choosing large
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C1; the price to pay is that the initial data in the stochastic flow argument becomes
large; i.e., the constant C1 in (2.7) is large. However, the results we use on the
stochastic flow (e.g., 4.10) are insensitive to this constant, which is the main reason
we can choose C1 large.

Part 1B: Delocalization and QUE for the band matrices. By definition (4.11),
uk0.�k/ D wk=kwkk2. Equations (4.50) and (4.51) can be written in the following
form: for any fixed large D > 0 and small � > 0,

(4.60)

P

�
9k 2 ZN W j�kj � 2 � �; max1�i�W j k.i/j2PW

iD1 j k.i/j2
� W �1C�

�
� N�D;

P

�
9k 2 ZN W j�kj � 2 � �;�����
PW=2

iD1 j k.i/j2PW
iD1 j k.i/j2

� 1

2

���� � N 1=2C�

W
C N

"m
2
C�

W 1=2

!
� N�D:

Clearly we can shift the indices so that

P

�
9k 2 ZN W j�kj � 2 � �;

max
n2ZN

����PW=2
iD1 j k.nC i/j2PW
iD1 j k.nC i/j2

� 1

2

���� � N 1=2C�

W
C N

"m
2
C�

W 1=2

�
� N�D;

and a similar shifted version of (4.60) holds. Since W , N , and "m are related by

(1.11), we have N 1=2C�

W
C N

"m
2
C�

W 1=2 D o.W=N/, so that exactly as in (4.18)–(4.19)
we obtain

P

�
9k 2 ZN ; W j�kj � 2 � �;

max
n2ZN

����NW
W=2X
iD1

j k.i C n/j2 � 1

2

���� � N

W

 
N 1=2C�

W
C N

"m
2
C�

W 1=2

!�
� N�D:

when N=W is an integer. If N=W is not an integer, the delocalization estimate
(4.60) can be used to lead to the same conclusion. Moreover, from (1.11) we have

N

W
� N

1=2C�

W
< N�2a and

N

W
� N

"m
2
C�

W 1=2
< N�

3
2
a

with a > 0 given in (1.11). We have thus proved the QUE part of Theorem 4.1.
Finally, note that the above QUE for length interval W=2 obviously implies the
same estimate for length W .

Finally, the proof of Theorem 4.1 just given above holds for all kgk � W �3=4
since all lemmas were proved under this assumption. We have thus proved that for
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any fixed �;D > 0, for large enough N we have

(4.61)

min
kgk�W �3=4

P

�
9j 2 ZN W j�g

j j � 2 � �;

N

W

WX
iD1

j g
j .i/j2 D 1C O.N� 3

2
aC� /

�
� 1 �N�D:

Part 2: The semicircle law. Following the mean-field reduction method, we first
prove the following lemma.

LEMMA 4.12. Recall the definition of the constant a in (1.11). Under the assump-

tion of Theorem 4.1, for any fixed e0 with je0j � 2 � � we have

max
j
P

�
j�j � e0j � N�1Ca

2 and����.Cj .e0/ � e0/ � N

W
.�j � e0/

���� � W �1� a
10

�
� N�D:

(4.62)

PROOF. Recall the definition of the matrix Hg from (4.9) and the relation

@.g C �
g
j /

@g
D

WX
iD1

�� g
j .i/

��2:
Integrating this relation from g0 to 0 with g0 defined by the equation g0 C �

g0
j D

e0, we have

(4.63)
Z 0

g0

WX
iD1

�� g
j .i/

��2 dg D �j � e0:

By (4.61), for each jgj � W �3=4 fixed, we have

WX
iD1

�� g
j .i/

��2 D W=N.1C O.N�a//

with high probability. The left side of (4.63) is equal to �g0W=N.1C O.N�a//
with high probability. By definition, Cj .e0/ D �

g0
j D e0 � g0. Inserting this

relation into (4.63), we have proved (4.62). �

We now prove the local semicircle law by using (4.33). For " > 0 small enough,
we consider E2 > E1 with � WD E2 � E1 � N�1C". Clearly, we can assume
� � 1=N . We apply Lemma 4.12 with the choice e0 D E1: for any D > 0, for
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large enough N we have

#

�
k W Ck.e0/ 2

�
e0; e0 C�

N

W
� 1

W

��
� #fk W �k 2 �E1; E2�g

� #

�
k W Ck.e0/ 2

�
e0; e0 C�

N

W
C 1

W

��
with probability 1�N�D . Since Ck D �k0 represents the same curve, we can apply
(4.33) with the choices e D E1, e0 � e D �N=W � 1=W , or �N=W C 1=W:

Hence the estimate (4.33) implies the local semicircle law and we have completed
the proof of Theorem 4.1.

