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Abstract.  

Monte Carlo simulations were performed to study the phase behavior of equimolar mixtures of spheres 

and cubes having selective inter-species affinity. Such a selectivity was designed to promote the formation 

of the substitutionally ordered NaCl compound, the “C* phase”, and to be driven not only by energetic 

bonds but also entropic bonds generated by dimples on the cube facets. Nestling of the spheres in the cube 

indentations can promote negative nonadditive mixing and increase the C* phase packing entropy. The 

focus is on congruent phase behavior wherein the C* phase directly melts into, and can be conveniently 

accessed from, the disordered state. A specialized thermodynamic integration scheme was used to trace the 

coexisting curves for varying values of the interspecies contact energy, , the relative indentation size, , 

and the sphere-to-cube size ratio, . By starting from a known coexistence point with  > 0 and  = 0 (no 

indentation), it is found that increasing  (at fixed * and ) reduces the free-energy and pressure of the C* 

phase at coexistence, indicative of stronger entropic bonding. Remarkably, it is demonstrated that a purely 

athermal C* phase (i.e., with * = 0) can be formed for   0.7 and suitable choices of . A metric of 

nonadditive (excess) volume of mixing is also suggested as an approximate predictor of athermal C* phase 

stability. The principles used to engineer selective entropic bonds and compounds with congruent melting 

are expected to be applicable to other particle shapes and crystalline phases. 
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1. INTRODUCTION 

Nanoparticles (NPs) can be arranged into different periodic structures with optical,1 

electronic,2 and catalytic or mechanical3,4 properties that have potential applications in the 

development of materials for fuel cell membranes, solar photovoltaics, and carbon dioxide 

storage.5 Hence, engineering the self-assembly of these particles by tuning entropic and energetic 

interactions has become one of the central themes of recent investigations devoted to mapping the 

phase diagrams of NP mixtures.1,6–9 The implementation of energetic interactions usually includes 

electrostatic charges,1,7 grafted complementary DNA or DNA-like strands,8,10–13 and patchy or 

directional binding potentials.9 Likewise, entropic interactions can be engineered by leveraging, 

e.g., the preferential packing arrangements of NPs with polyhedral facets9 or with complementary-

shapes.14  

Considering the plethora of arrangements that can be produced based on NP building 

blocks and the chosen energetic interactions, a key challenge to address is to predict the conditions 

at which desirable phases can be formed. Many papers9,15–23 have reported on the phase behavior 

of pure-component convex and stoichiometric mixtures of polyhedral systems. Non-convex 

polyhedral NPs have also been studied,14,18,24,25 but to a much lesser extent. Some non-convex 

particles which have already been synthesized experimentally include frame rings and cages,26–28  

curved and circular segments,29,30 branched and non-convex polyhedra,31–33 protruded and multi-

cavity particles,34,35 and dimpled spheres.36 Depending on the shape of the non-convexity, it is 

expected that materials containing such particles will exhibit distinct microstructures and 

associated thermophysical properties. For example, particles with protrusions do not typically pack 

densely, which can impact mechanical strength,37 while particles with non-convex or 
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complementary shapes can assemble into porous ordered microstructures.14 Specifically, the effect 

of the entropic lock-and-key attraction of shape-complementary particles designed to generate 

nonadditive mixing can lead to the formation of lattices that favor states of high packing entropy.38–

40 Despite their promise, non-convex particle modeling with analytical models presents some 

challenges associated with slow global ergodic equilibration, representation of particle geometry, 

and the development of overlap algorithms to represent excluded-volume interactions in hard-core 

systems.14   

Nonadditive mixing occurs when the volume of the mixed state is either larger (positive) 

or smaller (negative) than the sum of the individual components’ volumes. Nonadditive mixing 

can occur, e.g., when the characteristic length “” of contact between two particles A and B differs 

from the arithmetic average of the characteristic contact lengths for A pairs and B pairs (𝜎𝐴𝐵  =

