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ABSTRACT Commensal microbial communities have immense effects on their ver-

tebrate hosts, contributing to a number of physiological functions, as well as host fit-

ness. In particular, host immunity is strongly linked to microbiota composition

through poorly understood bi-directional links. Gene expression may be a potential

mediator of these links between microbial communities and host function. However,

few studies have investigated connections between microbiota composition and

expression of host immune genes in complex systems. Here, we leverage a large

study of laboratory-raised fish from the species Gasterosteus aculeatus (three-spined

stickleback) to document correlations between gene expression and microbiome

composition. First, we examined correlations between microbiome alpha diversity

and gene expression. Our results demonstrate robust positive associations between

microbial alpha diversity and expression of host immune genes. Next, we examined

correlations between host gene expression and abundance of microbial taxa. We

identified 15 microbial families that were highly correlated with host gene expres-

sion. These families were all tightly correlated with host expression of immune genes

and processes, falling into one of three categories—those positively correlated, nega-

tively correlated, and neutrally related to immune processes. Furthermore, we high-

light several important immune processes that are commonly associated with the

abundance of these taxa, including both macrophage and B cell functions. Further

functional characterization of microbial taxa will help disentangle the mechanisms of

the correlations described here. In sum, our study supports prevailing hypotheses of

intimate links between host immunity and gut microbiome composition.

IMPORTANCE Here, we document associations between host gene expression and

gut microbiome composition in a nonmammalian vertebrate species. We highlight

associations between expression of immune genes and both microbiome diversity

and abundance of specific microbial taxa. These findings support other findings from

model systems which have suggested that gut microbiome composition and host

immunity are intimately linked. Furthermore, we demonstrate that these correlations

are truly systemic; the gene expression detailed here was collected from an impor-

tant fish immune organ (the head kidney) that is anatomically distant from the gut.

This emphasizes the systemic impact of connections between gut microbiota and

host immune function. Our work is a significant advancement in the understanding

of immune-microbiome links in nonmodel, natural systems.
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Diverse communities of commensal microbiota are associated with a range of verte-

brate organ systems, such as the respiratory tract (1), skin (2), and digestive tract

(3). Each of these distinct communities can contribute to host physiological function

and fitness (e.g., 4, 5) but can cause pathology when disrupted (e.g., 6). Conversely,

host function, including the host immune system, also has effects on the composition

of the microbiota, maintaining mutualists to avoid dysbiosis while also eliminating dis-

ease-causing pathogens (7, 8). Because host immune and physiological functions often

entail changes in gene expression, these reciprocal interactions between host function

and microbiome structure may be revealed by examining host gene expression (9, 10).

Preliminary studies suggest that changes in the microbiome can affect host gene

expression (9) and vice versa (11, 12). Still, much of what is known regarding cross talk

between host gene expression and microbiota composition has been learned using

reduced or single-taxa microbial models in a few host species (13–15). A potentially

valuable next step would be to examine transcriptome-wide associations with variation

in the entire gut microbial community. However, such studies are lacking because until

recently, transcriptomic analyses were too expensive to allow sufficient statistical

power (16).

Preliminary evidence suggests that host immunity, in particular, is closely linked to

microbiota composition, likely through complex feedback networks (8, 17). Vertebrates’

mutualist bacteria promote key immune tolerance and regulatory pathways in a variety

of organ systems (8). These include innate immunity in skin (18, 19), response to influenza

in the respiratory tract (20), and development of gut-associated lymphoid tissue (GALT)

and regulatory T cells in the intestines (5). Removal of, or changes in, these microbes

compromises host immunity (21) or can lead to auto-immune disorders (22, 23).

Furthermore, studies have shown the importance of commensal bacteria in regulat-

ing and educating adaptive immunity (24, 25), as well as contributing to develop-

ment and homeostasis of innate immune cells (26–28). Conversely, on the part of the

host, numerous immunological processes function in regulating microbiota compo-

sition, including physical barriers (i.e., host-secreted mucus layers; (29, 30), host-pro-

duced antimicrobial compounds (31), recognition molecules (i.e., pattern recognition

receptors [PRRs] [32] and associated signaling [33]) and effector responses (i.e., secre-

tion of antibodies [34]). Despite considerable preliminary knowledge regarding cross

talk between host immunity and microbiota composition, the mechanisms of this

feedback, particularly in regard to the roles of host gene expression, are not well

described.

Advances in transcriptomics (RNAseq), have allowed for improved understanding of

host function, including immunity and immune response, in diverse systems (35).