Part 3: Eigenvalue local statistics. We rely on a fixed energy universality result for
a matrix flow from [22] (note that the constraint !0 > 2=3 below is probably not
optimal but sufficient in our setting).

THEOREM 4.13 (Fixed energy universality for the Dyson Brownian motion [22]).
Let V be an n � n deterministic matrix and Z be a n � n standard GOE matrix.

Consider H D V C p
t0Z with t0 D n!0=n. Assume that V is (n��1 t0, n��2 ,

n�3 t0/ regular at E (see Assumption 2.3) with (c is a universal small constant)

2

3
< !0 < 1; �2 < min

�
1 � !0

4
; �3; c

�
:

Remember the notation �
.n/
fc;t0

for the density corresponding to the Stieltjes trans-

form m
.n/
fc;t0

defined in (3.2).

For any smooth test function O 2 C1.Rk/ with compact support, there are

constants c; C > 0 such that���� Z
Rk

O.a/p
.k/
H

�
E C a

N�
.n/
fc;t0

.E/

�
da �

Z
Rk

O.a/p
.k/
GOE

�
E C a

N�
.n/
fc;t0

.E/

�
da

����
� Cn�c :

We apply this result to the W � W matrix flow t ! K
g;e
T�t at t D T with the

initial data V D K
g;e
T , i.e., n D W . By Corollary 4.6, V is .��; ��; r/ regular

with the parameters defined in Theorem 4.5. With ��; ��; r; T defined in (4.22),
we have the following identifications:

�3 D 2"� logW N; �1 D "� logW N;

�2 D "� logW N; 1 � !0 D logW N."� � "�/:
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The above theorem with e D E gives (we consider the case k D 2 to simplify the
presentation)���� Z

R2

O.a/p
.2/
QE

�
E C a

N�sc.E/

�
da �

Z
R2

O.a/p
.2/
GOE

�
E C a

N�sc.E/

�
da

����
� CN�c :

where we replaced �.n/fc;t0
with �sc by taking � D 0C in (4.38). We can writeZ

R2

O.a/p
.2/
QE

�
E C a

N�sc.E/

�
da

D 1

2

X
k0 6Dj 0

EO.W�sc.E/.�k0 �E/;W�sc.E/.�j 0 �E//

D 1

2

X
k 6Dj

EO.W�sc.E/.Ck.E/ �E/;W�sc.E/.Cj .E/ �E//:

Recall that there is a shift of indices k ! k0 (depending on the randomness) so
that Ck.E/ D �k0 . In the expression above, we have summed over all indices, and
thus this shift is irrelevant for our purpose.

Applying (4.62) with e0 D E, we can substitute W�sc.E/.Ck.E/ � E/ with
N�sc.E/.�k�E/CO.W �a=10/ in the above equation. Note that (4.62) holds only
for eigenvalues in a small neighborhood of E. Since O is compactly supported,
this restriction does not affect the usage of (4.62) in the last equation. Finally, the
error term O.W �a=10/ is negligible, which concludes the the proof.

5 A Comparison Method

In this section, we prove the theorems 1.2, 1.3, and 1.4. The basic idea follows
the Green function comparison method in [17], interpolating between resolvents
of two matrices H and �H . However, contrary to the setting from [17], we only
have a priori estimates on the Green’s function for �H , and not for H . A self-
consistent Green function comparison method for band matrices was developed in
[2], which only requires estimates on the Green’s function of one of both matrices.
Our a priori estimates on the Green’s function are different so that we proceed with
another self-consistent method from [21].

5.1 Elementary Facts

Recall that the resolvent of a matrix H can be written as

(5.1) Gij .´/ D
X
k

 k.i/ k.j /

�k � ´
; ImGi i .E C i�/ D

X
k

�j k.i/j2
.E � �k/2 C �2

;

where  k is the kth eigenvector with eigenvalue �k . The following lemma is a
classical fact connecting the Green function with delocalization of eigenvectors
and local laws.
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LEMMA 5.1. Let .HN /N�1 be a sequence of N �N random symmetric matrices.

Suppose that for any c > 0 there exists a constant �c > 0 2 R such that for any

D > 0

(5.2) inf
j2JcN;.1�c/N K

P .j�j j � 2 � �c/ � 1 �N�D

provided that N is large enough. Consider the following assertion: for any small

�; � > 0 and D > 0

sup
jE j�2��;N�1���1

max
i
.ImGi i .´// D O.N � /;(5.3)

sup
jE j�2��;N�1���1

max
i;j

jGij .´/j D O.N � /;(5.4)

hold with probability larger than 1 �N�D . Then

(i) (5.3) implies (1.12).
(ii) (1.12) and (1.13) imply (5.4).

