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Abstract

We characterize the measurement complexity of

compressed sensing of signals drawn from a

known prior distribution, even when the support

of the prior is the entire space (rather than, say,

sparse vectors). We show for Gaussian measure-

ments and any prior distribution on the signal, that

the posterior sampling estimator achieves near-

optimal recovery guarantees. Moreover, this re-

sult is robust to model mismatch, as long as the

distribution estimate (e.g., from an invertible gen-

erative model) is close to the true distribution in

Wasserstein distance. We implement the posterior

sampling estimator for deep generative priors us-

ing Langevin dynamics, and empirically find that

it produces accurate estimates with more diversity

than MAP.

1. Introduction

The goal of compressed sensing is to recover a structured

signal from a relatively small number of linear measure-

ments. The setting of such linear inverse problems has

numerous and diverse applications ranging from Magnetic

Resonance Imaging (Lustig et al., 2008; 2007), neuronal

spike trains (Hegde et al., 2009) and efficient sensing cam-

eras (Duarte et al., 2008). Estimating a signal in R
n would

in general require n linear measurements, but because real-

world signals are structured—i.e., compressible—one is

often able to estimate them with m≪ n measurements.

Formally, we would like to estimate a “signal” x∗ ∈ R
n

from noisy linear measurements,

y = Ax∗ + ξ
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for a measurement matrix A ∈ R
m×n and noise vector

ξ ∈ R
m. We will focus on the i.i.d. Gaussian setting, where

Aij ∼ N (0, 1
m ) and ξi ∼ N (0, σ2

m ), and one would like to

recover x̂ from (A, y) such that

‖x∗ − x̂‖ ≤ Cσ (1)

with high probability for some constant C. When x∗ is k-

sparse, this was shown by Candés, Romberg, and Tao (Can-

des et al., 2006) to be possible for m at least O(k log n
k ).

Over the past 15 years, compressed sensing has been ex-

tended in a wide variety of remarkable ways, including by

generalizing from sparsity to other signal structures, such

as those given by trees (Chen & Huang, 2012), graphs (Xu

et al., 2011), manifolds (Chen et al., 2010; Xu & Hassibi,

2008), or deep generative models (Bora et al., 2017; Asim

et al., 2019). These are all essentially frequentist approaches

to the problem: they define a small set of “structured” sig-

nals x, and ask for recovery of every such signal.

Such set-based approaches have limitations. For exam-

ple, (Bora et al., 2017) uses the structure given by a deep

generative model G : Rk → R
n; with O(kd log n) measure-

ments for d-layer networks, accurate recovery is guaranteed

for every signal x∗ near the range of G. But this completely

ignores the distribution over the range. Generative models

like Glow (Kingma & Dhariwal, 2018) and pixelRNN (Oord

et al., 2016) have seed length k = n and range equal to the

entire Rn. Yet because these models are designed to approx-

imate reality, and real images can be compressed, we know

that compressed sensing is possible in principle.

This leads to the question: Given signals drawn from some

distribution R, can we characterize the number of linear

measurements necessary for recovery, with both upper

and lower bounds? Such a Bayesian approach has pre-

viously been considered for sparsity-inducing product dis-

tributions (Aeron et al., 2010; Zhou et al., 2014) but not

general distributions.

Second, suppose that we don’t know the real distribution R,

but instead have an approximation P of R (e.g., from a GAN

or invertible generative model). In what sense should P ap-

proximate R for compressed sensing with good guarantees

to be possible?
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on the range of a deep generative model (Goodfellow et al.,

2014; Kingma & Welling, 2013).

Lower bounds in (Kamath et al., 2019; Liu & Scarlett, 2019;

Jalali & Yuan, 2019) established that the sample complexi-

ties in (Bora et al., 2017) are order optimal. The approach

in (Bora et al., 2017) has been generalized to tackle dif-

ferent inverse problems such as robust compressed sens-

ing (Jalal et al., 2020), phase retrieval (Hand et al., 2018;

Aubin et al., 2019; Jagatap & Hegde, 2019), blind image de-

convolution (Asim et al., 2018), seismic inversion (Mosser

et al., 2020), one-bit recovery (Qiu et al., 2019; Liu et al.,

2020), and blind demodulation (Hand & Joshi, 2019). Al-

ternate algorithms for reconstruction include sparse devi-

ations from generative models (Dhar et al., 2018), task-

aware compressed sensing (Kabkab et al., 2018), PnP (Pan-

dit et al., 2019; Fletcher et al., 2018b;a), iterative projec-

tions (Mardani et al., 2018), OneNet (Rick Chang et al.,

2017) and Deep Decoder (Heckel & Hand, 2018; Heckel

& Soltanolkotabi, 2020). The complexity of optimization

algorithms using generative models have been analyzed for

ADMM (Gómez et al., 2019), PGD (Hegde, 2018), layer-

wise inversion (Lei et al., 2019), and gradient descent (Hand

& Voroninski, 2017). Experimental results in (Asim et al.,

2019; Whang et al., 2020; Lindgren et al., 2020) show that

invertible models have superior performance in compari-

son to low dimensional models. See (Ongie et al., 2020)

for a more detailed survey on deep learning techniques for

compressed sensing. A related line of work has explored

learning-based approaches to tackle classical problems in al-

gorithms and signal processing (Aamand et al., 2019; Indyk

et al., 2019; Metzler et al., 2017; Hsu et al., 2018).

Lower bounds for ℓ2/ℓ2 recovery of sparse vectors can be

found in (Scarlett & Cevher, 2016; Price & Woodruff, 2011;

Aeron et al., 2010; Iwen & Tewfik, 2010; Candes & Dav-

enport, 2013), and these are related to the lower bound

in (1.5). The closest result is that of (Aeron et al., 2010),

which characterizes the probability of error and ℓ2 error of

the reconstruction via covering numbers of the probability

distribution. Their approach uses the rate distortion function

of a scalar random variable x, and provides guarantees for

the product measure generated via an i.i.d. sequence of x.

A Shannon theory for compressed sensing was pioneered

by (Wu & Verdú, 2012; Wu, 2011). The δ−Minkowski

dimension of a probability measure used in (Wu & Verdú,

2012; Wu, 2011; Pesin, 2008) can be derived from our

(ε, δ)−covering number by taking the limit ε→ 0. (Reeves

& Gastpar, 2012) contains a related theory of rate distortion

for compressed sensing. There is also related work in the sta-

tistical physics community under different assumptions on

the signal structure (Zdeborová & Krzakala, 2016; Barbier

et al., 2019).

2. Background and Notation

In this section, we introduce a few concepts that we will

use throughout the paper. ‖ · ‖ refers to the ℓ2 norm unless

specified otherwise. The metric we use to quantify the

similarity between distributions is the Wassertein distance.

For two probability distributions µ, ν supported on Ω, and

for any p ≥ 1, the Wasserstein-p (Villani, 2008; Arjovsky

et al., 2017) and Wasserstein-∞ (Champion et al., 2008)

distances are defined as:

Wp(µ, ν) := inf
γ∈Π(µ,ν)

(

E
(u,v)∼γ

[‖u− v‖p]

)1/p

,

W∞(µ, ν) := inf
γ∈Π(µ,ν)

(

γ- ess sup
(u,v)∈Ω2

‖u− v‖

)

,

where Π(µ, ν) denotes the set of joint distributions whose

marginals are µ, ν. The above definition says that if

W∞(µ, ν) ≤ ε, and (u, v) ∼ γ, then ‖u − v‖ ≤ ε almost

surely.

We say that y is generated from x∗ by a Gaussian measure-

ment process with m measurements and noise level σ, if

y = Ax∗ + ξ where ξ ∼ N (0, σ2

m Im) and A ∈ R
m×n with

Aij ∼ N (0, 1/m).