 ((𝜎𝐴𝐴 + 𝜎𝐵𝐵) 2⁄  + Δ); i.e., for spherical sites, it deviates from the so-called Lorentz’s additivity 

rule. One of the first models developed using this property was the Widom-Rowlinson binary 

mixture of spheres,41, which produced fluid-vapor and fluid-fluid transitions when like species are 

repulsive and unlike species are non-interacting (Δ > 0). In the Asakura-Oosawa model42 for the 

depletion effect of polymeric depletants on large colloidal particles, the polymer coils only exclude 

volume to the colloids but not to other polymer coils. Similarly, the nonadditive Holland model43 

has been used to model the chemisorption of gases in the crystal phase.43 A key feature of these 

models is that the nonadditivity parameter (Δ) induces an entropy-driven demixing phase transition 

at high densities.44 Note, however, that a solid-fluid mixture can exhibit reentrant mixing with  

for a small range of Δ.45 More recently, Kumar and Molinero introduced a model that combines a 

positive value of Δ with a high cross interaction energy parameter (𝜀𝐴𝐵 𝜀𝐴𝐴 > 1⁄ ) between two 

spherical particles, which lead to the formation of a wide variety of novel liquid-crystals.46  
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NP-based stoichiometric crystals or compounds constitute a novel class of materials where 

the effects of nonadditivity could be very significant. These materials are analogous to salts and 

intermetallic alloys and also expected to have properties that are not merely an interpolation of the 

features of their components.9 Such compounds are most conveniently attained by the selective 

energetic attraction between unlike NP pairs. That is the reason why several experimental studies 

have focused on achieving such selectivity by grafting the NPs with complementary DNA-

strands.8,13,47 In one of these studies,47 mixtures of spheres and either cubes or octahedra formed 

crystals with a NaCl and CsCl lattices, respectively. Partially motivated by these observations, our 

group proposed a general rule to maximize the thermodynamic stability of stoichiometric colloidal 

mixtures, and applied it to the cases of spheres + cubes and spheres + octahedra; the rules provide 

specific prescriptions for optimizing the components’ relative size and cross interaction energetic 

parameter.9,17 Another takeaway from this study was that the formation of the NaCl lattice only 

happened with a strong enough inter-species attraction parameter of the directional potential, a 

selectivity effect experimentally achievable with complementary DNA strands. This energetic 

directional attraction between cubes and spheres is necessary to form a compound phase since 

mixing entropy favors the formation of substitutionally disordered solid solutions.17  

The formation of substitutionally ordered compounds is potentially achievable in athermal 

systems; for example, binary hard-spheres of specific size ratios have been predicted to form 

different types of compounds.48 However, additive hard-sphere mixtures do not exhibit congruent 

melting/freezing (where liquid and solid have the same composition), which would make very 

difficult the usual experimental route of crystallizing such compounds directly from the isotropic 

state.17 Note that congruent phase behavior is the second most common among binary organic 

mixtures.49 Pertinently, it has been proven that nonadditive binary hard-sphere mixtures50 can form 
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compound solids that do exhibit congruent melting/freezing. In that study, however, nonadditivity 

was enacted by artificially imposing a  < 0 in the Lorentz mixing rule, an attribute that is highly 

non-trivial to achieve with realistic entropic interactions alone. 

Because inter-species selective attraction can favor or be necessary to form binary 

compound phases and to have congruent melting/freezing, we use the flat cubes + spheres system 

studied in Ref. [9] as a starting point, and then introduce entropic bonds by making the cubes non-

convex via indentations complementary to the spheres, as illustrated in Figure 1. Such indentations 

or dimples allow the cube-sphere contact distance to be closer than what would be expected from 

the additivity of cube-cube or sphere-sphere contact distances, hence generating a negative 

nonadditivity ( < 0). By modeling the phase behavior of the mixture of spheres and non-convex 

cubes, we aim to study the effect of the size of the dents; i.e., the non-convexity ratio (𝜆) of the 

cubes, on the formation and stabilization of the compound crystal phase, which is henceforth 

denoted as the C* phase.  is an experimentally attainable and tunable feature, which is also easy 

to envision and model geometrically. This model will also allow us to address a fundamental 

question that motivated this study: Can the underlying lock-and-key effect create a strong enough 

entropic attraction to access the crystal phase from the isotropic phase (congruent behavior) in the 

absence of energetic attractions? 
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a) 
 

b) 
Figure 1: Representation of nonadditive mixtures of a) spheres + cube and b) cube + cube 

 