These advancements can allow for the expansion of work investigating bidirectional

interactions between microbiota and host immunity (here, “microbe-immune feed-

backs”) beyond existing laboratory model systems with simplified microbial composi-

tions (36–41). Despite these technical advances, RNAseq has yet to be broadly applied

to investigating microbe-immune feedbacks, particularly in complex contexts. A few

studies have indicated correlation between microbiome composition and expression

of immune genes (42, 43). One such study screened a diversity of microbial species for

their effects on host gene expression (whole transcriptome using Affymetrix arrays),

demonstrating complex immunomodulatory effects of symbiotic microbes (13).

However, these studies mostly document the effects of simplified microbiota or even

monocultures. Only one study has examined more complex interactions, demonstrat-

ing strong associations between gene expression and microbiome composition in co-

lonic epithelial cells, though these associations were limited to the localized colonic

environment (9). Indeed, most studies examining feedback between microbiome com-

position and host gene expression have focused on localized gene expression, particu-

larly in the gut epithelial tissue (44, 45). Consequently, we know little about the sys-

tem-wide effects of microbiota composition on expression in distant immune-relevant
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tissues, and vice versa. Finally, few of these studies have examined the effects of

genetic and environmental variation among hosts on these relationships.

Here, we report evidence for covariation between hosts’ gene expression and their

gut microbiota, from a large sample of laboratory-bred three-spined stickleback

(Gasterosteus aculeatus), a small fish native to northern temperate coastal marine and

freshwater habitats. Like many vertebrates, individual stickleback harbor hundreds of

microbial taxa (operational taxonomic units [OTUs]) in their intestines (46–49). The

composition of this microbiota differs dramatically between cooccurring individuals

within a given natural population and between populations (between neighboring

lakes, adjacent lakes and streams, or marine versus freshwater [(46–48, 50–52]). For

example, in one survey of a single natural population of stickleback, proteobacteria

ranged from less than 5% to over 95% of the microbial community, depending on the

individual host. This dramatic among-individual variation is associated with variation in

diet, sex, genotype (at major histocompatibility complex [MHC] and other autosomal

loci), helminth infection status, and interactions between these factors (46–49). Similar

among-individual variation is observed within laboratory stocks of stickleback, whose

microbiota is partly but not fully overlapping with the taxa seen in wild populations

(48).

Here, we seek to test whether this among-individual variation in gut microbiota

composition in the laboratory is associated with individuals’ immune gene expression.

Using transcriptomic data generated from head kidneys (primary immune organ), we

document correlations between immune gene expression and both microbiome diver-

sity and proportion of key microbial families. Our results are some of the first to

describe links between broad host immune functioning and microbiome structure in a

nonmammalian vertebrate.

RESULTS

Correlations between gene expression and microbiome diversity. Correlative

analyses revealed strong associations between microbiota diversity and host gene

expression, including expression of putative immune genes. Alpha diversity of the gut-

associated microbiota was significantly correlated with 1,929 transcripts involved in a

range of functions (Data set S1; ;7.5% of all transcripts). These correlations were ro-

bust to experimental covariates; path analysis revealed that 1,014 (52.5%) of these cor-

relations remained significant when accounting for sex, infection, mass, etc. We will

henceforth discuss all 1,929 of the identified correlated transcripts. Of this total, 834

transcripts were positively correlated with microbial diversity and 1,095 were nega-

tively correlated with diversity. Many of the correlated transcripts were involved in dif-

ferent arms of immunity (Table 1). Genes significantly correlated with microbiome di-

versity were significantly enriched for 11 biological process gene ontology (GO) terms,

10 positively (i.e., overrepresented processes which are increasing as a result of

increased diversity of the microbiota based on tau values) and 1 negatively (i.e., overre-

presented processes whose expression is lower in fish with high microbial diversity;

Fig. 1). This included two terms involved in immunity that were positively correlated with

diversity: “positive regulation of interleukin-12 production” and “common myeloid pro-

genitor cell proliferation.” Genes that significantly contributed to enrichment of these two

terms included receptor-type tyrosine-protein kinase FLT3 (ENSGACT00000004059), Toll-

TABLE 1 Examples of immune genes that were significantly correlated with diversity of gut-associated microbiotaa

Gene Ensembl ID Immune function tau value P value

C-C motif chemokine 4 ENSGACT00000000554 Chemoattractant (NK cells, monocytes, etc.) 0.197 4.76e-07

Interferon regulatory factor 4 ENSGACT00000021099 Transcriptional activator (antiviral) 0.152 9.96e-05

