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ABSTRACT: Homochirality is necessary for normal biochem-
ical processes in humans. Abnormal amounts of chiral
molecules in biofluids have been found in patients with
diabetes. However, the detailed analysis of diabetes-related
abnormal chirality in biofluids and its potential use for clinical
applications have been hindered by the difficulty in detecting
and monitoring the chiral changes in biofluids, due to their low
molar mass and trace concentrations. Herein, we demonstrate
the label-free detection of chiral molecules using only 10 uL
with 107-fold enhancement in sensitivity compared with
traditional plasmonic chiral metamaterials. The ultrahigh
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sensitivity and low sample consumption were enabled by microbubble-induced rapid accumulation of biomolecules on
plasmonic chiral sensors. We have applied our technique on mouse and human urine samples, uncovering the previously
undetectable diabetes-induced abnormal dextrorotatory shift in chirality of urine metabolites. Furthermore, the accumulation-
assisted plasmonic chiral sensing achieved a diagnostic accuracy of 84% on clinical urine samples from human patients. With
the ultrahigh sensitivity, ultralow sample consumption, and fast response, our technique will benefit diabetes research and
could be developed as point-of-care devices for first-line noninvasive screening and prognosis of prediabetes or diabetes and

its complications.
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s building blocks of life, chiral molecules in human
Abodies are usually dominated by one of the

enantiomers, showing homochirality, which is essential
for proper biochemical reactions such as protein folding." An
abnormal concentration of chiral molecules has been observed
in human bodies with increasing agez'3 and various chronic
diseases,” such as cancer, diabetes, kidney disease, and
neurological disease, indicating the potential of applying chiral
biomarkers as health indicators for diagnostic and prognostic
applications.” In particular, elevated levels of many p-type
metabolic molecules in urine have shown a strong correlation
with diabetes mellitus. For example, urine is found to have an
increased level of glucose, which is predominantly p-type in the
human body, due to diabetes-induced glycosuria.” A recent
study found that patients with diabetes also have elevated
urinary p-lactate as compared to controls.” The discovery of
such correlations between diabetes and an elevated level of
chiral metabolic molecules indicates that monitoring the
abnormal chiral changes of urine metabolites may offer a
promising route toward noninvasive diabetes diagnosis and
specific clinical therapy.
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Measurement of chirality of urine metabolites has not been
fully explored as a diagnostic method, hindering clinical
development of chirality-based disease diagnosis and monitor-
ing. In particular, establishing an accurate relationship between
diabetes and chirality of metabolites in urine is crucial to
improving knowledge on the pathological roles of chiral
disorder. However, it remains greatly challenging to rapidly
determine the chirality of urine metabolites with high accuracy.
There are currently no available point-of-care devices that
measure chiral molecules in clinical solution. Specifically,
despite the ultrahigh sensitivity of high-performance liquid
chromatography, gas chromatography, and capillary electro-
phoresis coupled to mass spectroscopy for chiral resolution of
biomarkers,”” such separation-based techniques demand a
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Figure 1. (a) Schematic illustrating the collection and purification of urine samples, and the microbubble-enabled accumulation of chiral
metabolic molecules on MCMs for enhanced chiral sensing and diabetic detection via asymmetric spectral shifts. (b, ¢) Simulated
distribution of electric field enhancement in an RH-MCM under (b) LCP and (c) RCP illumination at a wavelength of 675 nm. The scale bar
is 100 nm. The white dotted lines mark the cross sections of the Au nanohole arrays in the MCMs. (d, e) Simulated distribution of local
optical chirality at the center plane of the RH-MCM under (d) LCP and (e) RCP illuminations at a wavelength of 675 nm. The scale bars are

1 pm.

molecule-exclusive chiral selector.'” The specific measure-
ments of each chiral molecule reduce the ability to investigate
the total chiral level and the effects of overall chiral balance in
body solutions. Although the mass spectrometer has the
capacity to separate chiral molecules, the slow processing
speed, the high cost, and the demand for highly experienced
operators limit the application of mass spectrometer-based
techniques at point-of-care settings.'’ High-throughput chiral
measurements have remained impractical for clinical trials or
patient care. Chiroptical techniques such as circular dichroism
(CD) spectrometers and polarimeters can overcome the limits
of chiral selectors by using polarized light as label-free and
high-throughput chiral selectors. However, conventional
chiroptical methods suffer from large sample consumption
and low molar sensitivity for metabolic molecules with
ultrasmall molecular mass and weak light—matter interactions,
hindering their applications on detecting the trace chiral
metabolites in urine.