3. Upper Bound

3.1. Two-Ball Case

For simplicity, we will first demonstrate our proof tech-

niques in the simple setting where R = P , the measure-

ments are noiseless, and the ground truth distribution P
is supported on two disjoint balls (illustrated in Figure 3).

In this example, two η radius balls can cover the whole

space, so the parameters in Theorem 1.4 will be σ = 0 and

Covη,0(P ) = 2. Applying Theorem 1.4 on P tells us that a

constant number of measurements is sufficient for posterior

sampling to get O(η)-close to the ground truth, i.e., to return

an element of the correct ball. We will now prove this claim.

Let B0, Bx̃ denote η-radius balls centered at 0, x̃ ∈ R
n

respectively. Suppose P = 0.5P0 + 0.5P1, where P0, P1,

are uniform distributions on B0, Bx̃. The centers of the

balls are separated by a distance d≫ η.

The ground truth x∗ will be sampled from P . For a fixed

matrix A ∈ R
m×n with m≪ n, let the noiseless measure-

ments be y = Ax∗ and let H0, H1, denote the distributions

over Rm induced by the projection of P0, P1, by A.

Given A, y, we sample the reconstruction (x̂) according to

the posterior density

p(x̂|y) = cyp0(x̂|y) + (1− cy)px̃(x̂|y),
where cy is the posterior probability that y is a projection

of x∗ drawn from the P0 component of P . Note that cy
depends on y.
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shows you will not confuse any ball with faraway balls,

but you might confuse it with nearby balls) but solving

them is straightforward. This shows that, if P = R and

log Covη,0(R) is bounded, then posterior sampling works

well with 1− e−Ω(m) probability.

Distribution mismatch inW∞. The above assumes we

resample with respect to the true distribution R. But we

only have a learned estimate P of R. We would like to show

that observing samples from R and resampling according to

P gives good results. We first show that resampling signals

drawn from R with respect to P is not much worse than

resampling signals drawn from P with respect to P , if P
and R are close inW∞.

Lemma 3.3. Let R,P, denote arbitrary distributions over

R
n such thatW∞(R,P ) ≤ ε.

Let x∗ ∼ R and z∗ ∼ P and let y and u be generated

from x∗ and z∗ via a Gaussian measurement process with

m measurements and noise level σ. Let x̂ ∼ P (·|y,A) and

ẑ ∼ P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤

e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 ) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

The idea is that with σ Gaussian noise, measurements of

a signal from R aren’t too different in distribution from

measurements of the corresponding nearby signal from P .

Now, if W∞(R,P ) ≪ σ, we would be nearly done:

Lemma 3.3 says the situation is within eo(m) of the R = P
case, which we already know gives accurate recovery with

O(log Covη,0(P )) measurements.

Residual mass. There are just two main issues remaining:

we want to depend on log Covη,δ rather than log Covη,0,

and we only want to require a bound on W1(R,P ) not

W∞(R,P ). By Markov’s inequality, these issues are very

similar: we want to allow both R and P to have a small

constant probability of behaving badly. To address this, we

note the existence of two distributions R′ and P ′, which are

only δ-far in TV from R and P respectively, such that R′

and P ′ do have a small cover & are close inW∞. We show

that, because posterior sampling would work with R′ and

P ′, it also works with R and P . This leads to our full upper

bound:

Theorem 3.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be

parameters. Let R,P be arbitrary distributions over R
n

satisfyingWp(R,P ) ≤ ε.

Let x∗ ∼ R and suppose y is generated by a Gaussian

measurement process from x∗ with noise level σ & ε/δ1/p

and m ≥ O(min(log Covη,δ(R), log Covη,δ(P ))) mea-

surements. Given y and the fixed matrix A, let x̂ output

of posterior sampling with respect to P .

Then there exists a universal constant c > 0 such that with

probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Note that we can get a high-probability result by setting

p = ∞: if m ≥ O(log Covη,0(R)) and W∞(R,P ) ≤ σ,

the error is O(σ + η) with 1− e−Ω(m) probability.

4. Lower Bound

In the previous section, we showed, for any distribution R
of signals, that O(log Cov(R)) measurements suffice for

posterior sampling to recover most signals well. Now we

show the converse: for any distribution of signals R, any

algorithm for recovery must use Ω(log Cov(R)) measure-

ments.

Theorem 4.1. Let R be a distribution supported on a ball

of radius r in R
n, and x∗ ∼ R. Let y = Ax∗ + ξ, where A

is any matrix, and ξ ∼ N (0, σ2

m Im). Assuming δ < 0.1, if

there exists a recovery scheme that uses y and A as inputs

and guarantees

‖x̂− x∗‖ ≤ O(η),

with probability ≥ 1− δ, then we have

m ≥ 0.15

log

(

1+
mr2‖A‖2

∞

σ2

)
(
log Cov3η,4δ(R) + log 6δ −O(1)

)
.

If A is an i.i.d. Gaussian matrix where each element is

drawn from N (0, 1/m), then the above bound can be im-

proved to:

m ≥ 0.15

log
(
1 + r2

σ2

) (
log Cov3η,4δ(R) + log 6δ −O(1)

)
.

This Theorem is proven using information theory, as an

almost direct consequence of the following three Lemmas.

First, the measurement process reveals a limited amount of

information:

Lemma 4.2. Consider the setting of Theorem (4.1). If A is

a deterministic matrix, we have

I(y;x∗) ≤ m

2
log

(
1 +

mr2‖A‖2∞
σ2

)
.

If A is a Gaussian matrix, then I(y;x∗|A) ≤
m
2 log

(
1 + r2

σ2

)
.
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Second, since x∗ → y → x̂ is a Markov chain, we can

directly apply the Data Processing Inequality (Cover &

Thomas, 2012).

Lemma 4.3. Consider the setting of Theorem (4.1). If A is

a deterministic matrix, we have I(x∗; x̂) ≤ I(y;x∗).

If A is a random matrix, then I(x∗; x̂) ≤ I(y;x∗|A).

Finally, successful recovery must yield a large amount of

information:

Lemma 4.4 (Fano variant). Let (x, x̂) be jointly distributed

over Rn × R
n, where x ∼ R and x̂ satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.

Then for any τ ≤ 1− 3δ, δ < 1/3, we have

0.99τ(1− 2δ) log Cov3η,τ+3δ(R) ≤ I(x; x̂) + 1.98.

In order to complete the proof of Theorem 4.1, we need an

additional counting argument to remove the extra τ term

that appears in the left hand side of Lemma 4.4.

The proofs can be found in Appendix B.

5. Experiments

In this section we discuss our algorithm for posterior sam-

pling, discuss why existing algorithms can fail, and show our

empirical evaluation of posterior sampling versus baselines.

5.1. Datasets and Models

We perform our experiments on the CelebA-HQ (Liu et al.,

2018; Karras et al., 2017) and FlickrFaces-HQ (Karras et al.,

2019) datasets. For the CelebA dataset, we run experi-

ments using a Glow generative model (Kingma & Dhariwal,

2018). For the FlickrFaces-HQ dataset, we use the NCSNv2

model (Song & Ermon, 2020). Both models have output

size 256 × 256 × 3. Details about our experiments are in

Appendix C.

5.2. Langevin Dynamics

Glow trained on CelebA-HQ We first consider the Glow

generative model, whose distribution P is induced by the

random variable G(z), where G : R
n → R

n is a fixed

deterministic generative model, and z ∼ N (0, In) . Sam-

pling from p(z|y) is easier than sampling from p(x|y),
since it is easier to compute and we observe that sampling

mixes quicker. Note that sampling ẑ ∼ p(z|y) and setting

x̂ = G(ẑ) is equivalent to sampling x̂ ∼ p(x|y).
In order to sample from p(z|y), we use Langevin dynam-

ics, which samples from a given distribution by moving

a random initial sample along a vector field given by the

distribution. Langevin dynamics tells us that if we sample

z0 ∼ N (0, 1), and run the following iterative procedure:

zt+1 ← zt +
αt

2
∇z log p (zt|y) +

√
αtζt, ζt ∼ N (0, I),

then p(z|y) is the stationary distribution of zt as t → ∞
and αt → 0. Unfortunately, this algorithm is slow to mix,

as observed in (Song & Ermon, 2019). We instead use

an annealed version of the algorithm, where in step t we

pretend that p(z | y) has noise scale σt ≥ σ instead of σ.

