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Abstract. For random d-regular graphs on N vertices with 1 � d � N2/3, we
develop a d−1/2 expansion of the local eigenvalue distribution about the Kesten–
McKay law up to order d−3. This result is valid up to the edge of the spectrum. It
implies that the eigenvalues of such random regular graphs are more rigid than those
of Erdős–Rényi graphs of the same average degree. As a first application, for 1 �
d � N2/3, we show that all nontrivial eigenvalues of the adjacency matrix are with
very high probability bounded in absolute value by (2 + o(1))

√
d − 1. As a second

application, for N2/9 � d � N1/3, we prove that the extremal eigenvalues are
concentrated at scale N−2/3 and their fluctuations are governed by Tracy–Widom
statistics. Thus, in the same regime of d, 52% of all d-regular graphs have second-
largest eigenvalue strictly less than 2

√
d − 1.

1 Introduction

1.1 Main results. Let P be the uniform probability measure on the set of d-
regular graphs on N vertices. We identify a graph with its adjacency matrix A =
(Aij) ∈ {0, 1}N×N , defined as Aij = 1 if and only if i and j are adjacent. Thus, P

is the uniform probability measure on the set of Hermitian matrices A ∈ {0, 1}N×N

satisfying
∑N

j=1 Aij = d and Aii = 0 for all i = 1, . . . , N .
Since A is d-regular, it is immediate that A has a trivial eigenvalue d with associ-

ated eigenvector (1, 1, . . . , 1)∗. Moreover, by the Perron-Frobenius theorem, all other
eigenvalues are bounded in absolute value by d. For convenience, we shall consider
the normalized adjacency matrix

H ..= (d − 1)−1/2A. (1.1)

We denote its eigenvalues by λ1 = d/
√

d − 1 � λ2 � · · · � λN � −d/
√

d − 1.
Unless stated otherwise, all quantities depend on the fundamental parameter N ,

and we omit this dependence from our notation. For the following statements, for
deterministic N -dependent quantities X and Y we write

X � Y if X = Oc(N
−cY ) for some fixed c > 0. (1.2)

(See the conventions in Section 1.3 below.)
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Our first main result is about the locations of the nontrivial extremal eigenvalues,
λ2 and λN .

Theorem 1.1. Fix c > 0. For 1 � d � N2/3 and large enough N , with probability
1 − N−1/c we have

|λ2 − 2|, |λN + 2| � N c

(
1

d3
+

1

N2/3
+

d2

N4/3

)
. (1.3)

An immediate consequence is the following optimal upper bound on the nontrivial
eigenvalues. It was conjectured for instance in [V08, Conjecture 5.3] and [Vu14,
Conjecture 7.3].

Corollary 1.2. For 1 � d � N2/3, all nontrivial eigenvalues of the random d-
regular graph are with very high probability bounded in absolute value by (2 +
o(1))

√
d − 1.

Our second main result is about the limiting distribution of the extremal eigen-
values.

Theorem 1.3. For N2/9 � d � N1/3 the distribution of N2/3(λ2 − 2) converges to
the Tracy–Widom1 distribution, the limiting distribution of the largest eigenvalue
of a GOE matrix. The analogous statement holds for −N2/3(λN + 2).

Universality for the edge statistics of Wigner matrices (the statement that the
distribution of the extremal eigenvalues converge to the Tracy–Widom law) was first
established by the moment method [Sos99] under certain symmetry assumptions on
the distribution of the matrix elements. The moment method was further developed
in [Pec09, FS10] and [Sod10]. A different approach to edge universality for Wigner
matrices based on the direct comparison with corresponding Gaussian ensembles
was developed in [TV10, EYY12]. Edge universality for sparse Erdős–Rényi graphs
was proven first in the regime pN � N2/3 in the works [EKYY13, EKYY12] and
then extended to the regime pN � N1/3 in [LS18]. For smaller values of the average
degree pN , edge universality no longer holds: it was proved in [HLY17, HK20] that,
in the regime 1 � pN � N1/3, the second-largest eigenvalue has Gaussian fluctua-
tions instead of Tracy–Widom fluctuations. These Gaussian fluctuations result from
degree fluctuations which are absent in regular graphs. Our Theorem 1.3 implies
that the eigenvalues of random regular graphs are indeed more rigid than those of
Erdős–Rényi graphs of the same average degree. For random regular graphs, it is
expected that (1.3) is not optimal for small d, and in fact it is conjectured that the
extremal eigenvalues continue to have Tracy–Widom fluctuations down to degree
d � 3.

As emphasized in [Sar04], the Tracy–Widom1 distribution has positive measure
on the set {x : x < 0}; in fact it has about 52% of its mass on negative values.
Therefore Theorem 1.3 implies the existence of many d-regular graphs whose sec-
ond eigenvalue is less than 2

√
d − 1, provided that N and d obey the conditions of

Theorem 1.3.
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Corollary 1.4. For d large enough and d3 � N � d9/2, 52% of d-regular graphs
on N vertices have second-largest eigenvalue bounded by 2

√
d − 1. An analogous

statement holds for the smallest eigenvalue.

In [LPS88], a d-regular graph whose largest nontrivial eigenvalue is bounded
in absolute value by 2

√
d − 1 is called a Ramanujan graph. Corollary 1.4 states

that for d large enough and d3 � N � d9/2, precisely 52% of d-regular graphs have
largest (respectively smallest) nontrivial eigenvalue bounded from above by 2

√
d − 1

(respectively from below by −2
√

d − 1). Hence, at least 4% have all nontrivial eigen-
values bounded by 2

√
d − 1 in absolute value. In fact, Theorem 1.3 and its proof can

be extended to show that in the regime N2/9 � d � N1/3 the largest and smallest
nontrivial eigenvalues converge in distribution to independent Tracy–Widom1 dis-
tributions; see Remark 9.9 and Theorem 9.10 below. As a consequence, we have the
following result.

Corollary 1.5. For d large enough and d3 � N � d9/2, 27% of d-regular graphs
on N vertices have all nontrivial eigenvalues bounded in absolute value by 2

√
d − 1.

The conjecture [Sar04, MN08] that a positive fraction of regular graphs of fixed
d is Ramanujan remains open. Explicit constructions of Ramanujan graphs with
d = p + 1 for some prime and prime powers p were introduced in [LPS88, Mar88]
(see also [Sar04]); a construction that applies in the bipartite case for all degrees
is given in [MSS15, MSS18] and see [Coh16] for polynomial time algorithm of this
construction.

The following results on the extremal eigenvalues of random regular graphs are
known. For fixed degree d � 3, Friedman [Fri08] proved that |λ2−2|+|λN +2| = o(1)
with high probability. This result was recently reproved using an alternative method
in [Bor15]; see also [Pud15]. For d tending to infinity with the number of vertices, it
was proved in [FKS89, DJPP13] that the nontrivial extremal eigenvalues are O(

√
d)

for the permutation model of random regular graphs. Recently, in [CGJ18, TY19]
the bound O(

√
d) was established with high probability for the uniform model of

random regular graphs for all 1 � d � N/2. Previous results in this direction include
[KSVW01].

1.2 Related results. In random matrix theory, the bulk spectral statistics of
Wigner matrices are well understood; see in particular [Joh01, ESY11, ERSY10,
EPRSY10, EYY12, TV11, EY15, BEYY16, EKYY12, EY17]. For Erdős–Rényi ran-
dom graphs and random regular graphs with growing average degrees, the bulk spec-
tral statistics were analysed in [EKYY13, EKYY12, HLY15, HL15, BHKY17], and
complete eigenvector delocalization for logarithmically growing average degree was
proved in [EKYY12, HKM19, BKY17]. In the same regime, edge rigidity of Erdős–
Rényi graphs was proved in [BBK17, ADK19]. Similar results have also been proved
for more general degree distributions [AC15]. These types of results are false for
Erdős–Rényi graphs with bounded average degree, whereas random regular graphs
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are expected to have random matrix statistics even for bounded degree graphs; see
[BHY19] for the proof of complete eigenvector delocalization in this regime. For a
review of other results for discrete random matrices, see also [V08].

Macroscopic eigenvalue statistics for random regular graphs of fixed degree have
been studied using the techniques of Poisson approximation of short cycles [DJPP13,
Joh15] and (non-rigorously) using the replica method [MPL14]. These results show
that the macroscopic eigenvalue statistics for random regular graphs of fixed degree
are different from those of a Gaussian matrix. However, this is not predicted to be
the case for the local eigenvalue statistics. Spectral properties of regular directed
graphs have also been studied recently [Cok15, Coo15].

For the eigenvectors of random regular graphs with d ∈ [N c, N2/3−c], the asymp-
totic normality was proved in [BHY17]; see also the prior results for Wigner matrices
[KY13, TV12, BY16]. For random regular graphs of fixed degree, a Gaussian wave
correlation structure for the eigenvectors was predicted in [Elo09] and partially con-
firmed in [BS19].

In the non-Hermitian setting, the limit of the empirical eigenvalue distribution
of random matrices with i.i.d. entries is governed by the circular law. The circular
law for non-Hermitian random matrices with i.i.d. entries with certain moment con-
ditions was verified in [Ede97, PZ10, GT10], and the paper [TV10] established the
circular law under the weakest moment condition. In the directed d-regular graph
setting, it was conjectured [BC12] that for any fixed degree d, the empirical eigen-
value distribution converges to the oriented Kesten–McKay distribution,

1

π

d2(d − 1)

(d2 − (x2 + y2))2
1|z|�

√
d dx dy.

Up to rescaling by
√

d, this measure tends to the circular law as d tends to infinity. In
the regime that d grows with the size of the graph, the circular law for the directed
d-regular was established in [Coo17, BCZ18, LLTTY18].

1.3 Notation and structure of paper. We use the convention N =
{0, 1, 2, . . . }. We usually omit the argument N from our notation, with the con-
vention that most quantities are allowed to depend on N and all of our estimates
are uniform in them. Estimates are not uniform in quantities that are explicitly
constant or fixed. By definition, a random variable F is a function F (A) of the adja-
cency matrix A. We shall often omit the explicit argument A from our notation, and
simply write F for a random variable evaluated at A. For n ∈ N we use the notation
[[n]] ..= {1, 2, . . . , n}. We use the usual big O notation O(·), and if the implicit con-
stant depends on a parameter α we indicate it by writing Oα(·). We use the letter
c to denote a generic small positive constant. For N -dependent random variables X
and Y � 0 we write

X ≺ Y if P[|X| > N cY ] = Oc(N
−1/c) for all c > 0. (1.4)

If X ≺ Y then we also write X = O≺(Y ). If the the implicit constant in Oc is the
same for a family of random variables, we say that the ≺ is uniform in that family.
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All of our uses of ≺ will be uniform in the matrix indices and the spectral parameter
of the Green’s function.

The rest of the paper is devoted to the proofs of Theorems 1.1 and 1.3 . In
Section 2 we introduce the Green’s function, which is the main tool in the proof
of Theorem 1.1. In Section 3 we discuss switchings of graphs, which are the key
operations on graphs that we use to generate self-consistent equations. In Section 4,
we introduce a family of polynomials of the Green’s functions entries that underlies
our proof of Theorem 1.1, and derive some basic estimates on them. In Section 5
we derive the self-consistent equation for the Green’s function in expectation. In
Section 6 we relate the self-consistent equation derived in the previous section with
the Kesten–McKay law. In Section 7, we upgrade the self-consistent equation from
Section 5 to an equation in high probability. In Section 8 we use the self-consistent
equation from Section 7 to derive a local law around the spectral edges, and as a
consequence deduce Theorem 1.1. Finally, in Section 9 we use the rigidity estimates
of Theorem 9 to conclude edge universality and Theorem 1.3.

2 Green’s Function

We consider the adjacency matrix A restricted to the subspace orthogonal to the
vector 1 ..= (1, . . . , 1)∗. More precisely, let P⊥ : RN → RN be the orthogonal pro-
jection onto 1⊥, explicitly given by P⊥ = I − 11∗/N where I is the N × N identity
matrix. Since H is the normalized adjacency matrix of a regular graph, the matrices
H and P⊥ commute: HP⊥ = P⊥H.

For a spectral parameter z ∈ C+
..= {z ∈ C : Im[z] > 0} we define the Green’s

function by

G(z) ..= P⊥(H − z)−1P⊥. (2.1)

Thus, G and (H − z)−1 agree on the image of P⊥, which is the subspace of RN

perpendicular to 1. The Green’s function satisfies the relation

G(z)H = HG(z) = zG(z) + P⊥ = zG(z) + (I − 11∗/N). (2.2)

Moreover,

∑

i

Gij(z) =
∑

j

Gij(z) = 0. (2.3)

Here, and throughout the following, sums over indices run over i ∈ [[N ]]. We denote
the normalized trace of G, which is also the Stieltjes transform of the empirical
spectral measure of H|1⊥ , by

m(z) ..=
1

N

∑

i

Gii(z). (2.4)
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We refer to m(z) simply as the Stieltjes transform. Our goal is to approximate m(z)
by md(z), the Stieltjes transform of the Kesten–McKay law [Kes59],

md(z) ..=

∫

R

ρd(x)

x − z
dx, ρd(x) ..=

(
1 +

1

d − 1
− x2

d

)−1 √
[4 − x2]+

2π
.

The Kesten–McKay law ρd is the spectral measure at any vertex of the infinite d-
regular tree (see, for example, [AW15] or [BHY19, Section 5]). It has support [−2, 2]
in our normalization. The Stieltjes transform md(z) is explicitly given by

md(z) = −
(

z +
d

d − 1
msc(z)

)−1

, (2.5)

where msc(z) is the Stieltjes transform of the Wigner semicircle law,

msc(z) ..=

∫

R

ρsc(x)

x − z
dx, ρsc(x) ..=

√
[4 − x2]+

2π
, (2.6)

satisfying the self-consistent equation

1 + zmsc(z) + m2
sc(z) = 0. (2.7)

Later we shall use that, alternatively, md(z) can be characterized by the self-
consistent equation

P∞(z, md(z)) = 0, P∞(z, w) = 1 + zw +
d

d − 1
w2

+
∑

k�2

(−2)k−1(2k − 3)!!

k!

d

(d − 1)k
w2k. (2.8)

Indeed, from (2.5) and (2.7) we get

1

md(z)
=

1

msc(z)
− msc(z)

d − 1
, (2.9)

from which we obtain, for large enough d,

msc(z) =
d − 1

2md(z)

(√
1 + 4

md(z)2

d − 1
− 1

)
= md(z)

+
d − 1

2md(z)

∑

k�2

(−1)k−1 2k(2k − 3)!!

k!

md(z)2k

(d − 1)k
.

Plugging this into 0 = 1 + zmd(z) + d
d−1md(z)msc(z), as follows from (2.5), yields

(2.8).
We fix a large K > 0 and define the spectral domain

D ..= {z = E + iη : −K � E � K, N−1+1/K � η � K}. (2.10)
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Here, and throughout the following, we use the notation

z = E + iη

for the real and imaginary parts of z. The local semicircle law for random regular
graphs [BKY17] shows that m(z) is approximated by md(z) to order 1/

√
d (up to

logarithmic corrections), at least away from the edges ±2 of the spectral measure.
The next result follows from [BKY17, Theorem 1.1]. In fact, [BKY17, Theorem 1.1]
gives a much better estimate for Λd for z away from the edge ±2.

Proposition 2.1 ([BKY17, Theorem 1.1]). With the deterministic control param-
eters

Λo(z) ..=
1√
Nη

+
1√
d

+
d3/2

N
, Λd(z) ..=

(
1√
Nη

+
1√
d

+
d3/2

N

)1/2

, (2.11)

we have, for 1 � d � N2/3 and all z ∈ D,

max
i�=j

|Gij(z)| ≺ Λo(z), max
i

|Gii(z) − md(z)| ≺ Λd(z). (2.12)

One by-product of our proof is an improved estimate for the Green’s function
entries close to the edges ±2. The bound 1/

√
d is the best one can expect, since if

Aij = 1, the off-diagonal Green’s function entry Gij is of order 1/
√

d. In Proposi-
tion 8.4 below, we show that near the spectral edges the estimate (2.12) in fact holds
with the smaller control parameters

Λo(z) = Λd(z) =
1√
Nη

+
1√
d

+
d3/2

N
. (2.13)

Averaging over the index i, the estimate (2.12) implies an estimate on the Stieltjes
transform m(z). Using additional cancelations from this average, in this paper we
shall derive a more precise estimate (see Theorem 8.1) from which we obtain our
results about the extremal eigenvalues.

Throughout this paper, we consistently omit the spectral parameter z from our
notation in quantities such as G and m, unless it is needed to avoid confusion.

3 Switchings and Exchangeability

Our analysis makes use of switchings for regular graphs and also makes some use of
the invariance under the permutation of vertices. We use ideas related to those intro-
duced in [BHKY17], to which we also refer for references to other uses of switchings.
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k

j

l

i

Figure 1: A simple switching is given by replacing the solid edges by the dashed edges.

3.1 Switchings. As in [BHKY17], we define the signed adjacency matrices

(∆ij)ab
..= δiaδjb + δibδja, ξkl

ij
..= ∆ij + ∆kl − ∆ik − ∆jl, (3.1)

corresponding to an edge at ij respectively to a switching of the edges ij and kl;
see Figure 1. Clearly we have ξkl

ij 1 = 0 and ξjl
ik = −ξkl

ij . For any indices i, j, k, l, we
denote the indicator function that the edges ij and kl are switchable (i.e. the edges
ij and kl are present and the switching again results in a simple regular graph) by

χkl
ij (A) = AijAkl(1 − Aik)(1 − Ajl). (3.2)

In this section, we use switchings to estimate terms of the form

E

[
b∏

a=1

Aiaja
F (A)

]
, (3.3)

where F is any function which depends on the random graph A, and possibly on the
indices i1, j1, · · · , ib, jb. (Later, we shall take F to be a polynomial of the Green’s
function entries {Gij}i,j∈[[N ]] and the Stieltjes transform m.)

Proposition 3.1. If the indices i1, j1, k1, l1 · · · , ib, jb, kb, lb are distinct, we have the
identity

E

[
F (A)

b∏

a=1

χkala
iaja

(A)

]
= E

[
F

(
A +

b∑

a=1

ξkala
iaja

)
b∏

a=1

χjala
iaka

(A)

]
, (3.4)

where the indicator function χ is as defined in (3.2).

Proof. Define the sets of graphs

G1 =

{
A :

b∏

a=1

χkala
iaja

(A) = 1

}
,

G2 =

{
A :

b∏

a=1

χjala
iaka

(A) = 1

}
.

(3.5)
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By our assumption that the indices i1, j1, k1, l1 · · · , ib, jb, kb, lb are distinct, there is
a simple bijection between G1 and G2, namely

A ∈ G2 �→ A +

b∑

a=1

ξkala
iaja

∈ G1. (3.6)

Since P is the uniform probability measure on d-regular graphs, the claim follows
from (3.6).

In the switching in (3.4), the indicator function χkl
ij (A) enforces that the matrix

A + ξkl
ij is again the adjacency matrix of a simple graph. Note that without this

indicator function, such as in the following corollary and elsewhere throughtout our
proof, A + ξkl

ij is not necessarily the adjacency matrix of a simple graph, just a real
symmetric matrix. This does however not affect our arguments, which should be
viewed as operating with general symmetric matrices instead of adjacency matrices
of simple graphs.

Corollary 3.2. Fix indices i, j ∈ [[N ]] and i 	= j. Let F ≡ Fij be a random variable
possibly depending on ij. With the random control parameter

Cij(F, A) ..= |F (A)| + max
kl

|F (A + ξkl
ij )|

we have the integration by parts formula

E[AijF (A)] =
d

N
E[F (A)] +

1

Nd

∑

kl

E

[
AikAjl(F (A + ξkl

ij ) − F (A))
]

+ O

(
dE[AijCij(F, A)]

N

)
. (3.7)

Proof. Since
∑

kl Akl = dN , we have

E[AijF (A)]

=
1

Nd

∑

kl

E[AijAklF (A)] =
1

Nd

∑

kl:ijkl
distinct

E[χkl
ij (A)F (A)]

+ O

⎛

⎜⎝
1

Nd

∑

kl:ijkl
not distinct

E[AijAkl|F (A)|] +
1

Nd

∑

kl

E[AijAkl(Aik + Ajl)|F (A)|]

⎞

⎟⎠

=
1

Nd

∑

kl:ijkl
distinct

E[χkl
ij (A)F (A)] + O

(
dE[AijCij(F, A)]

N

)
,

(3.8)
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where we used that the row sums and column sums of A are d. By (3.4), the first
term on the right-hand side of (3.8) equals

1

Nd

∑

kl:ijkl
distinct

E[χjl
ik(A)F (A + ξ

kl
ij )] =

1

Nd

∑

kl

E[AikAjlF (A + ξ
kl
ij )]

+ O

⎛

⎜⎝
1

Nd

∑

kl:ijkl
not distinct

E[AikAjl|F (A+ξ
kl
ij )|]+ 1

Nd

∑

kl

E[AikAjl(Aij + Akl)|F (A + ξ
kl
ij )|]

⎞

⎟⎠

=
1

Nd

∑

kl

E[AikAjlF (A + ξ
kl
ij )] + O

(
dE[AijCij(F, A)]

N

)
,

(3.9)

where we used that Cij(F, A) is independent of indices k, l and we can sum over
them. The claim (3.7) follows from combining (3.8), (3.9) and the fact

∑
kl AikAjl =

d2.