PROOF. For any k 2 JcN; .1 � c/N K, by (5.2), we can assume j�kj � 2 � �c
for some �c > 0. Then (5.3) implies that, with high probability,

��1j k.i/j2 � ImGi i .�k C i�/ D O.N � /; � D N�1;

which is (1.12). On the other hand, the bound (1.12) on  k.i/ and the eigenvalue
distribution estimate (1.13) inserted in (5.1) yield (5.4) by a simple dyadic decom-
position. �

5.2 Proof of Theorem 1.2

By Theorem 1.5, (1.12) of Theorem 1.2 is just a corollary of the following
lemma. In the remainder of this section, we will prove Lemma 5.2.

LEMMA 5.2. If the statement (5.3) holds for all H in (1.15), then (5.3) holds for

any H in Theorem 1.2.

To prove Lemma 5.2, note that for each H in Theorem 1.2, there is �H of type
(1.15) such that the first four moments of the entries of H and �H coincide. A
precise statement is the following lemma, about a single random variable. The
proof is easily adapted from [35, corollary 30] and is left to the reader.

LEMMA 5.3. Let H be a band matrix satisfying the conditions in Theorem 1.2.

Then there exists a matrix ensemble �H of the form (1.15) satisfying the assumptions

of Theorem 1.5 such that

E.Hij /
n D E. �Hij /

n; ji � j j � W; n D 1; 2; 3; 4:

PROOF OF LEMMA 5.2. Let H be the matrix in Theorem 1.2 and �H the one
given in Lemma 5.3. Denote by �G.´/ D . �H � ´/�1 the Green function of �H .
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By Theorem 1.5, (1.12) and (1.13) hold for the eigenvalues and eigenvectors of �H .
Together with Lemma 5.1, we get

(5.5) sup
jE j�2��;N�1���1

k�G.´/kmax D O.N � /; ´ D E C i�;

with probability 1 �N�D . We now prove that the same estimate holds for G, i.e.,

(5.6) sup
jE j�2��;N�1���1

kG.´/kmax D O.N � /:

We follow the self-consistent comparison method from [21]. We start with a
very weak estimate kG.´/kmax � ��1, i.e., (5.6) holds for � � 1. For � < 1, let
"0 > 0 be a small parameter and define

�m D N�m"0 ; ´m D E C i�m; 1 � m � "0:

Our goal is to prove by induction that for ´ D ´m; 1 � m � "�10 , (5.6) holds, which
implies (5.5). Thus it remains to prove that if (5.6) holds for ´ D ´0m, 0 � m0 � m,
then (5.6) holds for ´ D ´mC1, 1 � mC 1 � "�10 .

As in [21], we define the symmetric interpolation matrix H � by

(5.7) .H � /ij D .1 � ��ij /H
0
ij C ��ijH

1
ij ; H 1 D H; H 0 D �H;

where for i � j , ��ij are i.i.d. Bernoulli random variables such that P .��ij D 1/ D
� . Denote G� .´/ D .H � � ´/�1. We can now recast the induction as follows: if
for any (small) � and (large) D, and jEj < 2 � �, we have

max
0���1

max
m0�m

kG� .´m0/kmax D O.N � /; ´m0 D E C i�m0 ;

then for any � and D, and jEj < 2 � �, we have

(5.8) max
0���1

kG� .´mC1/kmax D O.N � /; ´mC1 D E C i�mC1:

We know that (5.8) holds for � D 0 and all m � "�10 . Our aim is to prove (5.8) for
0 < � � 1.

From [3, lemma 10.2], we have kG.EC i�=r/kmax � rkG.EC i�/kmax for any
r > 1. As a consequence,

max
0�n�m

kG� .´n/kmax D O.N � / implies kG� .´mC1/kmax D O.N �C"0/:

Thus it remains to show that, under the assumption (5.5), if we have

(5.9) max
0���1

kG� .´mC1/kmax D O.N �C"0/;

then (5.8) also holds.
By (5.5), for any p 2 N and for any � > 0, we have

(5.10) max
kl

E
��G�D0

kl .´mC1/
��2p D O.N 2p� /:
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We will use the following lemma from [21] to extend the above bound to general
� 2 �0; 1�:

(5.11) max
�

max
kl
E
��G�

kl .´mC1/
��2p D O.N 2p� /;

which completes the proof of (5.8) by Markov’s inequality.