This gives

log pt(z|y) =
(
−‖y −AG(z)‖2

2σ2
t /m

− ‖z‖
2

2

)
+ log c(y),

(4)

where c(y) is a constant that depends only on y. Since we

only care about the gradient of log p(z|y), we can ignore this

constant c(y). By taking a decreasing sequence of σt that

approach the true value of σ, we can anneal Langevin dy-

namics and sample from p(z|y). Please refer to Appendix C

for more details about how σt varies.

NCSNv2 trained on FFHQ We also consider the NC-

SNv2 model, which takes as input the image x, and out-

puts ∇x log p(x). This model is designed such that sam-

pling from its marginal involves running Langevin dy-

namics. Since we have access to ∇x log p(x), and if we

know the functional form of p(y|x), we can easily compute

∇x log p(x|y), and run Langevin dynamics via

xt+1 ← xt +
αt

2
∇x log p (xt|y) +

√
αtζt, ζt ∼ N (0, I).

Notice that we can also run MAP using this model. This

can be achieved by simply following the gradient, and not

adding noise: xt+1 ← xt +
αt

2 ∇x log p (xt|y).
This model also requires annealing, and we follow the sched-

ule prescribed by (Song & Ermon, 2020). Please see Ap-

pendix C for more details.

5.3. MAP and Modified-MAP

The most relevant baseline for our algorithm is MAP, which

was shown to be state-of-the-art for compressed sensing

using generative priors (Asim et al., 2019).

Given access to a generative model G such that the image

x = G(z), and q(z) is the prior of z, the MAP estimate is

ẑ := argmin
z

‖y −AG(z)‖2
2σ2/m

− log q(z), (5)

and set the estimate to be x̂ = G(ẑ). Typically, q(z) is a

standard Gaussian for many generative models. If one has
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Optimal Sample Complexities for Compressed Sensing with Approximate Generative Priors

A. Upper Bound Proofs

A.1. Proof of Lemma 3.1

Lemma 3.1. For c ∈ [0, 1], let H := (1 − c)H0 + cH1 be a mixture of two absolutely continuous distributions H0, H1

admitting densities h0, h1. Let y be a sample from the distribution H , such that y|z∗ ∼ Hz∗ where z∗ ∼ Bernoulli(c).

Define ĉy = ch1(y)
(1−c)h0(y)+ch1(y)

, and let ẑ|y ∼ Bernoulli(ĉy) be the conditional resampling of z∗ given y. Then we have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] ≤ 1− TV (H0, H1).

Proof. We have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] = Pr[z∗ = 0] E
y∼h0,ẑ|y

[1{ẑ = 1}], (8)

= (1− c)

∫
h0(y) Pr[ẑ = 1|y]dy. (9)

By definition, we have

Pr[ẑ = 1|y] = ch1(y)

(1− c)h0(y) + ch1(y)
.

Substituting, we have

Pr
z∗,y,ẑ

[z∗ = 0, ẑ = 1] =

∫
(1− c)h0(y)ch1(y)

(1− c)h0(y) + ch1(y)
dy

≤
∫

(1− c)h0(y) · ch1(y)

max{(1− c)h0(y), ch1(y)}
dy

=

∫
min{(1− c)h0(y), ch1(y)}dy

≤
∫

min{h0(y), h1(y)}dy

= (1− TV (H0, H1)).

A.2. Proof of Lemma 3.2

Lemma 3.2. Let y be generated from x∗ by a Gaussian measurement process with noise rate σ. For a fixed x̃ ∈ R
n, and

parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ R
n : ‖x− x̃‖ ≥ c(η + σ)}.

Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.

For a fixed A, let Hx̃ denote the distribution of y when x∗ ∼ Px̃. Let Hout denote the corresponding distribution of y when

x∗ ∼ Pout. Then we have:

E
A
[TV (Hx̃, Hout)] ≥ 1− 4e−

m

2
log( c

4e2
).

Proof. In order to prove the lemma, it suffices to show that on the set

B := {y ∈ R
m : ‖y −Ax̃‖ ≤

√
c (η + σ)},
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we have

E
A
[Hout(B)] ≤ 2e−

m

2
log( c

4e2
), (10)

E
A
[Hx̃(B)] ≥ 1− 2e−

m

2
log( c

4e2
). (11)

Using the above bounds, we can conclude that

E
A
[TV (Hout, Hx̃)] ≥ E

A
[Hx̃(B)]− E

A
[Hout(B)] ≥ 1− 4e−

m

2
log( c

4e2
).

First we prove Equation (10).

Consider the joint distribution of y,A. We have

E
A
[Hout(B)] = E

A

[

E
x∼Pout

[

N
(

Ax,
σ2

m
Im

)

(B)

]]

, (12)

= E
x∼Pout

[

E
A

[

N (Ax, σ2/m)(B)
]

]

, (13)

where the first line follows from the definition of Hout and the fact that x,A are independent. The last line follows by

switching the order of integrating A, x. Here N (Ax, σ2/m)(B) refers to the mass N (Ax, σ2/m) places on B.

Consider a fixed x ∈ Sx̃,out, that is, x lies in the support of Pout and satisfies ‖x− x̃‖ ≥ c(η + σ
√
m). We split the above

expectation into two conditions over the matrix A.

• Case 1: ‖Ax−Ax̃‖ ≤ 2
√
c (η + σ). Since A is i.i.d. Gaussian, A (x− x̃) is distributed as N

(

0, ‖x−x̃‖2

m
Im

)

. This gives

Pr
A

[

‖Ax−Ax̃‖ < 2
√
c (η + σ)

]

≤ Pr
A

[

‖Ax−Ax̃‖ ≤ 2√
c
‖x− x̃‖

]

,

≤ 2√
mπ

(

2e√
c

)m

,

=
2√
mπ

e−
m

2
log( c

4e2
),

≤ e−
m

2
log( c

4e2
) if m > 1.

This implies

E
x∼Pout

[

E
A

[

N (Ax, σ2/m)(B)1‖Ax−Ax̃‖<2
√
c(η+σ)

]

]

≤ E
x∼Pout

[

E
A

[

1‖Ax−Ax̃‖<2
√
c(η+σ)

]

]

,

= E
x∼Pout

[

Pr
A

[

‖Ax−Ax̃‖ ≤ 2
√
c (η + σ)

]

]

,

≤ e−
m

2
log( c

4e2
).

• Case 2: ‖Ax−Ax̃‖ > 2
√
c (η + σ).

Recall the definition of B := {y ∈ R
m : ‖y −Ax̃‖ ≤ √

c (η + σ)}. For any y ∈ B, x in the support of Pout and for A
such that ‖Ax−Ax̃‖ > 2

√
c (η + σ), we have

‖y −Ax‖ ≥ ‖Ax−Ax̃‖ − ‖y −Ax̃‖ ≥ 2
√
c (η + σ)−√

c (η + σ) =
√
c (η + σ) .

For each x in the support of Pout, define the set Bx := {y ∈ R
m : ‖y −Ax‖ ≥ √

c (η + σ)} . The above inequality gives

B ⊆ Bx for each x in the support of Pout. This gives

N (Ax, σ2)(B) ≤ N (Ax, σ2)(Bx) ≤ e−2(
√
c−1)

2

m ≤ e−
mc

2 .

where the last inequality follows by the definition of Bx and Gaussian concentration of N (Ax, σ2) on the set Bx, and

since 2 (
√
c− 1)

2
> c

2 if c ≥ 4.
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Substituting the inequalities from Case 1 and Case 2 in Eqn (13), we have

E
A
[Hout(B)] = E

x∼Pout

[

E
A

[

N (Ax, σ2/m)(B)
]

]

,

≤ e−
m
2

log( c
4e2

) + e−
cm
2 ,

≤ 2e−
m
2

log( c
4e2

) if c ≥ 4e2.