For b, c � 0 and multi-indices i ∈ [[N ]]b and j ∈ [[N ]]c, we denote by ij ∈ [[N ]]b+c

their concatenation. We shall often need the following random control parameter.

Definition 3.3. For fixed b, c � 0 we denote the b-tuples i = (i1, . . . , ib), j =
(j1, . . . , jb), k = (k1, . . . , kb), l = (l1, . . . , lb) and the c-tuple m = (m1, . . . , mc).
Let F = {Fijm} be a family of random variables indexed by ijm. Define the random
control parameter

C(F, A) ..= max
m

max
ijkl

(
|Fijm(A)| +

∣∣∣∣∣Fijm

(
A +

b∑

a=1

ξkala
iaja

)∣∣∣∣∣

)
. (3.10)

Corollary 3.4. Let Fijm be as in Definition 3.3. We have the integration by parts
formula

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
Fijm(A)

]

=
1

N2b+cd2b

∑

m

∑

ijkl

E

[
b∏

a=1

Aiaka
Ajala

(
Fijm

(
A +

b∑

a=1

ξkala
iaja

)
− Fijm(A)

)]

+
1

N2b+c

∑

m

∑

ij

E [Fijm(A)] + O

(
dE[C(F, A)]

N

)
.

(3.11)
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Proof. Since the row and column sums of A equal d, by introducing new indices
k1, l1, · · · , kb, lb, we rewrite the left-hand side of (3.11) as

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
Fijm(A)

]
=

1

N2b+cd2b

∑

m

∑

ijkl

E

[
b∏

a=1

Aiaja
AkalaFijm(A)

]

=
1

N2b+cd2b

∑

m

∑

ijkl
distinct

E

[
b∏

a=1

χkala
iaja

(A)Fijm(A)

]

+
1

N2b+cd2b

∑

m

∑

ijkl
not distinct

E

[
b∏

a=1

Aiaja
AkalaFijm(A)

]

+
1

N2b+cd2b

∑

m

∑

ijkl
distinct

E

[(
b∏

a=1

Aiaja
Akala −

b∏

a=1

χkala
iaja

(A)

)
Fijm

]
.

(3.12)

The second last term of the last right-hand side in (3.12) can be estimated by

∣∣∣∣∣∣∣

1

N2b+cd2b

∑

m

∑

ijkl
not distinct

b∏

a=1

Aiaja
AkalaFijm(A)

∣∣∣∣∣∣∣

�
1

N2b+cd2b

∑

m

∑

ijkl
not distinct

b∏

a=1

Aiaja
AkalaC(F, A)

�
1

N2bd2b

∑

ijkl
not distinct

b∏

a=1

Aiaja
AkalaC(F, A) �

1

N
C(F, A),

(3.13)

where in the last line we used that
∑

i Aij =
∑

j Aij = d, that Aii = 0, and hence
that at least one factor 1/N remains because of the constraint in the sum that ijkl
be not distinct. Similarly, using |AijAkl − χkl

ij (A)| = AijAkl[Aik + Ajl − AikAjl] �

AijAkl[Aik + Ajl], we have

∣∣∣∣∣∣
1

N2b+cd2b

∑

m

∑

ijkl

[(
b∏

a=1

Aiaja
Akala −

b∏

a=1

χkala
iaja

(A)

)
Fijm(A)

]∣∣∣∣∣∣
�

d

N
C(F, A).

(3.14)
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By plugging the estimates (3.13) and (3.14) into (3.12), we get

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
Fijm(A)

]

=
1

N2b+cd2b

∑

m

∑

ijkl
distinct

E

[
b∏

a=1

χkala
iaja

(A)Fijm(A)

]
+ O

(
dE[C(F, A)]

N

)
.

(3.15)

By Proposition 3.1 and an estimate analogous to the one above, we have

1

N2b+cd2b

∑

m

∑

ijkl
distinct

E

[
b∏

a=1

χkala
iaja

(A)Fijm(A)

]

=
1

N2b+cd2b

∑

m

∑

ijkl
distinct

E

[
b∏

a=1

χjala
iaka

(A)Fijm

(
A +

b∑

a=1

ξkala
iaja

)]

=
1

N2b+cd2b

∑

m

∑

ijkl

E

[
b∏

a=1

Aiaka
AjalaFijm

(
A +

b∑

a=1

ξkala
iaja

)]
+ O

(
dE[C(F, A)]

N

)
.

(3.16)

The claim now follows from combining (3.15) and (3.16).

4 Polynomials in Green’s Function Entries

In this section we collect some estimates on the Green’s function G and the Stieltjes
transform of the spectral measure m. These will be used repeatedly in the rest of
the paper. We also introduce polynomials in the Green’s function entries, and record
some of their basic properties. We work under the following assumption throughout
this section. Recall the Stieltjes transform md of the Kesten–McKay law from (2.5).

Assumption 4.1. We assume that 1 � d � N2/3 and that there are deterministic
z-dependent control parameters Λo, Λd ∈ [d−1/2, 1] such that

max
i

|Gii − md| ≺ Λd, max
i�=j

|Gij | ≺ Λo, (4.1)

for all z ∈ D defined in (2.10).

Note that, by Proposition 2.1, we know that Assumption 4.1 holds at least when
Λo and Λd are given by (2.11).

By our definition, the Green’s function G = P⊥(H − z)−1P⊥ is symmetric and
satisfies (2.3). The Ward identity states that the Green’s function G satisfies

1

N

∑

j

|Gij |2 =
Im[Gii]

Nη
,

1

N

∑

ij

|Gij |2 =
Im[m]

η
; (4.2)
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it can be proved using the resolvent identity on G − G∗. Here recall that m is the
Stieltjes transform (2.4) of the empirical spectral measure. We record the following
basic result, which we shall use tacitly throughout the rest of the paper.

Lemma 4.2. Suppose that 1 � d � N2/3.

(i) For any c > 0, with probability at least 1 − Oc(N
−1/c) we have for all z ∈ D

max
xy

|Gxy| � 2. (4.3)

(ii) Denoting by uα(i) the i-th component of the α-th normalized eigenvector of
P⊥HP⊥, we have the delocalization estimate

max
α

max
i

|uα(i)| ≺ 1/
√

N. (4.4)

Proof. The claim (i) follows from Proposition 2.1, the estimate |msc| � 1, and a
simple N−3-net argument in D combined with a union bound to obtain a simultenous
estimate for all z ∈ D. The claim (ii) follows from [BKY17, Corollary 1.2].

Remark 4.3. More explicitly, Lemma 4.2(i) says that maxxy|Gxy(A)| � 2 with
probability at least 1 − Oc(N

−1/c). As a consequence, for any fixed b ∈ N we find
using a simple resolvent expansion that

max
xy

∣∣∣∣Gxy

(
A +

b∑

a=1

ξkala
iaja

)∣∣∣∣ � 2 + O(d−1/2)

with probability at least 1 − Oc(N
−1/c). Moreover, by a similar argument, using

(4.1), for the off-diagonal entries we have the estimate

max
x �=y

∣∣∣∣Gxy

(
A +

b∑

a=1

ξkala
iaja

)∣∣∣∣ ≺ Λo.

We define the discrete and continuous derivatives for any indices i, j, k, l,

Dkl
ij F (A) ..= F (A + ξkl

ij ) − F (A), ∂kl
ij F (A) ..=

√
d − 1 ∂tF (A + tξkl

ij )
∣∣∣
t=0

, (4.5)

where the matrix ξkl
ij was defined in (3.1). Note that ∂kl

ij is the directional derivative in

the direction ξkl
ij of the rescaled variable H = A/

√
d − 1. For the discrete derivative

operator Dkl
ij , we have the discrete product rule

Dkl
ij (FG) = (Dkl

ij F )G + F (Dkl
ij G) + (Dkl

ij F )(Dkl
ij G), (4.6)

and the Taylor expansion with remainder gives

Dkl
ij F (A) =

b−1∑

n=1

1

n!

(
∂kl

ij√
d − 1

)n

F (A) +
1

b!

(
∂kl

ij√
d − 1

)b

F (A + θξkl
ij ), (4.7)
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for some 0 � θ � 1.
For any indices i, j, k, l (which might be not distinct), the derivatives of the

Green’s function entries Gij and the Stieltjes transform m are given by

∂kl
ij Gij = −GiiGjj − GijGij−GikGlj − GilGkj+GilGjj+GiiGkj+GikGij+GijGlj ,

(4.8)

∂kl
ij m =

2

N

N∑

a=1

(−GiaGja − GkaGla + GiaGka + GjaGla)

=
2

N
(−(G2)ij − (G2)kl + (G2)ik + (G2)jl). (4.9)

A central object in our proof is the following notion of a polynomial in the entries
of the Green’s function.

Definition 4.4. (i) Let F = F ({xst}r
s,t=1) be a polynomial in the r2 abstract

variables {xst}r
s,t=1. We denote its degree by deg(F ). For i ∈ [[N ]]r, we define

its evaluation on the Green’s function by

Fi = F ({Gisit
}r

s,t=1), (4.10)

and say that Fi is a polynomial in the Green’s function entries {Gisit
}r

s,t=1. By
a slight abuse of notation, we sometimes abbreviate F instead of Fi for the
polynomials in the Green’s function entries when there is no risk of confusion.

(ii) Let F = F ({xst}r
s,t=1) be a monomial in r2 variables. Then the number of

off-diagonal entries of F is the total degree of variables xst with s 	= t. If the
number of off-diagonal entries of F is zero then we define χF = 1, otherwise
we define χF = 0.

(iii) For U a polynomial in two variables, by a slight abuse of notation we often
abbreviate U = U(m, m̄) for the polynomial in the Stieltjes transform m and
its complex conjugate m̄. For r, r̄ ∈ N we abbreviate U (r,r̄) ..= ∂r

m∂ r̄
m̄U .

Claim 4.5. Using (4.3) and (4.4), we have for any indices a, b ∈ [[N ]]
∣∣∣∣

1

Nk−1
(Gk)ab

∣∣∣∣ ≺ Im[m]

(Nη)k−1
,

1

N2k−1
(|G|2k)ab ≺ Im[m]

(Nη)2k−1
. (4.11)

In particular,

1

N

N∑

j=1

|GajGjb| ≺ Im[m]

Nη
, (4.12)

and for distinct indices i, j, k, l, (∂kl
ij )2Gij is a cubic polynomial in the Green’s func-

tion with at least one off-diagonal factor,

|(∂kl
ij )2Gij | ≺ Λo. (4.13)
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We also have the following estimates for the derivatives of the Stieltjes transform
m: for any integer s � 1,

|(∂kl
ij )sm| ≺ Im[m]

Nη
, (4.14)

and for any fixed polynomial U ,

∣∣∣(∂kl
ij )sU(m, m̄)

∣∣∣ ≺ max
r+r̄�1

|U (r,r̄)(m, m̄)|
(

Im[m]

Nη

)r

. (4.15)

Proof. (4.11) follows directly from the spectral decomposition and the delocalization
of the eigenvectors (4.4):

∣∣∣∣
1

Nk−1
(Gk)ab

∣∣∣∣ =

∣∣∣∣∣
1

Nk−1

∑

α

uα(a)uα(b)

(λα − z)k

∣∣∣∣∣

≺ 1

(Nη)k−2

1

N2

∑

α

1

|λα − z|2 =
Im[m]

(Nη)k−1
,

∣∣∣∣
1

N2k−1
(|G|2k)ab

∣∣∣∣ =
1

N2k−1

∣∣∣∣∣
∑

α

uα(a)uα(b)

|λα − z|2k

∣∣∣∣∣

≺ 1

(Nη)2k−2

1

N2

∑

α

1

|λα − z|2 =
Im[m]

(Nη)2k−1
.

(4.16)

The claim (4.12) follows from Young’s inequality and (4.11) by taking k = 2,

1

N

N∑

j=1

|GajGjb| �
1

N

N∑

j=1

(|Gaj |2 + |Gjb|2) =
1

N

(
(|G|2)aa + |G|2bb

)
≺ Im[m]

Nη
. (4.17)

For (4.13), we notice that from (4.8), one can directly verify that none of the deriva-
tives ∂ij , ∂kl, ∂ik, ∂jl produces a diagonal term, and (4.13) follows from (4.3).

For (4.14), one can check using (4.9) that (∂kl
ij )sm is a sum of terms in the

following form

1

N

N∑

a=1

Gai1Gi2i3 · · ·Gi2sa (4.18)

where i1, i2, · · · , i2s ∈ {i, j, k, l}. Thanks to (4.3) and (4.12), we can bound (4.18) as
∣∣∣∣∣
1

N

N∑

a=1

Gai1Gi2i3 · · ·Gi2sa

∣∣∣∣∣ ≺
∣∣∣∣∣
1

N

N∑

a=1

Gai1Gi2sa

∣∣∣∣∣ ≺ Im[m]

Nη
, (4.19)

and the claim (4.14) follows. For (4.15), the derivative (∂kl
ij )sU(m) is a sum of terms

of the form

U (r,r̄)(m, m̄)(∂kl
ij )s1m(∂kl

ij )s2m · · · (∂kl
ij )srm(∂kl

ij )s̄1m̄(∂kl
ij )s̄2m̄ · · · (∂kl

ij )s̄r̄m̄, (4.20)
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where r + r̄ � 1, s1, s2, · · · , sr, s̄1, s̄2, · · · , s̄r̄ � 1 and s1 + · · ·+ sr + s̄1 + · · ·+ s̄r̄ = s.
Thanks to (4.14) we have

|(4.20)| ≺ |U (r,r̄)(m, m̄)|
(

Im[m]

Nη

)r+r̄

. (4.21)

The claim (4.15) follows from (4.21).

Claim 4.6. Let U be a fixed polynomial of the Stieltjes transform m and its complex
conjugate m̄. For any indices i, j, k, l, a, b and fixed positive integer b > 0, we have

Dkl
ij Gab(A) =

b−1∑

n=1

(−1)n

(d − 1)n/2
(G(ξkl

ij G)n)ab + O≺(d−b/2) = O≺(d−1/2), (4.22)

Dkl
ij m(A) = O≺

(
Im[m]

d1/2Nη

)
, (4.23)

Dkl
ij U(A) = O≺

(
1

d1/2
max
s+s̄�1

|U (s,s̄)(m, m̄)|
(

Im[m]

Nη

)s+s̄
)

. (4.24)

Proof. By the Taylor expansion (4.7),

Dkl
ij Gab(A) =

b−1∑

n=1

1

n!(d − 1)n/2
(∂kl

ij )nGab +
1

b!(d − 1)b/2
(∂kl

ij )bGab(A + θξkl
ij ), (4.25)

for some random θ ∈ [0, 1]. Thanks to Lemma 4.2 and Remark 4.3,

(∂kl
ij )nGab = (−1)nn!(G(ξkl

ij G)n)ab ≺ 1, (∂kl
ij )bGab(A + θξkl

ij ) ≺ 1. (4.26)

The expression (4.22) follows from the bound (4.26). The estimate (4.23) follows
from averaging (4.25) and using (4.19). The estimate (4.24) follows from (4.23) and
the discrete product rule (4.6).

As an application of Claim 4.6, we have the following estimate, which says essen-
tially that when acting with discrete derivatives on a product of the form FU , where
U is a polynomial in m and F a polynomial in the Green’s function entries (recall
Definition 4.4), the main contribution is given by differentiating F .

Claim 4.7. Let F be a fixed polynomial of Green’s function entries {Gij}i,j∈[[N ]],
and U a fixed polynomial in the Stieltjes transform m and its complex conjugate
m̄. For any indices b � 1, i1, j1, k1, l1, · · · , ib, jb, kb, lb and positive integer b � 1, we
have

FU

(
A +

b∑

a=1

ξkala
iaja

)
− FU(A) =

(
b−1∑

n=1

1

n!(d − 1)n/2

(
b∑

a=1

∂kala
iaja

)n

F (A)

)
U(A)

+ O≺

(
|U(A)|
db/2

+
|F (A +

∑b
a=1 ξkala

iaja
)|

d1/2
max
s+s̄�1

|U (s,s̄)(m, m̄)|
(

Im[m]

Nη

)s+s̄
)

.

(4.27)
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Proof. We denote ξ =
∑b

a=1 ξkala
iajb

, and rewrite the left-hand side of (4.27) as

FU (A + ξ) − FU(A) = (F (A + ξ) − F (A)) U(A) + F (A + ξ) (U (A + ξ) − U(A)) .
(4.28)

Since F is a polynomial of Green’s function entries {Gij}i,j∈[[N ]], by the same argu-
ment as for (4.22), we have

F (A + ξ) − F (A) =

b−1∑

n=1

1

n!(d − 1)n/2

(
b∑

a=1

∂kala
iaja

)n

F (A) + O≺
(
d−b/2

)
. (4.29)

Similarly, since U is a polynomial of the Stieltjes transform m and its complex
conjugate m̄, by (4.24), we have

U (A + ξ) − U(A) = O≺

(
1

d1/2
max
s+s̄�1

|U (s,s̄)(m, m̄)|
(

Im[m]

Nη

)s+s̄
)

. (4.30)

The claim (4.27) follows from plugging (4.29) and (4.30) into (4.28).

We conclude this section with an elementary result for the operator ≺, which we
shall use tacitly throughout the following sections.

Lemma 4.8. Suppose that A and B are nonnegative random variables satisfying
A � NC and B � N−C for some constant C > 0. Then A ≺ B implies E[A] ≺ E[B].

5 Self-consistent Equation in Expectation

In this section we derive the self-consistent equation in expectation for the Stieltjes
transform m; in Section 7 below we shall extend this self-consistent equation to a
high probability estimate.

Proposition 5.1. Suppose that Assumption 4.1 holds. For every fixed integer a �

1, there exists a polynomial, depending on d and a but not N , and whose degree
depends on a only,

Pa(z, w) = 1 + zw + Qa(w), (5.1)

where

Qa(w) =
dw2

d − 1
+

1

d

(
a3w

3 + a4w
4 + · · ·

)
, (5.2)

is a polynomial with bounded coefficients a3, a4, . . . such that, for any z ∈ D,

E[Pa(z, m)] ≺ 1

da/2
+

E[Im[m]]

Nη
+

d3/2Λo

N
. (5.3)



710 R. BAUERSCHMIDT ET AL. GAFA

Remark 5.2. An expansion in expectation similar to Proposition 5.1 (with different
coefficients) would be possible for the Erdős–Rényi graph in the same regime of
expected degree. The essential difference between the random regular and the Erdős–
Rényi graph is in the high moment estimates in Section 7, using which we convert the
expansion in expectation to one in high probability. For the random regular graph,
there are fundamental cancellations arising from the degree constraint, which imply
stronger concentration than possible for the Erdős–Rényi graph; these cancellations
are manifest only in the high probability expansion. We emphasize that without
concentration, the self-consistent equation in expectation does not lead to a closed
equation for m (or its expectation), and hence does not provide useful spectral
information.

We shall show that the estimate (5.3) results from the switching invariance of
random regular graphs. It may be viewed as an approximate Schwinger–Dyson Equa-
tion for the random regular graph ensemble; in statistical mechanics and field theory,
such equations are typically derived by integration by parts.

Before giving the proof of Proposition 5.1, we explain the mechanism behind it.
Starting from (2.2) we obtain

1 + zm =
∑

ij

AijGij

N(d − 1)1/2
+ (error),

where we use (error) to denote a small error that we do not keep track of in this
sketch. Taking the expectation and using Corollary 3.2, recalling that

∑
i Gij = 0

and recalling the notation (4.5), we get

E[1 + zm] =
1

N2d(d − 1)1/2

∑

ijkl

E
[
AikAjlD

kl
ij Gji

]
+ (error).

Using the integration by parts formula from Corollary 3.4 we therefore obtain

E[1 + zm] =
d

N4(d − 1)1/2

∑

ijkl

E
[
Dkl

ij Gji

]

+
1

N4d3(d − 1)1/2

∑

ijklrstu

E

[
AirAksAjtAlu

(
(Dkl

ij Gji)(A + ξrs
ik

+ ξtu
jl ) − (Dkl

ij Gji)(A)
)]

+ (error). (5.4)

For the first term on the right-hand side of (5.4), we use the Taylor expansion (4.7)
to expand Dkl

ij Gji as a polynomial in the entries of G, up to a small error. The leading

term is −(d−1)−1/2GjjGii, and it yields the first term of (5.2). The other terms are
polynomials that either contain off-diagonal entries of G or a higher order. Similarly,
for the second term of (5.4), we keep on reapplying inductively the integration by
parts formula from Corollary 3.4, and expand all discrete derivatives using Taylor’s
formula (4.7).
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This procedure results in a proliferation of terms that contain products of factors
of the form

1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
Fijm

]
(5.5)

where F is a polynomial in the entries of G. Each application of Corollary 3.4 yields
a main term (second term on the right-hand side of (3.11)) with no factors of A
and another term (first term on the right-hand side of (3.11)) that is (after Taylor
expansion of the discrete derivatives) of higher order, in the sense of both the degree
of Fijm and the power of d−1/2 in front of it. Any main term that contains one
or more off-diagonal can be shown to either vanish or be small enough. Hence, we
only need to keep track of terms of the form (5.5) with b = 0 and χF = 1 (recall
Definition 4.4).