Plasmonic chiral metamaterials with strongly enhanced
chiral electromagnetic fields, also known as superchiral fields,
have recently proven promising in label-free chiral sensing of
biomedical molecules with significantly improved sensitiv-
ity."*~*° The locally increased twisting of light polarization in
superchiral fields can induce intense chiral light—matter
interactions, causing asymmetric spectral shifts of the
metamaterials upon adsorption of enantiomers, enabling
ultrasensitive molecular chirality sensing.'” Enantioselective
discrimination of chiral molecules at the picogram level has
been demonstrated for molecules with a wide range of
molecular weights.'” However, plasmon-enhanced chiral
sensing requires the analytes to be physically adsorbed on
the plasmonic surfaces or residing near the superchiral fields
with short (nanometer-scale) working distances. Therefore,
although such techniques can significantly reduce the require-
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ment on sample consumption in comparison with conventional
chiroptical methods, the lowest detectable analyte concen-
tration in a biofluid is limited at ~1 mM to ensure sufficient
molecule—metamaterial interactions, hindering the chiral
sensing of trace urine metabolomes in clinical applications.
To overcome the Brownian diffusion-limited biosensing,
several techmques have been proposed including electro-
phoresis,” thermophoresis,”” and electrothermoplasmonics.”*
Recently, Marangoni convection induced by optothermally
generated microbubbles has been used for concentrating
nanoparticles and proteins, significantly enhancing the
sensitivity of the biosensors.”*™>°

Herein, we demonstrate microbubble-induced intense
accumulation of biomolecules onto our recently developed
plasmonic moiré chiral metamaterials (MCMs)>" > for chiral
sensing of metabolites. Benefiting from the increased molecular
occupation at the superchiral fields, we have achieved the chiral
detection of a solution with glucose and lactate (dominant
chiral metabolic molecules in urine) at concentrations down to
100 pM without the need for chiral selectors. The strongly
enhanced sensitivity further enables the chirality determination
for solutions with mixtures of various metabolic molecules,
requiring only 10 uL of samples. Finally, in combination with a
simple centrifugal purification process to exclude large
nonmetabolic molecules and cells from urine, as shown in
Figure 1(a) and detailed in Methods, the accumulation-assisted
plasmonic chiral sensing has successfully uncovered the
diabetes-induced abnormal chirality in mice and human
urine with a high diagnostic accuracy of 84% for human
clinical samples.

RESULTS AND DISCUSSION

Working Principles of Accumulation-Assisted Plas-
monic Chiral Sensing. The ultrahigh sensitivity in chiral
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Figure 2. (a) Evolution of transmission spectra of an LH-MCM during the successive microbubble-assisted accumulation of glucose on the
substrate. The inset shows the corresponding SEM images of the LH-MCM. The scale bar is 1 gm. (b) Averaged peak shifts (A1) of
transmission spectra of multiple MCMs during the successive microbubble-assisted accumulation of glucose. The x axis shows the time of
each measurement. (¢, d) Evolution of CD spectra of LH-MCMs and RH-MCM:s during the successive microbubble-assisted accumulation of

(c) 1- and (d) p-glucose.