Complement C3 ENSGACT00000026259 Complement cascade (innate immunity) 0.133 7.65e-04

Eosinophil peroxidase ENSGACT00000022724 Antibacterial activity –0.175 7.68e-06

Interleukin-11 ENSGACT00000013923 Hematopoietic stem cell proliferation –0.152 0.00134

NLR family CARD domain-containing protein 3 ENSGACT00000001559 Negatively regulates innate immunity –0.143 0.00272

aA full list of significantly correlated genes can be found in Data set S2.
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like receptor 9 (ENSGACT00000013443), tumor necrosis factor receptor superfamily mem-

ber 5 (ENSGACT00000014780), interferon regulatory factor 8 (ENSGACT00000021099),

and peregrin (ENSGACT00000001616). In contrast, the immune-related term “regulation

of macrophage inflammatory protein 1 alpha production” and associated genes were

expressed at lower levels in fish with more diverse gut microbiota. Significant genes

included in this term were pyrin (ENSGACT00000027215), high mobility group protein B1

(ENSGACT00000027215), and transient receptor potential cation channel subfamily V

member 4 (ENSGACT00000012089). In sum, microbial diversity was positively correlated

with expression of genes associated with development of immune cells and regulation of

interleukin-12 (IL-12) but negatively correlated with expression of genes associated with

inflammatory processes.

Coexpression analyses revealed strong associations between microbiota diversity

and host gene expression, and immune genes in particular. The resulting network

comprised 10 modules plus a “gray” module, module 11, containing transcripts that

did not fit into any existing modules. These modules ranged in size from 44 to 18,227

transcripts. The largest of these modules (module 10) likely represents groups of

housekeeping genes with low variable expression. Two modules were significantly

positively correlated with microbial diversity, module 2 (r=0.11, P=0.03) and module

7 (r=0.12, P=0.02; Fig. S2). Module 2 (1,344 transcripts) was significantly enriched for

76 biological process gene ontology terms involved in a wide diversity of processes,

indicating its roles in basic cellular homeostasis. Some of the largest groups of these

terms included those involved in translational initiation, cytosolic transport, cellular

component biogenesis, and electron transport chain (Fig. S3). The biological meaning

of this module is ambiguous. In contrast, the much smaller module, module 7 (48 tran-

scripts), was enriched for 36 biological process gene ontology terms, 20 of which were

related to immunity and defense (Fig. 2). Thus, we concluded that module 7 consists of

coregulated genes predominately involved in immune function. Enriched terms

included those involved in interferon production (“positive regulation of type-I inter-

feron production,” “positive regulation of interferon alpha production,” interferon

gamma-mediated signaling pathway,” etc.) and cytokine signaling (“cytokine-mediated

signaling pathway,” “regulation of cytokine production,” etc.), as well as other general

immune GO terms (“immune response,” “immune effector process,” “innate immune

response,” etc.). Thus, fish with more diverse microbiota generally exhibited higher

coexpression of these categories of immune genes. Consequently, coexpression analy-

ses indicate strong positive association between host gene expression and a diverse

network of genes involved in immunity, with emphasis on interferon and cytokine

signaling.

Correlations between gene expression and relative abundance of specific taxa.

Initial analysis of correlations between microbial families and host gene expression

identified 507,317 significant associations out of 7,893,582 possible pairwise correla-

tions between the relative abundance of a given family and a specific gene (;6.4% of

total correlations run, slightly but very significantly more than the 5% expected from

FIG 1 Hierarchical clustering of significantly enriched biological process gene ontology terms associated with

genes significantly correlated with microbial diversity. Terms in red are positively enriched, and terms in blue

are negatively enriched. Font style indicates level of significance.
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type II error alone). We took a conservative approach and further examined only corre-

lations between approximately the top 5% (approximate) most correlated microbial

families (n = 15) and genes (n = 1,297). Combined, these families were correlated with

a total of 1,263 of the 1,297 top correlated genes (Fig. 3; Data set S2). Again, most of

these filtered relationships were robust to covariates (Table 2); thus, here we will dis-

cuss all significant results from the initial analysis.

Gene ontology enrichment of genes correlated with each family revealed significant

patterns of enrichment of immune processes. The 15 families fell into one of three cat-

egories based on gene ontology enrichment analyses—positively immune associated,

neutrally immune associated, or negatively immune associated (Fig. 3; Data set S3).