Such a term is in general not a polynomial in m; consider for instance the term
1
N

∑
i E[G2

ii]. An important ingredient of our argument is to rewrite such a term as
a corresponding polynomial in m, up to higher order terms; for instance,

1

N

∑

i

E[G2
ii] =

1

N2

∑

ij

E[GiiGjj ] + (higher order) + (error),

whereby 1
N2

∑
ij E[GiiGjj ] = E[m2]. To explain how this works, consider some poly-

nomial Xi in the Green function entries (think of e.g. Xi = Gii). We want to replace
E[GiiXi] with E[GjjXi] up to higher order terms and small errors. From (2.2) we
get the equations

1 − 1

N
+ zGii = (HG)ii, 1 − 1

N
+ zGjj = (HG)jj .

Multiplying the first by GjjXi and the second by GiiXi and taking the difference,
we obtain

(Gii − Gjj)Xi =
(
Gii(HG)jj − Gjj(HG)ii

)
Xi + (error)

=
1

(d − 1)1/2

∑

k

(
AjkGiiGkj − AikGkiGjj

)
Xi + (error).

We take the expectation, average over ij, and apply the integration by parts formula
of Corollary 3.4 twice. Recalling that

∑
k Gik = 0, we therefore obtain

1

N2

∑

ij

E[(Gii − Gjj)Xi]

=
d

(d − 1)1/2N5

∑

ijkrs

E
[
Drs

jk(GiiGkjXi) − Drs
ik (GkiGjjXi)

]

+(higher order) + (error).
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We expand the discrete derivatives using (4.7). This yields

1

N2

∑

ij

E[(Gii − Gjj)Xi]

=
d

(d − 1)N5

∑

ijkrs

E
[
∂rs

jk(GiiGkjXi) − ∂rs
ik (GkiGjjXi)

]
+ (higher order) + (error)

=
d

(d − 1)N5

∑

ijkrs

E
[
−GiiGkkGjjXi + GkkGiiGjjXi

]
+ (higher order) + (error),

where we used that all other terms are small because they contain off-diagonal
terms. Thus, the leading order terms cancel exactly. We may therefore continue
this expansion iteratively on the terms (higher order), which will stop after a finite
number of steps, as the order, and hence the power of d−1/2, increases at each
iteration.

We conclude this informal discussion by noting that the algorithm sketched above
that generates the polynomial Qa, while explicit, is quite complicated and track-
ing the actual coefficients of (5.2) that it generates is difficult. This issue will be
addressed in the next section, where, instead of tracking the coefficients explicitly,
we characterize them indirectly by showing that up to a small error term the Stielt-
jes transform of the Kesten–McKay law md is a root of Pa(z, ·), which will imply
that the coefficients of Pa are close to those of (2.8). This concludes the outline of
the proof of Proposition 5.1.

The rest of this section is devoted to the proof of Proposition 5.1. Throughout,
we fix an integer a � 1. The spectral parameter z is always taken in the set D, and
our estimates are uniform in z. We shall always work under Assumption 4.1.

5.1 Estimates for moments of the Green’s function. We begin with a
definition of a family of fundamental terms that form the backbone of our expansion.
They are classified by the order of the variable d−1/2 and the degree of the polynomial
in the entries of G. Both quantities are important to keep track of. The former
because it will allow us to stop the recursive application of identities yielding high
order terms after a fixed number, a, of steps, up to an error term of order d−a/2.
The latter is important to ensure that the polynomial in m that we shall ultimately
generate will have a large enough degree.

For the following statements, we recall that for multi-indices i ∈ [[N ]]b and
j ∈ [[N ]]c, we denote by ij ∈ [[N ]]b+c their concatenation (and analogously for ijk).
Together with this notation, we recall from Definition 4.4 that, for a polynomial F
in (2b + c)2 variables and i, j ∈ [[N ]]b and m ∈ [[N ]]c, we write Fijm for its evaluation
in the Green’s function entries, and that for a polynomial U in m, m̄, we abbreviate
U(m, m̄) by U .
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Definition 5.3.

(i) For o ∈ N, we define the expressions

To(F, U) ..=
1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
Fijm(A)U(A)

]
. (5.6)

(ii) For a given polynomial U = U(m, m̄) and integers o, d ∈ N, we use the symbol

To,d(U)

to denote a finite linear combination of terms of the form αTõ(F̃ , U), where
õ � o, deg(F̃ ) � d, and α = C

(
d/(d−1)

)r
for some r ∈ Z/2 and a deterministic

constant C ∈ R.

Note that To depends on o ∈ N only by a multiplicative factor d−o/2. From (4.3),
we have |Fijm| ≺ 1, and thus by Lemma 4.8 we find the a priori estimate

|To(F, U)| ≺ 1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
|U(A)|

]
=

E[|U(A)|]
do/2

. (5.7)

Proposition 5.1 will follow from much more precise estimates that follow from an
inductive application of the following proposition, which extracts the leading term
from (5.6) and shows that it can be expressed as a monomial in the trace m = 1

N Tr G
rather than the individual Green’s function entries. To prove Proposition 5.1, we only
need the special case U = 1; we allow for a general U for later use in Section 7.

Aside from the notation introduced in Definition 5.3, recall that C(F, A) was
defined in Definition 3.3, and that Fi, U , and χF were defined in Definition 4.4. Also
recall Λo from (4.1).

Proposition 5.4. Fix o ∈ N. Let F be a fixed monic monomial in (2b+c)2 abstract
variables, with degree deg(F ). Then

1

do/2

1

Nb+cdb

∑

m

∑

ij

E

[
b∏

a=1

AiajaFijmU

]

=
χF E[mdeg(F )U ]

do/2
+ To+1,deg(F )+1(U)

+
1

do/2
O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
dE[C(U, A)]

N
+ Λ2−χF

o max
s+s̄�1

E

[

|U (s,s̄)|
(

Im[m]

Nη

)s+s̄
])

.

(5.8)

To prove Proposition 5.4, we shall use the following claims. The first claim states
that the averages of monomials with more than one off-diagonal Green’s function
terms are subleading.

Claim 5.5. Let F be a fixed monomial in b2 abstract variables with at least two
off-diagonal entries. Then

∣∣∣∣∣
1

N b

∑

i

E [FiU ]

∣∣∣∣∣ ≺ E[Im[m]|U |]
Nη

. (5.9)
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Proof. Using |Gxy| ≺ 1 and U ≺ 1 from (4.3) to bound all except the two off-diagonal
factors of G in Fi and then using the Cauchy–Schwarz inequality, we have
∣∣∣∣∣

1

N b

∑

i

E [FiU ]

∣∣∣∣∣ ≺ 1

N b

∑

i

E
[
|Gi1i2 |2|U |

]
=

1

N2

∑

i1,i2

E
[
|Gi1i2 |2|U |

]
=

E[Im[m]|U |]
Nη

,

(5.10)

where the last equality is the Ward identity (4.2).

The following claim separates the leading order term of To(F, U) plus other terms
of higher order and much small error terms. It says that, to leading order, each factor
of A in (5.6) can be replaced with its expectation d/N .

Claim 5.6. Fix o ∈ N. Let F be a fixed monomial in (2b + c)2 abstract variables
and let U be a fixed polynomial in m. Then

1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
FijmU

]

=
1

do/2

1

N2b+c

∑

m

∑

ij

E [FijmU ] + To+1,deg(F )+1(U)

+
1

do/2
O≺

(
E[|U |]
da/2

+
dE[C(U, A)]

N
+

Λ1−χF
o

d1/2
max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.11)

Proof. We prove the statement for o = 0; the general statement follows by multiply-
ing both sides by 1/do/2. By Corollary 3.4, the left-hand side of (5.11) is

1

N2b+c

∑

m

∑

ij

E [FijmU(A)]

+
1

N2b+cd2b

∑

m

∑

ijkl

E

[
b∏

a=1

Aiaka
Ajala

(
FijmU

(
A +

b∑

a=1

ξkala
iaja

)
− FijmU(A)

)]

+ O≺

(
dE[C(U, A)]

N

)
,

(5.12)

where we used Remark 4.3 to estimate |Fijm| ≺ 1 as well as Lemma 4.8. For the
second term in (5.12), we use Claim 4.7 with F = Fijm. The term resulting from
the first term on the right-hand side of (4.27) gives rise to To+1,deg(F )+1(U). For the
error terms, we note that, by Remark 4.3 we have

1

N2b+cd2b

∑

m

∑

ijkl

b∏

a=1

Aiaka
Ajala

∣∣∣∣∣Fijm

(
A +

b∑

a=1

ξkala
iaja

)∣∣∣∣∣ ≺ d

N
+ Λ1−χF

o � 2Λ1−χF
o ,

(5.13)
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where in the last step we used Assumption 4.1. In summary, the error terms resulting
from the application of Claim 4.7 to the second term of (5.12) are bounded by

O≺

(
E[|U |]
da/2

+
Λ1−χF

o

d1/2
max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

The proof is therefore complete.

The following claim is a decoupling argument: when averaging over an index
i that appears in a diagonal Green’s function entry Gii and possibly many other
places as well, up to some error terms we can replace Gii with Gi′i′ , where i′ is a
new summation index that appears in no other place, over which we take the average.
For example, this allows us to convert an expression of the form 1

N

∑
i(Gii)

2 to a
polynomial in m of the form m2.

Claim 5.7. Fix o ∈ N. Let F be a fixed monomial in (1 + c)2 abstract variables.
Then

1

do/2

1

N2+c

∑

ii′m

E[GiiFimU ]

=
1

do/2

1

N2+c

∑

ii′m

E[Gi′i′FimU ] + To+1,deg(F )+3(U)

+
1

do/2
O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+Λ2−χF
o max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.14)

Proof. We prove the statement for o = 0, the general statement follows by mul-
tiplying both sides by 1/do/2. By the definition of the Green’s function (2.2), we
have

(
1 − 1

N

)
= −zGi′i′ +

N∑

j=1

Ai′jGji′√
d − 1

, (5.15)

(
1 − 1

N

)
= −zGii +

N∑

j=1

AijGji√
d − 1

. (5.16)

Multiplying (5.15) and (5.16) by GiiFimU and Gi′i′FimU respectively, averaging
over the indices, and then taking the difference, we get

1

N2+c

∑

ii′m

E[GiiFimU ] =
1

N2+c

∑

ii′m

E[Gi′i′FimU ] + O≺

(
E[|U |]

N

)

+
1

N2+c(d − 1)1/2

∑

ii′jm

(E[Ai′jGji′GiiFimU ] − E[AijGjiGi′i′FimU ]) ,
(5.17)
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where we used that |GiiFim| ≺ 1 and |Gi′i′Fim| ≺ 1. We shall show that the difference
of the two terms on the right-hand side of (5.17) is of order o greater than 0, up to
small error terms.

Using Corollary 3.4 we find

1

N2+c(d − 1)1/2

∑

ii′jm

E[Ai′jGji′GiiFimU ]

=
1

N3+cd(d − 1)1/2

∑

ii′jklm

E[Ai′kAjlD
kl
i′j(Gji′GiiFimU)] + O≺

(
d3/2ΛoE[C(U, A)]

N

)
,

(5.18)

where we used that
∑

i′ Gji′ = 0, so that the main term in (3.11) vanishes, and from
|Gji′ | we gain an off-diagonal factor that is estimated by Λo. For the first term on
the right-hand side of (5.18), by the discrete product rule (4.6) and Claim 4.6,

Dkl
i′j(Gji′GiiFimU) = Dkl

i′j(Gji′GiiFim)U + Gji′GiiFimDkl
i′j(U) + Dkl

i′j(Gji′GiiFim)Dkl
i′j(U)

= Dkl
i′j(Gji′GiiFim)U + O≺

(∣∣∣Gji′GiiFim + Dkl
i′j(Gji′GiiFim)

∣∣∣
1√
d

max
s+s̄�1

|U(s,s̄)|
(

Im[m]

Nη

)s+s̄
)

.

(5.19)

We notice that Gji′GiiFim contains at least 2 − χF off-diagonal entries and Dkl
i′j

(Gji′GiiFim) contains at least 1 − χF off-diagonal entries. Thus, by plugging (5.19)
into (5.18), we get

1

N2+c(d − 1)1/2

∑

ii′jm

E[Ai′jGji′GiiFimU ]

=
1

N3+cd(d − 1)1/2

∑

ii′jklm

E[Ai′kAjlD
kl
i′j(Gji′GiiFim)U ]

+ O≺

(
d3/2ΛoE[C(U, A)]

N
+ Λ2−χF

o max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

=
1

N3+cd

a∑

n=1

1

n!(d − 1)(n+1)/2

∑

ii′jklm

E[Ai′kAjl(∂
kl
i′j)

n(Gji′GiiFim)U ]

+ O≺

(
E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N
+ Λ2−χF

o max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

,

(5.20)

where the last step follows by Taylor expansion, as in Claim 4.7. The remaining
derivative (∂kl

i′j)
n(Gji′GiiFim) is again a polynomial in {Gxy}x,y∈ii′jklm, and thus

this term is in the form Tn−1,deg(F )+2+n(U). Treating the terms n = 1 and n � 2
separately, we get



GAFA EDGE RIGIDITY AND UNIVERSALITY OF RANDOM REGULAR GRAPHS 717

1

N3+cd(d − 1)

∑

ii′jklm

E[Ai′kAjl∂
kl
i′j(Gji′GiiFim)U ] + T1,deg(F )+4(U)

+ O≺

(
E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N
+ Λ2−χF

o max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.21)

By Claim 5.6, the first term in (5.21) can be expanded as

1

N3+cd(d − 1)

∑

ii′jklm

E[Ai′kAjl∂
kl
i′j(Gji′GiiFim)U ]

=
d

N5+c(d − 1)

∑

ii′jklm

E[∂kl
i′j(Gji′GiiFim)U ] + T1,deg(F )+3(U)

+ O≺

(
E[|U |]
da/2

+
dE[C(U, A)]

N
+

Λ1−χF
o

d1/2
max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.22)

Moreover, ∂kl
i′j(Gji′GiiFim) = Gji′∂kl

i′j(GiiFim) + ∂kl
i′j(Gji′)GiiFim. The first term

Gji′∂kl
i′j(GiiFim) contains at least two off-diagonal Green’s function entries. Thus,

by the Claim 5.5, we have
∣∣∣∣∣∣

d

N5+c(d − 1)

∑

ii′jklm

E[Gji′∂kl
i′j(GiiFim)U ]

∣∣∣∣∣∣
≺ E[Im[m]|U |]

Nη
. (5.23)

To analyse the second term, we write ∂kl
i′j(Gji′) = −(Gξkl

i′jG)ji′ = −GjjGi′i′ +
GjjGli′ + GjkGi′i′ − Gji′Gji′ − GjkGli′ − GjlGki′ + Gji′Gki′ + GjlGji′ . Since the row
and column sums of G are zero, all but the first and fourth terms vanish when tak-
ing the average over the indices i′jkl. The fourth term has two off-diagonal Green’s
function entries and can therefore be estimated using Claim 5.5. Thus we have

d

N5+c(d − 1)

∑

ii′jklm

E[∂kl
i′j(Gji′)GiiFimU ]

= − d

N5+c(d − 1)

∑

ii′jklm

E[GjjGi′i′GiiFimU ] + O≺

(
E[Im[m]|U |]

Nη

)
.

(5.24)

By combining the estimates (5.20), (5.21), (5.22) and (5.23), we get

1

N2+c(d − 1)−1/2

∑

ii′jm

E[Ai′jGji′GiiFimU ]

= − d

N5+c(d − 1)

∑

ii′jklm

E[GjjGi′i′GiiFimU ] + T1,deg(F )+3(U)
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+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+Λ2−χF
o max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

. (5.25)

Analogously, repeating the above argument for the last term in (5.17), we find

1

N2+c(d − 1)1/2

∑

ii′jm

E[AijGjiGi′i′Fim]

= − d

N5+c(d − 1)

∑

ii′jklm

E[GjjGi′i′GiiFimU ] + T1,deg(F )+3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+ Λ2−χF
o max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.26)

Since the first terms on the right-hand sides of (5.25) and (5.26) are the same, they
cancel upon taking their difference, and our claim (5.14) follows by combining (5.17),
(5.25) and (5.26). (Note that the error term on the right-hand side of (5.17) can be
absorbed into the third error term of (5.14).)

Proof of Proposition 5.4. We prove the statement for o = 0, the general statement
follows by multiplying both sides by 1/do/2. By Claim 5.6, we have

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
FijmU

]

=
1

N2b+c

∑

m

∑

ij

E [FijmU ] + T1,deg(F )+1(U)

+ O≺

(
E[|U |]
da/2

+
dE[C(U, A)]

N
+

Λ1−χF
o

d1/2
max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

. (5.27)

We now estimate the first term on the right-hand side, distinguishing three cases.
Case 1. The monomial Fijm has more than one off-diagonal Green’s function factors.
Then, by Claim 5.5,

1

N2b+c

∑

m

∑

ij

E [FijmU ] ≺ E[Im[m]|U |]
Nη

. (5.28)

Case 2. The monomial Fijm contains exactly one off-diagonal Green’s function fac-
tor. Then, without loss of generality, we assume that Fijm = Gr

m1m1
Gm1m2

F̃ijm2···mc
,

where F̃ijm2···mc
is a monomial in terms of the Green’s function entries
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{Gxx}x∈{i1,j1,··· ,ib,jb,m2,··· ,mc} and r ∈ N. If r = 0 then Fijm vanishes upon taking
the average over m since

∑
m1

Gm1m2
= 0. For r � 1, we introduce new indices

m1
1, m

2
1, · · · , mr

1, and repeatedly use Claim 5.7 to replace Gr
m1m1

by Gm1
1m

1
1
Gm2

1m
2
1

· · ·Gmr
1mr

1
. This way we obtain

1

N2b+c

∑

m

∑

ij

E

[
Gr

m1m1
Gm1m2

F̃ijm2···mc
U
]

=
1

N2b+c+r

∑

m1
1,··· ,mr

1

∑

m

∑

ij

E

[
r∏

a=1

Gma
1ma

1
Gm1m2

F̃ijm2···mc
U

]
+ T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+Λ2
o max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

= T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+Λ2
o max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

,

(5.29)

where in the last equality we used that
∑

m1
Gm1m2

= 0.
Case 3. The monomial Fijm contains only diagonal Green’s function terms. Then,
by the same argument as in Case 2, we can repeatedly use Claim 5.7 to get

1

N2b+c

∑

m

∑

ij

E [FijmU ]

= E[mdeg(F )U ] + T1,deg(F )+2(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
d3/2ΛoE[C(U, A)]

N

+Λo max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.30)

By (5.27) and putting the three cases, (5.28), (5.29) and (5.30), together, the propo-
sition follows.

5.2 Proof of Proposition 5.1. We prove the following proposition, from which
Proposition 5.1 will follow easily by taking U = 1. The general form of Proposi-
tion 5.8 will be used in Section 7.
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Proposition 5.8. Suppose that Assumption 4.1 holds. For every fixed integer a �

1, there exists a polynomial, depending on d and a but not N , and whose degree
depends on a only,

Qa(w) =
dw2

d − 1
+

1

d

(
a3w

3 + a4w
4 + · · ·

)
,

with bounded coefficients a3, a4, . . . such that, for any z ∈ D,

1

N2d(d − 1)1/2

∑

ijkl

E[AikAjl(D
kl
ij Gij)U ] + E[QaU ]

= O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.31)

Proof. By (4.22) and Lemma 4.2,

1

N2

∑

ijkl

E[AikAjl(D
kl
ij Gij)U ]

d(d − 1)1/2
=
∑

ijkl

E[AikAjl(∂
kl
ij Gij)U ]

d(d − 1)N2

+
∑

ijkl

E[AikAjl((∂
kl
ij )2Gij)U ]

2d(d − 1)3/2N2
+ T2,4(U) + O≺

(
E[|U |]
da/2

)
.

(5.32)

For the first term on the right-hand side of (5.32), the derivative ∂kl
ij Gij is given

by (4.8). For the last four terms, GilGjj + GiiGkj + GikGij + GijGlj , using that∑
j Gij = 0, we have

∑

ijkl

1

d(d − 1)N2
E[AikAjl(GilGjj + GiiGkj + GikGij + GijGlj)U ] = 0. (5.33)

For the term −GijGij , using (4.12), we have

−
∑

ijkl

1

d(d − 1)N2
E[AikAjlGijGijU ] = −

∑

ij

d

(d − 1)N2
E[GijGijU ] ≺ E[Im[m]|U |]

Nη
.

(5.34)

For the term −GilGkj , we use (H − z)G = P⊥ and (4.12) to get

−
∑

ijkl

1

d(d − 1)N2
E[AikAjlGilGkjU ] = − 1

d(d − 1)N2
E[Tr(AGAG)U ]

= − 1

dN2
E[Tr(z2G2 + 2zG + P⊥)U ] ≺ E[Im[m]|U |]

dNη
+

E[|U |]
dN

≺ E[Im[m]|U |]
dNη

.

(5.35)
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Summarizing, we can rewrite the first term on the right-hand side of (5.32) as

∑

ijkl

E[AikAjl(∂
kl
ij Gij)U ]

d(d − 1)N2
= − d

d − 1
E[m2U ]

−
∑

ijkl

E[AikAjlGikGjlU ]

d(d − 1)N2
+ O≺

(
E[Im[m]|U |]

Nη

)
.