sensing of biomolecules is enabled by two enhancement
mechanisms, the microbubble-induced accumulation of
biomolecules onto the chiral plasmonic substrates and the
subsequent plasmon-enhanced chiral sensing. In this work, we
apply our recently developed plasmonic MCMs,”’ > which
consist of two layers of Au nanohole arrays stacked into moiré
patterns, to generate both the optothermal microbubbles and
the superchiral fields. As shown in Figure 1(a), the irradiation
of a focused laser onto the MCMs induces plasmon-enhanced
optical heating at the laser focus point, vaporizing the solution
above the substrate and generating a microbubble. The
microbubble-induced Marangoni convection can effectively
drag biomolecules in the solution toward the laser spot. The
finite element analysis (FEM) simulation on a microbubble
with a size of 5 um shows that the Marangoni convection
dominates over natural convection by several orders of
magnitude, enabling a maximum flow velocity of ~0.5 m/s
near the gas/liquid interfaces (Supplementary Figure S1). We
have further simulated the drag forces for randomly distributed
glucose molecules near the microbubble using FEM. The
acceleration can reach over 10° m/s® near the microbubble
surface for glucose molecules (Supplementary Figure S2),
overcoming the limits in concentrating small biomolecules
using other techniques such as electrophoresis,”" thermopho-
retics,”> and electrothermoplasmonics.”®> The increased con-
centration of molecules near the substrate and the strong
downward forces at the stagnation area near the microbubble—
substrate interfaces then effectively print the molecules onto
the plasmonic substrate with high binding affinity,”**"**
enabling effective molecule accumulation for enhanced
sensitivity.”” Meanwhile, the localized accumulation through
microbubble concentration also benefits the durability of
MCMs. Assuming an ideal MCM sample is 1 cm” in area with
equal amounts of LH- and RH-MCMs and the area needed for
each measurement is ~5 ym? the durability of the MCMs can
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be up to millions of times. The approximated area of bubble-
printed molecules is S #m” on the substrate.

The plasmon-enhanced chiral near-fields further improve the
chiral sensing of the accumulated molecules. We have
previously demonstrated the generation of strong near-field
optical chirality in the left-handed (LH) and right-handed
(RH) MCMs with precisely controllable handedness through
the interlayer rotation angle between the two layers of Au
nanohole arrays.”” >’ Figure 1(b and c) show the simulated
cross-sectional distribution of plasmon-enhanced electric fields
for an RH-MCM with a 15° interlayer rotation angle under
incident light with RH circular polarization (RCP) and LH
circular polarization (LCP), respectively. The large differences
in both distribution and amplitude of electric hot spots under
RCP and LCP excitations show the strong chiroptical
responses of the MCM. We have further simulated superchiral
fields, which are quantified by the local optical chirality (C), in
the MCM under LCP and RCP excitations, respectively, as
shown in Figure 1(d and e). The local optical chirality (C) is
obtained by C = —n’eyw Im[E*-B]/2, where n, &), , E, and B
are the refractive index, free space permittivity, frequency, local
electric fields, and local magnetic fields, respectively. The local
optical chirality (C) is used to quantify the near-field chirality
in the excitation of chiral molecules with plasmonic
nanostructure. The positive sign is corresponding to LCP,
while the negative sign is corresponding to RCP.>**> The large
enhancement factors (~10) of local optical chirality enable the
strongly enhanced chiral light—matter interactions and
enantioselective discrimination of chiral metabolic molecules
through asymmetric spectral shifts, as schematically shown in
Figure l(a).lz’27

We have tested the microbubble-assisted accumulation on
MCMs and its effects in chiral sensing using a 100 #M glucose
solution in deionized water. Successive microbubbles are
generated at the same spot, where each microbubble is
maintained for 5 s and allowed to collapse before the
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Figure 4. (a) CD spectral shifts (A1) and dissymmetry factors (AAA) at various ratios of a p- and L-glucose mixture solution with 100 uM
total concentration. (b) CD spectral shifts (A1) and dissymmetry factors (AAA) at various ratios of p-glucose and L-lactate mixture solutions
with 100 M total concentration. Error bars indicate mean + SD. The bubble concentration time for the mixture solutions is S s.