2. COMPUTATIONAL METHODS  

2.1. System and force field 

The system used here of non-convex cubes of side a and spheres of diameter σ aims to provide 

a coarse-grained representation of preferential inter-species interactions. Following the baseline 

system of Ref. [9], we model the interactions between like particles (sphere-sphere or cube-cube) 

to be entirely repulsive. In contrast, the interactions between unlike particles follow a simplified 

squared-well like potential: 

 𝑈11 = 𝑈22 = {
∞, 𝑖𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   𝑈12 =  {

∞, 𝑖𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

−𝜀∗𝑘𝑇, 𝑟 ≤ 𝑟𝑐 , 𝛿 ≤ 0.8
𝑎

2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1) 

 

Here, r is the distance between the particle centers, 𝛿 is the distance between the sphere center 

and the vector pointing out from the facet center and normal to it (see Figure 2 (a)). 𝛿 is set to be 

40% of the cube side, so it favors sphere-polyhedral facet contact instead of sphere-polyhedral 

edge contact. The cutoff distance (𝑟𝑐 ) is set to limit the range of the attraction energy between the 
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sphere and cube facet. By limiting the attraction of spheres and cubes to only occur over a limited 

range of interparticle distances and high facet alignment, we can enact an energetic contact bond 

analogous to that from multiple hydrogen bonds formed during DNA hybridization. The main 

difference between the model used in this paper and that in our previous works9,17 is that the 

parameters 𝑟𝑐 and the criteria for overlap are now dependent on the diameter of the spherical 

indentations (𝑑ℎ) depicted in the diagram of Figure 2 (b): 

 𝑟𝑐 = 𝑑𝑚𝑖𝑛  +  0.15𝑎 (2) 

 𝑑𝑚𝑖𝑛  =  
𝑎

2
 + 

1

2
√𝜎2 − 𝑑ℎ

2 
(3) 

 𝛿𝑚𝑎𝑥  =  
1

2
[𝑑ℎ  − √𝜎2 − (2𝑑 −  𝑎)2] (4) 

The 𝛿𝑚𝑎𝑥 of Eq. (4) is the maximum 𝛿 that a nested sphere can have without overlapping with 

the edge of the cube, as shown in Figure 2 (a). The basis for the overlap criteria was the Arvo 

algorithm.51 The criterion for overlap avoidance is that the distance d defined in Figure 2 (b) should 

be larger than the 𝑑𝑚𝑖𝑛 value prescribed in Eq. (3). 

 

 

 

 

 



8 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 2: Schematics of the system geometry and criteria used to determine overlap for (a)-(b) non-convex cube 

+sphere pair and (c) non-convex cube + non-convex cube pair.  

 

The criterion to detect overlaps between non-convex cubes was based on the separating axes 

theorem.52 We implemented some modifications on the standard cube-cube overlap algorithm to 

allow the edges of a cube to penetrate the spherical indentations of another cube, such as the case 
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illustrated in Figure 2 (c). For this purpose, we followed three steps: (i) Calculate the distance 

between the center of cube 1 (C1) and all the vertices of cube 2.  (ii) Store the vertex of cube 2 

(V2) that is closest to C1 (iii) Check if the distance between the closest facet of cube 1 (F1) and 

V2 is smaller than the depth of the concavity (𝑑𝑝), see Figure 2 (c). (iv) If  this criterion is satisfied, 

then we check if the distances between the intersection points of cube 2 with the facets of cube 1 

(e.g., I1 and I2) and CF1 are larger than the indentation radius (i.e., > ½𝑑ℎ).  Another important 

geometrical feature of our system is the ratio 𝜁 between the characteristic lengths of the spheres 

and cubes in the compound phase. It is defined as: 

𝜁 =  𝜎 𝑎⁄  (5) 

The spheres need to be slightly bigger than the cubes so that each sphere could simultaneously 

nest with four cubes in the NaCl (C*) phase. The initial ratio chosen for the analysis was ζ =

 1.23, a value that was found to provide maximum stability of the substitutionally disordered 

crystal phase of spheres and convex cubes.15 The geometrical parameter used to define the non-

convexity ratio of the cubes is: 

𝜆 =  𝑑ℎ 𝑎⁄  (6) 

which is used as varying parameter to map the phase diagram of the mixture (playing a role akin 

to that of parameter ζ  for the system with convex cubes in Ref. [9]). These parameters are defined 

in dimensionless form to facilitate the thermodynamic integration calculations. As a guide for the 

following sections, we summarize our system's parameters in Table 1. 
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Table1: Design parameters for the spheres + dimpled cubes system. 