LEMMA 5.4. For fixed i; j 2 ZN and � 2 R, we define the matrix�
H

�;�
.ij /

�
ab
D
(
� if fa; bg D fi; j g;
H �

ab
if fa; bg ¤ fi; j g :

For bounded and smooth F WRN�N ! C we have

@�EF.H
� / D

X
i�j

�
EF

�
H

�;H1
ij

.ij /

�
� EF

�
H

�;H0
ij

.ij /

��
:

We now return to prove (5.11). Choose the function F as follows:

F.X/ D Fkl;p;´.X/ D
���.X � ´/�1

�
kl

��2p:
By (5.10), for any � > 0 and p 2 N, EF.H 0/ D O.N 2�p/: Thus, (5.11) for
H � ; 0 � � � 1, follows from Gronwall’s inequality and the following inequality,
to be proved in the remainder of this paragraph (here and below, ´ D ´mC1): for
any p � 100, there exists c > 0 such that��@�EF.H � /

�� D ���X
i;j

�
EF

�
H

�;H1
ij

.ij /

�
� EF

�
H

�;H0
ij

.ij /

�����
� N�c.1C EF.H � //

(5.12)

for any 0 � � � 1. Note that the above equality is Lemma 5.4.

The matrices H
�;H1

ij

.ij /
and H

�;H0
ij

.ij /
are identical except for the entries .i; j / and

.j; i/ when ji � j j � W , so we now compare them by a perturbative argument.
We fix i; j and define

f .�/ D fij;kl;p;´;� .�/ WD Fkl;p;´

�
H

�;�
.ij /

�
:

By definition, f .H �
ij / D F.H � / with H � as in (5.7). The nth derivative of f ,

f .n/, is a sum of products of some 2p C n matrix entries of the resolvent and its
conjugate. From (5.9), we therefore have

f .n/.H �
ij / D O.N .�C"0/.2pCn//

with high probability. By standard iterated resolvent identities, the same bound
holds for any y D O.W �1=2C� /:

f .n/.y/ D O.N .�C"0/.2pCn//
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with overwhelming probability. Hence, by Taylor’s expansion with respect to
y D 0, for any m � 1, we have

EF
�
H

�;H1
ij

.ij /

�
� EF

�
H

�;H0
ij

.ij /

�
D

X
5�n�m

E.f .n/.0//

n�

�
E
��
H 1

ij

�n� � E��H 0
ij

�n��
C O

�
N .�C"0/.2pCmC1/.W � 1

2
�� /mC1

�
where we used that the first four moments of H 1

ij and H 0
ij are the same. On the

one hand, we choose m D p so that the above error term is at most O.N�p=10/
when � C "0 < 1=100. On the other hand, f .n/.0/ is a sum of products of some
2p C n matrix entries of the resolvent and its conjugate, among which at least
2p � n are either

�
H

�;0
.ij /

� ´
��1
kl

or its conjugate. With the resolvent identity, these

two quantities are easily bounded by jG�
kl
j C W �1=2C" for any " > 2.� C "0/,

with high probability. The remaining 2n resolvent entries are bounded using (5.9).
Therefore, for n � p,

jEf .n/.0/j � CpN
2n.�C"0/

�
E
�jG�

kl j2p�n
�CW .�1=2C"/.2p�n/�

� CpN
2n.�C"0/

�
1C E.F.H � //

�
:

The above estimates together give��@�EF.H � /
�� � CpNW 1� 5

2
C10.�C"0/.1C EF.H � //C CpN

1� p
10W:

As W � N 3=4 and p � 100, this concludes the proof of the inequality in (5.12)
(and Lemma 5.2). �

5.3 Proof of Theorem 1.3

We keep the notations from the proof of Lemma 5.2 for H and �H . On the
one hand, from the local law in Theorem 1.5, for any �; � > 0 there exist " > 0

such that for any ´ D E CN�1C� with �2C � < E < 2� �, ImN�1 Tr �G.´/�
Immsc.´/ D O.N�"/. On the other hand, by repeating exactly the proof of Lemma
5.2, the estimate (5.12) also holds for

F.X/ D
��ImN�1 Tr.X � ´/�1 � Immsc.´/

��2p;
so that ImN�1 TrG.´/ � Immsc.´/ D O.N�c/ for some c > 0. In turn, this
implies the local law for H .

5.4 Proof of Theorem 1.4

Again, we follow the notations from the proof of Lemma 5.2 for H and �H .
Theorem 1.5 gives universality for �H , so that Theorem 1.4 follows by applying
the Green’s functions comparison theorem from [17]. The input for this theorem is
the four-moment matching of the matrix entries, given by construction of �H , and
resolvent bounds as proved for our band matrices in (5.6).
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Appendix A Perfect Matching Observables for Hermitian Matrices

Although the main results of this paper are stated for symmetric matrices, they
can be adapted to the Hermitian class. The only major modification concerns the
definition of the perfect matching observables. We explain below the Hermitian
counterpart of Section 2.