(5.36)

By Corollary 3.4,
∑

j Gij = 0 and the trivial extension of the product rule (4.6) and

(4.24) to differences in the direction ξi′k′

ik + ξj′l′

jl , the second term on the right-hand
side of (5.36) is

∑

ijkl

E[AikAjlGikGjlU ]

d(d − 1)N2
= O≺

(
dE[C(U, A)]

N

)

+
1

d3(d − 1)N4

∑

ii′jj′kk′ll′

E

[
Aii′Akk′Ajj′All′

(
GikGjlU

(
A + ξi′k′

ik + ξj′l′

jl

)
− GikGjlU(A)

)]

=
1

d3(d − 1)N4

∑

ii′jj′kk′ll′

E

[
Aii′Akk′Ajj′All′

(
GikGjl

(
A + ξi′k′

ik + ξj′l′

jl

)
− GikGjl(A)

)
U
]

+ O≺

(
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U(s,s̄)|

(
Im[m]

Nη

)s+s̄
])

=
1

d3(d − 1)3/2N4

∑

ii′jj′kk′ll′

E

[
Aii′Akk′Ajj′All′ (∂

i′k′

ik + ∂j′l′

jl )(GikGjl)U
]

+ T2,4(U) + O≺

(
E[|U |]

d(a+1)/2
+

dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U(s,s̄)|

(
Im[m]

Nη

)s+s̄
])

,

(5.37)

where in the first equality, we used Remark 4.3 and that GikGjl contains two off-
diagonal terms, and in the second equality we used Claim 4.7. For the first term on
the right-hand side of (5.37), we notice that (∂i′k′

ik + ∂j′l′

jl )(GikGjl) contains at least
one off-diagonal term. By Proposition 5.4 we get

1

d3(d − 1)3/2N4

∑

ii′jj′kk′ll′

E

[
Aii′Akk′Ajj′All′(∂

i′k′

ik + ∂
j′l′

jl )(GikGjl)U
]

= T2,4(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
d(a+1)/2

+
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.38)

It follows by combining (5.36), (5.37), and (5.38) that

∑

ijkl

E[AikAjl(∂
kl
ij Gij)U ]

d(d − 1)N2
= − d

d − 1
E[m2

U ] + T2,4(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
d(a+1)/2

+
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.39)
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For the second term on the right-hand side of (5.32), we notice that (∂kl
ij )2Gij

contains at least one off-diagonal term. By Proposition 5.4 we get

∑

ijkl

E[AikAjl((∂
kl
ij )2Gij)U ]

2d(d − 1)3/2N2
= T2,3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
d(a+1)/2

+
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.40)

We plug (5.39) and (5.40) into (5.32), which yields

1

N2

∑

ijkl

E[AikAjl(D
kl
ij Gij)U ]

d(d − 1)1/2
= − d

d − 1
E[m2

U ] + T2,3(U)

+ O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
dE[C(U, A)]

N
+

Λ2
o

d1/2
max

s+s̄�1
E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

.

(5.41)

Next, we apply Proposition 5.4 repeatedly to the term T2,3(U) on the right-hand
side of (5.41). For o � 2 and d � 3, Proposition 5.4 yields

To,d(U) =
1

do/2
E[pU ] + To+1,d+1(U)

+
1

d
O≺

(
E[Im[m]|U |]

Nη
+

E[|U |]
da/2

+
dE[C(U, A)]

N

+ Λo max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
])

, (5.42)

where p is a polynomial in m, with bounded coefficients depending only on d, of
degree at least d. Applying (5.42) to T2,3(U) in (5.41) and then iterating (5.42) a

times concludes the proof, by (5.7).

Proof of Proposition 5.1. Let Qa(w) be as constructed in Proposition 5.8. By taking
the normalized trace on both sides of (2.2), we have

1 + zm =
1

N
+
∑

ij

AijGij

N(d − 1)1/2
=

1

N
+
∑

i�=j

AijGij

N(d − 1)1/2
, (5.43)

where the last equality follows since Aii = 0. By Corollary 3.2 with F = Gij , we have
for i 	= j, |F (A)| + maxkl |F (A + ξkl

ij )| ≺ Λo (since Λo � d−1/2, see also Remark 4.3),
and

E[1 + zm] =
1

N(d − 1)1/2

∑

i�=j

E[AijGij ] +
1

N

=
1

N2

∑

ijkl

(
1

d(d − 1)1/2
E[AikAjlD

kl
ij Gij ]

)
+ O≺

(
d3/2Λo

N

)
.

(5.44)
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By Proposition 5.8 with U = 1, we have

1

N2

∑

ijkl

(
1

d(d − 1)1/2
E[AikAjlD

kl
ij Gij ]

)
+ E[Qa] ≺ E[Im[m]]

Nη
+

1

da/2
+

d

N
. (5.45)

The claim (5.3) follows from combining (5.44) and (5.45), and Λo � 1/
√

d,

E [1 + zm + Qa(m)] = O≺

(
1

da/2
+

E[Im[m]]

Nη
+

d3/2Λo

N

)
. (5.46)

This finishes the proof of Proposition 5.1.

6 Identification of the Self-consistent Equation

The algorithm that generates the polynomial Pa from Proposition 5.1 is explicit
but quite complicated, so that explicitly tracking the resulting coefficients of Pa is
a hopeless task beyond the first few orders. In this section we characterize these
coefficients (asymptotically) as those of the power series P∞(z, w) from (2.8), char-
acterizing the Stieltjes transform md of the Kesten–McKay law.

Proposition 6.1. Uniformly in z ∈ C+, the polynomial Pa(z, w) = 1+zw+Qa(w)
constructed in Proposition 5.1 satisfies

Pa(z, md(z)) = O(d−a/2), (6.1)

where md is the Stieltjes transform of the Kesten–McKay law, given by (2.5).

Corollary 6.2. Let Pa be the polynomial constructed in Proposition 5.1. Then
Pa(z, w) − P∞(z, w) = Qa(w) − Q∞(w) is a power series in w, which converges on
the whole complex plane. Each of its coefficients is of order O(d−a/2).

Definition 6.3. We write P ′
a(z, w) ..= ∂wPa(z, w), and similarly P

(k)
a (z, w) for the

k-th derivative in the variable w.

Corollary 6.4. The polynomial Pa constructed in Proposition 5.1 satisfies

|P ′
a(z, md(z))| �

√
|κ| + η + O(d−a/2), P ′′

a (z, md(z)) = 2 + O(d−1/2),

P ′′′
a (z, md(z)) = O(1),

(6.2)

where z = 2 + κ + iη or z = −2 − κ + iη for η � K, −2 � κ � K, where the constant
K is from (2.10).
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6.1 Proof of Proposition 6.1. The main ingredient of the proof of the propo-
sition is the ideal Green’s function Ĝ introduced in the following definition.

Definition 6.5. For z ∈ C+ define the ideal Green’s function Ĝ(z) = (Ĝij(z))i,j∈[N ]

through

Ĝij
..= md δij − mdmsc√

d − 1
Aij . (6.3)

Note that while Proposition 6.1 is deterministic, Ĝ is random. However, we
remark that when i and j have distance at most 1 in the random regular graph
defined by A, the ideal Green’s function Ĝij coincides with the Green’s function of
the infinite d-regular tree

Gtree
ij = md

(
− msc√

d − 1

)dist(i,j)

(see [BHY19, Proposition 5.1]) for vertices i and j with the same distance, while it
is set to be 0 for all pairs of vertices i, j with greater distance. Because it agrees with
the tree Green’s function locally, the ideal Green’s function is a random matrix that
shares key algebraic properties with the true Green’s function of the random graph,
while its normalized trace is equal to the deterministic md. As a consequence, we shall
show that md = 1

N Tr Ĝ satisfies the same self-consistent equation as m = 1
N Tr G,

up to small error terms, which will imply Proposition 6.1.

Lemma 6.6. The ideal Green’s function Ĝ has the following properties, uniformly
in z ∈ C+.

(i) For any i ∈ [[N ]], |Ĝii| = O(1), and for i 	= j, |Ĝij | = O((d − 1)−1/2);

(ii)
∑N

i=1 Ĝii = Nmd;

(iii)
∑N

i=1 |Ĝij | =
∑N

j=1 |Ĝij | = O(d1/2);

(iv)
∑N

i=1 |Ĝij |2 =
∑N

j=1 |Ĝij |2 = O(1).
(v) For any i ∈ [[N ]],

1 =
(
(H − z)Ĝ

)
ii

= −zĜii +

N∑

j=1

AijĜij√
d − 1

. (6.4)

Proof. Properties (i)–(iv) are immediate consequences of the definition and md, msc =
O(1). The identity (6.4) follows from (2.5).

Crucially, under perturbation by a switching ξkl
ij of A, the ideal Green’s function

Ĝ satisfies the same resolvent expansion as the real Green’s function G. The intu-
itive reason behind this behaviour is the following. Take two edges, ij and kl, that
are switchable. Then, in the limit where dist(ij, kl) tends to infinity, the Green’s
functions Ĝ and Gtree, when restricted to the vertices ijkl, have identical behaviour
under the switching ξkl

ij .
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To state this precisely, we introduce some notation. For an N × N matrix M =
(Mij)i,j∈[[N ]] and V ⊂ [[N ]] , we denote by M |V ..= (Mij)i,j∈V the submatrix induced
by the set V . In particular, A|V is the adjacency matrix of the graph A restricted
to the vertex set V . We also frequently abbreviate subsets of [[N ]] as {i, j} ≡ ij, and
so on.

Claim 6.7. Let i, j, k, l be distinct indices such that A|ijkl = ∆ik+∆jl (i.e. χjl
ik(A) =

1). Then

Ĝ(A + ξkl
ij )|ijkl =

((
Ĝ(A)|ijkl

)−1
+ (d − 1)−1/2ξkl

ij |ijkl

)−1
. (6.5)

Proof. By the definition of Ĝ(A), we have

Ĝ(A)|ijkl =

⎡

⎢⎢⎢⎣

md 0 −mdmsc√
d−1

0

0 md 0 −mdmsc√
d−1

−mdmsc√
d−1

0 md 0

0 −mdmsc√
d−1

0 md

⎤

⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

1
msc

0 1√
d−1

0

0 1
msc

0 1√
d−1

1√
d−1

0 1
msc

0

0 1√
d−1

0 1
msc

⎤

⎥⎥⎥⎦

−1

,

(6.6)

where in the last equality we used the identity (2.9) and 1 + zmsc + m2
sc = 0.

Analogously,

Ĝ(A + ξkl
ij )|ijkl =

⎡

⎢⎢⎢⎣

1
msc

1√
d−1

0 0
1√
d−1

1
msc

0 0

0 0 1
msc

1√
d−1

0 0 1√
d−1

1
msc

⎤

⎥⎥⎥⎦

−1

=
((

Ĝ(A)|ijkl

)−1
+ (d − 1)−1/2ξkl

ij |ijkl

)−1
,

(6.7)

where the last equality follows from (6.6). This proves (6.5).

By definition, the ideal Green’s function of course has a trivial perturbation
expansion under switchings since it is an affine linear function of A. However, when
perturbed by the specific direction and magnitude of a switching, its behaviour can
be written in a more complicated but more useful way, which matches precisely
the corresponding resolvent expansion for switchings of the true Green’s function.
Indeed, as a consequence of Claim 6.7, we obtain the following resolvent expansion
for the transformation by switching of the ideal Green’s function.

Claim 6.8. For b, c ∈ N consider tuples i = (i1, . . . , ib), j = (j1, . . . , jb), k =
(k1, . . . , kb), l = (l1, . . . , lb), m = (m1, . . . , mc) such that the indices ijklm are
distinct and A|ijklm = A|m +

∑b
a=1 (∆iaka

+ ∆jala). Then
(

Ĝ

(
A +

b∑

a=1

ξ
kala
iaja

)
− Ĝ(A)

)∣∣∣∣∣
ijklm

=

(
∑

n�1

1

(d − 1)n/2
Ĝ(A)

(
−

b∑

a=1

ξ
kala
iaja

Ĝ(A)

)n)∣∣∣∣∣
ijklm

. (6.8)



726 R. BAUERSCHMIDT ET AL. GAFA

Proof. We shall prove that

Ĝ

(
A +

b∑

a=1

ξkala
iaja

)∣∣∣∣∣
ijklm

=

((
Ĝ(A)|ijklm

)−1
+ (d − 1)−1/2

b∑

a=1

ξkala
iaja

|ijklm

)−1

, (6.9)

and the claim (6.8) then follows from the resolvent expansion, which converges for
large enough d because Ĝij = O(1) by Lemma 6.6. By assumption, A|ijklm is a block
matrix with b + 1 blocks, indexed by {i1, j1, k1, l1}, {i2, j2, k2, l2}, · · · , {ib, jb, kb, lb}
and {m1, · · · , mc}. By our definition (6.3) of ideal Green’s function Ĝ, both Ĝ(A +∑b

a=1 ξkalb
iaja

)|ijklm and Ĝ(A)|ijklm have this same block structure. Thus both sides of
(6.9) vanish except for the submatrix indexed by {i1, j1, k1, l1}, {i2, j2, k2, l2}, · · · ,
{ib, jb, kb, lb} and {m1, · · · , mc}, and (6.9) follows from (6.5).

Claim 6.8 says that the ideal Green’s function Ĝ has exactly the same behaviour
under a switching A �→ A+

∑b
a=1 ξkala

iaja
as the true Green’s function G. To make this

precise, we need the following definition, which is to be compared with Definitions 4.4
and 5.3 .

Definition 6.9. (i) For any polynomial F in r2 abstract variables and i ∈ [[N ]]r,
denote by F̂i = F ({Ĝisit

}r
is,it=1) the corresponding polynomial in the ideal

Green’s function entries. Hence, F̂i is obtained from Fi by replacing every
factor Gij in Fi by Ĝij .

(ii) For a polynomial F̂ijm in the ideal Green’s function entries and o ∈ N, we

define T̂o(F, 1) as the right-hand side of (5.6) with U = 1 and Fijm replaced

with F̂ijm.

With this definition, we can rewrite the right-hand side of (6.8) as

⎛

⎝
∑

n�1

1

n!(d − 1)n/2

(
b∑

a=1

∂kala
iaja

)n

G(A)

⎞

⎠
̂
∣∣∣∣∣∣∣
ijklm

Thus, Claim 6.8 implies the following result, which is the analogue of Claim 4.7.

Claim 6.10. Let ijklm satisfy the assumptions of Claim 6.8, and let Fijm be a
polynomial in the Green’s function entries. Then for any positive integer a � 1 we
have

F̂ijm

(
A +

b∑

a=1

ξkala
iaja

)
− F̂ijm(A) =

(
a−1∑

n=1

1

n!(d − 1)n/2

(
b∑

a=1

∂kala
iaja

)n

Fijm(A)

)̂

+ O

(
1

da/2

)
.

The main ingredient in the proof of Proposition 6.1 is the following result, which
is the analogue of Proposition 5.4 for the ideal Green’s function.
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Proposition 6.11. Fix o ∈ N. Let F be a fixed monic monomial in (2b+c)2 abstract
variables, with degree deg(F ), and let F̂ijm be the corresponding monomial in the
ideal Green’s function entries from Definition 6.9(i). Recall the definition of χF from
Definition 4.4. Then

1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
F̂ijm

]

=
χF m

deg(F )
d

do/2
+ T̂o+1,deg(F )+1(1) +

1

do/2
O

(
1

da/2
+

d

N

)
,

(6.10)

where the term T̂o+1,deg(F )+1(1) is equal to the corresponding term To+1,deg(F )+1(1)

from (5.8) with G replaced by Ĝ (see Definition 6.9(ii)).

Proof. The proof involves repeating the proof of Proposition 5.4 with U = 1 almost
verbatim, replacing Claim 4.7 and (5.16) with Claim 6.10 with (6.4) respectively.

More precisely, the proof of Proposition 5.4 relies only on the following ingre-
dients:

∑
i Gij = 0, Claim 5.5, Claim 5.6, and Claim 5.7. Each of these has the

following analogue for the ideal Green’s function Ĝ. We replace
∑

i Gij = 0 with
Lemma 6.6(iii). For Claim 5.5, we replace (5.9) with U = 1 by

∣∣∣∣∣
1

N b

∑

i

E

[
F̂i

]∣∣∣∣∣ = O

(
1

N

)
,

as follows from Lemma 6.6(iv). For Claim 5.6, we replace (5.11) with U = 1 by

1

do/2

1

N b+cdb

∑

m

∑

ij

E

[
b∏

a=1

Aiaja
F̂ijm

]

=
1

do/2

1

N2b+c

∑

m

∑

ij

E

[
F̂ijm

]
+ T̂o+1,deg(F )+1(1) +

1

do/2
O

(
1

da/2
+

d

N

)
,

where T̂o+1,deg(F )+1(1) is obtained from To+1,deg(F )+1(1) in (5.11) by replacing G

with Ĝ. Here we used Claim 6.10 instead of Claim 4.7. Finally, for Claim 5.7, we
replace (5.14) with U = 1 by

1

do/2

1

N2+c

∑

ii′m

E[ĜiiF̂im]

=
1

do/2

1

N2+c

∑

ii′m

E[Ĝi′i′F̂im] + T̂o+1,deg(F )+3(1) +
1

do/2
O

(
1

da/2
+

d

N

)
,

where T̂o+1,deg(F )+3(1) is obtained from To+1,deg(F )+3(1) in (5.14) by replacing G

with Ĝ. Here we used Claim 6.10 and (6.4) instead of Claim 4.7 and (5.15), (5.16),
respectively.

This concludes the proof.
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Proof of Proposition 6.1. The polynomial Pa(z, w) in Proposition 5.1 was con-
structed by repeatedly applying Proposition 5.4. Using Proposition 6.11 instead,
we can repeat its proof verbatim to obtain

Pa(z, md) = O

(
1

da/2
+

d

N

)
. (6.11)

Since the left-hand side does not depend on N (recall Proposition 5.1), taking the
limit N → ∞ yields the claim.

6.2 Proof of Corollaries 6.2 and 6.4

Proof of Corollary 6.2. We define the power series

R(w) = Pa(z, w) − P∞(z, w). (6.12)

It follows from Proposition 6.1 that for any z ∈ C,

R(md(z)) = Pa(z, md(z)) = O(d−a/2). (6.13)

Next, we remark that the disk {w ∈ C : |w| � d−1
d } lies in the image md(C). Indeed,

from (2.7) we find that the image msc(C) is the closed unit disk in C, and the above

claim then follows from the identity md = (d−1)msc

d−1−m2
sc

, which follows from (2.5) and

(2.7). As a consequence, we have that for any w such that |w| � d−1
d ,

R(w) = O(d−a/2). (6.14)

For any fixed degree k, the coefficients of wk in the infinite series R(w) is given by

1

2πi

∮

|w|=(d−1)/d

R(w)

wk+1
dw = O(d−a/2), (6.15)

since d � 2. This finishes the proof.

Proof of Corollary 6.4. By Corollary 6.2, we have

P
(k)
a (z, md(z)) = P (k)

∞ (z, md(z)) + O(d−a/2), k = 1, 2. (6.16)

Since P∞(z, md(z)) = 0 for z ∈ C+, by the chain rule,

0 = ∂zP∞(z, md(z)) = md(z) + P ′
∞(z, md(z))∂zmd(z). (6.17)

Rearranging the above expression gives

P ′
∞(z, md(z)) = − md(z)

∂zmd(z)
, (6.18)

so that an elementary analysis of (2.5) and (2.7) yields
∣∣P ′

∞(z, md(z))
∣∣ �

√
|κ| + η,

and the first relation of (6.2) follows from combining (6.16) and (6.18). The second
relation of (6.2) follows from (6.16) and

P ′′
∞(z, md(z)) = 2 + O(d−1/2). (6.19)

This completes the proof.
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7 Moment Estimate for the Self-consistent Equation

In order to establish the self-consistent equation for m in the sense of high proba-
bility, in this section we derive a recursive moment estimate for the high moments
of Pa(z, m), where Pa is the polynomial constructed in Proposition 5.1. In the next
section, we establish eigenvalue rigidity estimates using a careful analysis of this
recursive moment estimate and an iteration argument.

Proposition 7.1. Suppose that Assumption 4.1 holds, and that Λd � Λo � 1/
√

d.
Let Pa(z, w) be the polynomial constructed in Proposition 5.1. Fix r ∈ N. Abbrevi-
ating Pa ≡ Pa(z, m(z)), we have for any z ∈ D,

E[|Pa|2r] ≺ Λ2
d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
+ E

[
Im[m]|P ′

a|
(Nη)2

|Pa|2r−2

]

+
Λo

d1/2
E

[
Im[m]|P ′

a|2
(Nη)3

|Pa|2r−3

]
+

(
1

da/2
+

d3/2Λo

N

)
E[|Pa|2r−1]

+ max
1�s�2r

E

[(
Im[m]

Nη

)s

|Pa|2r−s

]

+

(
Λd

d
+

Λ2
o

d1/2
+

dΛo

N

)
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

)s

|Pa|2r−s−1

]
.

(7.1)

The rest of this section is devoted to the proof of Proposition 7.1. We begin by
writing Pa(z, m) = 1 + mz + Qa(m) (see (5.1)) and then apply the identity (see
(2.2))

1 + zm =
1

N

∑

ij

HijGij +
1

N

to obtain

E[|Pa|2r] = E[(1 + zm)P r−1
a P̄ r

a ] + E[QaP
r−1
a P̄ r

a ]

=
1

(d − 1)1/2N

∑

ij

E[AijGijP
r−1
a P̄ r

a ] + E[QaP
r−1
a P̄ r

a ] + O

(
E[|Pa|2r−1]

N

)
.