This proves Eqn (10).

A similar proof can be used to show that

E
A
[Hx̃(B

c)] ≤ 2e−
m
2

log( c
4e2

).

This proves Eqn (11).

Putting the two above inequalities together, we have

E
A
TV (Hout, Hx̃) ≥ E

A
[Hx̃(B)]− E

A
[Hout(B)] ≥ 1− 4e−

m
2

log( c
4e2

).

This concludes the proof.

A.3. Proof of Lemma A.1

Lemma A.1. Let R,P be arbitrary distributions on R
n. Let p ≥ 1 and η, ρ, δ > 0, be parameters.

If Wp(R,P ) ≤ ρ and min{log Covη,δ(P ), log Covη,δ(R)} ≤ k, then there exist distributions R′, R′′, P ′, P ′′, and a finite

discrete distirbution Q with | supp(Q)| ≤ ek satisfying:

1. min {W∞(P ′, Q),W∞(R′, Q)} ≤ η,

2. W∞(R′, P ′) ≤ ρ

δ1/p
,

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′

Proof. Since the statement of the lemma is symmetric with respect to P and R, WLOG let log Covη,δ(P ) ≤ k. Then there

is an S ⊂ R
n such that |S| ≤ ek and

Pr
x∼P

[x ∈ ∪u∈SB(u, η)] = 1− cP ≥ 1− δ,

We define the function f : Rn → R+ as

f(x) =

{

1
|{u∈S|x∈B(u,η)}| if ∃u ∈ S s.t. x ∈ B(u, η),

0 otherwise.

By construction, f is a piecewise constant function that is inversely proportional to the number of η−radius balls centered

around points in S cover a point x.

For each u ∈ S, we define the measure Q′′ as

Q′′(u) :=

∫

B(u,η)

f dP.

Observe that

∑

u∈S

Q′′(u) =
∑

u∈S

∫

B(u,η)

fdP,
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=

∫

∪u∈SB(u,η)

dP = 1− cP

Notice that Q′′ is not a probability distribution, since it only has mass 1− cP . However we can create a distribution Q′ from

Q′′ by putting an additional cP mass on some arbitrary point in R
n (say, 0). By construction, there exists a coupling Π of P

and Q′ where the coupling distributes the mass at each point in R
n to points η close to it in S, such that

cP = Pr
(x1,x2)∼Π

[‖x1 − x2‖ ≥ η] ≤ δ. (14)

Additionally, since Wp(R,P ) ≤ ρ, there exists a coupling Γ such that.

cR = Pr
(x1,x2)∼Γ

[

‖x1 − x2‖ ≥
ρ

δ1/p

]

≤
E [‖x1 − x2‖

p]
ρp

δ

≤ δ. (15)

where cP is defined by the first equality. We can hence define a couple between P,Q′, R whose distribution is given by the

following – for any borel measurable sets B1, B2, B3 we have Ω(B1, B2, B3) = P (B1)Π(B2 | B1)Γ(B3 | B1). To verify

that this is indeed a coupling of the kind we want, we observe that the marginals of Ω are P,Q and R respectively.

1. Ω(B1,R
n,Rn) = P (B1)Π(Rn | B1)Γ(R

n | B1) = P (B1).

2. Ω(Rn, B2,R
n) = P (Rn)Π(B2 | Rn)Γ(Rn | Rn) = 1 · Π(B2,R

n)
P (Rn) · 1 = Q′(B2).

3. Ω(Rn,Rn, B3) = P (Rn)Π(Rn | Rn)Γ(B3 | Rn) = R(B3).

To define P ′, Q,R′, we look at Ω conditioned on the event E := {(x, y, z) | ‖x − z‖ ≤ ρ/δ1/p and ‖x − y‖ ≤ η}. To

estimate the probability of E, we define E1 := {(x, y, z) | z ∈ R
n and ‖x − y‖ > η} and E2 := {(x, y, z) | ‖x − z‖ >

ρ/δ1/p and y ∈ R
n}. Then, E = E1 ∨ E2.

We now show that Ω(E1) ≤ δ. Let (E1)I denote E1 restricted to the coordinates in I .

Ω(E1) := P ((E1)1)Π((E1)1,2 | (E1)1)Γ((E1)1,3 | (E1)1) ≤ Π((E1)1,2) ≤ δ,

where the first inequality is because Γ((E1)1,3 | (E1)1) ≤ 1 and Π((E1)1,2 | (E1)1) = Π((E1)1,2)/P ((E1)1) and the

final inequaity follows from equation (14). The bound for E2 follows similarly. A union bound shows that Ω(E) ≥ 1− 2δ.

We can restrict the event E further to have mass 1− 2δ.

We look at the marginals of the conditional couple Ω(· | E) to get distributions P ′, Q,R′ as follows. We define P ′(·) :=
Ω(·,Rn,Rn | E), Q(·) := Ω(Rn, ·,Rn | E) and R′(·) := Ω(Rn,Rn, · | E). P ′′ and R′′ are defined similarly via

conditioning on E. Hence, P (·) = Ω(·,Rn,Rn) = Ω(E)Ω(·,Rn,Rn | E) + Ω(E)Ω(·,Rn,Rn | E) = (1 − 2δ)P ′(·) +
(2δ)P ′′(·). The statement for R follows similarly.

This finally gives distributions P ′, R′, Q, such that:

1. W∞(P ′, Q) ≤ η

2. W∞(R′, P ′) ≤ ρ/δ1/p

3. P = (1− 2δ)P ′ + (2δ)P ′′ and R = (1− 2δ)R′ + (2δ)R′′.

The first two statements follow because of the event we condition over.

Note that this restriction does not change the fact that supp(Q) < ek, and hence we have our result.
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A.4. Proof of Lemma 3.3

Lemma 3.3. Let R,P, denote arbitrary distributions over Rn such that W∞(R,P ) ≤ ε.

Let x∗ ∼ R and z∗ ∼ P and let y and u be generated from x∗ and z∗ via a Gaussian measurement process with m

measurements and noise rate σ. Let x̂ ∼ P (·|y,A) and ẑ ∼ P (·|u,A). For any d > 0, we have

Pr
x∗,A,ξ,x̂

[‖x∗ − x̂‖ ≥ d+ ε]

≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 ) Pr
z∗,A,ξ,ẑ

[‖z∗ − ẑ‖ ≥ d] .

Proof. Let B1 denote the event

B1 = {‖x∗ − x̂‖ ≥ d+ ε} .

Similarly, let B2 denote the event

B2 = {‖z∗ − x̂‖ ≥ d} .

We have

Pr
x∗∼R,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗∼R

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1

]

]]
.

We can write the integral over R as an integral over the coupling Π between R,P . This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] = E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B1

]

]]
.

Since x∗, z∗ are coupled and W∞(R,P ) ≤ ε, we have ‖x∗ − z∗‖ ≤ ε almost surely. This gives B1 ⊆ B2 if x∗, z∗ are

distributed according to Π. Hence,

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
.