A.1 Eigenvector Dynamics

Let B.h/ be a n � n matrix such that <.B.h/
ij /, =.B.h/

ij / .i < j / and B
.h/
i i =

p
2

are independent standard Brownian motions, and B
.h/
j i D .B

.h/
ij /�. The n � n

Hermitian Dyson Brownian motion K.h/ with initial value K.h/.0/ is K.h/.t/ D
K.h/.0/C 1p

2n
B.h/.t/:

Let �0 2 �n, u0 2 U.n/. The Hermitian Dyson Brownian motion/vector flow
with initial condition .�1; : : : ; �n/ D �0, .u1; : : : ; un/ D u0, is

(A.1)

d�k D
dB.h/

kkp
2n

C
�
1

n

X
`¤k

1

�k � �`

�
dt;

duk D
1p
2n

X
`¤k

dB.h/

k`

�k � �`
u` �

1

2n

X
`¤k

dt

.�k � �`/
2
uk :

With the above definitions, the strict analogue of Theorem 2.1 holds in this Her-
mitian setting.

In addition to (2.4) and (2.5), we define

uk@xu` D
nX

�D1

uk.�/@xu`.�/;

X
.h/

k`
D uk@u` � xu`@xuk ; xX .h/

k`
D xuk@xu` � u`@uk :

Here @u` and @xu` are defined by considering u` as a complex number; i.e., if we
write u` D x C iy, then @u` D 1

2
.@x � i@y/. The analogue of Lemma 2.2 for the

generator is then (see [7])

(A.2) L.h/
t D 1

2

X
1�k<`�n

ck`.t/
�
X

.h/

k`
xX .h/

k`
C xX .h/

k`
X

.h/

k`

�
;

meaning that dE.g.ut //=dt D E.L.h/
t g.ut //) for the stochastic differential equa-

tion (A.1).
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A.2 The Observables

As in Section 2, let I be a fixed subset of J1; nK, and denote the eigenvector
overlaps

pij D
X
�2I

ui .�/xuj .�/; i ¤ j 2 J1; nK;

pi i D
X
�2I

ui .�/xui .�/ � C0; i 2 J1; nK;

where C0 is an arbitrary but fixed constant independent of i . Note that contrary to
the real case, we now have pij ¤ pj i for i ¤ j .

With this definition, Theorem 2.5 still holds. For the proof, we keep the same
definition for our configuration space as in the real case: �W J1; nK ! N where
�j WD �.j / is interpreted as the number of particles at the site j . For any given
configuration �, consider the set of vertices

V� D f.i; a; "/ W 1 � i � n; 1 � a � �i ; " 2 fb;wgg:

We represent vertices corresponding to " D b (resp., " D w) by a black (resp.,
white) disk. Let A� be the graph with vertices V� and with edges all possible
fv1; v2g with "1 ¤ "2, where v1 D .i1; a1; "1/, v2 D .i2; a2; "2/. In words, A� is
the complete graph on V� except that edges between vertices of the same color are
forbidden. Let G� be the set of perfect matchings of A�. Let E .G/ be the set of
edges of a graph G 2 G�.

1 i1 i2 i3 n

(A) A configuration � with N .�/ D

6, �i1 D 2, �i2 D 3, �i3 D 1.

1 i1 i2
i3 n

(B) A perfect matching
G 2 G�. Here, P.G/ D

pi1i1pi1i2pi2i1pi2i2pi2i3pi3i2 .

Moreover, for any given edge e D f.i1; a1; "1/; .i2; a2; "2/g, we define p.e/ D
pi1;i2 if "1 D b, and p.e/ D pi2;i1 if "2 D b. Let P.G/ DQe2E .G/ p.e/ and

(A.3) f
.h/
�;t

.�/ D 1

L .�/
E

� X
G2G�

P.G/ j �
�
; L .�/ D

nY
iD1

�i �:

We have the following complex analogue of Theorem 2.6.
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THEOREM A.1 (Perfect matching observables for the eigenvector moment flow:
Hermitian case). Suppose that u is the solution to the Hermitian eigenvector dy-

namics (A.1), and f
.h/
�;t

is given by (A.3). Then it satisfies the equation

(A.4)

@tf
.h/
�;t

D B
.h/.t/f

.h/
�;t

;

B
.h/.t/f .�/ D

X
k¤`

ck`.t/�k.1C �`/.f .�
k;`/ � f .�//:

As in the real case, the above theorem is independent of our choice of the canonical
basis; see Remark 2.8. It therefore generalizes the class of observables for the
eigenvector moment flow from [7, theorem 3.12(ii)].