Families such as Rubrobacteraceae, Orbaceae, and Halomonadaceae showed significant

negative associations with immunity. Genes correlated with Rubrobacteraceae and

Halomonadaceae abundance were significantly negatively enriched for immune-associ-

ated biological process GO terms such as “lymphocyte aggregation,” “response to

interleukin-15”, and “myeloid lymphocyte migration.” Similarly, Orbaceae abundance

was significantly correlated with genes negatively enriched for immune terms, includ-

ing “pro-B cell differentiation,” “positive regulation of interferon alpha secretion,” and

“hummoral immune response.” In contrast, abundance of six microbial taxa, including

Caulobacteraceae and Chlamydiales, was positively associated with immune processes.

Genes correlated with these taxa were positively enriched for immune-associated bio-

logical process GO terms such as “positive regulation of B cell differentiation,” “positive

regulation of macrophage activation,” “positive regulation of interleukin-12 produc-

tion,” and “myeloid progenitor cell differentiation.” Six microbial families had mixed

(i.e., neutral) associations with biological processes (Fig. 4). Based on enrichment

FIG 2 Hierarchical clustering of significantly enriched biological process gene ontology terms associated with

genes in module 7 (positively associated with microbial diversity). Font style indicates level of significance.

Gene Expression Covaries with Microbiome Composition ®

May/June 2021 Volume 12 Issue 3 e00145-21 mbio.asm.org 5

 o
n
 M

a
y
 4

, 2
0
2
1
 b

y
 g

u
e
s
t

h
ttp

://m
b
io

.a
s
m

.o
rg

/
D

o
w

n
lo

a
d
e
d
 fro

m
 



analysis of the correlative results, abundance of microbial taxa can have complex

effects on host gene expression, dependent on the taxon identity.

Nine of ten WCGNA coexpression modules were correlated with one or more of the

15 identified microbial families of interest (Fig. S2). Module 7, the immune functioning

FIG 3 Heat map of correlations between families and genes of interest. Values shown are Kendall’s

tau for each correlation. Gray fill indicates nonsignificant correlations. Rows and columns are

hierarchically clustered using default parameters.

TABLE 2 Summary of statistically significant correlations between the top 5%most
correlated families and genes and the number of correlations which remain significant

following covariate analyses using structural equation modeling (SEM analysis)

Microbial taxa

No. of significantly correlated genes

Correlation analysis SEM analysis

Betaproteobacteria (unclassified) 639 459

Caulobacteraceae 591 484

Chitinophagaceae 389 182

Chlamydiales (unclassified) 376 210

Clostridiaceae 1 926 662

Geodermatophilaceae 661 427

Gp10 (unclassified) 505 217

Halomonadaceae 393 324

Incertae Sedis XI 480 316

Methylobacteriaceae 523 410

Nocardiaceae 893 658

Orbaceae 306 174

Peptostreptococcaceae 908 594

Rubrobacteraceae 351 187

Spartobacteria (unclassified) 488 432
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module significantly correlated with diversity, was only correlated with abundance of

Spartobacteria. Of the nine modules that were correlated with one or more family of in-

terest, most had broad biological functions. Exceptions to this included module 1,

which was enriched primarily for biological processes involved in tetrapyrrole metabo-

lism and inorganic anion transport. Module 1 was significantly positively correlated

with Betaproteobacteria (r=0.17, P = 0.0009) and significantly negatively correlated

with Chitinophagaceae (r=0.11, P = 0.03) and Peptostreptococcaceae (r=–0.12, P = 0.01).

Additionally, module 9, which was enriched for numerous terms involved in wound

healing, defense, and immune response, was positively correlated with both

Chitinophagaceae (r=0.11, P = 0.04) and Orbaceae (r=0.11, P = 0.03) Coexpression anal-

yses suggest that microbial families are related to broad networks of host gene expres-

sion in complex, family-dependent patterns.

DISCUSSION

Microbiome diversity is positively associated with host immunity. Numerous

studies, mostly of laboratory mice, indicate that vertebrates’ microbiome composition

is both a function of their immune genotype and phenotype (11, 53–55) and, in turn,

can modify host immune development and response (55–57). Despite this, the mecha-

nisms of these relationships, as well as patterns of microbe-immune feedback in more

complex and diverse systems, are not known. Here, we provide some of the first evi-

dence of the roles of host gene expression in mediating microbe-immune feedback in

a nonmammalian system. Based on existing evidence, we expect correlations between

gut microbiota composition and host immunity, as measured by gene expression in

immunological tissues. This should be true even when examining tissues that are ana-

tomically separated from the organ(s) containing the microbiota, because localized

interactions in the gut may alter system-wide immune traits. Consistent with this ex-

pectation, we find that alpha diversity of G. aculeatus gut microbiota was significantly

correlated with expression of a large number of host genes expressed in the head

FIG 4 Significance and enrichment of immune-associated biological process GO terms associated with each of the 15 microbial families of interest. (A to