(7.2)

For the first term on the second line of (7.2), we use Corollary 3.2 with the random
variable F = GijP

r−1
a P r

a and note that for i 	= j

|F (A)| + max
kl

|F (A + ξkl
ij )| ≺ ΛoC(P r−1

a P̄ r
a , A),



730 R. BAUERSCHMIDT ET AL. GAFA

where we recall the definition (3.10) and we used Remark 4.3. This yields

1

(d − 1)1/2N

∑

ij

E[AijGijP
r−1
a P̄

r
a ] =

d

(d − 1)1/2N2

∑

i�=j

E[GijP
r−1
a P̄

r
a ]

+
1

N2d(d − 1)1/2

∑

i�=j

∑

kl

E[AikAjlD
kl
ij (GijP

r−1
a P̄

r
a )] + O≺

(
d3/2Λo

N
E[C(P r−1

a P̄
r
a , A)]

)

=
1

N2d(d − 1)1/2

∑

ijkl

E[AikAjlD
kl
ij (GijP

r−1
a P̄

r
a )] + O≺

(
d3/2Λo

N
E[C(P r−1

a P̄
r
a , A)]

)
,

(7.3)

where in the last equality we used Λo � 1/
√

d. To estimate the error term, we remark
that for U = P r−1

a P̄ r
a we have

max
s+s̄�1

E

[
|U (s,s̄)|

(
Im[m]

Nη

)s+s̄
]

≺ max
1�s�2r−1

E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
,

(7.4)

as can be seen after some elementary algebra. Using (4.24) for U = P r−1
a P̄ r

a we get

C(P r−1
a P̄

r
a , A) ≺ |Pa|2r−1 +

1√
d

max
1�s�2r−1

E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
. (7.5)

By the discrete product rule (4.6), the first term in the last line of (7.3) equals

E[AikAjlD
kl
ij (GijP

r−1
a P̄ r

a )] = E[AikAjlD
kl
ij (Gij)P

r−1
a P̄ r

a ]

+ E[AikAjlGijD
kl
ij (P

r−1
a P̄ r

a )] + E[AikAjlD
kl
ij (Gij)D

kl
ij (P

r−1
a P̄ r

a )].
(7.6)

At this point we note the crucial cancellation, by Proposition 5.8, of the first term on
the right-hand side of (7.6) with E[QaP

r−1
a P̄ r

a ] from (7.2). Indeed, by Proposition 5.8
for U = P r−1

a P̄ r
a , recalling (7.4) and (7.5), we find

1

N2d(d − 1)1/2

∑

ijkl

E[AikAjlD
kl
ij (Gij)P

r−1
a P̄ r

a ] + E[QaP
r−1
a P̄ r

a ]

≺ E

[(
1

da/2
+

Im[m]

Nη
+

d

N

)
|Pa|2r−1

]

+

(
d1/2

N
+

Λ2
o

d1/2

)
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.7)
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What remains, therefore, is to estimate the contributions of the second and third
terms on the right-hand side of (7.6). For the second term on the right-hand side of
(7.6), we claim that

1

N2d(d − 1)1/2

∑

ijkl

E[AikAjlGijD
kl
ij (P r−1

a P̄
r
a )] ≺ E

[
ΛoΛd

d1/2

Im[m]|P ′
a|

Nη
|Pa|2r−2

]

+ E

[
Im[m]|P ′

a|
(Nη)2

|Pa|2r−2
]

+
Λo

d
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]

+
Λo

d1/2
E

[(
Im[m]

Nη

)2

|Pa|2r−2

]
+

Λo

d1/2
E

[
Im[m]|P ′

a|2
(Nη)3

|Pa|2r−3
]

.

(7.8)

Essentially, this estimate will arise from the three off-diagonal Green’s function
entries obtained from Gij and the derivative on P r−1

a P̄ r
a .

For the third term on the right-hand side of (7.6), we claim that

1

N2d(d − 1)1/2
E[AikAjlD

kl
ij (Gij)D

kl
ij (P

r−1
a P̄ r

a )] ≺ Λ2
d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]

+
d

N
E[|Pa|2r−1]

+

(
d1/2

N
+

Λd

d
+

Λ2
o

d1/2

)
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

+

(
Im[m]

Nη

)2
)s

|Pa|2r−s−1

]

+ E

[
Im[m]

Nη
|Pa|2r−1

]
.

(7.9)

This estimate will arise from certain special cancellations arising from the d-regular
graph structure.

Proposition (7.1) follows from combining the estimates (7.2), (7.3), (7.4), (7.6),
(7.7), (7.8) and (7.9). In the remainder of this section, we prove these estimates (7.8)
and (7.9).

7.1 Proof of (7.8). By (4.7), left-hand side of (7.8) can be written as

O(1)

N2d3/2

∑

ijkl

E[AikAjlGijD
kl
ij (P

r−1
a P̄ r

a )]

=

b−1∑

n=1

O(1)

N2d(n+3)/2

∑

ijkl

E[AikAjlGij(∂
kl
ij )n(P r−1

a P̄ r
a )]

+
O(1)

N2d(b+3)/2

∑

ijkl

E

[
AikAjlGij

(
(∂kl

ij )b(P r−1
a P̄ r

a )(A + θξkl
ij )
)]

,

(7.10)

for some random θ ∈ [0, 1]. In fact, for the terms corresponding to n � 3 in (7.10),
we have the following simple estimate.
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Claim 7.2. For the terms in (7.10) with n � 3,

1

N2d(n+3)/2

∑

ijkl

E[AikAjlGij(∂
kl
ij )n(P r−1

a P̄ r
a )]

≺ Λo

d(n−1)/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.11)

Proof. Thanks to (4.15) and chain rule, we have

(∂kl
ij )n(P r−1

a P̄ r
a ) ≺ max

1�s�2r−1

(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s. (7.12)

Using maxi�=j |Gij | ≺ Λo and maxi |Gii| ≺ 1, it leads to

1

N2d(n+3)/2

∑

ijkl

E[AikAjlGij(∂
kl
ij )n(P r−1

a P̄
r
a )]

≺ 1

N2d(n+3)/2

(
max

1�s�2r−1

∑

i�=j

∑

kl

E

[
AikAjlΛo

(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]

+ max
1�s�2r−1

∑

ikl

E

[
AikAil

(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

])

≺ Λo

d(n−1)/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
,

(7.13)

where in the last inequality we used that
∑

i�=jkl AikAjl = N2d2 and
∑

ikl AikAil =

Nd2 and Λo � 1/N .

Moreover, by choosing b large enough, depending on r, it follows that the second
line of (7.10) is bounded by N−2r.

In the following, we estimate the terms on the right-hand side of (7.10), corre-
sponding to n = 1 and n = 2.

Claim 7.3. For the term in (7.10) with n = 1,

1

N2d2

∑

ijkl

E[AikAjlGij∂
kl
ij (P r−1

a P̄ r
a )] ≺ E

[
Im[m]|P ′

a|
(Nη)2

|Pa|2r−2

]
. (7.14)

Proof. For the derivative ∂kl
ij (P r−1

a P̄ r
a ), we have

∂kl
ij (P r−1

a P̄ r
a ) = (r − 1)∂kl

ij mP ′
aP

r−2
a P̄ r

a + (· · · ), (7.15)

where (· · · ) denotes analogous terms with complex conjugates obtained by applying
the derivatives to P̄a instead of Pa. We estimate the error from the first term, for
which we can first sum over the indices i, j, k, l. By (4.9),
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1

N2d2

∑

ijkl

AikAjlGij∂
kl
ij m =

2

N3d2

∑

ijkl

AikAjlGij(−(G2)ij − (G2)kl

+ (G2)ik + (G2)jl).

(7.16)

There are four terms on the right-hand side of (7.16). For the first term, using (4.11),

1

N3d2

∑

ijkl

AikAjlGij(G
2)ij =

1

N3

∑

ij

Gij(G
2)ij =

1

N3
Tr G3 ≺ Im[m]

(Nη)2
. (7.17)

For the second term on the right-hand side of (7.16), using that (H −z)G = P⊥ and
(4.11),

1

N3d2

∑

ijkl

AikAjlGij(G
2)kl =

1

N3d2
Tr(GAGAG)

=
1

N3d2
Tr(G(A −

√
d − 1z)G(A −

√
d − 1z)G)

+
2

N3d2
Tr(G(

√
d − 1z)G(A −

√
d − 1z)G)

+
1

N3d2
Tr(G(

√
d − 1z)G(

√
d − 1z)G)

=
O(1)

N3d
Tr G +

O(1)

N3d
Tr G2 +

O(1)

N3d
Tr G3 = O≺

(
Im[m]

d(Nη)2

)
.

(7.18)

For the last two terms on the right-hand side of (7.16), since
∑

j Gij = 0,

1

N3d2

∑

ijkl

AikAjlGij(G
2)ik =

1

N3d

∑

ijk

AikGij(G
2)ik = 0,

1

N3d2

∑

ijkl

AikAjlGij(G
2)jl =

1

N3d

∑

ijl

AjlGij(G
2)jl = 0.

(7.19)

By combining expressions (7.17), (7.18) and (7.19), we obtain the estimate

1

N2d2

∑

ijkl

AikAjlGij∂
kl
ij m ≺ Im[m]

(Nη)2
, (7.20)

for (7.16), and the Claim 7.3 follows.

Claim 7.4. For the term in (7.10) with n = 2,

1

N2d5/2

∑

ijkl

E[AikAjlGij(∂
kl
ij )2(P r−1

a P̄ r
a )] ≺ E

[
ΛoΛd

d1/2

Im[m]|P ′
a|

Nη
|Pa|2r−2

]

+
Λo

d1/2
E

[(
Im[m]

Nη

)2

|Pa|2r−2

]
+

Λo

d1/2
E

[
Im[m]|P ′

a|2
(Nη)3

|Pa|2r−3

]

+
Λo

d
E

[(
Im[m]|P ′

a|
Nη

)2

|Pa|2r−3

]
.

(7.21)
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Proof. For the derivative ∂kl
ij (P r−1

a P̄ r
a ), we have

(∂kl
ij )2(P r−1

a P̄ r
a ) = ((∂kl

ij )2m)P ′
aP

r−2
a P̄ r

a + (∂kl
ij m)2P ′′

a P r−2
a P̄ r

a

+((∂kl
ij m)P ′

a)
2P r−3

a P̄ r
a + (· · · ), (7.22)

where (· · · ) denotes analogous terms with complex conjugates obtained by applying
the derivatives to P̄a instead of Pa. We consider the terms separately.

For the first term in (7.22), we use the explicit formula

(∂kl
ij )2m =

2

N

N∑

a=1

∂kl
ij (−GiaGja − GkaGla + GiaGka + GjaGla)

=
2

N

N∑

a=1

(GiiG
2
ja + · · · ), (7.23)

where · · · denotes 31 other terms obtained by applying the product rule for differ-
entiation for ∂kl

ij . Using that
∑

j Gij = 0 and (4.11), the first term gives

1

N3d5/2

∑

ijkla

AikAjlGijGiiG
2
ja =

1

N3d1/2

∑

ij

GijGii(G
2)jj ,

=
1

N3d1/2

∑

ij

Gij(Gii − m)(G2)jj ≺ ΛoΛd

d1/2

Im[m]

Nη
.

(7.24)

An analogous calculation can be performed for all terms on the right-hand side of
(7.23). Indeed, every such term has three factors of G, exactly two of which have an
index a, and the third remaining factor is either diagonal (in which case the same
argument as above applies) or off-diagonal (in which case we gain Λo instead of Λd).
Since Λd � Λo, it leads to the estimate

1

N2d5/2

∑

ijkl

E[AikAjlGij((∂
kl
ij )2m)P ′

aP
r−2
a P̄ r

a ] ≺ E

[
ΛoΛd

d1/2

Im[m]|P ′
a|

Nη
|Pa|2r−2

]
.

(7.25)

For the second term in (7.22), we can directly apply (4.14) to get the bound

1

N2d5/2

∑

ijkl

E[AikAjlGij(∂
kl
ij m)2P ′′

a P r−2
a P̄ r

a ] ≺ Λo

d1/2
E

[(
Im[m]

Nη

)2

|P ′′
a ||Pa|2r−2

]
,

(7.26)

which is enough by P ′′
a ≺ 1.

For the third term in (7.22), we have (∂kl
ij m)2 = 4((G2)ij + (G2)kl − (G2)ik −

(G2)jl)
2/N2. There are ten different terms, which we estimate one by one. For the

term (G2)ij(G
2)ij , we use (4.11) to get
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1

N4d5/2

∑

ijkl

AikAjlGij(G
2)ij(G

2)ij =
1

N4d1/2

∑

ij

Gij(G
2)ij(G

2)ij

≺ 1

N4d1/2

∑

ij

Λo

∣∣(G2)ij

∣∣2 +
1

N4d1/2

∑

i

∣∣(G2)ii

∣∣2

=
1

N4d1/2
Λo Tr |G|4 +

1

Nd1/2

(
Im[m]

Nη

)2

≺ Λo

d1/2

Im[m]

(Nη)3
+

1

Nd1/2

(
Im[m]

Nη

)2

.

(7.27)

For the term (G2)ij(G
2)kl, we use (4.11) and (H − z)G = P⊥ to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)ij(G

2)kl =
1

N4d5/2

∑

ij

Gij(G
2)ij(AG2A)ij

=
d − 1

N4d5/2

∑

ij

Gij(G
2)ij(z

2G2 + 2zG + P⊥)ij

≺ 1

N2d3/2

∑

ij

|Gij |
Im[m]2

(Nη)2
≺ Λo

d3/2

(
Im[m]

Nη

)2

,

(7.28)

where in the second equality we used that AG2A = (d−1)(H−z+z)G2(H−z+z) =
(d−1)(z2G2+2zG+P⊥). For the term (G2)ij(G

2)ik, we use (4.11) and (H−z)G = P⊥
to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)ij(G

2)ik =
1

N4d3/2

∑

ij

Gij(G
2)ij(AG2)ii

=
(d − 1)1/2

N4d3/2

∑

ij

Gij(G
2)ij(zG2 + G)ii

≺ 1

N2d

∑

ij

|Gij |
Im[m]2

(Nη)2
≺ Λo

d

(
Im[m]

Nη

)2

,

(7.29)

where in the second equality we used that AG2 = (d − 1)1/2(H − z + z)G2 =
(d−1)2(zG2 +G). The term (G2)ij(G

2)jl can be estimated in the same way. For the
term (G2)kl(G

2)kl, we use (4.11) and (H − z)G = P⊥ to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)kl(G

2)kl =
1

N4d5/2

∑

kl

(AGA)kl(G
2)kl(G

2)kl

=
d − 1

N4d5/2

∑

kl

(z2G + zP⊥ + HP⊥)kl(G
2)kl(G

2)kl

≺ 1

N2d3/2

∑

kl

|(z2G + zP⊥ + HP⊥)kl|
Im[m]2

(Nη)2
≺ Λo

d3/2

(
Im[m]

Nη

)2

,

(7.30)
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where in the second equality we used that AGA = (d−1)(H − z + z)G(H − z + z) =
(d − 1)(z2G + zP⊥ + HP⊥), and in the last inequality, we used Λo � 1/

√
d and∑

kl |(z2G + zP⊥ + HP⊥)kl| ≺ N2Λo + d1/2N � N2Λo. For the term (G2)kl(G
2)ik,

we use (4.11) and (H − z)G = P⊥ to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)kl(G

2)ik =
1

N4d5/2

∑

ikl

Aik(AG)il(G
2)kl(G

2)ik

=
(d − 1)1/2

N4d5/2

∑

ikl

Aik(zG + P⊥)il(G
2)kl(G

2)ik

≺ 1

N2d2

∑

ikl

Aik|(zG + P⊥)il|
Im[m]2

(Nη)2
≺ Λo

d

(
Im[m]

Nη

)2

,

(7.31)

where in the second line we used AG = (d−1)1/2(H −z+z)G = (d−1)1/2(zG+P⊥),
and in the last inequality we used

∑
l |(zG + P⊥)il| � NΛo. The term (G2)kl(G

2)jl

can be estimated in the same way. For the term (G2)ik(G
2)ik, we use that

∑
j Gij = 0

to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)ik(G

2)ik =
1

N4d3/2

∑

ijk

AikGij(G
2)ik(G

2)ik = 0.

(7.32)

The term (G2)jl(G
2)jl can be estimated in the same way. For the term (G2)ik(G

2)jl,
we use (4.11) and (H − z)G = P⊥ to get

1

N4d5/2

∑

ijkl

AikAjlGij(G
2)ik(G

2)jl =
1

N4d5/2

∑

ij

Gij(AG2)ii(AG2)jj

=
(d − 1)

N4d5/2

∑

ij

Gij(zG2 + G)ii(zG2 + G)jj

≺ 1

N2d3/2

∑

ij

|Gij |
Im[m]2

(Nη)2
≺ Λo

d3/2

(
Im[m]

Nη

)2

.

(7.33)

where in the second equality, we used AG2 = (d − 1)1/2(H − z + z)G2 = (d −
1)1/2(zG2 + G).

We combine the above estimates together, and find that the third term in (7.22)
is bounded by

1

N2d5/2

∑

ijkl

E[AikAjlGij((∂
kl
ij m)P ′

a)
2P r−3

a P̄ r
a ]

≺ Λo

d1/2
E

[
Im[m]|P ′

a|2
(Nη)3

|Pa|2r−3

]
+

Λo

d
E

[(
Im[m]|P ′

a|
Nη

)2

|Pa|2r−3

]
.

(7.34)

The Claim 7.4 follows from combining (7.25), (7.26) and (7.34).
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7.2 Proof of (7.9). By (4.7), the left-hand side of (7.9) can be written as

1

N2d(d − 1)1/2

∑

ijkl

E[AikAjlD
kl
ij (Gij)D

kl
ij (P

r−1
a P̄ r

a )]

=

b1−1∑

n1=1

1

n1!N2d(d − 1)(n1+1)/2

∑

ijkl

E

[
AikAjl(∂

kl
ij )n1(Gij)D

kl
ij (P

r−1
a P̄ r

a )
]

+
1

b1!N2d(d − 1)(b1+1)/2

∑

ijkl

E

[
AikAjl

(
(∂kl

ij )b1(Gij)(A + θξkl
ij )
)
Dkl

ij (P
r−1
a P̄ r

a )
]
,

(7.35)

for some random θ ∈ [0, 1]. As above, by choosing b1 large enough, depending on
r, we find that the last line of (7.35) is bounded by N−2r. Moreover, for terms
corresponding to n1 � 3 in (7.35), we have the following simple estimate.

Claim 7.5. For the terms n1 � 3 on the right-hand side of (7.35),

1

N2d(d − 1)(n1+1)/2

∑

ijkl

E

[
AikAjl(∂

kl
ij )n1(Gij)D

kl
ij (P

r−1
a P̄ r

a )
]

≺ 1

dn1/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.36)

Proof. Thanks to (4.7) and (7.12), we have

Dkl
ij (P

r−1
a P̄ r

a ) ≺ max
1�s�2r−1

(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

d1/2
. (7.37)

Combining with (∂kl
ij )n1Gij ≺ 1 we obtain

1

N2d(d − 1)(n1+1)/2

∑

ijkl

E

[
AikAjl(∂

kl
ij )n1(Gij)D

kl
ij (P

r−1
a P̄ r

a )
]

≺ 1

N2d(n1+4)/2
max

1�s�2r−1

∑

ijkl

E

[
AikAjl

(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]

=
1

dn1/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

In the following, we estimate the terms on the right-hand side of (7.35), corre-
sponding to n1 = 1 and n1 = 2.
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Claim 7.6. For the term n1 = 1 on the right-hand side of (7.35),

1

N2d(d − 1)

∑

ijkl

E

[
AikAjl∂

kl
ij GijD

kl
ij (P

r−1
a P̄ r

a )
]

≺ Λ2
d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]

+
d

N
E[|Pa|2r−1]

+

(
d1/2

N
+

Λd

d
+

Λ2
o

d1/2

)
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

+

(
Im[m]

Nη

)2
)s

|Pa|2r−s−1

]

+ E

[
Im[m]

Nη
|Pa|2r−1

]
.

(7.38)

Proof. The derivative ∂kl
ij Gij is given by

∂kl
ij Gij = −GiiGjj + GilGjj + GiiGkj − GijGij − GikGlj − GilGkj

+GikGij + GijGlj . (7.39)

We shall show that the biggest term is −GiiGjj , and that the other terms are smaller.
We first estimate those terms in (7.39) which contain two off-diagonal terms, i.e.,
−GijGij − GikGlj − GilGkj + GikGij + GijGlj . For the term GijGij , using (7.37) to
bound Dkl

ij (P
r−1
a P̄ r

a ),

1

N2d(d − 1)

∑

ijkl

E

[
AikAjlGijGijD

kl
ij (P r−1

a P̄
r
a )
]

≺ 1

N2d(d − 1)

⎛

⎝
∑

i�=j

∑

kl

E

[
AikAjlΛ

2
o|Dkl

ij (P r−1
a P̄

r
a )|
]

+
∑

ikl

E

[
AikAil|Dkl

ii (P r−1
a P̄

r
a )|
]
⎞

⎠

≺ Λ2
o

d1/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.40)

The same argument applies to the other terms with two off-diagonal indices.
We next estimate those terms in (7.39), which contain exactly one off-diagonal

term, i.e., GilGjj + GiiGkj . For the term GilGjj ,

1

N2d(d − 1)

∑

ijkl

E

[
AikAjlGilGjjD

kl
ij (P

r−1
a P̄ r

a )
]

=

b2−1∑

n2=1

1

n2!N2d(d − 1)1+n2/2

∑

ijkl

E

[
AikAjlGilGjj(∂

kl
ij )n2(P r−1

a P̄ r
a )
]

+
1

b2!N2d(d − 1)1+b2/2

∑

ijkl

E

[
AikAjlGilGjj

(
(∂kl

ij )b2(P r−1
a P̄ r

a )(A + θξkl
ij )
)]

,

(7.41)
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for some random θ ∈ [0, 1]. As above, by choosing b2 large enough, depending
on r, we find that the last line of (7.41) is bounded by N−2r. Moreover, for terms
corresponding to n2 � 2 in (7.35), by the same argument as (7.40) and maxi�=l |Gil| ≺
Λo, we have the simple estimate

1

N2d(d − 1)1+n2/2

∑

ijkl

E

[
AikAjlGilGjj(∂

kl
ij )n2(P r−1

a P̄ r
a )
]

≺ Λo

dn2/2
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.42)

Using the above estimate in (7.41), we get

1

N2d(d − 1)

∑

ijkl

E

[
AikAjlGilGjjD

kl
ij (P

r−1
a P̄ r

a )
]

=
1

N2d(d − 1)3/2

∑

ijkl

E

[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ r
a )
]

+ O≺

(
Λo

d
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

])
.