A.3 Proof of Theorem A.1

We naturally replace the definition (2.19) with

g.�/ D 1

L .�/

X
G2G�

P.G/;

and let 1 � k < ` � n be fixed for the rest of this subsection. We abbreviate
X D X

.h/

k`
; xX D xX .h/

k`
. With (A.2) the proof reduces to

1

2
.X xX C xXX/g.�/ D �k.1C �`/.g.�

k`/ � g.�//

C �`.1C �k/.g.�
`k/ � g.�//:

(A.5)

To calculate 1
2
.X xX C xXX/P.G/ for any G 2 G�, we first need the following

definition.

DEFINITION A.2. Let � and k < ` be fixed.

(i) Vi � V� is the set of vertices of type .i; a; "/, 1 � a � �i , " 2 fb;wg.
(ii) V b

i � Vi is the set of vertices of type .i; a; b/, 1 � a � �i , and similarly
for V w

i .
(iii) For any two sets, denote A � B D .A � B/ [ .B � A/. We define

".v1; v2/ D

8��<��:
1 if .v1; v2/ 2 .V b

k
� V w

k
/ [ .V b

`
� V w

`
/;

�1 if .v1; v2/ 2 .V b
k
� V b

`
/ [ .V w

k
� V w

`
/;

0 otherwise:

(iv) Let G 2 G� and .v1; v2/ 2 .Vk [ V`/
2�.

Assume .v1; v2/ 2 .V b
k
�V b

`
/[ .V w

k
�V w

`
/. Then we define Sv1v2G D

Sv2v1G 2 G� as the perfect matching obtained by transposition of v1 and
v2. More precisely, let �v1v2 be the permutation of V� transposing v1 and
v2. Then

E .Sv1v2G/ D �f�v1;v2.w1/; �v1;v2.w2/g W fw1; w2g 2 E .G/
	
:
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Assume .v1; v2/ 2 V b
k
�V w

k
, and write v1 D .k; a1; b/, v2 D .k; a2; w/,

for example, where 1 � a1; a2 � �k . Then we define Sv1v2G D Sv2v2G 2
G�k` as the perfect matching obtained by a jump of v1 and v2 to `. More
precisely, let jv1v2 D jv2v1 be the following bijection from V� to V�k` :
jv1v2.v1/ D .`; �`C 1; b/, jv1v2.v2/ D .`; �`C 1;w/, jv1v2..k; c; b// D
.k; c � 1; b/ if a1 < c, jv1v2..k; c; w// D .k; c � 1;w/ if a1 < c, and
jv1v2.w1/ D w1 in all other cases. Then

E .Sv1v2G/ D �fjv1v2.w1/; jv1v2.w2/g W fw1; w2g 2 E .G/
	
:

A similar definition applies if .v1; v2/ 2 V b
`
� V w

`
, the jump now being

towards k.
Finally, if .v1; v2/ 62 .V b

k
�V b

`
/[ .V w

k
�V w

`
/[ .V b

k
�V w

k
/[ .V b

`
�V w

`
/,

we define Sv1v2G D G (or any arbitrary function).

i k `v2

v1

Sv1v2

(A) The map Sv1v2 in case of a transposition.

i k `v2

v1

Sv1v2

(B) The map Sv1v2 in case of a jump.

Below is the main result for the proof of Theorem A.1.

LEMMA A.3. For any G 2 G�, we have

1

2
.X xX C xXX/P.G/

D 1

2

X
.v1;v2/2.Vk[V`/

2
�

".v1; v2/P.Sv1v2G/ � .�k C �`/P.G/:
(A.6)

Assuming the above lemma we can complete the proof of Theorem A.1. Let

h.�/ D
X
G2G�

P.G/:
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Note that if .v1; v2/ 2 .V b
k
�V b

`
/[ .V w

k
�V w

`
/, then Sv1v2 is a permutation of G�.

Moreover, if .v1; v2/ 2 V b
k
� V w

k
(resp., V b

`
� V w

`
) then Sv1v2 is a bijection from

G� to G�k` (resp., G�`k ). Summing (A.6) over all G 2 G� therefore gives

1

2

�
X xX C xXX

�
h.�/

D 1

2

�
2�2kh.�

k`/C 2�2`h.�
`k/ � .2�k�` C 2�`�k/h.�/ � 2.�k C �`/h.�/

�
D �2kh.�

k`/C �2`h.�
`k/ � .�k.�` C 1/C �`.�k C 1//h.�/:

The above equation implies (A.5) after renormalization by L .�/. This concludes
the proof of Theorem A.1.