C) Families are classified into the following three groups: (A) families negatively associated with immunity, (B) families neutrally associated with immunity,

and (C) families positively associated with immunities. Each bar indicates a significantly enriched biological GO term; color indicates the association of the

term with immunity (red indicates terms which positively contribute to immune functions, blue indicates negative terms, and gray indicates neutral); the

direction of bar indicates positive or negative enrichment; the magnitude of bars indicates the negative log of the adjusted P value.
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kidney, many of which had functions in immunity. Coexpression analysis further con-

firmed strong associations between a broad diversity of immune components and mi-

crobial diversity. Our results collectively confirm that, broadly speaking, host immunity

(measured by transcriptomics) and microbiome diversity are positively associated. This

finding is agreement with, and expands upon, past studies of G. aculeatus, which found

that fish from some populations reared with conventional microbiota communities

had higher neutrophil activity in their guts than germfree fish (51). However, our

results are unique in highlighting the far-reaching effects of gut microbiome on host

immune gene expression; gut microbiome composition was correlated with gene

expression broadly, and expression of immune genes especially, in the anatomically

distant head kidney (located cranially near the gills). Correlations between gut micro-

biota and gene expression in head kidney tissue indicate significant cross talk between

immune cell development and microbiota composition, as the head kidney is primarily

involved in the development of a range of immune cells (58). Consequently, our find-

ings suggest complex effects of gut microbiome on the development of host immune

cells and, consequently, host immune function.

Gene ontology analysis of significantly correlated genes emphasized the relation-

ship between microbiome diversity and expression of specific immune genes in G. acu-

leatus. “Positive regulation of interleukin-12 production” was positively associated with

microbiome diversity. This is in accordance with past studies demonstrating effects of

pro- and prebiotic compounds on interleukin-12 production (59–61). Furthermore,

“common myeloid cell progenitor differentiation” was positively associated with micro-

bial diversity. Past studies have demonstrated strong effects of the microbiota on mye-

loid cell development. Commensal bacteria increase the amount and division of mye-

loid progenitor cells (62); increased myelopoiesis (62) and bone marrow myeloid cell

abundance (27) are positively associated with microbiome complexity. Our transcrip-

tomic results indicate similar relationships between gut microbiota and development

of immune cells in a major teleost hematopoetic organ, the head kidney. Finally, “regu-

lation of macrophage inflammatory protein 1-a (MIP1-a)” was negatively associated

with microbiome diversity. MIP1-a is an inflammatory chemokine (63). Inflammation is

well known to be linked with dysbiosis of the microbiome (7); reduced microbial diver-

sity is associated with many inflammatory conditions of the gut (7, 64). In sum, our

analyses revealed significant connections between microbiome diversity and host im-

munity as measured by transcriptomics, though the mechanism and direction of causa-

tion of these relationships requires further study.

Microbial taxa have opposing effects on host immune gene expression. In addi-

tion to highlighting significant microbe-immune feedback associated with diversity of

the gut microbiota, our study also provides substantial initial evidence of the effects of

specific microbial taxa on host gene expression and immunity. Abundance of specific

microbial taxa was correlated with a wide array of host genes, with functions in a diver-

sity of biological processes. Indeed, coexpression analysis demonstrated strong associ-

ations between abundance of particular microbial families and modules involved in

broad host functioning. The exact nature of these associations varied among microbial

families, with certain groups of microbial families displaying opposing trends of corre-

lations to both individual genes, and coexpression modules. Specific microbial taxa are

known to effect broad host functioning (5, 65–67). Our results are among the first to

highlight the complex nature of specific host-microbe interactions, the importance of

host gene expression in mediating these interactions, and the effects of these relation-

ships on a diversity of functions. Here, we will specifically focus on variation in associa-

tion between microbial taxa and expression of genes involved in host immunity.