Symbol Meaning [Equation #] 
Range 

explored 

𝜆 
Ratio of indentation diameter to sphere 

diameter [Eq. (6)] 

0.0 – 1.0 

𝜁 
Ratio of sphere diameter to cube edge 

[Eq. (5)] 

1.19-1.36 

𝜀∗ 
Contact energy between cubes and 

spheres [Eq. (1)] 

0.0 – 1.0 

 

  We propose as an approximate metric for the nonadditivity parameter, v, a reduced excess 

volume:  

Δ𝑣 = 𝑣(C∗) 𝑣(premix)⁄ − 1 (7) 

Where v(C*) is the volume of the C* phase at infinite pressure (densest state), and v(premix) is 

the volume of pure cubes and pure spheres before mixing happens at the equimolar composition 

and densest state. For Δ𝑣 < 0, we have negative volume of mixing. v has the advantage of being 

equally applicable to isotropic and anisotropic NP shapes or potentials. 

Figure 3 shows how v varies with . It is clear that relatively large values of  are needed to 

attain a negative nonadditivity in comparing the C* with the crystal states of pure cubes and 

spheres; e.g., for  = 1.23 we would require  > 0.8. While any indentation size (>0) does create 

an entropic sphere-cube facet bonding effect, a large , enough to generate negative nonadditivity, 

would be expected to be crucial to stabilize the C* phase in the absence of any energetic bonding 

(i.e., for * = 0); this prediction will be revisited in the Results Section. 
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Figure 3: Nonadditive mixing parameter as defined in Eq. (7) as a function of  for three different values of . 

Error estimates from statistical fluctuations are smaller than the symbols sizes.  

 

2.2. Free energy methods 

We aim to trace coexistence lines, i.e., the thermodynamic properties of the coexisting C* phase 

and the isotropic phase (I) as a function of  𝜆 [in Eq. (6)], ζ [in Eq. (5)], and * [in Eq. (1)]. For 

notational brevity, these model parameters, which are part of the system Hamiltonian, will be 

denoted by the symbol f in the equations below (f = , , or *). In our system, we are fixing the 

number of particles (N), reciprocal temperature (𝛽 = 1 𝑘𝑇⁄ ), pressure (P), and composition since 

we are only looking into the (equimolar) stoichiometric mixture. Hence, the free energy (𝜙) can 

be written as a function of the isobaric-isothermal configurational partition function: 

𝑁𝜙 =  −ln ∑ exp[−𝛽𝑈(𝑓) − 𝛽𝑃𝑉] (8) 

where U is configurational energy, and V is volume. The relation between changes in f and P at 

constant 𝛽 is given by the thermodynamic equation for the intensive dimensionless free energy : 
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𝑑 = 𝑧𝑑𝑓 +  𝑣𝑑𝑝  (9) 

where 𝑝 =  𝛽𝑃, 𝑣 =  (𝜕𝜙 𝜕𝛽𝑃)⁄
𝑓,𝛽

= 𝑉/𝑁, and 𝑧 =  (𝜕𝜙 𝜕𝑓)⁄
𝛽𝑃,𝛽

. The derivative z is 

evaluated in simulation using a finite perturbation approximation: 

𝑧 ≈  −
1

𝑁𝛿𝑓
ln

∑ exp[−𝛽𝑈(𝑓 + 𝛿𝑓) − 𝛽𝑃𝑉]

∑ exp[−𝛽𝑈(𝑓) − 𝛽𝑃𝑉]

= −
1

𝑁𝛿𝑓
ln〈exp[−𝛽𝑈(𝑓 + 𝛿𝑓) + 𝛽𝑈(𝑓)]〉 (10) 

Here, 𝛿𝑓 is a small perturbation on the control variable 𝑓. If we can decouple 𝑓 from U (i.e., 

𝛽𝑈(𝑓) = 𝑓𝑈′), as for the case when 𝑓 =  𝜀∗, Eq. (10) can be  written as: 

𝑧 ≈  
〈𝑈′〉

𝑁
=  𝑢′ (11) 

Derivations of these approximations can be found in reference [9]. With equations (10) or (11) 

showing how the coefficients of Eq. (9) are found in simulation, we can stepwise integrate Eq. (9) 

numerically to evaluate changes in 𝜙. To target the phase I-C* phase coexistence conditions, one 

then writes Eq. (8) separately for both the C* and I phases and then combine them to make sure 

that, for identical values (and changes) in f and p the free-energy  is identical in both phases. 