PROOF OF LEMMA A.3. Let L D 1
2
.X xX C xXX/. We have

(A.7)

LP.G/ D
X

.e1;e2/2E .G/2�

Xp.e1/ xXp.e2/
Y

e2E .G/nfe1;e2g
p.e/

C
X

e12E .G/

Lp.e1/
Y

e2E .G/nfe1g
p.e/:

We keep the notations (2.23), (2.24), and (2.25) for the single, double, and trans-
verse edges. Remember that for any v 2 V�, ev is the unique edge containing v,
and v0 is the unique vertex such that ev D fv; v0g. We still denote

Vs D fv 2 Vk [ V` W fv; v0g 2 Esg;
Vd D fv 2 Vk [ V` W fv; v0g 2 Ed g;
Vt D fv 2 Vk [ V` W fv; v0g 2 Etg;

and V b
k;s

are the single, black vertices in Vk (and similarly for V w
k;s

, etc.). We will
need the following elementary rules: if i ¤ ` and j ¤ k, Xpij D 0 and

Xpik D �pi`; Xp j̀ D pkj ;(A.8)

Xp`k D pkk � p``;(A.9)

Xpkk D �pk`; Xp`` D pkk :(A.10)

We also obviously have xXp D xX xp. Equation (A.7) can be written as

LP.G/ D .I/C .II/C .III/C .IV/C .V/C .VI/C .VII/C .VIII/C .IX/

where all terms are defined and calculated below. First,

.I/ WD
X

.e1;e2/2.Es/2�
Xp.e1/ xXp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D
X

.v1;v2/2.Vs/2�
Xpfv1;v01g

xXpfv2;v02g
Y

e2E .G/nfev1 ;ev2g
p.e/:
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From (A.8), Xpfv1;v01g
xXpfv2;v02g D �pfv2;v01gpfv1;v02g if .v1; v2/ 2 .V b

`;s
�V b

k;s
/[

.V w
k;s

� V w
`;s

/; Xpfv1;v01g
xXpfv2;v02g D pfjv1;v2 .v1/;v01gpfjv1;v2 .v2/;v02g if .v1; v2/ 2

.V b
k;s

� V w
k;s

/ [ .V b
`;s

� V w
`;s

/. In all other cases, Xpfv1;v01g
xXpfv2;v02g D 0. We

therefore have proved

(A.11)

.I/ D
X

.v1;v2/2.V b
`;s

�V
b
`;s

/[.V w
k;s

�V
w
`;s

/

[.V b
k;s

�V
w
k;s

/[.V b
`;s

�V
w
`;s

/

".v1; v2/P.Sv1v2G/

D 1

2

X
.v1;v2/2.Vs/2�

".v1; v2/P.Sv1v2G/:

We now consider

.II/ WD
X

.e1;e2/2Es �Ed
Xp.e1/ xXp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D 1

2

X
.v1;v2/2Vs �Vd

Xpfv1;v01g
xXpfv2;v02g

Y
e2E .G/nfev1 ;ev2g

p.e/:

We used that vertices on a double edge need to be weighted by a factor 1=2. From
(A.8) and (A.10),

Xpfv1;v01g
xXpfv2;v02g D �pfv2;v01gpfv1;v02g

if .v1; v2/ 2
�
V

w
k;d � V

w
`;s

� [ �V b
`;s � V

b
k;d

� [ �V b
`;d � V

b
k;s

�[�V w
k;s � V

w
`;d

�
;

Xpfv1;v01g
xXpfv2;v02g D pfjv1v2 .v1/;v01gpfjv1v2 .v2/;v02g

if .v1; v2/ 2
�
V

w
k;d � V

b
k;s

� [ �V b
`;d � V

w
`;s

� [ �V w
k;s � V

b
k;d

� [ �V b
`;s � V

w
`;d

�
:

We therefore have

(A.12) .II/ D 1

2

X
.v1;v2/2Vs �Vd

".v1; v2/P.Sv1v2G/:

Concerning

.III/ WD
X

.e1;e2/2.Ed /2�
Xp.e1/ xXp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D 1

4

X
.v1;v2/2.Vd /2�Wv1¤v0

2

Xpfv1;v01g
xXpfv2;v02g

Y
e2E .G/nfev1 ;ev2g

p.e/;

using (A.10) we have Xpfv1;v01g
xXpfv2;v02g D �pfv2;v01gpfv1;v02g if v1 and v2 are in

distinct Vi ’s and with the same color, and pfjv1v2 .v1/;v01gpfjv1v2 .v2/;v02g if they are
in the same Vi with distinct colors. All together, we always have

Xpfv1;v01g
xXpfv2;v02g D ".v1; v2/P.Sv1v2G/C ".v01; v2/P.Sv0

1
v2G/:
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We have therefore proved

(A.13)

.III/ WD 1

4

X
.v1;v2/2.Vd /2�

�
".v1; v2/P.Sv1v2G/C ".v01; v2/P.Sv0

1
v2G/

�
� 1

2

X
v2Vd

P.Svv0G/

D 1

2

X
.v1;v2/2.Vd /2�

".v1; v2/P.Sv1v2G/ � 1

2

X
v2Vd

P.Svv0G/:

Our next estimate is a diagonal term, namely

(A.14)

.IV/ WD
X
e12Es

Lp.e1/
Y

e2E .G/nfe1g
p.e/ D

X
v2Vs

Lpfv;v0g
Y

e2E .G/nfevg
p.e/

D �1

2

X
v2Vs

P.G/

where we used (A.8) twice to obtain Lpfv;v0g D �1
2
pfv;v0g.