generation of the next microbubble. The total time from
bubble generation to collapse is within 10 s, showing several
orders faster molecule accumulation than other techniques.”**
The optical transmission of the MCMs is measured after the
collapse of each bubble. Continuous red-shifts in the
transmission spectra can be observed after the successive
generation of microbubbles, as shown in Figure 2(a). The
spectral shifts (AA) are saturated at ~12 nm after S
microbubbles and remain unchanged after more than 10 min
without new microbubble generation, indicating the complete
and stable occupation of plasmonic hot spots with accumulated
glucose molecules. The scanning electron microscope image in
Supplementary Figure S3 shows the concentrated glucose
molecules on the MCM after the collapse of the microbubble,
confirming that the molecules are firmly printed on the
substrates. It is worth mentioning that the microbubbles are
generated using optimized laser power to ensure that the local
temperature is below the denaturizing point (146 °C) for
glucose.””**

The chiral sensing of the accumulated molecules is then
achieved by analyzing the asymmetric shifts of the CD spectra
of LH- and RH-MCMs upon the adsorption of chiral
molecules. Here the CD is obtained by 32.98° X (Trep —
Ticp), where Tyep and Tycp are the optical transmission of
MCMs under RCP and LCP light, respectively.***” Figure
2(c) and (d) show the CD spectral shifts of the LH- and RH-
MCMs induced by the successive microbubble-assisted
accumulation of L- and D-glucose, respectively. The successive
printing of L-glucose on the substrate causes continuous red-
shifts for the CD peak of the RH-MCM and continuous blue-
shifts for the CD dip of the RH-MCMs, as shown in Figure
2(c). In contrast, the spectral shifting trends are reversed for
the D-glucose cases (i.e., blue-shifts for the LH-MCM and red-
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shifts for the RH-MCMs), as shown in Figure 2(d). We
quantify the molecular chirality-dependent asymmetric CD
spectral shifts of the MCMs using dissymmetry factors (AAA =
Alpimem — Adpamen), where Adpyyvem and Adgyrvem are
the CD spectral shifts of LH-MCM and RH-MCM,
respectively, due to the microbubble-induced accumulation
of chiral molecules on the MCMs. As shown in Figure 2(c and
d), the successive generation of three microbubbles (com-
pleted in less than 1 min) leads to dissymmetry factors of
—12.2 and 13.1 nm for a 100 M solution of L- and D-glucose,
respectively, enabling the effective detection of molecular
chirality. We have further verified the chiral sensing
effectiveness of our technique by comparing the magnitudes
of CD spectra of the LH- and RH-MCMs before and after
molecule adsorption,'”*” where asymmetric summation of CD
can be generated by chiral molecules as shown in
Supplementary Figure S4. To confirm that no photothermally
induced chiral denaturation occurs during microbubble
generation, we have measured the CD spectra of p-glucose
solutions using a UV-CD spectrometer before and after a
boiling water bath. The absence of spectral changes caused by
the water bath indicates that the chiral parameters of glucose
remain stable at water vapor generation temperature
(Supplementary Figure SS).

We then demonstrated the large enhancement in sensitivity
of the chiral sensing achieved by microbubble-induced
accumulation. We compare the dissymmetry factors obtained
by accumulation-enhanced sensing and conventional stationary
sensing without microbubble generation, where the chirality
detection is achieved by the comparison between CD shifts in
solution with and without chiral molecules.”” Figure 3 shows
the sensing performances for both p- and L-glucose solution
with various concentrations. For stationary sensing without
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microbubble-induced accumulation, the dissymmetry factors
(AA2) of both p- and L-glucose solution reduce as
concentration decreases. At a concentration of 10 mM (i.e.,
18 mg/mL), AAJ has a negative value of —1.8 nm for L-
glucose and a positive value of 1.9 nm for p-glucose, which are
comparable to the state-of-the-art superchiral-fields-enabled
chiral sensing.'” When glucose concentration is further
reduced, the CD spectral shifts cannot be resolved using the
stationary method, leading to undetectable chirality. In
comparison, the microbubble-induced accumulation-enhanced
sensing can achieve even larger dissymmetry factors at a
glucose concentration of 100 yM than the value obtained at
100 mM using the stationary method, as shown in Figure 3.
Extraordinarily, the chirality of glucose can still be resolved
when the concentration is down to 100 pM (i.e., 18 pg/mL),
which shows ~107 times enhancement in sensitivity comparing
to state-of-the-art plasmonic chiral sensors.'*"”