Gene ontology analysis of associations between families and genes of interest

revealed clear patterns of associations between microbial family abundance and host

immune gene expression. Microbial taxa fell into three groups—those positively corre-

lated, negatively correlated, or neutrally associated with immune gene expression. It is

known that certain groups of commensal bacteria, such as segmented filamentous
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bacteria (68), are positively associated with aspects of host immunity, while others,

including Bacteroides fragilis (69), induce protective tolerogenic responses, suppressing

immunity (13). Furthermore, pathogenic bacteria may suppress (70, 71) or induce (72,

73) host immunity during infection. These relationships are often highly context de-

pendent, and the mechanisms of these relationships are poorly understood. Here, we

break down observed relationships between specific microbial family abundance and

host immunity, highlighting the need for increased functional understanding of these

taxa in order to improve mechanistic knowledge of the microbiome and its effect on

host function.

Abundance of six microbial taxa was significantly positively associated with expression

of immune genes in our study. These families were Caulobacteraceae, Chitinophagaceae,

Chlamydiales, Clostridiaceae, Nocardiaceae, and Peptostreptococcaceae. Half of these fami-

lies (Caulobacteraceae, Chlamydiales, and Nocardiaceae) are well described for their associ-

ation with disease and other pathologies (74–76). Specifically, the family Nocardiaceae is

known to contain some opportunistic pathogens (77), including microbes that induce

nocardosis in fish (78). Positive associations between these taxa and expression of host

immune genes may be indicative of the pathogenic nature of these microbes, which

would induce host immune responses.

The remaining three families that were positively associated with host immunity,

Chitinophagaceae, Clostridiaceae, and Peptostreptococcaceae, have diverse roles in mi-

crobial communities. Members of the family Chitinophagaceae are often described as

components of the commensal microbiota of aquatic species, including lampreys (79),

and aquatic amphibians (80), though its function is poorly understood. Studies have

highlighted beneficial functions of these microbes in degrading chitin (81), which may

explain their ability to inhibit growth of the common fungal amphibian pathogen

Batrachochytrium dendrobatidis (80). Members of the family Clostridiaceae, specifically,

segmented filamentous bacteria (SFB), have well-documented effects on mammalian

immunity. SFB are capable of enhancing Th17 cell responses (68) and promoting

increased IgA production in mice (82). Finally, Peptostreptococcaceae is a poorly

described yet diverse microbial taxon which is often associated with the vertebrate gut

microbiome. Much of what is known regarding this family is based upon extensive

research regarding a single representative species, Clostridium difficile (83). However,

this family is immensely diverse (84), necessitating further functional study to under-

stand broader associations of members of this taxon with host immunity. Indeed, fur-

ther functional classification and controlled mechanistic studies will prove fruitful in

understanding positive associations between the taxa identified here and host

immune functioning.

In contrast to those taxa identified as positively associated with host immune

gene expression, three families could be classified as negatively associated with host

immunity—Halomonadaceae, Orbaceae, and Rubrobacteraceae. All three of these micro-

bial families are poorly described, and two (Halomonadaceae and Rubrobacteraceae)

have been primarily described as environmental microbes. Members of the family

Halomonadaceae are well described as halophiles (85). Although some preliminary stud-

ies indicate a potential pathogenic role of members of this group (86–88), the roles of

this family in microbiome composition are not well understood. Both Rubrobacteraceae

and Orbaceae have been documented as members of insect gut microbiomes, found in

termites (89), and bees (90), respectively. Orbaceae in particular has been described to

have negative impacts on bee colony productivity (91, 92). Our study is the first, to our

knowledge, to report the presence of these microbes in the vertebrate gut microbiome.

Further functional characterization of these three taxa is necessary to interpret their asso-

ciations with host immunity in the G. aculeatus system.

Finally, it is worth noting common trends in correlations between expression of

genes involved in specific immune components and microbial family abundance.

Genes associated with several immune components were correlated with at least a

third of the significant microbial families, as revealed by gene ontology analysis. Many
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of these components have also been linked to microbiome function or composition.

Genes involved in myeloid progenitor cell differentiation, regulation of interleukin-12

secretion/production, interferon gamma production, pro-B cell differentiation, and

positive regulation of macrophage activation were commonly correlated with micro-

bial family abundance. We have previously discussed the importance of both IL-12 and

myeloid progenitor cells in the maintenance of gut-microbiome composition. The pro-

duction of interferon gamma (IFN-g) has been both positively and negatively linked to

various microbial components; IFN-g production decreased in piglets treated with a

probiotic bacterium (93) and immunomodulary compounds from other bacteria (94).

In contrast, IFN-g1 CD8 T cells are induced by commensal bacteria in human guts (95).

We observed frequent correlation between microbial family abundance and expres-

sion of immune genes associated with B cell processes and macrophage activity.