(7.43)

The first term on the right-hand side of (7.43), arising from n2 = 1, needs to be
estimated more precisely. It can be written as

1

N2d(d − 1)3/2

∑

ijkl

E

[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ r
a )
]

=
O(1)

N2d5/2

∑

ijkl

E

[
AikAjlGilGjj

(
(r − 1)∂kl

ij mP ′
aP

r−2
a P̄ r

a + r∂kl
ij m̄P̄ ′

a|Pa|2r−2
)]

.

(7.44)

We estimate
∑

ikl AikAjlGil∂
kl
ij m, and the other term

∑
ikl AikAjlGil∂

kl
ij m̄ can be

estimated in the same way. Recalling (4.9), we have

∂kl
ij m =

2

N
(−(G2)ij − (G2)kl + (G2)ik + (G2)jl). (7.45)

We first estimate the terms in (7.45) which do not contain the index l. For the terms
(G2)ij + (G2)ik, using the definition of the Green’s function (H − z)G = P⊥ and
then using (4.12),
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1

N3d5/2

∑

ijkl

AikAjlGil(−(G2)ij + (G2)ik) =
1

N3d5/2

∑

ijk

Aik(AG)ij(−(G2)ij + (G2)ik)

=
(d − 1)1/2

N3d5/2

∑

ijk

Aik(zG + P⊥)ij(−(G2)ij + (G2)ik)

≺ 1

N2d2

∑

ijk

Aik|(zG + P⊥)ij |
Im[m]

Nη
≺ Λo

d

Im[m]

Nη
,

(7.46)

where in the second equality we used that AG = (d − 1)1/2(H − z + z)G = (d −
1)1/2(zG + P⊥). For the terms which do not contain the index i, (G2)jl − (G2)lk,
analogously,

1

N3d5/2

∑

ijkl

AikAjlGil((G
2)jl − (G2)lk) ≺ Λo

d

Im[m]

Nη
. (7.47)

We plug the estimates (7.46) and (7.47) into (7.44), and get

1

N2d(d − 1)3/2

∑

ijkl

E

[
AikAjlGilGjj∂

kl
ij (P r−1

a P̄ r
a )
]

≺ Λo

d
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
.

(7.48)

The same argument applies to the term GiiGkj , and we have the same estimate as
(7.48).

To estimate the term −GiiGjj in (7.39) we use the following Claim 7.7, which
concludes the proof.

The following claim uses a cancellation that exploits that the graph is regular.

Claim 7.7. We have

1

N2d(d − 1)

∑

ijkl

E

[
AikAjlGiiGjjD

kl
ij (P

r−1
a P̄ r

a )
]

≺ Λ2
d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
+

d

N
E[|Pa|2r−1]

+

(
d1/2

N
+

Λd

d

)
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

+

(
Im[m]

Nη

)2
)s

|Pa|2r−s−1

]

+ E

[
Im[m]

Nη
|Pa|2r−1

]
.

(7.49)
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Proof. Using
∑

ij(Aij − d/N) = 0 and Corollary 3.2 with the random variable F =

m2P r−1
a P r

a we have

0 =
1

N(d − 1)

∑

ijkl

E[(Aij − d

N
)m2(P r−1

a P̄ r
a )]

=
1

N2d(d − 1)

∑

ijkl

E[AikAjlD
kl
ij (m

2(P r−1
a P̄ r

a ))] + O≺

(
d

N
E
[
C(P r−1

a P̄ r
a , A)

])

=
1

N2d(d − 1)

∑

ijkl

E[AikAjlm
2Dkl

ij (P
r−1
a P̄ r

a )] + O≺

(
d

N
E
[
C(P r−1

a P̄ r
a , A)

]

+ max
1�s�2r

E

[(
Im[m]

Nη

)s

|Pa|2r−s

])
,

(7.50)

where we used (4.24), the discrete derivative rule (4.6), and (7.12). The error
C(P r−1

a P̄ r
a , A) is estimated in (7.5).

Therefore, subtracting (7.50) from the left-hand side of (7.49), we get

1

N2d(d − 1)

∑

ijkl

E

[
AikAjlGiiGjjD

kl
ij (P

r−1
a P̄ r

a )
]

=
1

N2d(d − 1)

∑

ijkl

E

[
AikAjl(GiiGjj − m2)Dkl

ij (P
r−1
a P̄ r

a )
]

+ O≺

(
d

N
E
[
C(P r−1

a P̄ r
a , A)

]
+ max

1�s�2r
E

[(
Im[m]

Nη

)s

|Pa|2r−s

])
.

(7.51)

Using (4.7), we rewrite the first term on the right-hand side as

O(1)

N2d2

∑

ijkl

E

[
AikAjl(GiiGjj − m2)Dkl

ij (P
r−1
a P̄ r

a )
]

=

b2−1∑

n2=1

1

n2!N2dn2/2+2

∑

ijkl

E

[
AikAjl(GiiGjj − m2)(∂kl

ij )n2(P r−1
a P̄ r

a )
]

+
1

b2!N2db2/2+2

∑

ijkl

E

[
AikAjl(GiiGjj − m2)

(
(∂kl

ij )b2(P r−1
a P̄ r

a )(A + θξkl
ij )
)]

(7.52)

for some random θ ∈ [0, 1]. As above, by choosing b2 large enough, depending on
r, we find that the last line of (7.52) is bounded by N−2r. Moreover, for terms
corresponding to n2 � 2 in (7.52), we have the following simple estimate. Using
|Gii − m| ≺ Λd, (7.12), and that

∑
k Aik =

∑
l Ajl = d, we find
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1

N2dn2/2+2

∑

ijkl

E

[
AikAjl(GiiGjj − m2)(∂kl

ij )n2(P r−1
a P̄ r

a )
]

≺ O(1)

N2dn2/2+2
max

1�s�2r−1

∑

ijkl

E

[
AikAjlΛd

(
Im[m]|P ′

a|
Nη

+

(
Im[m]

Nη

)2
)s

|Pa|2r−s−1

]

≺ Λd

dn2/2
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

+

(
Im[m]

Nη

)2
)s

|Pa|2r−s−1

]
.

(7.53)

For the term in (7.52) corresponding to n2 = 1, the estimate is more involved.
We start by writing

O(1)

N2d5/2

∑

ijkl

E

[
AikAjl(GiiGjj − m2)∂kl

ij (P r−1
a P̄ r

a ))
]

=
O(1)

N2d5/2

∑

ijkl

E
[
AikAjl(GiiGjj − m2)

×
(
r(∂kl

ij m̄)P̄ ′
a|Pa|2r−2 + (r − 1)(∂kl

ij m)P ′
aP̄

2
a |Pa|2r−3

)]
.

(7.54)

We estimate the term
∑

kl AikAjl∂
kl
ij m; its complex conjugate

∑
kl AikAjl∂

kl
ij m̄ is

estimated analogously. We use (4.9) and estimate the resulting four terms one by
one. For the term −(G2)ij ,

1

N3d5/2

∑

ijkl

E
[
AikAjl(GiiGjj − m2)(G2)ijP̄

′
a|Pa|2r−2

]

=
1

N3d1/2

∑

ij

E
[
(GiiGjj − m2)(G2)ijP̄

′
a|Pa|2r−2

]

=
1

N3d1/2

∑

ij

E [((Gii − m)m + (Gjj − m)m

+(Gii − m)(Gjj − m))(G2)ijP̄
′
a|Pa|2r−2

]

=
1

N3d1/2

∑

ij

E
[
(Gii − m)(Gjj − m)(G2)ijP̄

′
a|Pa|2r−2

]

≺ Λ2
d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
,

(7.55)

where in the third equality, we used that the first two terms vanish after summing
over index j and i respectively because

∑
j(G

2)ij = 0 =
∑

i(G
2)ij , and in the last

inequality, we used |Gii − m| ≺ Λd and (4.11). For the term (G2)ik,
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1

N3d5/2

∑

ijkl

E
[
AikAjl(GiiGjj − m2)(G2)ikP̄

′
a|Pa|2r−2

]

=
1

N3d3/2

∑

ij

E
[
(GiiGjj − m2)(AG2)iiP̄

′
a|Pa|2r−2

]

=
(d − 1)1/2

N3d3/2

∑

ij

E
[
(GiiGjj − m2)(zG2 + G)iiP̄

′
a|Pa|2r−2

]

≺ Λd

d
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
,

(7.56)

where we used that AG2 = (d−1)1/2(H −z+z)G2 = (d−1)1/2(zG2 +G) and (4.11).
We have the same estimate for the term (G2)jl,

1

N3d5/2

∑

ijkl

E
[
AikAjl(GiiGjj − m2)(G2)jlP̄

′
a|Pa|2r−2

]
≺ Λd

d
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
.

(7.57)

For the term −(G2)kl, we use (4.11)

1

N3d5/2

∑

ijkl

E
[
AikAjl(GiiGjj − m2)(G2)klP̄

′
a|Pa|2r−2

]

=
1

N3d5/2

∑

ij

E
[
(GiiGjj − m2)(AG2A)ijP̄

′
a|Pa|2r−2

]

=
d − 1

N3d5/2

∑

ij

E
[
(GiiGjj − m2)(z2G2 + 2zG + P⊥)ijP̄

′
a|Pa|2r−2

]

≺ Λd

d3/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
, (7.58)

where in the third equality, we used AG2A = (d − 1)(H − z + z)G2(H − z + z) =
(d−1)(z2G2+2zG+P⊥). We combine the estimates (7.55), (7.56), (7.57) and (7.58),
and use that Λd � 1/

√
d,

O(1)

N2d5/2

∑

ijkl

E

[
AikAjl(GiiGjj−m2)∂kl

ij (P̄a|Pa|2r−2))
]
≺ Λ2

d

d1/2
E

[
Im[m]|P ′

a|
Nη

|Pa|2r−2

]
.

(7.59)

The Claim 7.7 follows from combining (7.51), (7.53) and (7.59).

Claim 7.8. For the term n1 = 2 on the right-hand side of (7.35),

1

N2d(d − 1)3/2

∑

ijkl

E

[
AikAjl(∂

kl
ij )2(Gij)D

kl
ij (P

r−1
a P̄ r

a )
]

≺ Λo

d
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
.

(7.60)
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Proof. For i 	= j we use (∂kl
ij )2Gij ≺ Λo from (4.13),

1

N2d(d − 1)3/2

∑

ijkl

E

[
AikAjl(∂

kl
ij )2(Gij)D

kl
ij (P

r−1
a P̄ r

a )
]

≺ Λo

N2d5/2

∑

ijkl

E

[
AikAjl|Dkl

ij (P
r−1
a P̄ r

a )|
]

+
1

N2d5/2

∑

ikl

E

[
AikAil|Dkl

ii (P
r−1
a P̄ r

a )|
]

≺ Λo

d
max

1�s�2r−1
E

[(
|P ′

a| Im[m]

Nη
+

(
Im[m]

Nη

)2
)s

|Pa|2r−1−s

]
,

(7.61)

where we used (7.37) for the second inequality.

8 Analysis of Self-consistent Equation and Proof of Theorem 1.1

In this section we analyse the recursive moment estimate (7.1) from Proposition 7.1,
around the spectral edges ±2, and obtain an improved estimate for the Stieltjes
transform m(z).

In the following, we focus on the right spectral edge; an analogous argument
applies to the left edge. For a fixed integer a � 1 and the same large constant K > 0
as in (2.10), we define the spectral domain for the right edge (around the point
z = 2) by

De =

{
2 + κ + iη : 0 � η � K, 0 � 2 + κ � K

|κ| + η �
1

da/2
+

d

N
+

d3

N2
+

d3/2

N(Nη)1/2
+

1

d3/2Nη
+

1

(Nη)2

}
.

(8.1)

Also recall md from (2.5).

Theorem 8.1. Fix an integer a � 1. For 1 � d � N2/3, the following holds uni-
formly for any z = 2 + κ + iη ∈ De.

• If κ � 0 then

|m(z) − md(z)| ≺
(

1

d
+

d

N
+

1

(dNη)1/2

)1/3
1

Nη2/3(|κ| + η)1/3

+
1√

|κ| + η

(
1

da/2
+

d

N
+

d3

N2
+

1

N1/2d3/2
+

d3/2

N3/2η1/2
+

1

Nη1/2
+

1

d3/2Nη
+

1

(Nη)2

)
.

(8.2)

• If κ � 0 then
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|m(z) − md(z)| ≺ 1

(Nη)1/2

(
1

Nη
+

d5/2

N2
+

1

d3/2

)1/2

+
1√

|κ| + η

(
1

da/2
+

d

N
+

d3

N2
+

d3/2

N
√

Nη

)
. (8.3)

The analogous statement holds around the left edge.

In this section, we use the notation X � Y to mean X = O(Y ) and X � Y to
mean X � Y and Y � X.

The estimate for the extremal eigenvalues of the random d-regular graphs, The-
orem 1.1, follows as a corollary of Theorem 8.1 and [CGJ18, Theorem 1.1], which
states that with high probability, the second-largest eigenvalue and the smallest
eigenvalue of a random d-regular graph is of order O(1).

Proposition 8.2 ([CGJ18, Theorem 1.1]). Fix c > 0. For 1 � d � N2/3 and large
enough N , there exists a constant K depending on c such that, with probability at
least 1 − N−1/c,

max{λ2, −λN} � K. (8.4)

Proof of Theorem 1.1. We recall the following elementary estimates on md(z) which
hold for bounded |z|. Let z = 2+κ+iη or z = −2−κ+iη for 0 � η � K, 0 � 2+κ � K.
Then

Im[md(z)] �

⎧
⎨

⎩

√
|κ| + η if κ � 0,
η√

|κ|+η
if κ � 0.

(8.5)

This estimate follows from (2.5) and the analogous estimate for msc; see, for example,
[EY17, Lemma 6.2].

We choose a = 6 in Theorem 8.1, and take z = 2 + κ + iη ∈ De, where

κ = N c

(
1

d3
+

1

N2/3
+

d2

N4/3

)
, η =

N c/2

N
√

κ
.

In particular, η � κ. Then under our assumption 1 � d � N2/3, (8.2) implies

|m(z) − md(z)| � 1

Nη
. (8.6)

Since Im[md(z)] � η/
√

κ � 1/Nη, we get Im[m(z)] � 1/Nη. Since any eigenvalue
in [2 + κ − η, 2 + κ + η] would yield a positive contribution of size at least 1/Nη to
Im[m(z)], this implies that there cannot be any eigenvalue on the interval [2 + κ −
η, 2+κ+η]. Since we can take any κ in the interval [N c(d−3+N−2/3+d2N−4/3),K−2],
combining with Proposition 8.2, we conclude that with probability 1 − 2N−1/c we
have λ2 � 2 + N c(d−3 + N−2/3 + d2N−4/3). Since c > 0 is arbitrary this implies
the same conclusion with probability 1 − N−1/c as in the statement of the theorem.
The lower bound for λN follows from the same argument. This finishes the proof of
Theorem 1.1.
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8.1 Stability of self-consistent equation. Recall from Corollary 6.4 that for
z ∈ De,

|P ′
a(z, md(z))| �

√
|κ| + η + O(d−a/2), P ′′

a (z, md(z)) = 2 + O(d−1/2),

P ′′′
a (z, md(z)) = O(1). (8.7)

The following proposition on the stability of the self-consistent equation, relying on
the above square root behaviour at the edge, is essentially [BEKYY14, Lemma 4.5].

Proposition 8.3. Fix an integer a � 1. There exists a constant ε > 0 such that the
following holds. Suppose that δ : De → C satisfies N−2 � δ(z) � ε for z ∈ De, and
that δ is Lipschitz continuous with Lipschitz constant N . Suppose moreover that for
each fixed κ, the function η �→ δ(2+κ+iη) is nonincreasing for η > 0. Suppose that
for all z ∈ De we have

|Pa(z, md(z))| + |Pa(z, m(z))| � δ(z). (8.8)

Then we have for z = 2 + κ + iη ∈ De,

|m(z) − md(z)| = O

(
δ(z)√

|κ| + η + δ(z)

)
, (8.9)

where the implicit constant is independent of z and N .

Proof. Let z = 2 + κ + iη ∈ De. By Taylor expansion, (8.7), and Proposition 2.1, it
follows that

Pa(z, m(z)) = Pa(z, md(z)) + P ′
a(z, md(z))(m(z) − md(z))

+ (P ′′
a (z, md(z)) + o(1))(m(z) − md(z))2/2.

(8.10)

We abbreviate R(z) ..= Pa(z, m(z)) − Pa(z, md(z)). There exists a(z) �
√

|κ| + η
and b(z) � 1, such that

R(z) = a(z)(m(z) − md(z)) + b(z)(m(z) − md(z))2. (8.11)

With (8.11), Proposition 8.3 follows by a continuity argument that is essentially the
same as [BEKYY14, Lemma 4.5].

8.2 Estimates on individual Green’s function entries. In the following
we first prove some estimates on the individual entries of Green’s function, which
slightly improve the estimates on the diagonal Green’s function entries from [BKY17,
Theorem 1.1] using the results from the previous sections.

Proposition 8.4. Fix 1 � d � N2/3. Uniformly for z = 2 + κ + iη ∈ De, we have
(4.1) with Λo and Λd given by (2.13). The analogous statement holds for the left
edge.
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Proof. From Proposition 2.1, we have (4.1) for all z ∈ De, with Λo and Λd given by
(2.11). (In all all bounds below, Λo and Λd will continue to be given by (2.11).) By
the rough bounds Im[m] ≺ 1 and |P ′

a| ≺ 1, it follows from Proposition 7.1 that

E[|Pa|2r] ≺ Λ2
d

d1/2
E

[ |Pa|2r−2

Nη

]
+

(
1

da/2
+

d3/2Λo

N

)
E[|Pa|2r−1]

+ max
1�s�2r

E

[ |Pa|2r−s

(Nη)s

]
+

(
Λd

d
+

Λ2
o

d1/2
+

dΛo

N

)
max

1�s�2r−1
E

[ |Pa|2r−s−1

(Nη)s

]
.

(8.12)

By Jensen’s inequality, we get from (8.12) that for any r � 1,

E[|Pa(z, m(z))|2r] ≺ 1

dra
+

Λ2r
d

dr
+

1

(Nη)2r
+

d3rΛ2r
o

N2r
. (8.13)

Therefore

|Pa(z, m(z))| ≺ 1

da/2
+

Λ2
d

d1/2
+

1

Nη
+

d3/2Λo

N
, (8.14)

uniformly for z ∈ De. Taking

δ(z) = N c

(
1

da/2
+

Λ2
d

d1/2
+

1

Nη
+

d3/2Λo

N

)
, (8.15)

in Proposition 8.3, where c > 0, we obtain

|m(z) − md(z)| ≺ 1

da/4
+

Λd

d1/4
+

1

(Nη)1/2
+

d3/4Λ
1/2
o

N1/2
≺ 1

d1/2
+

d3/2

N
+

1√
Nη

.

(8.16)

where the last bound follows from the definitions of Λo and Λd in (2.11) and taking
a � 2. The proof is completed by applying [BKY17, Lemma 5.4]. Indeed, thanks to
[BKY17, Lemma 5.4], we have

1 + (m(z) + z)Gii(z) = O≺

(
1

d1/2
+

d3/2

N
+

1√
Nη

)
. (8.17)

With (8.16) as input and noticing that |msc(z) − md(z)| = O(1/d), we get

1 + (msc(z) + z)Gii(z) = O≺

(
1

d1/2
+

d3/2

N
+

1√
Nη

)
. (8.18)

Using (2.7) we obtain

Gii(z) − msc(z) = O≺

(
1

d1/2
+

d3/2

N
+

1√
Nη

)
, (8.19)

from which we deduce that

max
i

|Gii(z) − md(z)| ≺ 1

d1/2
+

d3/2

N
+

1√
Nη

, (8.20)

as claimed.
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8.3 Proof of Theorem 8.1. Throughout this section, we abbreviate Λ(z) =
|m(z) − md(z)|, and Φ(z) = Im[md(z)]. Then Im[m] = Φ(z) + O(Λ(z)), and P ′

a(z,
m(z)) = P ′

a(z, md(z)) + O(Λ(z)) from Corollary 6.4. Moreover, we take Λo and Λd

to be given by (2.13). By Proposition 8.4, we know that (4.1) holds for any z ∈ De.
Notice that Proposition 7.1 implies that, for any z ∈ De,

E[|Pa|2r] ≺ Λ2
o

d1/2
max

1�s�2r−1
E

[(
Im[m]|P ′

a|
Nη

)s

|Pa|2r−s−1

]
+ E

[
Im[m]|P ′

a|
(Nη)2

|Pa|2r−2

]

+
Λo

d1/2
E

[
Im[m]|P ′

a|2
(Nη)3

|Pa|2r−3

]
+

(
1

da/2
+

d3/2Λo

N

)
E[|Pa|2r−1]

+ max
1�s�2r

E

[(
Im[m]

Nη

)s

|Pa|2r−s

]
.