Chirality Determination of Metabolite Mixtures. We
have further applied the accumulation-assisted plasmonic chiral
sensing in ultrasensitive monitoring chirality changes in
solution with various mixtures of chiral biomolecules. Such
capability is crucial in developing techniques for quantitatively
monitoring the chirality of urine metabolites, which consist of
enantiomers of various metabolic molecules. We first apply the
accumulation-assisted plasmonic chiral sensing to determine
the chirality of a solution with p- and r-glucose at various
enantiomeric ratios, as shown in Figure 4(a). The dissymmetry
factor (AAZ) gradually decreases from ~9 nm to ~0 nm as the
ratio between D- and L-glucose decreases from 100:1 (i.e., near
pure) to 1:1 (i.e., racemic), showing the good match between
measured chirality via accumulation-assisted plasmonic chiral
sensing and the actual enantiomeric status in solution. We have
further tested the chirality monitoring of mixtures with
different chiral biomolecules. As an example, we measured
the dissymmetry factors of solutions with mixtures of p-glucose
and L-lactate at various ratios. In a controlled experiment, we
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have shown that the microbubbles have near equal
accumulation efficiencies for glucose and lactate (Supplemen-
tary Figure S6). In another controlled experiment, we have also
shown that the accumulation-assisted plasmonic chiral sensing
can determine the chirality of a pure lactate solution with high
accuracy (Supplementary Figure S7). As shown in Figure 4(b),
the measured dissymmetry factor (AAA) gradually evolves
from positive to negative as the ratio of p-glucose to L-lactate
increases, matching the gradual changes from dextrorotatory to
levorotatory status in solution. It is worth mentioning that the
measured dissymmetry factors (AAA) have different absolute
values between the 10:1 and 1:10 (D-glucose:L-lactate) cases.
In addition, in contrast to the near-zero value for the 1:1
mixture of D- and L-glucose solution, the dissymmetry factor
(AAZ) shows a positive value (~1.7 nm) in a 1:1 mixture of D-
glucose and L-lactate. Such differences are attributed to the
different chiral parameters between glucose and lactate, where
polarimeter has proven to be an alternative method to quantify
the magnitude of chiral parameters (Supplementary Figure
S8). Compared with commercial polarimeters, requiring
sample amounts of several milliliters, our technique can
achieve chirality sensing at 100 M using only ~10 uL of
sample, corresponding to 3 orders reduction in sample
consumption.

Detection of Diabetes-Induced Abnormal Chirality.
Abnormal chirality of metabolites in plasma has been measured
using a polarimeter approach and has proven promising as an
indicator for diabetes detection.*"** However, sensing the
chirality of metabolites in urine samples is less invasive and can
be developed as a potential noninvasive point-of-care
diagnosis. However, many metabolites, including glucose, are
reduced by 3 orders of magnitude compared to the blood
level.* With the several orders of improved sensitivity of the
accumulation-assisted plasmonic chiral sensor, we have
overcome the detection limit of conventional polarimeters,
enabling the rapid determination of total chirality of
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metabolites in urine with high accuracy. We first tested the
effectiveness of our technique on urine samples collected from
mice with and without diabetes. The protocols for preparing,
collecting, and purifying urine samples from mice are detailed
in Methods. As shown in Figure S(a) and (c) and
Supplementary Figure S9, the normalized dissymmetry factors
(AAA/Agm) measured using our accumulation-assisted plas-
monic chiral sensor have average values of —0.07 and 0.7 for
urine samples collected from normal and diabetic mice,
respectively. Due to MCM artifacts and variation of bubble
concentration efficiency between samples, we used the
normalized dissymmetry factors instead of dissymmetry factors
to minimize system errors. The negative value of AAA/A, for
controls indicates that normal urine is dominated by LH
molecules such as L-lactates, L-amino acids, and derivatives.**
Comparing the normalized dissymmetry factors to the
concentrations of glucose and lactate obtained using an
enzymatic method (as shown in Supplementary Table S1),
the abnormal dextrorotatory values in normalized dissymmetry
factors for samples from diabetic mice could be attributed to
the diabetes-induced increase of the p-glucose level in urine.”
The large differences in the measured normalized dissymmetry
factors demonstrate the effectiveness of our accumulation-
assisted plasmonic chiral sensors in monitoring the chirality
changes in urine metabolites. The opposite signs and small
overlaps in the measured normalized dissymmetry factors also
reveal the existence of diabetes-induced abnormal chirality in
the urine of mice.