We can split the above integral into two parts: one where the matrix A satsifies ‖Ax∗ −Az∗‖ ≤ 2ε, and another case where

‖Ax∗ −Az∗‖ > 2ε. This gives

Pr
x∗,A,ξ,x̂∼P (·|A,y)

[B1] ≤ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2 ]

]]
(∗) (16)

+ E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖≤2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2

]

]]
.(∗∗) (17)

Consider the term(∗) in line (16). We have

E
x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε E

y|A,x∗

[
E

x̂∼P (·|y,A)
[1B2 ]

]]
≤ E

x∗,z∗

E
A

[
1‖Ax∗−Az∗‖>2ε

]
, (18)

≤ E
x∗,z∗

[
e−Ω(m)

]
≤ e−Ω(m), (19)

where the last inequality follows from the Johnson-Lindenstrauss lemma for a fixed x∗, z∗, and hence is true on average

over x∗, z∗ drawn independent of A.
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Now consider the term (∗∗) in line (17). Notice that since the noise in the measurements is Gaussian, we have

y|x∗, A ∼ N (0, σ2/m).

We break the integral over y in (∗∗) into two cases:

1. Case 1: ‖y −Ax∗‖ > 2σ. Since p(y|A, x∗) is distributed as N
(
0, σ2

m
Im

)
, by standard Gaussian concentration, we

have

∫

y:‖y−Ax∗‖>2σ

p(y|A, x∗)dy ≤ e−Ω(m).

2. Case 2: ‖y −Ax∗‖ ≤ 2σ. This gives

‖Ax∗ − y‖2 = ‖Ax∗ − y‖2 − ‖y −Az∗‖2 + ‖y −Az∗‖2,

= ‖Ax∗ − y‖2 − ‖y −Ax∗ +Ax∗ −Az∗‖2 + ‖y −Az∗‖2,

= −‖Ax∗ −Az∗‖2 − 2〈y −Ax∗, Ax∗ −Az∗〉+ ‖y −Az∗‖2.

Observe that in (∗∗), we have

‖Ax∗ −Az∗‖ ≤ 2ε ⇒ ‖Ax∗ −Az∗‖2 ≤ 4ε2.

By the Cauchy-Schwartz inequality and the assumption that ‖y −Ax∗‖ ≤ 2σ, we have

2〈y −Ax∗, Ax∗ −Az∗〉 ≤ 8σε.

Substituting the above two inequalities, we have

‖Ax∗ − y‖2 ≥ −4ε2 − 8σε+ ‖y −Az∗‖2, (20)

⇒ exp

(
−
‖Ax∗ − y‖2

2σ2/m

)
≤ exp

(
4ε (ε+ 2σ)m

2σ2

)
exp

(
−
‖Az∗ − y‖2

2σ2/m

)
, (21)

(22)

Observe that the LHS has the density of measurements from x∗, while the RHS has the density of measurements from

z∗ with an exponential scaling. From the above inequality, we can replace the expectation over y|A, x∗ in (∗∗) with

u|A, z∗ with an exponential factor.

Similarly, since the conditional sampling now uses u in place of y, we can replace x̂ in (∗∗) with ẑ.

Combining Case 1 and 2 gives

(∗∗) ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 )
E

x∗,z∗

E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2 ]

]]
,

= e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 )
E

z∗∼P
E
A

[
E

u|A,z∗

[
E

ẑ∼P (·|u,A)
[1B2

]

]]
.

From the above inequality and eqn. (19), we have

Pr
x∗∼R,ξ,A,x̂∼P (·|A,y)

[‖x∗ − x̂‖ ≥ d+ ε] ≤ e−Ω(m) + e(
4ε(ε+2σ)m

2σ2 ) Pr
z∗∼P,ξ,A,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ d] .
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A.5. Proof of Theorem 3.4

Theorem 3.4. Let δ ∈ [0, 1/4), p ≥ 1, and ε, η > 0 be parameters. Let R,P be arbitrary distributions over Rn satisfying

Wp(R,P ) ≤ ε.

Let x∗ ∼ R and suppose y is generated by a Gaussian measurement process from x∗ with noise rate σ & ε/δ1/p and

m ≥ O(min(log Covη,δ(R), log Covη,δ(P ))) measurements. Given y and the fixed matrix A, let x̂ output of conditional

resampling with respect to P .

Then there exists a universal constant c > 0 such that with probability at least 1− e−Ω(m) over A, ξ,

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ cη + cσ] ≤ 2δ + 2e−Ω(m).

Proof. We know from Lemma A.1 that there exist R′, P ′, R′′, P ′′ and a finite distribution Q supported on the set S such

that

1. W∞(R′, P ′) ≤ ε
δ1/p

,

2. min{W∞(P ′, Q),W∞(R′, Q)} ≤ η,

3. R = (1− 2δ)R′ + 2δR′′ and P = (1− 2δ)P ′ + 2δP ′′,

4. |S| ≤ ek.

Suppose W∞(P ′, Q) ≤ η. If not, then W∞(R′, Q) ≤ η, and by (1), we see that W∞(P ′, Q) ≤ η + ε
δ1/p

, and we will use

this in the proof instead. This gives us

Pr
x∗∼R,x̂∼P (·|y)

[‖x∗ − x̂‖ ≥ (c+ 1)η + (c+ 1)σ] (23)

≤ Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
(24)

≤ 2δ + (1− 2δ) Pr
x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
(25)

We now bound the second term on the right hand side of the above equation. For this term, consider the joint distribution

over x∗, A, ξ, x̂. By Lemma 3.3, we can replace x∗ ∼ R′ with z∗ ∼ P ′, replace y = Ax∗ + ξ with u = Az∗ + ξ, and

replace x̂ ∼ P (·|A, y) with ẑ ∼ P (·|A, u) to get the following bound

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤

e−Ω(m) + e

(
2(ε/δ1/p)((ε/δ1/p)+2σ)m

σ2

)

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] . (26)

We now bound the second term in the right hand side of the above inequality. Let Γ denote an optimal W∞−coupling

between P ′ and Q.

For each z̃ ∈ S, the conditional coupling can be defined as

Γ(·|z̃) =
Γ(·, z̃)

Q(z̃)
.

By the W∞ condition, each Γ(·|z̃) is supported on a ball of radius η around z̃.

Let E = {z∗, ẑ ∈ R
n : ‖z∗ − ẑ‖ ≥ (c+ 1) η + cσ} denote the event that z∗, ẑ are far apart. By the coupling, we can

express P ′ as

P ′ =
∑

z̃∈S

Q(z̃)Γ(·|z̃).
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This gives

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|A,u)

[E] =
∑

z̃∗∈S

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] .

For each z̃∗ ∈ S, we now bound Q(z̃∗)Ez∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u) [1E ] .

For each z̃∗ ∈ S, we can write P as P = (1− 2δ)Qz̃∗Pz̃∗,0 + cz̃∗,1Pz̃∗,1 + cz̃∗,2Pz̃∗,2, where the components of the

mixture are defined in the following way. The first component Pz̃∗,0 is Γ(·|z̃∗), the second component is supported within a

c(η + σ) radius of z̃∗, and the third component is supported outside a c (η + σ) radius of z̃∗.

Formally, let Bz̃∗ denote the ball of radius c(η+σ) centered at z̃∗, and let Bc
z̃∗ be its complement. The constants are defined

via the following Lebsque integrals, and the mixture components for any Borel measurable B are defined as

cz̃∗,1 :=

∫

Bz̃∗

dP − (1− 2δ)Qz̃∗

∫

Bz̃∗

dΓ(·|z̃∗),

cz̃∗,2 :=

∫

Bc

z̃∗

dP − (1− 2δ)Qz̃∗

∫

Bc

z̃∗

dΓ(·|z̃∗),

Pz̃∗,0(B) := Γ(B ∩Bz̃∗ |z̃∗) = Γ(B|z̃∗) since supp(Γ(·|z̃∗)) ⊂ Bz̃∗ ,

Pz̃∗,1(B) :=

{
1

cz̃∗,1

P (B ∩Bz̃∗)− 1−2δ
cz̃∗,1

Qz̃∗Γ(B ∩Bz̃∗ |z̃∗) if cz̃∗,1 > 0,

do not care otherwise.
,

Pz̃∗,2(B) :=

{
1

cz̃∗,2

P (B ∩Bc
z̃∗)− 1−2δ

cz̃∗,2

Qz̃∗Γ(B ∩Bc
z̃∗ |z̃∗) if cz̃∗,2 > 0, dx∗

do not care otherwise.
.