(8.21)

We notice that for z = 2+κ+iη ∈ De, |P ′
a(z, m(z))| �

√
|κ| + η+Λ(z). By Jensen’s

inequality, it follows from (8.21) that

E
[
|P (z, m(z))|2r

]
≺ E

[(
1

Nη
+

Λ2
o

d1/2

)r
(

(Φ + Λ)(
√

|κ| + η + Λ)

Nη

)r]

+ E

[(
Φ + Λ

Nη

)2r
]

+ E

[(
Λo

d1/2

)2r/3 (Φ + Λ)2r/3(
√

|κ| + η + Λ)4r/3

(Nη)2r

]

+ E

[(
1

da/2
+

d3/2Λo

N

)2r
]

.

(8.22)

Before proving Theorem 8.1, we prove the following weaker estimate which will
be used as an input in the Proof of Theorem 8.1.

Proposition 8.5. Uniformly for any z = 2 + κ + iη ∈ De, we have

Λ(z) = |m(z) − md(z)| ≺
√

|κ| + η. (8.23)

Proof. Thanks to (8.5), we have Φ(z) ≺
√

|κ| + η. From our choice of the spectral
domain De in (8.1), we have

1

Nη
�
√

|κ| + η,
1

da/2
,
d3/2Λo

N
,

Λ2
o

d1/2

1

Nη
� |κ| + η. (8.24)

Thus (8.22) implies

E
[
|Pa(z, m(z))|2r

]
≺ (|κ| + η)2r + (|κ| + η)r

E
[
Λ(z)2r

]
. (8.25)

We have the Taylor expansion (8.10)
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Pa(z, m(z)) = Pa(z, md(z)) + P ′
a(z, md(z))(m(z)

−md(z)) + (1 + o(1))(m(z) − md(z))2, (8.26)

where we used that P ′′
a = 2 + O(1/d1/2 + d/N), P ′′′

a = O(1), and Λ(z) � 1. Rear-
ranging the last equation (8.26) and using the definition of Λ, we have arrived at

Λ(z)2 � Λ(z)
√

|κ| + η + |Pa(z, m(z))| + |Pa(z, md(z))|, (8.27)

and thus

E[Λ(z)4r] � (|κ| + η)r
E[Λ(z)2r] + E[|Pa(z, m(z))|2r] + |Pa(z, md(z))|2r, (8.28)

for any fixed integer r � 1. Now we replace E[|Pa(z, m(z))|2r] in (8.28) by the right-
hand side of (8.25). Moreover, on the domain De, from Proposition 6.1, we have
|Pa(z, md(z))| � |κ| + η. With E[Λ(z)2r] � E[Λ(z)4r]1/2 by the Cauchy–Schwarz
inequality, we thus obtain

E[Λ(z)4r] ≺ (|κ| + η)2r, (8.29)

for any r � 1. The claim Λ(z) ≺
√

|κ| + η follows from Markov’s inequality.

Proof of of Theorem 8.1. We assume that there exists some deterministic control
parameter Θ(z), for any z = 2 + κ + iη ∈ De, we have the a priori estimate

|m(z) − md(z)| ≺ Θ(z) �
√

|κ| + η. (8.30)

From (8.22) we get

|Pa(z, m(z))| ≺
(

1

Nη
+

Λ2
o

d1/2

)1/2
(

(Φ + Θ)
√

|κ| + η

Nη

)1/2

+
Φ + Θ

Nη

+

(
Λo

d1/2

)1/3 (Φ + Θ)1/3(|κ| + η)1/3

Nη
+

1

da/2
+

d3/2Λo

N
.

(8.31)

Since Φ + Θ �
√

|κ| + η, (8.31) simplifies to

|Pa(z, m(z))|

≺
(

1

Nη
+

d5/2

N2
+

1

d3/2

)1/2
(

(Φ + Θ)
√

|κ| + η

Nη

)1/2

+

(
Λo

d1/2

)1/3 (Φ + Θ)1/3(|κ| + η)1/3

Nη
+

(
1

da/2
+

d

N
+

d3

N2
+

d3/2

N
√

Nη

)
.

(8.32)
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To conclude the proof, we consider the cases κ � 0 and κ � 0 separately. If
κ � 0, then we have Φ(z) �

√
|κ| + η, and (8.32) simplifies to

|Pa(z, m(z))| ≺
(

1

Nη
+

d5/2

N2
+

1

d3/2

)1/2( |κ| + η

Nη

)1/2

+

(
1

da/2
+

d

N
+

d3

N2
+

d3/2

N
√

Nη

)
.

(8.33)

Thanks to Proposition 8.3, by taking δ(z) the right-hand side of (8.33) times N c,
we get

|m(z) − md(z)| ≺ 1

(Nη)1/2

(
1

Nη
+

d5/2

N2
+

1

d3/2

)1/2

+
1√

|κ| + η

(
1

da/2
+

d

N
+

d3

N2
+

d3/2

N
√

Nη

)
. (8.34)

This finishes the proof of (8.3).
If κ � 0, then Φ(z) � η/

√
|κ| + η, and (8.32) simplifies to

|Pa(z, m(z))| ≺ 1

da/2
+

d

N
+

d3

N2
+

1

N1/2d3/4
+

d3/2

N3/2η1/2
+

1

Nη1/2

+

(
Λo

d1/2

)1/3((|κ| + η)1/3

Nη
Θ1/3 +

(|κ| + η)1/6

Nη2/3

)

+

(
1

Nη
+

d5/2

N2
+

1

d3/2

)1/2
(√

|κ| + η

Nη

)1/2

Θ1/2.

(8.35)

Thanks to Proposition 8.3, by taking δ(z) to be the right-hand side of (8.35) times
N c, we get

|m(z) − md(z)| ≺ 1√
|κ| + η

(
1

da/2
+

d

N
+

d3

N2
+

1

N1/2d3/4
+

d3/2

N3/2η1/2
+

1

Nη1/2

)

+

(
Λo

d1/2

)1/3( 1

Nη(|κ| + η)1/6
Θ1/3 +

1

Nη2/3(|κ| + η)1/3

)

+

(
1

Nη
+

d5/2

N2
+

1

d3/2

)1/2
(

1

Nη
√

|κ| + η

)1/2

Θ1/2.

(8.36)
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Since the exponent of Θ on the right-hand side of (8.36) is less than 1, by iterating
(8.36) a bounded number of times and recalling the definition of ≺, we get

|m(z) − md(z)| ≺
(

1

d
+

d

N
+

1

(dNη)1/2

)1/3
1

Nη2/3(|κ| + η)1/3

+
1√

|κ| + η

(
1

da/2
+

d

N
+

d3

N2
+

1

N1/2d3/2
+

d3/2

N3/2η1/2
+

1

Nη1/2
+

1

d3/2Nη
+

1

(Nη)2

)
.

(8.37)

This finishes the proof of (8.2).

9 Edge Universality: Proof of Theorem 1.3

In this section we prove the edge universality of random d-regular graphs in the
regime N2/9 � d � N1/3 where Theorem 1.1 provides optimal bounds on the
extremal eigenvalues. Thus, throughout this section we assume that there exists a
universal constant e such that

N2/9+e � d � N1/3−e. (9.1)

Our strategy is based on the usual three-step approach of random matrix theory
[EY17]. Starting from the (rescaled) adjacency matrix H = H0 from (1.1), we run
a matrix-valued Brownian motion H(t). Using the rigidity estimates from Theo-
rems 1.1 and 8.1 combined with [LY17], we deduce that for t � N−1/3 the matrix
H(t) has GOE edge statistics; see Proposition 9.8 below. The main work in this
section is a comparison argument to show that H0 and H(t), t � N−1/3, have the
same edge statistics; see Proposition 9.11 below. This comparison argument has the
same spirit as the one from [BHKY17]. Its underlying principle is that for large d,
a Markovian switching dynamics of the graph that leaves the random regular graph
invariant is well approximated by Brownian motion, when considering observables
that characterize the local spectral statistics. The main difference to [BHKY17] is
that, since we are working at the edge, we need to incorporate precise rigidity esti-
mates on the locations of the eigenvalues near the spectral edge, and the necessary
cancellations are more delicate.

We recall the constrained GOE W as introduced in [BHKY17, Section 2.1]: W is
the centred Gaussian process on the space M ..= {H ∈ RN×N : H = H∗, H1 = 0}
with covariance E〈W , X〉〈W , Y 〉 = 〈X , Y 〉, where 〈X , Y 〉 ..= N

2 Tr(XY ) for X, Y ∈
M. Explicitly, its covariance is given by

E[WijWkl] =
1

N

(
δik − 1

N

)(
δjl − 1

N

)
+

1

N

(
δil − 1

N

)(
δjk − 1

N

)
. (9.2)

It may be viewed as the usual Gaussian Orthogonal Ensemble restricted to matri-
ces with vanishing row and column sums. The following result is a straightforward
consequence of (9.2).
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Lemma 9.1. For the constrained GOE W we have the integration by parts formula

E[WijF (W )] =
1

N3

∑

kl

E[∂kl
ij F (W )]. (9.3)

Next, we define the matrix-valued process

H(t) ..= e−t/2H +
√

1 − e−t W, (9.4)

where H was defined in (1.1) in terms of the adjacency matrix of the d-regular graph.
Thus, H(0) = H and H(∞) = W .

We recall the projection matrix P⊥ = I−11∗/N from Section 2. Then the matrix
H(t) and P⊥ commute, i.e. H(t)P⊥ = P⊥H(t). For z ∈ C+ = {z ∈ C : Im[z] > 0},
we define the time-dependent Green’s function by

G(t; z) ..= P⊥(H(t) − z)−1P⊥, (9.5)

so that G(t; z) and (H(t) − z)−1 agree on the image of P⊥, i.e. the subspace of
RN perpendicular to 1 which carries the nontrivial spectrum of H(t). The matrix
H(t) has a trivial eigenvalue λ1(t) = e−t/2d/

√
d − 1 with eigenvector 1. We denote

the remaining eigenvalues of H(t) by λ2(t) � λ3(t) � · · ·λN−1(t) � λN (t), and the
Stieltjes transform of the empirical eigenvalue distribution of H(t)P⊥ by m(t; z),

m(t; z) =
1

N
Tr G(t; z) =

1

N

N∑

i=2

1

λi(t) − z
. (9.6)

Definition 9.2. An event holds with very high probability if for any c > 0 it has
probability at least 1 − Oc(N

−1/c).

Under the assumption (9.1), we have the following corollary of Theorems 1.1 and
8.1 .

Corollary 9.3. Fix a constant e > 0 and suppose that N2/9+e � d � N1/3−e.
Then, for any fixed c > 0 we have with very high probability

|λ2(0) − 2|, |λN (0) + 2| � N−2/3+c, (9.7)

and uniformly for any z = E + iη, with −4 � E � 4 and η � N−2/3,

|m(0; z) − md(z)| � N c

(
1

Nη
+

d

N
√

η

)
. (9.8)

Remark 9.4. As an easy consequence of Corollary 9.3, we have that for any z =
E + iη, with −4 � E � 4 and η � N−2/3+c, Im[m(0; z)] � Im[md(z)].
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9.1 Free convolution. The asymptotic eigenvalue density of the matrix H(t)
is governed by the free additive convolution of the rescaled Kesten–McKay measure
with the semicircle law at time s = 1 − e−t. We recall some properties of measures
obtained by the free convolution with a semicircle distribution from [Bia97]. The
semicircle density ρsc(x) is given by (2.6), and the semicircle density of variance s is
s−1/2ρsc(s

−1/2x). Given a probability measure μ on R, we denote its free convolution
with a semicircle distribution of variance s by μs. The Stieltjes transforms of μ and μs

are given by Gμ(z) =
∫ dμ(x)

x−z and Gμs
(z) =

∫ dμs(x)
x−z respectively. Then the following

holds [Bia97].

(i) We denote the set Us = {z ∈ C+ :
∫ dμ(x)

|z−x|2 < 1
s}. Then z �→ z − sGμ(z) is a

homeomorphism from Ūs to C+ ∪ R and conformal from Us to C+. We denote
its inverse by Fμs

: C+ ∪ R �→ Ūs.
(ii) The Stieltjes transform of μs is characterized by Gμ(z) = Gμs

(z − sGμ(z)), for
any z ∈ Us.

By the inversion formula for the Stieltjes transform, we deduce from (ii) that the
density of μs is given by dμs(x)/dx = Im[Gμ(Fμs

(x))]/π.
The asymptotic eigenvalue density of W is the semicircle density ρsc(x) and

the asymptotic eigenvalue density of
√

1 − e−t W is the semicircle density at time
s = 1 − e−t. The asymptotic eigenvalue density of H(t) is the free convolution of
rescaled Kesten–McKay law μ(dx) = et/2ρd(e

t/2x)dx at time e−t and the semicircle
density at time 1 − e−t. We denote its density by ρd(t; x) and its Stieltjes transform

by md(t; z) =
∫ ρd(t;x)

x−z dx. Since Gμ(e−t/2z) = et/2md(z), we deduce from (i) and (ii)
above that

md(t; ξd(t; z)) = et/2md(z), (9.9)

where

ξd(t; z) ..= e−t/2z − et/2(1 − e−t)md(z) (9.10)

is a homeomorphism from the set {z ∈ C+ :
∫ ρd(x)

|x−z|2 dx � 1
et−1} to C+∪R. We denote

the functional inverse of ξd(t; z) by Fd(t; z) which is a homeomorphism from C+ ∪ R

to the set {z ∈ C+ :
∫ ρd(x)

|x−z|2 dx � 1
et−1}. Thus, ρd(t; x) = Im[md(Fd(t; x))]/π. To

find the support of the measure ρd(t; x), we notice that there exists z±
d (t) ∈ R such

that {z ∈ C+ :
∫ ρd(x)

|x−z|2 dx = 1
et−1} consists of the intervals (−∞, z−

d (t)] ∪ [z+
d (t), ∞)

and an arc C from z−
d (t) to z+

d (t). Those two endpoints z±
d (t) ∈ R are the largest

and smallest real solutions to ∫
ρd(x)

|x − z|2 dx =
1

et − 1
, (9.11)

and the function Fd(t; x) maps the support of ρd(t; x) to the arc C. As a consequence,
the right and left edges of the measure ρd(t; x) are given by

E±
d (t) = ξd(t; z

±
d (t)) = e−t/2z±

d (t) − et/2(1 − e−t)md(z
±
d (t)). (9.12)
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Lemma 9.5. Let Lt = 2 + t/d. Then the right and left edges of the measure ρd(t; x)
are given by

E±
d (t) = ±

(
Lt + O

(
t3 +

1

d3

))
. (9.13)

Proof. From (2.7) and (2.5) we recall that for any z ∈ C,

z = −msc(z) − 1

msc(z)
, md(z) =

msc(z)

1 − m2
sc(z)/(d − 1)

. (9.14)

By taking the derivative we obtain

m′
d(z) =

m2
sc(z)(1 + m2

sc(z)/(d − 1))

(1 − m2
sc(z))(1 − m2

sc(z)/(d − 1))2
. (9.15)

We can solve for z±
d (t) using (9.11) and (9.15),

1

et − 1
=

∫
ρd(x)

|x − z±
d (t)|2 dx = m′

d(z
±
d (t))

=
m2

sc(z
±
d (t))(1 + m2

sc(z
±
d (t))/(d − 1))

(1 − m2
sc(z

±
d (t)))(1 − m2

sc(z
±
d (t))/(d − 1))2

. (9.16)

In the regime t � 1 and d � 1, we can solve for msc(z
±
d (t)) from (9.16) and get

msc(z
±
d (t)) = ±

(
1 − t

2
− 3t

2d
− t2

8
+ O

(
t3 +

1

d3

))
. (9.17)

Using (9.14), (9.17) implies that

z±
d (t) = −msc(z

±
d (t)) − 1

msc(z
±
d (t))

= ∓
(

2 +
t2

4
+ O

(
t3 +

1

d3

))
,

md(z
±
d (t)) =

msc(z
±
d (t))

1 − m2
sc(z

±
d (t))/(d − 1)

= ±
(

1 − t

2
+

1

d
+ O

(
t2 +

1

d2

))
.

(9.18)

Lemma 9.5 follows by plugging (9.18) into (9.12) and expanding the exponents to
third order.

9.2 Rigidity and edge universality of H(t). In this section we collect some
estimates on the Green’s function G(t; z) and the Stieltjes transform m(t; z) of H(t),
and state the edge universality result for H(t) when t � N−1/3. All statements and
estimates in this section follow directly from [BHY17, LY17, AH18].

First, using the rigidity estimates of Corollary 9.3 as input, the rigidity estimates
on the Stieltjes transform m(t; z) of H(t) follow from [AH18, LY17].
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Proposition 9.6. Fix a constant e > 0 and N2/9+e � d � N1/3−e. For an arbi-
trarily small constant c > 0 and any time 0 � t � 1, with very high probability we
have

|λ2(t) − Lt|, |λN (t) + Lt| � N−2/3+c, (9.19)

and uniformly for any z = E + iη, with −4 � E � 4 and η � N−2/3,

|m(t; z) − md(t; z)| � N c

(
1

Nη
+

d

N
√

η

)
, (9.20)

where Lt = 2 + t/d and md(t; z) is defined by (9.9) and m(t; z) by (9.6).

Using the rigidity estimates from Corollary 9.3 and the estimates on the Green’s
function entries of H(0) from Proposition 8.4 as input, the entrywise estimates on
Green’s function of H(t) with t > 0 follow from an argument similar to the proof
of [BHY17, Theorem 2.1]. We remark that in the statement of [BHY17, Theorem
2.1], it assumed that Im[m0] is bounded from below and that t � η∗. However, in
the proof of [BHY17, Theorem 2.3], these assumptions are only used to show that
|mt(z) − mfc,t(z)| is small. With the required estimate of |mt(z) − mfc,t(z)| already
established by (9.20), the remaining part of [BHY17, Theorem 2.1] does not use
that Im[m0] is bounded from below or that t � η∗. Therefore, with (9.20) given, the
remaining proof of [BHY17, Theorem 2.1] applies and gives the following result on
the entrywise estimates of Green’s function of H(t).

Proposition 9.7. Fix constant e > 0 and suppose that N2/9+e � d � N1/3−e.
For an arbitrarily small constant c > 0 and any time 0 � t � 1, with very high
probability we have

|Gij(t; z) − δijmd(t; z)| � N c

(
1

d1/2
+

1√
Nη

)
, (9.21)

uniformly for any z = E + iη, with −4 � E � 4 and η � N−2/3.

The edge universality of H(t) for t � N−1/3 follows from the following result
due to [LY17].

Proposition 9.8. Fix a constant e > 0 and suppose that N2/9+e � d � N1/3−e.
Let d > 0 be a sufficiently small constant and set t = N−1/3+d. Let H(t) be as in
(9.4), which has an eigenvalue λ1(t) = e−t/2d/

√
d − 1, and we denote its remaining

eigenvalues by λ2(t) � λ3(t) � · · ·λN−1(t) � λN (t). Fix k � 1 and s1, s2, · · · , sk ∈ R.
Then

PH(t)

(
N2/3(λi+1(t) − Lt) � si, 1 � i � k

)

= PGOE

(
N2/3(μi − 2) � si, 1 � i � k

)
+ o (1) ,

(9.22)

where Lt = 2 + t/d is as defined in Lemma 9.5, and μ1 � μ2 � · · · � μN are the
eigenvalues of a the Gaussian Orthogonal Ensemble. The analogous statement holds
for the smallest eigenvalues.
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Remark 9.9. By an appropriate modification of the analysis of Dyson Brownian
motion from [LY17], Proposition 9.8 also holds for the joint distribution of the k
largest and smallest eigenvalues. In particular, this implies that, under the same
assumption as in the previous proposition, the asymptotic joint distribution of
N2/3(λ2(t)−Lt, −λN (t)−Lt) is a pair of independent Tracy–Widom1 distributions.
Moreover, Proposition 9.11 below can be extended, by merely cosmetic changes, to
also cover the joint distribution of k largest and smallest eigenvalues. Thus, we get
the following extension of Theorem 1.3.

Theorem 9.10. Suppose that N2/9 � d � N1/3. Fix k � 1 and s±
1 , s±

2 , · · · , s±
k ∈

R. Then

PH

(
N2/3(λi+1 − 2)

� s+
i , N2/3(−λN+1−i − 2) � s−

i , 1 � i � k
)

= PGOE

(
N2/3(μi − 2) � s+

i , N2/3(−μN+1−i − 2) � s−
i , 1 � i � k

)
+ o(1).

9.3 Green’s function comparison. In this section we prove the following
short-time comparison result for the edge eigenvalue statistics of H(t).