Microbiota are known to have profound effects on B cell processes, including diversifica-

tion, production of IgA, and differentiation of regulatory B cells (24, 96). Furthermore, on

the part of the host, B cell production of IgA in particular is essential for maintenance

of gut microbiome composition by restricting commensal growth and maintaining a

diverse composition (97). Similarly, in some teleost fish such as rainbow trout, IgT is

known to play important roles in microbiome homeostasis (98). Similar bi-directional

relationships are known to exist between macrophages and gut microbiota.

Microbial metabolites such as butyrate can modulate and reduce macrophage activ-

ity to promote tolerance of commensal bacteria (56). Macrophages can also shape

gut microbiota structure, potentially by discriminating between commensal and

pathogenic microbes (99). In sum, the most striking patterns of correlation between

immune gene expression and microbial family abundance add to the existing litera-

ture supporting the roles of these specific arms of immunity, and specific cell types,

in microbiome maintenance.

Conclusions. Here, we document one of the first investigations of correlations

between natural gut microbiome composition and host transcriptomic gene expres-

sion in a nonmammalian vertebrate. Our results detail extensive correlation between

the host’s transcriptome and both diversity and proportion of specific microbial fami-

lies. Notably, these associations exist despite spatial separation between the micro-

biota and the organ where we measure expression, highlighting the systemic changes

induced by gut microbiota. Both diversity and microbial family proportion are strongly

correlated with expression of a diversity of host immune genes. Associations between

immunity and microbial diversity likely reflect both the effects of a healthy, diverse

microbiome on the host immune system and the need for a robust immune system to

maintain this diversity. Trends in correlation between abundance of specific microbial

families and host immune gene expression identified groups both positively and nega-

tively associated with host immunity. Many of these trends support previous studies

from other systems. However, increased functional understanding of microbial taxa is

needed to interpret these trends. In sum, our results highlight the immense intercon-

nectivity between host gene expression and gut microbiome composition, specifically

in regard to immune function. These results also highlight the utility of the transcrip-

tomic tools in enabling studies of microbe-immune feedbacks in wild populations and

nonmodel animals.

Data availability. Raw data and code for all analyses described in the manuscript

can be found on GitHub (https://github.com/lfuess/MicrobiomeMS).

MATERIALS ANDMETHODS

Experimental design. Full details of data collection can be found in Ling et al. (49) and Fuess et al.

(100). Briefly, we collected reproductively mature fish from two lakes on Vancouver Island, British

Columbia, Canada (Roberts and Gosling Lakes). Eggs were removed from gravid females and fertilized

using sperm from testes collected from males from the same lake (pure F1s) or from the other lake (F1

hybrids). Eggs were shipped back to the University of Texas at Austin, hatched, and reared to reproduc-

tive maturity. The resulting adults were again artificially crossed to generate F2 hybrids consisting of

intercrosses (F1�F1 hybrids) or backcrosses (ROB�F1 or GOS�F1). The resulting generation was reared

for 1 year and then experimentally exposed to Schistocephalus solidus cestodes, following standard
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procedures (101, 102). Then, 42 days postexposure, fish were euthanized and data were collected for a

number of phenotypic metrics, including sex, mass, and infection status/load. We also dissected head

kidneys for immune transcriptomic analysis. In fish, the head kidney, or pronephros, is a primary immune

organ functioning primarily as a lympho-myeloid compartment (58). As is indicated by the name, this

structure is located in the cranial region of the fish, near the gills, separating it considerably from the

gut. Guts were dissected using sterile protocols for microbiome composition analysis (49).

Transcriptomic analysis. RNA was extracted from one head kidney, and sequencing libraries were

generated following methods described in Fuess et al. (100). We extracted RNA from this organ using

the Ambion MagMAX-96 total RNA isolation kit following a modified version of the manufacturer’s pro-

tocol. A DNA removal step was preformed using TURBO DNase. RNA yield was quantified using a Tecan

NanoQuant Plate. TagSeq RNA sequencing libraries were constructed using a modified version of meth-

ods described in Lohman et al. (103), detailed in Fuess et al. (100). Libraries were sequenced on a HiSeq

2500 instrument at the Genomics Sequencing and Analysis Facility of the University of Texas at Austin,

Texas.