We then applied our accumulation-assisted plasmonic chiral
sensor to urine samples collected from humans with and
without diabetes. Similar to the mice, the values of normalized
dissymmetry factors (AAA/A,,) for the diabetic samples are
overall more positive than those of normal samples, as shown
in Figure S(b) and Supplementary Figures S10 and S11. We
also measured the glucose and lactate concentration in both
normal and diabetic human urine using an enzymatic test for
comparison (Table S2 and Table S3). The level of these
metabolites shows 1 order lower average values than those in
mice urine (Table S1) likely due to the greater volume in
human urine. Such a low level of metabolite concentration will
be difficult to accurately detect with other approaches. In
addition, chirality changes will also be very difficult to detect
via conventional label-free chiroptical methods (i.e., CD
spectrometry and polarimetry) due to the low concentration
of the enantiomeric metabolites in human urine. In
comparison, despite the existence of a small overlap in values,
the good contrast in the normalized dissymmetry factors
between normal and diabetic urine samples demonstrates the
capability of our method to uncover the otherwise hidden
strong correlations between diabetes and abnormal chirality of
metabolites in human urine, as shown in Figure 5(d).

We further conducted receiver operating characteristic
(ROC) analysis to determine the diagnostic accuracy by
calculating the area under the curve (AUC) values. The AUC
value obtained using the accumulation-assisted plasmonic
chiral sensor based on AAA/A,, is 84%, as shown in Figure
5(e), demonstrating the potential value of our technique in
noninvasive diagnostic applications. In comparison, the AUC
value is 72% in the same cohort for enzyme tests of glucose in
urine, which is a standard biomarker for conventional diabetes
examination. The higher AUC value of our approach may
partly be explained by the better sensitivity of glucosuria with
our methods as well as detecting overall chirality from non-
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glucose urine metabolites. The overall chiral changes of urine
molecules could be more accurate as markers than elevated
glucose concentration in urine for the screening of diabetes. As
several studies have also identified an increase in D-lactate and
D-amino acids in the urine of patients with diabetes and the
link to diabetes-related complications, there may be added
value in measuring and quantifying total urine chirality in
patients with known diabetes. The higher AUC value from the
chirality analysis than the urine glucose concentration alone
indicates the likely abnormal changes of other chiral molecules
(i.e., carboxylic acids and amino acids) besides glucose in
diabetic human urine. We have selectively compared the L-
lactate concentrations in human urine samples between normal
controls and patients with diabetes with similarly low glucose
concentrations (below 1 mM) in this cohort. As shown in
Figure S12, the diabetic patients in this group have lower
urinary L-lactate concentrations than normal controls. Consid-
ering the well-studied increase of D-lactate in diabetes
patients,”*> ™" we hypothesize that the abnormal changes of
D- to L-lactate ratio could contribute to the more dextrorotary
values in total chirality in diabetic patients over normal
controls in our study. Therefore, the diagnostic accuracy is
improved using our technique than using enzymatic
approaches for glucose, especially when controls and diabetics
have similar glucose levels. It is worth noting that the abnormal
levels of chiral amino acids in diabetes, which have been
observed in plasma and nails but less studied in urine, could
also contribute to the changes in total chirality.”**** Our
results indicate the need for more studies on correlations
between diabetes and abnormal chiral changes of metabolic
molecules in urine. Such measurements in well-defined cohorts
may be useful for a better understanding and noninvasive
diagnosis of diabetes and its complications.”