Among the methods available to estimate free-energy changes, we adopt the Free-Energy 

Extrapolation (FENEX)15 method as it combines the robustness of Gibbs-Duhem integration 

method53 with the ability to estimate free energies of histogram-based methods54–56 by using 

polynomial models to extrapolate the free energy. As with any integration method, we need to start 

our integration from a known state. Since our previous studies explored the phase behavior of 

convex (flat-facet) cubes, we started the integrations from the coexistence states found in the 

reference paper.9 In Reference [9], the coexistence pressure between the C* and I phases was 

mapped as a function of a dimensionless energy parameter 𝜀∗  for convex cubes; i.e., for 𝜆 = 0. 
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To mitigate possible finite-integration step errors associated with the methodology, we redid the 

integration in reference [9] to have finer integration steps and hence a more accurate coexistence 

curve. After this calculation, we picked a point on this curve to carry out integrations for varying 

degree of indentation 𝜆. We obtained the coexistence lines for different values of 𝜆 (using points 

generated in the previous step) by performing the integration over 𝜀∗. The integrations stopped at 

the point in which the obtained coexistence pressure resulted in the melting or transformation of 

the C* phase. Finally, we fixed 𝜀∗ and 𝜆 to integrate over the variable 𝜁. As can be seen, three 

types of integrations were performed: 

(i) For the integrations over 𝜀∗at fixed  and 𝜁, z is given in Eq. (11) and Eq. (9) becomes: 

𝑑 = 𝑢′𝑑𝜀∗  +  𝑣𝑑𝑝 (12) 

The simulations on both the I and C* are carried out at fixed values of 𝑑ℎ (or 𝜆),  𝜀∗, and p, so 

that the averages and covariances of the potential energy (u) and specific volume (v) are stored as 

these are needed for the FENEX calculations.  

(ii) For integrations over 𝜆 at fixed 𝜀∗ and 𝜁,  z needs to be evaluated from Eq. (10) due to its 

non-linear relationship to the Hamiltonian of our system. Here, we are fixing the cube edge (a) 

and changing the non-convexity ratio (𝜆), so the equation to integrate has the following form: 

𝑑 = 𝑧1𝑑𝜆 +  𝑣𝑑𝑝 (13) 

During the concurrent simulations for both phases, the values of p, 𝜀∗, and 𝜆 remain fixed. 

However, small virtual perturbations (𝛿𝜆 = -0.00005) on 𝜆 are probed (but not enacted) to calculate 

z via Eq. (10), whose value and those of 𝑣 and their covariances are evaluated. Integrations over 𝜁 

 at fixed 𝜀∗ and 𝜆  follow the same procedure. The difference is that we are fixing the cube edge 
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(a) and changing the sphere diameter (𝜎), and the perturbations probed are positive (𝛿𝜁  = 0.00005). 

The equation to integrate is: 

𝑑 = 𝑧2𝑑𝜎 +  𝑣𝑑𝑝 (14) 

Details of how the FENEX method calculates the next coexistence point on the integration from 

the polynomial models are explained elsewhere.9,15 To check the consistency of the method and 

obtain an error estimate for the pressure and free-energy values, we repeated the same integration 

over 𝑓 in two different directions (e.g., first on the direction of increasing 𝜆  and then in the 

direction of decreasing 𝜆). The results from these two integrations at each step were averaged to 

report coexistence p and  values and subtracted to estimate the integration method's error. 

    We note that alternative methods could also be used to find the sought-after I-C* phase 

coexistence states such as interfacial simulations16,57,58 (with both phases present in a single box) 

and gradual decompression/compression or heating/cooling runs that directly detect when one 

phase transforms into the other.16,18 Compared to Gibbs-Duhem type on integration methods for 

mixtures,15,54 however, the former method entails multiple trial-and-error exploratory runs and 

stronger finite-size effects, while the latter method is prone to very large hysteretic effects. 