Resulting sequencing reads were processed using the iRNAseq pipeline (104). Reads were aligned to

version 95 of the stickleback genome on Ensembl using Bowtie 2 software (105), and any samples with

less than 500,000 aligned reads were discarded (final n= 393). A matrix of normalized read counts was

generated using the R package DESeq2 (106). This normalized read count matrix was used for all subse-

quent analyses (correlations, path analyses, and WGCNA). Information about the resulting read counts

per individual, annotation, and other metrics of transcriptome information are reported in Fuess et al.

(100).

Gut microbiota analyses. Full details regarding sampling and analysis of gut microbiota composi-

tion can be found in Ling et al. (49). To summarize, DNA was extracted from the entirety of collected

stickleback intestines (n= 693 fish) using MoBio Powersoil DNA isolation kits. From these data, 16S rRNA

amplicons were generated for the V4 hypervariable regions. Sequencing was performed on an Illumina

Miseq platform at the Genomic Sequencing and Analysis Facility at the University of Texas at Austin,

Texas. The resulting reads were processed using standard procedures in the mothur software package

(v.1.39.1) (107). OTUs were identified using the UCLUST algorithm based on 97% similarity. The relative

proportion of microbial taxa (calculated at the level of family) was calculated as the proportion of total

OTU reads from a sample representing a given family compared to the total number of OTUs for a sam-

ple. Data were rarefied to 2,000 sequences, and Chao1 alpha diversity was calculated using the R pack-

age phyloseq (108). Information about the resulting number of microbial OTUs, counts, and read depth

per individual are reported in greater detail in Ling et al. (49), who examined the microbiota’s response

to cestode infection and host genotype.

Correlative analyses. We tested for correlations between microbiome composition and host gene

expression. All statistics were conducted in R (v.3.6.1). First, we correlated the gene expression of all

expressed genes to alpha diversity using a Kendall’s rank correlation. Genes with P values less than 0.05

were considered significant for further analyses. Next, to identify families of microbes that are highly

associated with gene expression, we correlated the gene expression of all expressed genes to the rela-

tive proportion of each microbial family, again using a Kendall’s rank correlation. This resulted in thou-

sands of significant associations between families and genes, many of which may be false positives due

to the exceptionally large number of tests run (considering the combinations of many transcripts against

many microbes). We concluded that the most conservative approach would be to select the top 5% (ap-

proximate; ties accounted for) most significantly correlated families (n = 15) and genes (n = 1,290) and

consider only relationships between these two groups for further analyses.

To assess the effects of covarying factors (i.e., successful cestode infection, sex, host genotype

[cross]) and ensure that correlations were not the result of spurious covariate effects, we also conducted

a path analysis using the R package sem (109). Potential covariates which may have confounded rela-

tionships detected by the correlative analyses were included in the model—sex, infection, mass (log-

transformed), and cross-direction. The full model structure can be found in the supplemental material

(Fig. S1).

Gene ontology analyses. To determine the biological processes most correlated with microbiome

diversity and composition, we conducted gene ontology analyses. We assessed enrichment of biological

process GO terms, using the R script GO-MWU (110). To identify biological processes enriched as a result

of variation in microbiome diversity, we conducted gene ontology enrichment analyses using the tau

values for all significantly correlated transcripts; all other genes were assigned a value of 0. We used a

similar approach for assessing biological process terms enriched in relation to relative family proportion

for each of our families of interest. Gene ontology analyses were conducted using GO terms associated

with stickleback gene annotations (see reference 53) and performed independently for each family.

Input for this analysis was a matrix comprised of tau values for all significant correlations between a

given family and the top 5% of genes (all other genes assigned a value of 0).

Coexpression analyses. We used coexpression analyses to identify groups of coexpressed host

genes that were significantly correlated with microbiome diversity or relative proportion of microbial

families (using only the 15 most significantly correlated families identified previously). Coexpression

analyses were run using the R package WGCNA (111). We constructed a signed network using bicor anal-

yses and the following parameters: soft power = 12; minimum module size = 30; deepSplit = 2; dissimilar-

ity threshold = 0.2. The resulting network was correlated with microbiome diversity and relative family

proportion using a bicor correlation. Modules with significant correlations (P, 0.05) were analyzed for

enrichment of biological processes using gene ontology enrichment (GO-MWU; default parameters for

analysis of WGCNA modules).
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SUPPLEMENTAL MATERIAL

Supplemental material is available online only.

DATA SET S1, XLSX file, 0.1 MB.

DATA SET S2, XLSX file, 0.3 MB.

DATA SET S3, XLSX file, 0.1 MB.

FIG S1, PDF file, 0.03 MB.

FIG S2, PDF file, 0.1 MB.

FIG S3, PDF file, 0.04 MB.
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