Notice that if z∗ is sampled from Γ(·|z̃∗), then by the W∞ condition, we have ‖z∗ − z̃∗‖ ≤ η. Furthermore, if ẑ is

(c+ 1) η + cσ far from z∗, an application of the triangle inequality implies that it must be distributed according to Pz̃∗,2.

That is,

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,ξ,ẑ∼P (·|A,u)

[1E ] ≤ E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)]

≤
1

1− 2δ
E
A
[1− TV (Hz̃∗,0, Hz̃∗,2)] ,

where Hz̃∗,0, Hz̃∗,2 are the push-forwards of Pz̃∗,0, Pz̃∗,2 for A fixed and the last inequality follows from Claim A.2.

This gives

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[E] ≤
1

1− 2δ

∑

z̃∗∈S

E
A
[1− TV (Hz̃∗,0, Hz̃∗,2)] .

Notice that Pz̃∗,0 is supported within an η−ball around z̃∗, and Pz̃∗,2 is supported outside a c(η + σ)−ball of z̃∗. By

Lemma 3.2 we have

E
A
[TV (Hz̃∗,0, Hz̃∗,2)] ≥1− 4e−

m

2
log( c

4e2
).

This implies

Pr
z∗∼P ′,A,ξ,ẑ∼P (·|u,A)

[‖z∗ − ẑ‖ ≥ (c+ 1)η + cσ] ≤
1

1− 2δ

∑

z̃∗∈S

E
A
[(1− TV (Hz̃∗,0, Hz̃∗,2))] ,
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≤
1

1− 2δ
4|S|e−

m
2

log( c
4e2

),

≤
1

1− 2δ
4e−

m
4

log( c
4e2

),

where the last inequality is satisfied if m ≥ 4 log (|S|) .

Substituting in Eqn (26), if c > 4 exp

(
2 +

8(ε/δ1/p)((ε/δ1/p)+2σ)
σ2

)
, we have

Pr
x∗∼R′,A,ξ,x̂∼P (·|A,y)

[
‖x∗ − x̂‖ ≥ (c+ 1) η + cσ + (ε/δ1/p)

]
≤e−Ω(m) +

1

1− 2δ
e−Ω(m log c).

This implies that there exists a set SA,ξ over A, ξ satisfying PrA,ξ[SA,ξ] ≥ 1− e−Ω(m), such that for all A, ξ ∈ SA,ξ, we

have

Pr
x∗∼R′,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤

1

1− 2δ
e−Ω(m).

Substituting in Eqn (23), we have

Pr
x∗∼R,x̂∼P (·|y)

[
‖x∗ − x̂‖ ≥ (c+ 1)η + cσ + (ε/δ1/p)

]
≤ 2δ +

1

1− 2δ
e−Ω(m) ≤ 2δ + 2e−Ω(m).

Rescaling c gives us our result.

At the beginning of the proof, we had assumed that W∞(P ′, Q) ≤ η. If instead W∞(R′, Q) ≤ η, then we need to replace η
in the above bound by η + ε

δ1/p
. Rescaling c in the above bound gives us the Theorem statement.

Claim A.2. Consider the setting of the previous theorem. We have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] ≤
1

1− δ2
E
A
[1− TV (Hz̃∗,0, Hz̃∗,2)] , (27)

Proof. For a fixed A, let h0, h2 denote the corresponding densities of the push forward of Pz̃∗,0, Pz̃∗,2. Then we have

E
A,ξ,z∗

Pr [z∗ ∼ Pz̃∗,0, ẑ ∼ Pz̃∗,2(·|u)] = E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,1hz̃∗,1(u) + cz̃∗,2hz̃∗,2(u)
du, (28)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (29)

≤ E
A

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

(1− δ2)Qz̃∗,0hz̃∗,0(u) + (1− δ2)cz̃∗,2hz̃∗,2(u)
du, (30)

≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

Qz̃∗,0hz̃∗,0(u) + cz̃∗,2hz̃∗,2(u)
du, (31)

≤ E
A

1

1− δ2

∫
Qz̃∗hz̃∗,0(u)cz̃∗,2hz̃∗,2(u)

max{Qz̃∗,0hz̃∗,0(u) , cz̃∗,2hz̃∗,2(u)}
du, (32)

= E
A

1

1− δ2

∫
min{Qz̃∗hz̃∗,0(u), cz̃∗,2hz̃∗,2(u)}du, (33)

≤ E
A

1

1− δ2

∫
min{hz̃∗,0(u), hz̃∗,2(u)}du, (34)

=
1

1− δ2
E
A
[1− TV (Hz̃∗,0, Hz̃∗,2)] . (35)
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x∗

A

z y x̂

Figure 7: DAG relating x∗, A, z, y, x̂. The conditional independencies we use are x∗ ⊥⊥ y|z,A and A ⊥⊥ y|z.

B. Lower Bound Proofs

B.1. Proof of Lemma 4.2

Lemma 4.2. Consider the setting of Theorem (4.1). We have

I(y;x∗|A) ≤
m

2
log

(
1 +

1

σ2

)
.

Proof. We have y = Ax∗ + ξ. Let z = Ax∗, which gives y = z + ξ.

We have zi = aT
i
x∗ where ai is the ith row of A, and yi = zi + ξi. Since x∗ is supported within the unit sphere and the

elements of A are drawn from N (0, 1

m
), we have E[y2

i
] = E[〈ai, x〉

2] ≤ 1

m
. Since the Gaussian noise ξ has variance σ2/m

in each coordinate, every coordinate of yi is a Gaussian channel with power constaint 1/m and noise variance σ2/m. Using

Shannon’s AWGN theorem (Cover & Thomas, 2012; Polyanskiy & Wu, 2014; Shannon, 1948), the mutual information

between yi, zi, is bounded by

I(yi; zi) ≤
1

2
log

(
1 +

1

σ2

)
.

The chain rule of entropy and sub-addditivity of entropy implies,

I(y; z) = h(y)− h(y|z) = h(y)− h(y − z|z), (36)

= h(y)− h(ξ|z) = h(y)−
∑

h(ξi|z, ξ1, · · · , ξi−1), (37)

= h(y)−
∑

h(ξi), (38)

≤
∑

h(yi)−
∑

h(ξi), (39)

=
∑

h(yi)−
∑

h(yi|zi), (40)

=
∑

I(yi; zi), (41)

≤
m

2
log

(
1 +

1

σ2

)
. (42)

Now we prove that I(x∗; y|A) ≤ I(y; z).

Consider the mutual information I(x∗, A, z; y). By the chain rule of mutual information, we have

I(x∗, A, z; y) = I(A; y) + I(x∗; y|A) + I(z; y|x∗, A),

= I(A; y) + I(z; y|A) + I(x∗; y|z,A),

⇔ I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A) + I(x∗; y|z,A).

From Figure 7, note that x∗, y, are conditionally independent given z,A. This gives I(x∗; y|z,A) = 0.

This gives

I(x∗; y|A) + I(z; y|x∗, A) = I(z; y|A), (43)
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⇒ I(x∗; y|A) ≤ I(z; y|A). (44)

We can bound I(z; y|A) in the following way.

I(A, z; y) = I(A; y) + I(z; y|A), (45)

= I(z; y) + I(A; y|z), (46)

⇔ I(A; y) + I(z; y|A) = I(z; y) + I(A; y|z), (47)

⇔ I(A; y) + I(z; y|A) = I(z; y), (48)

⇒ I(z; y|A) ≤ I(z; y), . (49)

where the second last line follows from I(A; y|z) = 0, and the last line follows from I(A; y) ≥ 0.

From Eqn (42), (44), (49), we have

I(x∗; y|A) ≤
m

2

(
1 +

1

σ2

)
.