Another diagonal term is

.V/ WD
X

e12Ed

Lp.e1/
Y

e2E .G/nfe1g
p.e/ D 1

2

X
v2Vd

Lpfv;v0g
Y

e2E .G/nfe1g
p.e/:

Note that we have Lpfv;v0g D pkk �p`` if v 2 V`, and p``�pkk otherwise. This
proves

(A.15) .V/ D 1

2

X
v2Vd

.P.Svv0.G// � P.G//:

We now consider cases where transverse edges appear:

.VI/ WD
X

.e1;e2/2Es�Et[Et�Es

Xp.e1/ xXp.e2/
Y

e2E .G/nfe1;e2g
p.e/

D
X

v12Vs ;
fv2;v02g2Et

�
Xpfv1;v01g

xXpfv2;v02g C xXpfv1;v01gXpfv2;v02g
�

�
Y

e2E .G/nfev1 ;ev2g
p.e/:

Up to transposing v2 and v02, we can assume that v1 and v2 are in the same Vi . With
(A.8) and (A.9) a calculation gives Xpfv1;v01g

xXpfv2;v02g C xXpfv1;v01gXpfv2;v02g D
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pjv1v2 .v1/v
0
1
pjv1v2 .v2/v

0
2
� p�

v1v
0
2
.v1/v

0
1
p�

v1v
0
2
.v0
2
/v2 . This yields

.VI/ D
X

.v1;v2/2Vs�Vt

".v1; v2/P.Sv1v2.G//

D 1

2

X
.v1;v2/2Vs �Vt

".v1; v2/P.Sv1v2.G//:

(A.16)

We also consider

.VII/ WD
X

.e1;e2/2Ed�Et[Et�Ed

Xp.e1/ xXp.e2/
Y

e2E .G/nfe1;e2g
p.e/

D
X

v12Vd ;fv2;v02g2Et

�
Xpfv1;v01g

xXpfv1;v02g C xXpfv1;v01gXpfv1;v02g
�

�
Y

e2E .G/nfev;ewg
p.e/:

Without loss of generality we can assume v1 and v2 are in the same Vi . Assume
they also have a different color. Then (A.9) and (A.10) give

Xpfv1;v01g
xXpfv1;v02g C xXpfv1;v01gXpfv2;v02g

D pjv1v2 .v1/v
0
1
pjv1v2 .v2/v

0
2
� p�

v1v
0
2
.v1/v

0
1
p�

v1v
0
2
.v0
2
/v2 :

If v1 and v2 have the same color, a similar equation holds, permuting v1 and v01.
This implies

.VII/ D
X

.v1;v2/2Vd�Vt

".v1; v2/P.Sv1v2.G//

D 1

2

X
.v1;v2/2Vd �Vt

".v1; v2/P.Sv1v2.G//:

(A.17)

For two transverse edges, with (A.9) we first compute

1

2
.Xpk`

xXpk` C xXpk`Xpk`/ D 0;

and indeed ".v1; v2/ D 0 when v1; v2 are the same color on the same site, or
different colors on different sites. Moreover, 1

2
.Xpk`

xXp`k C xXpk`Xp`k/ D
1
2
.p2

kk
C p2

``
� 2pkkp``/, so that in all cases we have proved

(A.18)

.VIII/ WD
X

.e1;e2/2.Et /2�
Xp.e1/ xXp.e2/

Y
e2E .G/nfe1;e2g

p.e/

D 1

2

X
.v1;v2/2.V 2

t /�

".v1; v2/P.Sv1v2.G/:
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Finally, from (A.9) we have Lpk` D �pk`, so that

(A.19) .IX/ WD
X
e12Et

Lp.e1/
Y

e2E .G/nfe1g
p.e/ D �1

2

X
v2Vt

P.G/:

By summation of all equations (A.11), (A.12), (A.13), (A.14), (A.15), (A.16),
(A.17), (A.18), and (A.19), the right-hand sides of (A.6) and (2.22) are the same.
This concludes the proof of Lemma A.3. �
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