 

2.3. Simulation details 

All simulations on the C* and I phases were carried using the Monte Carlo (MC) method in the 

isothermal-isobaric ensemble (N1N2PT). The initial configuration is a perfect NaCl lattice for the 

C* phase and a pre-equilibrated isotropic box for the I phase. The ratio of cubes to spheres (N1 and 

N2) is fixed to 1 and the total number of particles N = 1728 was also chosen to fit the NaCl lattice 

symmetry in a cubic box. Henceforth, all the simulation results will be reported in the following 
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reduced units: 𝜀∗ = 𝜀𝛽, 𝑣 = 𝑉/𝑁𝐿3, 𝑝 = 𝛽𝑃𝐿3, and  𝜌 = 𝑁𝐿3/𝑉, where the reciprocal 

temperature 𝛽 is set to 1  and L is half the cube edge length (𝑎/2).  

The coexistence pressure obtained from the FENEX method was used on the NPT simulations 

of the C* and I phases. These simulations for every point along the estimated coexistence line 

consisted of 3×106 MC cycles, in which the first 106 were equilibration cycles. Additional cycles 

were carried out if there were large volume fluctuations during the simulation. Each cycle 

consisted of N translation moves, N rotational moves (performed only on the cubes), N/5 swap 

moves, and 3 volumes attempts. To calculate z in Eq. (10) when integrating over 𝜆 or 𝜁, one virtual 

move per MC cycle was also conducted to change the size of indentation or the sphere, 

respectively. Upon completing the simulations, we calculated a series of order parameters (OP) on 

the resulting structures to characterize the crystalline phase. The first OP used was the average 

cubatic orientational order parameter P4: 59  

𝑃4  =  
1

14𝑁2
∑ 35

𝑖𝑗

|𝒖𝑖𝑗 ∙ 𝒏|
4

− 30|𝒖𝑖𝑗 ∙ 𝒏|
2

+ 3 
(15) 

where 𝑁2 is the number of cubes, 𝒖𝑖𝑗 is the unit vector of particle i along its axis j, and 𝐧 is the 

unit vector that maximizes P4. We also calculated a short-range compositional order parameter 

(SROP) to determine if the structure exhibited the expected substitutional order of the compound. 

For the C* phase studied here, every sphere should have cubes as its six nearest neighbors and vice 

versa. Hence, we define an average SROP for our system as:60 

SROP =  
1

𝑁
∑

𝑡𝑖 

6
𝑖

 
(16) 

where 𝑡𝑖 is the number of different-species neighbors of particle i among its six closest neighbors. 
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2.4. Overall Simulation Strategy  

Figure 4 depicts the (, , *) search space where our main goal is to identify athermal I-C* 

congruent phase coexistence states, shown as a closed gray area on the - plane (* = 0). Recalling 

that such athermal states are unattainable for the flat-cube case,9 our strategy to find them, as per 

the methodology described above, can be summarized by the 3 steps listed below and illustrated 

in Fig. 4: 

Step 1 (green line in Fig. 4). Carry out a FENEX integration over  at fixed  𝜀∗ = 𝜀0
∗ and  =  , 

from  = 0 = 0 (flat-faced cubes) to  = 1. We have to start from 0 = 0 with energetic interactions 

(|*|> 0) since those conditions are the only known I-C* phase coexisting states which can be used 

to initiate any new FENEX integration.9 The initial point is depicted by a black circle in Fig. 4 and 

corresponds to  𝜀0
∗= 0.55,  = 1.23, and 0 = 0. 

Step 2 (blue lines in Fig. 4). Integrate over * at fixed  and  =  , from 𝜀∗ = 𝜀0
∗  to 𝜀∗→ 0 or 

until I-C* phase coexistence is maintained. These integrations were performed for a range of 

different  values to detect conditions when the athermal I-C* phase coexistence was attainable. 

Step 3 (red lines in Fig 4). Perform integrations over   at fixed  and * and integrations over 

* at fixed  and   to identify other combinations of  and   that result in an athermal C* phase. 

Crossing the stability boundary of I-C* phase coexistence could manifest here by either phase I or 

C* switching into a different phase.  