B.2. Proof of Lemma 4.3

Lemma 4.3. Consider the setting of Theorem (4.1). We have

I(x∗; x̂) ≤ I(y;x∗|A).

Proof. Consider the mutual information I(x∗; y,A, x̂). By the chain rule of mutual information, we can express it in two

ways:

I(x∗; y,A, x̂) = I(x∗; y,A) + I(x∗; x̂|y,A), (50)

= I(x∗; x̂) + I(x∗; y,A|x̂). (51)

As x̂ is a function of y,A, we have I(x∗; x̂|y,A) = 0. Also, I(x∗; y,A|x̂) ≥ 0. Substituting in Eqn (50), (51), we have

I(x∗; x̂) ≤ I(x∗; y,A),

= I(x∗;A) + I(x∗; y|A),

= I(x∗; y|A),

where the second line follows from the chain rule of mutual information, and the last line follows because x∗, A, are

independent.

B.3. Proof of Fano variant Lemma 4.4

We will build up Lemma 4.4 in sequence. Before showing it in its full generality, we will show when x, x̂, are discrete

random variables and x is uniform (Lemma B.1. We then lift the uniformity restriction on x (Lemma B.2) before extending

to continuous distributions (Lemma 4.4).

Lemma B.1. Let Q be the uniform distribution over an arbitrary discrete finite set S. Let (x, x̂) be jointly distributed,

where x ∼ Q and x̂ is distributed over an arbitrary countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then we have

I(x; x̂) ≥ τ log Cov4ε,τ+δ(Q)
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Proof. Recall,

H(x) = log(|S|)

H(x | x̂) = H(x)− I(x, x̂)

For any v ∈ supp(x̂), since x is supported on a finite set of cardinality |S|, we have

H(x | x̂ = v) ≤ log(|S|),

⇒ log(|S|)−H(x | x̂ = v) ≥ 0.

By the law of total probability, we have

I(x; x̂) =
∑

v

P (x̂ = v) (log(|S|)−H(x|x̂ = v)) .

Since the above summation has only non-negative terms that average to I(x; x̂), there exists G1 ⊆ supp(x, x̂) with

Pr[G1] ≥ 1− τ, such that for all (u, v) ∈ G1,

log(|S|)−H(x|x̂ = v) ≤
I(x; x̂)

τ
,

⇒ H(x|x̂ = v) ≥ log(|S|)−
I(x; x̂)

τ
,

⇒ |supp(x|x̂ = v)| ≥
|S|

2I(x;x̂)/τ
.

Let B(v, ε) denote the ε-radius ball around v. By the hypothesis of the Lemma, we have ‖x − x̂‖ ≤ ε with probability

≥ 1− δ. By a union bound of the above two inequalities, there exists a set G2 ⊆ supp(x, x̂) satisfying Pr[G2] ≥ 1− τ − δ,

such that for all (u, v) ∈ G2, we have

|supp(x|x̂ = v)| ≥
|S|

2I(x;x̂)/τ
,

supp(x|x̂ = v) ⊆ B(v, ε).

The above two inequalities imply that for all (u, v) ∈ G2, we have

|S ∩B(v, ε)| ≥
|S|

2I(x;x̂)/τ
.

By the definition of G2, (u, v) ∈ G2 satisfy ‖u− v‖ ≤ ε. This gives

|S ∩B(u, 2ε)| ≥
|S|

2I(x;x̂)/τ
.

Therefore any 4ε-packing of this 1− (δ + τ) fraction of x must have size at most 2I(x;x̂)/τ by the pigeon-hole principle.

Hence there exists a size 2I(x;x̂)/τ cover of radius 4ε containing 1− (δ + τ) of Q.

The previous lemma handled the uniform distribution on x. Now we show that a similar result applies if x’s distribution has

quantized probability values.

Lemma B.2. Let Q be a finite discrete distribution over N ∈ N points such that for each u in its support, Q(u) = jα,

where j ∈ N and α := 1
N2

is a discretization level for N2 ∈ N large enough.

Let (x, x̂) be jointly distributed, where x ∼ Q and x̂ is distributed over a countable set, satisfying

Pr [‖x− x̂‖ ≤ ε] ≥ 1− δ.

Then we have

I(x; x̂) ≥ τ log Cov4ε,τ+δ(Q)
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Proof. For each x in the support of Q, we know that its probability is an integral multiple of 1

N2

. Hence we can define a

new random variable x′ = (x, j), x ∈ supp(Q), j ∈ [N2] and a distribution Q′ over x′ in the following way:

Q′((x, j)) =

{
α if jα ≤ Q(x),

0 otherwise .

By definition, Q′ is a uniform distribution, and its support is a discrete subset of Rn × N.

Define the following norm for x′. For x′

1 = (x1, j1), x
′

2 = (x2, j2), define

‖(x1, j1)− (x2, j2)‖ := ‖x1 − x2‖.

In order to apply Lemma B.1 on Q′, it suffices to show that I(x; x̂) = I(x′; x̂).

By the chain rule of mutual information, we have

I(x′; x̂) = I((x, j); x̂)

= I(x; x̂) + I(j; x̂|x).

Since x̂ is purely a function of x, we have I(j; x̂|x) = 0. This gives

I(x′; x̂) = I(x; x̂).

Similarly construct a version x̂′ = (x̂, 0) of x̂, whose second coordinate is identically zero. Hence for x′ = (x, j) ∼ Q′, we

have

‖x′ − x̂′‖ ≤ ε w.p. 1− δ,

I(x′; x̂′) = I(x; x̂)

Applying Lemma B.1 on Q′, we have

τ log Cov4ε,τ+δ(Q
′) ≤ I(x; x̂).

Since the support of the first coordinate of Q′ is the same as the support of Q, we have

τ log Cov4ε,τ+δ(Q) ≤ I(x; x̂).

We now prove Lemma 4.4, which allows (x, x̂) to follow an arbitrary distribution.

Lemma 4.4 (Fano variant). Let (x, x̂) be jointly distributed over Rn × R
n, where x ∼ R and x̂ satisfies

Pr[‖x− x̂‖ ≤ η] ≥ 1− δ.

Then for any τ > 0, we have

I(x; x̂) ≥ 0.99τ log Cov5η,τ+3δ(R).

Proof. Let ε = η, which is the error in the statement of the lemma. Let γ > 0 be a small enough discretization level to be

specified later. For every x, x̂ ∈ R
n, let x̄, ̂̄x denoted the rounding of x, x̂ to the nearest multiple of γ in each coordinate.

Let R̄ be the discrete distribution induced by this discretization of x. We can create such a distribution by assigning the

probability of each cell in the grid to its corresponding coordinate-wise floor. This discretization of the support changes the

error between x, x̂ in the following way. If ‖x− x̂‖ ≤ ε with probability 1− δ, an application of the triangle inequality gives

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− δ. (52)
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We also need to take into account the effect discretizing x, x̂ has on their mutual information. Note that since x̄ is a function

of x alone, and ̂̄x is a function of x̂ alone, by the Data Processing Inequality, we have

I(x̄; ̂̄x) ≤ I(x; x̂). (53)

Note that R̄ is a distribution on a discrete but infinite set. However, for any β ∈ (0, 1], we can find a discrete and finite

distribution Q such that R̄ = (1− c1)Q+ c1D, with c1 ≤ β and D is some other probability distribution. This is feasible

because the probabilites of the infinite support of R̄ must sum to 1, and hence we can find a finite subset that sums to atleast

1 − β for any β ∈ (0, 1]. Note that in this process, we only change the marginal of x̄ without changing the conditional

distribution of ̂̄x|x̄. Let I(x̄; ̂̄x), IQ(x̄; ̂̄x), ID(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of x̄ is

R̄,Q,D, respectively. From Theorem 2.7.4 in (Cover & Thomas, 2012), mutual information is a concave function of the

marginal distribution of x̄ for a fixed conditional distribution of ̂̄x|x̄. An application of Eqn (53) gives us,