Proposition 9.11. Fix a constant e > 0 and suppose that N2/9+e � d � N1/3−e.
Let d > 0 be a sufficiently small constant and set t = N−1/3+d. Let H(t) be as in
(9.4), which has an eigenvalue λ1(t) = e−t/2d/

√
d − 1, and we denote its remaining

eigenvalues by λ2(t) � λ3(t) � · · ·λN−1(t) � λN (t). Fix k � 1 and s1, s2, · · · , sk ∈ R.
Then

PH

(
N2/3(λi+1(0) − 2) � si, 1 � i � k

)

= PH(t)

(
N2/3(λi+1(t) − Lt) � si, 1 � i � k

)
+ o(1),

(9.23)

where Lt = 2 + t/d is as defined in Lemma 9.5. The analogous statement holds for
the smallest eigenvalues.

Before proving Proposition 9.11 we use it to conclude the proof of edge univer-
sality of random d-regular graphs, Theorem 1.3.

Proof of Theorem 1.3. Combine Propositions 9.8 and 9.11 .

The rest of this section is devoted to the proof of Proposition 9.11. For any E,
we define

Nt(E) ..= |{i � 2 : λi(t) � Lt + E}|, (9.24)

and we write N0(E) as N (E). We take � = N−2/3−d/9 and η = N−2/3−d. Then with
very high probability, from Propositions 9.6 and 9.7 , with (8.5) and (9.9), and with
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the fact that η Im[m(t; Lt + κ + iη)] is a monotone decreasing function of η (which
is immediate from the spectral representation), for any |κ| � N−2/3+d, we have

Im[m(t; Lt + κ + iη)] � N−1/3+Cd, (9.25)

and similarly, since maxij η|Gij(t; Lt + κ + iη)| is decreasing in η (see [BKY17,
Lemma 2.1]),

max
ij

|Gij(t; Lt + κ + iη)| � NCd,
∑

ij

|Gij(t; Lt + κ + iη)|2 � N4/3+Cd. (9.26)

Moreover, we have |∂zm(t; z)| � Im[m(t; z)]/ Im[z] � N1/3+Cd for any z with
|Re[z] − Lt| � N−2/3+d and N−2/3−d � Im[z] � N−2/3. Therefore, by integrating
from z = 2 + κ + iη to z = 2 + κ + iN−2/3, we get with very high probability

m(t; Lt + κ + iη) = m(t; Lt + κ + iN−2/3) + O(N−1/3+Cd)

= md(t; Lt + κ + iN−2/3) + O(N−1/3+Cd)

= md(t; E
+
d (t)) + O(N−1/3+Cd) = −1 + O(1/d)

(9.27)

where we used Lemma 9.5, Proposition 9.6 and the square root behavior of the
density ρd(t; x):

|md(t; Lt + κ + iN−2/3)−md(t; E
+
d (t))| �

√
|Lt + κ + iN−2/3−E+

d (t)| � N−1/3+Cd,

(9.28)

which follows from [AH18, Proposition A.1].
Next, we define

χE(x) = 1[E,N−2/3+d](x − Lt), θη(x) ..=
η

π(x2 + η2)
=

1

π
Im

1

x + iη
. (9.29)

We have that λ1(t) = e−t/2d � Lt and with very high probability it holds λ2(t) �

Lt + N−2/3+d by Proposition 9.6. By the same argument as in [KY13, Lemma 2.7],
we get that

Tr(χE+	 ∗ θη)(H(t)) − N−d/9 � Nt(E) � Tr(χE−	 ∗ θη)(H(t)) + N−d/9 (9.30)

with very high probability. Let Ki : R �→ [0, 1] be a monotonic smooth function
satisfying,

Ki(x) =

{
0 if x � i − 2/3,
1 if x � i − 1/3.

(9.31)

Since 1Nt(E)�i = Ki(Nt(E)) and Ki is monotonically increasing, we have

Ki (Tr(χE+	 ∗ θη)(H(t))) + O(N−d/9) � 1Nt(E)�i

� Ki (Tr(χE−	 ∗ θη)(H(t))) + O(N−d/9). (9.32)
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In this way we can express the locations of eigenvalues in terms of integrals of the
Stieltjes transform of the empirical eigenvalue densities:

EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+d

siN−2/3+	
m(t; Lt + y + iη) dy

])]
+ O

(
N−d/9

)

� PH(t)

(
N2/3(λi+1(t) − Lt) � si, 1 � i � k

)
= E

[
k∏

i=1

1Nt(siN−2/3)�i

]

� EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+d

siN−2/3−	
m(t; Lt + y + iη) dy

])]
+ O

(
N−d/9

)
.

(9.33)

For the product of the functions of Stieltjes transform, we have the following
comparison theorem.

Proposition 9.12. Fix constant e > 0 and N2/9+e � d � N1/3−e. Let d > 0 be
sufficiently small and set t = N−1/3+d and η = N−2/3−d. Let F : Rk �→ R be a fixed
smooth test function. Then for E1, E2, · · · , Ek = O(N−2/3) we have

EH

⎡

⎣F

⎛

⎝
{

Im

[
N

∫ N−2/3+d

Ei

m(0; L0 + y + iη) dy

]}k

i=1

⎞

⎠

⎤

⎦

= EH(t)

⎡

⎣

⎧
⎨

⎩F

(
Im

[
N

∫ N−2/3+d

Ei

m(t; Lt + y + iη) dy

]}k

i=1

⎞

⎠

⎤

⎦

+ O

(
N2/3+Cdt

d3/2
+

N1/3+Cdt

d1/2

)
.

(9.34)

Proof of Proposition 9.11. Since d � N2/9+e and t = N−1/3+d, for d small, the error
terms in (9.34) are of order O(N−d). By combining (9.33) and (9.34), we thus get

PH(t)

(
N2/3(λi+1(t) − Lt) � si + 2N2/3�, 1 � i � k

)

� EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+d

siN−2/3+	
m(t; Lt + y + iη) dy

])]
+ O

(
N−d/9

)

� PH

(
N2/3(λi+1(0) − L0) � si, 1 � i � k

)
+ O

(
N−d/9

)

� EH(t)

[
k∏

i=1

Ki

(
Im

[
N

π

∫ N−2/3+d

siN−2/3−	
m(t; Lt + y + iη) dy

])]
+ O

(
N−d/9

)

� PH(t)

(
N2/3(λi+1(t) − Lt) � si − 2N2/3�, 1 � i � k

)
+ O(N−d/9).

(9.35)

Since N2/3� = N−d/9 � 1, (9.23) follows.
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Proof of Proposition 9.12. For simplicity of notation, we only prove the case k = 1;
the general case can be proved in the same way. Let

Xt = Im

[
N

∫ N−2/3+d

E
m(t; Lt + y + iη) dy

]
. (9.36)

We shall prove that

|E[F (Xt)] − E[F (X0)]| � NCd

(
N2/3t

d3/2
+

N1/3t

d1/2

)
. (9.37)

The derivative of E[F (Xt)] with respect to the time t is

d

dt
E[F (Xt)] = E

[
F ′(Xt)

dXt

dt

]

= E

⎡

⎣F ′(Xt) Im

∫ N−2/3+d

E

⎛

⎝N
∑

ij

Ḣij(t)
∂m

∂Hij
+ L̇t

∑

ij

G2
ij

⎞

⎠dy

⎤

⎦

= E

⎡

⎣F ′(Xt) Im

∫ N−2/3+d

E

⎛

⎝−
∑

ija

Ḣij(t)GaiGaj + L̇t

∑

ij

G2
ij

⎞

⎠ dy

⎤

⎦

(9.38)

where we abbreviate G(t; Lt + y +iη) and m(t; Lt + y +iη) by G and m respectively.
In the following, we estimate the right-hand side. By definition,

Ḣij(t) = −1

2
e−t/2Hij +

e−t

2
√

1 − e−t
Wij . (9.39)

In the following, we use the notation ∂kl
ij applied to a function of H(t), such as G or

m, to denote the directional derivative (4.5) with respect to H(t). For any directional
derivative ∂ we therefore have

∂

∂H
F (H(t)) = e−t/2 ∂F (H(t)),

∂

∂W
F (H(t)) =

√
1 − e−t ∂F (H(t)).

Plugging (9.39) into (9.38), and using the Gaussian integration by parts (9.3), we
therefore obtain

−
∑

ija

E
[
Ḣij(t)F

′(Xt)GaiGja

]
=

1

2

∑

ija

E

[(
e−t/2

Hij − e−t

√
1 − e−t

Wij

)
F

′(Xt)GaiGja

]

=
e−t/2

2
√

d − 1

∑

ija

E
[
Aij(F

′(Xt)GaiGja)
]

− e−t

2N3

∑

ijkla

E[∂kl
ij (F ′(Xt)GaiGja)].

(9.40)
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To estimate the first term, we apply Corollary 3.2 with the random variable Fij =
F ′(Xt)GaiGja in (3.7). Since Cij(Fij , A) ≺ |GaiGja|, using the Ward identity (4.2)
and

∑
ij Aij = Nd, the resulting error term is bounded by

1√
d − 1

∑

ija

dE[AijCij(Fij , A)]

N
≺ d1/2

N

∑

ija

E[Aij |GaiGja|]

≺ d3/2 E[Imm]

η
� Cd3/2N1/3+Cd ; (9.41)

in the last inequality, we used (9.25) and that η = N−2/3−d and |κ| � N−2/3+d. In
summary, Taylor expanding the discrete derivative in (3.7) and noting that the first
term on the right-hand side of (3.7) vanishes by

∑
i Gai = 0, we find that (9.40) is

bounded by

e−t

2Nd(d − 1)

∑

ijkla

E

[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑

ijkla

E[∂kl
ij (F ′(Xt)GaiGja)]

+

b∑

n=2

e−(n+1)t/2

2Nd(d − 1)(n+1)/2n!

∑

ijkla

E

[
AikAjl(∂

kl
ij )n(F ′(Xt)GaiGja)

]

+ O
(
d3/2N1/3+Cd

)

(9.42)

for some constant b. The terms in (9.42) are estimated in the following two claims;
we postpone their proofs to the end of this section.

Claim 9.13. For the first two terms in (9.42) we have,

e−t

2Nd(d − 1)

∑

ijkla

E

[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑

ijkla

E[∂kl
ij (F ′(Xt)GaiGja)]

=
3

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N1+Cd

d1/2

)
.

(9.43)

Claim 9.14. For any n � 2, let,

Jn
..=

e−(n+1)t/2

2Nd(d − 1)(n+1)/2n!

∑

ijkla

E

[
AikAjl(∂

kl
ij )n(F ′(Xt)GaiGja)

]
. (9.44)

Then, we have the estimates

J2 = −12

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N4/3+Cd

d3/2
+

N1+Cd

d1/2

)
, (9.45)



GAFA EDGE RIGIDITY AND UNIVERSALITY OF RANDOM REGULAR GRAPHS 761

J3 =
8

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N4/3+Cd

d3/2
+

N1+Cd

d

)
, (9.46)

and for any n � 4, Jn = O(N4/3+Cd/d(n−1)/2).

It follows from Claims 9.13 and 9.14 and (9.42) that (9.40) can be estimated by

−
∑

ija

E

[
Ḣij(t)F

′(Xt)GaiGja

]
=

3

d

∑

ij

E[F ′(Xt)G
2
ij ] − 12

d

∑

ij

E[F ′(Xt)G
2
ij ]

+
8

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N4/3+Cd

d3/2
+

N1+Cd

d1/2

)

= −1

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N4/3+Cd

d3/2
+

N1+Cd

d1/2

)
.

(9.47)

From Lemma 9.5, we recall that Lt = 2 + t/d, i.e., L̇t = 1/d. Therefore plugging
(9.47) into (9.38), the two terms in (9.38) cancel up to an error, and we get

d

dt
E[F (Xt)] = E

[∫ N−2/3+d

E
O

(
N4/3+Cd

d3/2
+

N1+Cd

d1/2

)
dy

]

= O

(
N2/3+Cd

d3/2
+

N1/3+Cd

d1/2

)
, (9.48)

and (9.37) follows. This finishes the proof of Proposition 9.12.

Proof of Claim 9.13. We have

∂kl
ij (F ′(Xt)GaiGja) = ∂kl

ij (F ′(Xt))GaiGja + F ′(Xt)∂
kl
ij (GaiGja). (9.49)

For the first term in (9.49), with very high probability we have

|∂kl
ij F ′(Xt)| =

∣∣∣∣∣F
′′(Xt) Im

[
N

∫ N−2/3+d

E
∂kl

ij m(t; Lt + y + iη) dy

]∣∣∣∣∣ � N−1/3+Cd,

(9.50)

where we used (4.14) and (9.25). Therefore, the sum arising from the first term in
(9.49) can be estimated as

e−t

2Nd(d − 1)

∑

ijkla

E

[
AikAjl∂

kl
ij (F ′(Xt))GaiGja

]

=
e−t

2Nd(d − 1)

∑

ijkla

d2

N2
E

[
∂kl

ij (F ′(Xt))GaiGja

]
+ O

(
N1+Cd

d1/2

)

=
e−t

2N3

∑

ijkla

E

[
∂kl

ij (F ′(Xt))GaiGja

]
+ O

(
N1+Cd

d1/2

)
.

(9.51)
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where we used Corollary 3.4, (9.50) and that with very high probability
∑

ij |(G2)ij | =

N Im[m(t; Lt + y + iη)]/η � N4/3+Cd from (9.25). For the sum corresponding to the
second term in (9.49), we use the notation A(t) =

√
d − 1H(t) and write

e−t

2Nd(d − 1)

∑

ijkla

E

[
AikAjlF

′(Xt)∂
kl
ij (GaiGja)

]

=
1

2Nd(d − 1)

∑

ijkla

E

[
Aik(t)Ajl(t)F

′(Xt)∂
kl
ij (GaiGja)

]

− e−t/2
√

1 − e−t

2Nd(d − 1)1/2

∑

ijkla

E

[
(AikWjl + WikAjl)F

′(Xt)∂
kl
ij (GaiGja)

]

− (1 − e−t)

2Nd

∑

ijkla

E

[
WikWjlF

′(Xt)∂
kl
ij (GaiGja)

]
.

(9.52)

We can estimate the second and third term on the right-hand side of (9.52) using
Lemma 9.1, e.g.

e−t/2
√

1 − e−t

2Nd(d − 1)1/2

∑

ijkla

E

[
WikAjlF

′(Xt)∂
kl
ij (GaiGja)

]

=
e−t/2(1 − e−t)

2N4d(d − 1)1/2

∑

ijkli′k′a

E

[
Ajl∂

i′k′

ik (F ′(Xt)∂
kl
ij (GaiGja))

]

= O

(
(1 − e−t)

2N4d(d − 1)1/2

∑

ijkli′k′

E [Ajl Im[m]/η]

)
= O

(
N1+Cd

d1/2

)
,

(9.53)

where in the third line we used (4.12) and (9.25). In the same way, we in fact have
that the second and third term on the right-hand side of (9.52) are all bounded by
O(N1+Cd/d1/2).

In the following we estimate the first term on the right-hand side of (9.52). These
are terms in the form

∑
ijkla Aik(t)Ajl(t)F

′(Xt)×{monomial of Green’s function entries

, where, we recall, the Green’s function is that of H(t) = (d − 1)−1/2A(t). For
them we can

(i) sum over indices which appear only once and use the relations
∑

i Aij(t) =∑
j Aij(t) = e−t/2d and

∑
i Gij =

∑
j Gij = 0 to get expressions involving

Tr G2, Tr G3, or A(t)G;
(ii) simplify the expressions using the identity A(t)G = GA(t) = (d− 1)1/2(H(t)−

z + z)G = (d − 1)1/2(zG + P⊥);
(iii) estimate the final expressions using (4.11), (4.12), (9.27), z = 2+O(N−1/3+d),

maxi�=j |Gij | ≺ 1/
√

d and maxi |Gii + 1| ≺ 1/
√

d from Proposition 9.7.
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Using the above procedure, we get that

∑

ijkla

Aik(t)Ajl(t)∂
kl
ij (GaiGja)

= −2e−td2(Tr G3 + Nm Tr G2) + 4(d − 1)N Tr G2 + O(N7/3+Cd),

(9.54)

and

∑

ijkla

∂kl
ij (GaiGja) = −2N2(Tr G3 + Nm Tr G2). (9.55)

It follows by combining (9.51), (9.54) and (9.55) that

e−t

2Nd(d − 1)

∑

ijkla

E

[
AikAjl∂

kl
ij (F ′(Xt)GaiGja)

]
− e−t

2N3

∑

ijkla

E[∂kl
ij (F ′(Xt)GaiGja)]

=
1

2Nd(d − 1)

∑

ijkla

E

[
Aik(t)Ajl(t)F

′(Xt)∂
kl
ij (GaiGja)

]

− e−t

2N3

∑

ijkla

E[F ′(Xt)∂
kl
ij (GaiGja)] + O

(
N1+Cd

d1/2

)

= − e−t

(d − 1)N
E
[
F ′(Xt)(Tr G3 + Nm Tr G2)

]
+

2

d
E[F ′(Xt) Tr G2] + O

(
N1+Cd

d1/2

)

=
3

d
E[F ′(Xt) Tr G2] + O

(
N1+Cd

d1/2

)
,

where in the last line we used (4.11) and (9.27).

Proof of Claim 9.14 For (9.45), similarly to (9.50), we have |(∂kl
ij )2F ′(Xt)| �

N−1/3+Cd with very high probability and

J2 =
e−3t/2

4Nd(d − 1)3/2

∑

ijkla

E

[
AikAjlF

′(Xt)(∂
kl
ij )2(GaiGja)

]
+ O

(
N1+Cd

d1/2

)
. (9.56)

Thanks to Proposition 9.7, we have maxi�=j |Gij | ≺ 1/
√

d. Those terms from (∂kl
ij )2

(GaiGja) that contain four off-diagonal terms yield a contribution of the form

e−3t/2

4Nd(d − 1)3/2

∑

ijkla

E
[
AikAjlF

′(Xt){terms with 4 off-diagonal terms}
]

= O

(
N4/3+Cd

d3/2

)
.

(9.57)
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The leading contributions are from those terms from (∂kl
ij )2(GaiGja) which contain

two or three off-diagonal Green’s function entries. By the same estimate as in (9.52),
we have

e−3t/2

4Nd(d − 1)3/2

∑

ijkla

E
[
AikAjlF

′(Xt){terms with � 3 off-diagonal terms}
]

=
e−t/2

4Nd(d − 1)3/2

∑

ijkla

E
[
Aik(t)Ajl(t)F

′(Xt){terms with �3 off-diagonal terms}
]

+ O

(
N1+Cd

d

)
.

(9.58)

Those terms in (9.58) can be treated by the same procedure as described in the
proof of Claim 9.13, and we get

(9.58) = −12

d

∑

ij

E[F ′(Xt)G
2
ij ] + O

(
N4/3+Cd

d3/2
+

N1+Cd

d1/2

)
. (9.59)

The claim (9.45) follows from combining (9.56), (9.57), (9.58) and (9.59).
In the following we prove (9.46). Similarly to (9.50), we have |(∂kl

ij )3F ′(Xt)| �

N−1/3+Cd with very high probability and

J3 =
e−2t

12Nd(d − 1)2

∑

ijkla

E

[
AikAjlF

′(Xt)(∂
kl
ij )3(GaiGja)

]
+ O

(
N1+Cd

d

)
. (9.60)

Thanks to Proposition 9.7, we have maxi�=j |Gij | ≺ 1/
√

d. Those terms from (∂kl
ij )3

(GaiGja) which contain at least three off-diagonal terms yield a contribution of the
form

e−2t

12Nd(d − 1)2

∑

ijkla

E
[
AikAjlF

′(Xt){terms with

� 3 off-diagonal terms}] = O

(
N4/3+Cd

d3/2

)
. (9.61)

The leading contribution is from those terms that contain exactly two off-diagonal
terms. By the same estimate as in (9.52), we have

e−2t

12Nd(d − 1)2

∑

ijkla

E
[
AikAjlF

′(Xt){terms with 2 off-diagonal terms}
]

=
e−t

12Nd(d − 1)2

∑

ijkla

E
[
Aik(t)Ajl(t)F

′(Xt){terms with 2 off-diagonal terms}
]

+ O

(
N1+Cd

d3/2

)
.

(9.62)
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We can estimate above terms using the procedure as described in the proof of
Claim 9.13, and get

e−t

12Nd(d − 1)2

∑

ijkla

E
[
Aik(t)Ajl(t)F

′(Xt){terms with 2 off-diagonal terms}
]

=
8

d
E
[
F ′(Xt) Tr G2

]
+ O

(
N4/3+Cd

d3/2

)
.

(9.63)

The claim (9.46) follows from combining (9.60), (9.61), (9.62) and (9.63).
For fixed n � 4, we have the trivial bound

|Jn| �
1

Nd(n+3)/2

∑

ijkla

E[AikAjl(∂
kl
ij )n(F ′(Xt)GaiGja)]

�
1

Nd(n+3)/2

∑

ijkl

E[AikAjl Im[m]/η] = O

(
N4/3+Cd

d(n−1)/2

)
.
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[EY17] L. Erdős and H.-T. Yau. A Dynamical Approach to Random Matrix Theory.

Courant Lecture Notes in Mathematics, Vol. 28. Courant Institute of Mathe-
matical Sciences, New York; American Mathematical Society, Providence, RI
(2017)



GAFA EDGE RIGIDITY AND UNIVERSALITY OF RANDOM REGULAR GRAPHS 767
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