CONCLUSIONS

In summary, we have developed accumulation-assisted
plasmonic chiral sensing to achieve ultrasensitive, rapid, and
label-free chirality detection of diabetes-related metabolic
molecules. The optothermally generated microbubbles create
strong Marangoni convections, enabling large drag forces on
metabolic molecules with small molar masses toward the
plasmonic chiral metamaterials. The dense occupation of
accumulated molecules at the plasmonic hot spots in
metamaterials enables label-free chiral detection of glucose
down to 100 pM. We have further achieved the detection and
monitoring of ratio-dependent chirality changes in mixtures of
various metabolic molecules with high sensitivity and accuracy,
while requiring 3 orders less sample consumption (~10 uL)
than commercial chiroptical techniques. Benefiting from the
ultrahigh sensitivity and low sample consumption, the
accumulation-assisted plasmonic chiral sensing has revealed
the typically hidden diabetes-induced abnormal chirality of
metabolites in urine samples collected from mice and humans.
The ROC analysis of our technique demonstrates a higher
diagnostic accuracy of 84% in comparison with 72% from
enzyme tests of glucose level for human urine samples. Our
results reveal an important role of abnormal chirality of urine
metabolites in future studies of patients with diabetes. The
high cost-effectiveness and short characterization time (<1
min) of accumulation-assisted plasmonic chiral sensing show
great potential in the development of point-of-care devices for
first-line noninvasive screening and prognosis of early stage
prediabetes or diabetes and its complications. We envision that

https://doi.org/10.1021/acsnano.0c08822
ACS Nano 2021, 15, 6448—6456


http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsnano.0c08822/suppl_file/nn0c08822_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.0c08822?rel=cite-as&ref=PDF&jav=VoR

ACS Nano

www.acsnano.org

more detailed chiral analysis could be enabled using our
technique by enhancing the specificity via improved filtering or
integration of microfluidic-based separation techniques. As
chiral molecules have been found to be altered in several
cancers as well, a routine chiral detection that is sensitive and
noninvasive could also be used for detecting occult
malignancies based on human urine testing.51

METHODS

Optical Setup. The experimental setup is shown in Supple-
mentary Figure S13. The optical setup consists of an inverted
microscope with a white light source. A highly focused laser beam
with a wavelength of 532 nm was first expanded with a 5X beam
expander to increase its beam diameter. Then the beam diameter was
reduced to S ym and applied to heat the MCMs for microbubble
generation after an infinity-corrected tube lens (Nikon) and an
objective lens. The circularly polarized light is generated by
sequentially passing the broadband halogen lamp light through a
linear polarizer and a quarter-wave plate. The transmission spectra of
the circularly polarized light after passing through MCMs were
collected with an in situ spectrometer. The tunable slit between the
spectrometer and the objective is adjusted to 10 um to avoid
background noise. A motorized microscope stage with stepper motor
was used to precisely change the position of the focused laser beam in
the x—y plane and align the laser at the center position on the
spectrometer for each measurement. LabVIEW software was used to
control the power of the laser beam for the bubble generation.

Substrate Fabrication. MCMs were fabricated on glass
substrates through nanosphere lithography and wet etching/transfer
as reported previously.”” The polystyrene spheres were purchased
from Thermo Scientific Inc. The fabrication process can be divided
into two processes. In process 1, the glass substrate was cleaned with
acetone and deionized water and then dried with nitrogen flow.
Monolayer polystyrene spheres were then self-assembled into a
hexagonally closed-packed colloidal monolayer on the glass substrate.
Reactive ion etching (March Plasma CS170IF RIE Etching System)
was applied to reduce the diameters of the polystyrene spheres. The
substrate is then coated with a chrome layer as an adhesive layer and
Au layer through electron beam evaporation (Cooke ebeam/sputter
deposition system). The polystyrene spheres were peeled off by the
adhesive tape, leaving uniform Au nanohole arrays on the substrate.

In process 2, a sacrificial Cu layer was first deposited on the
precleaned glass substrate through electron beam evaporation. The
following steps are similar to those of process 1. Briefly, uniform Au
nanohole arrays are fabricated on the Cu layers. Then a thin
poly(methyl methacrylate) (PMMA) film is spin coated on the Au
nanohole arrays, followed by baking. The selective etching of the Cu
substrate was achieved by floating the substrate on the Cu etchant.
The floating substrate was then transferred onto the Au nanohole
arrays fabricated in process 1, followed by drying overnight in a
vacuum oven at room temperature. The substrate was then dipped
into an acetone solution to remove the PMMA layer, washed by
deionized water, and dried under nitrogen gas. Finally, the substrate
was baked on the heater to remove excess water.