I(x; x̂) ≥ I(x̄; ̂̄x) ≥ (1− c1)IQ(x̄; ̂̄x) + c1ID(x̄; ̂̄x), (54)

≥ (1− c1)IQ(x̄; ̂̄x), (55)

≥ (1− β)IQ(x̄; ̂̄x). (56)

Now since the finite distribution Q has a TV distance of at most β to the countable distribution R, using Eqn (52), we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ if x̄ ∼ Q. (57)

In order to apply Lemma B.2 on the distribution Q, we need its probability values to be multiples of some discretization

level α. Let α be a small enough quantization level for the probability values. We will specify the value of α later. We can

now express the distribution Q as a mixture of two distributions Q′, Q′′. The distribution Q′ is obtained by flooring the

probability values under Q and renormalizing to make them sum to 1. The distribution Q′′ is the mass not contained in

Q′, normalized to sum to 1. Since each element in the support of Q loses at most α mass, the total mass in Q′′ prior to

normalization is at most αNβ , where Nβ is the cardinaltiy of the support of Q. This gives

Q = (1− c2)Q
′ + c2Q

′′, c2 ≤ αNβ .

From Eqn (57), we have ‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ when x̄ ∼ Q. Since Q′ has a TV distance of

at most αNβ to Q, if x̄ ∼ Q′, we have

‖x̄− ̂̄x‖ ≤ ε+ 2γ
√
n with probability ≥ 1− β − δ − αNβ if x̄ ∼ Q′. (58)

Let IQ(x̄; ̂̄x), IQ′(x̄; ̂̄x), IQ′′(x̄; ̂̄x) denote the mutual information between x̄, ̂̄x when the marginal of x̄ is Q,Q′, Q′′

respectively. Mutual information is a concave function of the marginal distribution of x̄ for a fixed conditional distribution

of ̂̄x|x̄. Hence using Eqn (56), we have

I(x; x̂)

1− β
≥ IQ(x̄; ̂̄x) ≥ (1− c2)IQ′(x̄; ̂̄x) + c2IQ′′(x̄; ̂̄x), (59)

≥ (1− c2)IQ′(x̄; ̂̄x), (60)

≥ (1− αNβ)IQ′(x̄; ̂̄x). (61)

Hence if x̄ ∼ Q′, we have I(x̄; ̂̄x) ≤ I(x;x̂)
(1−αNβ)(1−β) . Applying Lemma B.2 on the distribution Q′, for any τ > 0, we have

τ log Cov4ε+8γ
√
n,τ+β+δ+αNβ

(Q′) ≤ I(x; x̂)

(1− αNβ)(1− β)
.

Now since Q′ has at least 1−αNβ of the mass under Q and Q has at least 1−δ of the mass under R̄, the mass τ+β+δ+αNβ

not covered under Q′ can be replaced with τ + β + 2δ + 2αNβ under R̄. This gives

τ log Cov4ε+8γ
√
n,τ+β+2δ+2αNβ

(R̄) ≤ I(x; x̂)

(1− αNβ)(1− β)
.
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Now since we can cover the whole distribution of R by extending each element in the support of R̄ by γ in each coordinate,

we can replace the radius 4ε+ 8γ
√
n for R̄ by 4ε+ 10γ

√
n for R. This gives

τ log Cov4ε+10γ
√
n,τ+β+2δ+2αNβ

(R) ≤ I(x; x̂)

(1− αNβ)(1− β)
.

For γ = ε
10

√
n
, β = min

{
δ
3
, 1−

√
0.99

}
, αNβ = min

{
δ
3
, 1−

√
0.99

}
, this becomes

0.99τ log Cov5ε,τ+3δ(R) ≤ I(x; x̂).

B.4. Proof of Theorem 4.1

Theorem 4.1. Let R be a distribution supported on the unit ball in R
n, and x∗ ∼ R. Let y = Ax∗ + ξ, where each element

of A is drawn iid from N (0, 1

m
), and ξ ∼ N (0, σ2

m
Im). If there exists a recovery scheme that uses y and A as inputs and

guarantees

‖x̂− x∗‖ ≤ O(η),

with probability ≥ 1− δ, then for any η > 0, we have

m ≥ 1.98δ

log
(
1 + 1

σ2

) log Cov5η,4δ(R).

Proof. By Lemma 4.3 and Lemma 4.2, we have

I(x∗; x̂) ≤ I(x∗; y|A),

≤ m

2
log

(
1 +

1

σ2

)
.

Applying Lemma 4.4 on the pair (x∗, x̂), with τ = δ, we have

0.99δ log Cov5η,4δ(R) ≤ I(x; x̂) ≤ m

2
log

(
1 +

1

σ2

)
.

or

m ≥ 1.98δ

log
(
1 + 1

σ2

) log Cov5η,4δ(R)

as desired.

C. Experimental Setup

C.1. Datasets and Architecture

For the compressed sensing experiment in Fig 4 and the inpainting experiment in Figure 2 we used the 256×256 GLOW

model (Kingma & Dhariwal, 2018) from the official repository. The test set for Fig 4 consists of the first 10 images used

by (Asim et al., 2019) in their experiments.

For the compressed sensing experiment in Fig 1, 5, 6, we used the FFHQ NCSNv2 model (Song & Ermon, 2020) from the

official repository. The test set for Fig 5 consists of the images 69000-69017 from the FFHQ dataset (this corresponds to the

first 18 images in the last batch of FFHQ images).

In Fig 4 and Fig 5, the measurements have noise satisfying
√

E ‖ξ‖2 = 4.
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C.2. Hyperparameter Selection

CelebA experiments For MAP, we used an Adam and Gradient Descent optimizer. Langevin dy-

namics only uses Gradient Descent. Each algorithm was run with learning rates varying over
[

0.1, 0.01, 0.001, 5 · 10−4, 10−4, 5 · 10−5, 10−5, 5 · 10−6, 10−6
]

. For MAP and Modified-MAP, we also performed

2 random restarts for the initialization z0.

The value of γ in Eqn (7) was varied over [0, 0.1, 0.01, 0.001] for Modified-MAP. MAP uses the theoretically defined value

of σ
2

m
.

For Langevin dynamics, we vary the value of σi according to the schedule proposed by (Song & Ermon, 2019). We start

with σ1 = 16.0, and finish with σ10 = 4.0, such that σi decreases geometrically for i ∈ [10]. For each value of i, we do 200

steps of noisy gradient descent, with the learning rate schedule proposed by (Song & Ermon, 2019).

In order to select the optimal hyperparameters for each m, we chose the hyperparams that give maximum likelihood for

Langevin and MAP. For Modified-MAP, we selected the hyperparameters based on reconstruction error on a holdout set of 5

images.

FFHQ experiments The NCSNv2 model is designed for Langevin dynamics. It can be adapted to MAP by simply not

adding noise at each gradient step. We tune the initial and final values of σ used in (Song & Ermon, 2020), along with the

initial learning rate.

Unfortunately, it is computationally difficult to obtain the likelihood associated with each reconstruction, since the NCSNv2

model only provides ∇ log p(x). Although one could, in theory, do numerical integration to find p(x), we selected the

optimal hyperparameters for each m based on reconstruction error on a holdout set of 5 images.

For the Deep-Decoder, we used the over-parameterized network described in (Asim et al., 2019), and tuned the learning rate

over [0.4, 0.004, 0.0004], and selected the hyper-parameters that optimized the reconstruction error on a holdout set of 5

images.

C.3. Computing Infrastructure

Experiments were run on an NVIDA Quadro P5000.

C.4. Additional Figures

C.5. Code

Our code can be found at https://github.com/anonymous-panda-icml2021/cs-fairness.git We will

publicly release the code, generative model checkpoints, and optimal hypreparameters shortly.