Chemical and Urine Preparation. L-Glucose, p-glucose, L-
lactate, and D-lactate were all purchased from Sigma-Aldrich. The
solutions with various concentrations were prepared using filtered
deionized water. The diabetic mice were purchased and were bred for
use as type-II diabetes models. The deidentified human urine
solutions were collected at clinics, prepped by centrifugation, and
then aliquoted for storage at —80 °C. To filter large cells, extracellular
vesicles, and proteins, we further centrifuged the urine samples using
filters and left the remaining solution with ultrametabolites for
measurement.

Sample Preparation. Before experiments, the MCMs were first
washed using deionized water and dried with nitrogen gas, followed
by oxygen plasmon cleaning in UV ozone. An adhesive spacer was
firmly placed onto the MCM substrates. Next, we added a droplet of
water or analytes (~10 uL) into channels on the spacer. Another
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clean glass slide was then placed on top of the analyte solutions,
forming a sealed microfluidic cell, which was then placed on the stage
of the inverted microscope for analysis. We waited for 10 s for the
liquid to stabilize and then conducted the optical characterization.

After the measurement, we removed the top glass slides and added
deionized water to remove the analytes. Then we dipped the substrate
into the deionized water for S min and dried it with nitrogen flow for
the next measurement.

Optical Characterization. Each optical measurement was
conducted using accumulated acquisition protocols to reduce the
spectral noise. For each analyte, more than three measurements were
conducted on LH-MCMs and RH-MCMS, respectively. Specifically,
in the stationary case, the CD spectrum is first measured in deionized
water without analytes and then measured with the analytes. In the
accumulation-assisted concentration case, we first measured the CD
spectra before the preconcentration of the analytes and then
conducted the accumulation-assisted concentration at the same
location. After the bubble collapses, we took another CD spectra
measurement and compared it with the previous CD spectra before
preconcentration. The duration of each bubble preconcentration is
described in the legend of each figure. The data will be considered
valid only when there is a continuous red-shift in the transmission
spectra after bubble concentration.

Enzymatic Methods. The glucose and lactate were measured
using biochemistry analyzers, which utilize the inherent specificity of
enzyme reactions for multiple analyte detection through a single
measurement.

Numerical Simulations. We used a commercially available
software package (FDTD Solutions, Lumerical Inc.) to simulate the
transmission spectra and near-field distributions of MCMs. The
circularly polarized light was excited by the combination of an x-
polarized plane-wave source with its phase set to 0 and a y-polarized
plane-wave source with its phase set to +90 or —90 deg. The dielectric
function of the Au was taken from Johnson and Christy.”> The
reflective index of the surrounding medium was set to 1.33. The mesh
size within the plasmonic materials was 5 nm in all three directions.
The mesh size for other regions was adjusted to 10 nm. All outer
boundaries were set as perfectly matched layers.

The temperature and flow simulations were performed using
COMSOL Multiphysics (www.comsol.com, ver. 5.4a). A 2D axis-
symmetric model comprising a glass substrate and water was
established. The physics of the model includes preloaded modules
of heat transfer in solids, liquids, and nonisothermal laminar flow
coupled with conjugate heat transfer physics. For Rayleigh Barnard
convection, no bubble is modeled, and a rectangular domain was
utilized with density as a function of temperature. The temperature is
evaluated, density is calculated, and the flow velocity is updated in an
iterative method by the solver, resulting in a converging solution. For
simulating Marangoni flow, a bubble is geometrically inserted, and
modules embedded within the laminar flow module are utilized to
input the surface tension gradient on the bubble surface. Laser power
absorbed by the gold substrate is modeled as Gaussian heat influx and
is coupled to heat transfer in water using temperature continuity at
the surface. The metasurfaces are incorporated into the model
through the absorption coefficient fraction of the experimental laser
power. Other surfaces are maintained at a room temperature of 293 K.
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