Note that integrations along a single variable (keeping the other two parameters constant) also 

allow us to elucidate the effect of that variable on phase stability and microstructure; i.e., to isolate 

the effect of indentation (in step 1), strength of energetic contacts (in step 2) and relative sphere to 

cube sizes (in step 3). Note also that for any (, ) combination where athermal I-C* states occur, 
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there is an associated range of pressures (i.e., thermodynamic states) which are not visible in Fig. 

4.  

 
Figure 4: Depiction of the (, , *) space to explore and the - region (shaded in gray) where athermal I-C* phase 

behavior occurs. Steps 1 (green arrow), 2 (blue arrows), and 3 (red arrows) correspond to sequential FENEX 

integrations aimed to locate states in the gray region. 

 

 

3. RESULTS 

3.1. Phase behavior for non-convex cubes at fixed 𝜻   

The initial point to start the analysis of the effect of the non-convexity ratio on the phase 

behavior was chosen from the integration for the flat-faced cubes (𝜆 = 0).9 These I-C* coexistence 

conditions correspond to 𝜀∗ = 0.55 , 𝜁 = 1.23, and 𝑝 = 0.948. This specific point of 𝜀∗ was 

chosen because the NaCl lattice order characteristics are well maintained. It was shown previously 

that the C* phase for a system of convex cubes and spheres is not stable for 𝜀∗ < 0.5.9 By keeping 

𝜀∗ and 𝜁 constant and integrating Eq. (13) over 𝜆, we obtained the coexistence curve of  Figure 5. 

The error bars for the free-energies and pressures in Figure 5 were calculated as described in 

Section 2.2. As expected, the decrease in the free-energy at coexistence with the relative size of 

the cube indentation, 𝜆, shows the strengthening of the entropic attraction generated by the more 
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complementary sphere-cube nesting interactions, which favors the realization of the C* phase. 

After 𝜆 = 0.8, the coexistence pressure seems to stabilize. As a check to the stability of the C* 

phase along this I-C* phase coexistence pressure curve, we calculated the extent of the alignment 

of the cubes using the average cubatic orientational order parameter P4
59 (with standard errors 

estimated from statistical fluctuation around the average values). 

 
Figure 5:  Reduced I-C* phase coexistence pressure (p) (red),orientational order parameter (P4) (blue), and free 

energy at coexistence (ϕcoex) (green) of the C* phase as a function of the non-convexity ratio (𝜆) for 𝜀∗ = 0.55. 

Errors were smaller than 0.1 for ϕcoex and smaller than 0.005 for p and P4. 

 

Following the strategy laid out in Sec. 2.4, we carried integrations of Eq. (12) to get the 

coexistence pressure curves as a function of 𝜆 for different * values as shown in Figure 6(a). These 

curves have the same behavior as the one in Figure 5, with the coexistence pressure decreasing 

with increasing 𝜆 for up to 𝜆  0.8 and plateauing thereafter. The free energy at coexistence also 

followed a similar trend (results not shown). The minimum value of 𝜀∗ for which the C* does not 

melt (𝜀∗near 0.5) remains almost unchanged for 𝜆 < 0.5, and finally reaches 𝜀∗  =  0 for 𝜆 = 0.9. 

This region where the C* is stable can been seen in Figure 6 (b). These results indicate that cubes 
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with a spherical indentation diameter of greater than 90% of their edge-length and sphere/cube 

ratio of 𝜁 = 1.23 create a strong enough directional bond between the cubes and the spheres to 

result in a congruent I-C* phase behavior, even in the absence of any energetic attraction; i.e., a 

purely athermal system. These results are remarkably consistent with the predictions of Figure 4, 

which pointed to  > 0.8 (for  = 1.23) as the necessary condition to generate a negative 

nonadditive mixing and hence large enough gains in packing entropy to drive, by itself, the 

preferential nesting of spheres in cube dimples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

                      (a) 

                        (b) 

Figure 6: (a) I-C* coexistence pressure (p) as a function of inter-species energy parameter ε* and non-convexity 

ratio (𝜆). (b) Minimum value of ε* capable of stabilizing the C* phase for different values of 𝜆 for 𝜁 = 1.23. 

 

We carried out a structural and visual analysis to characterize the influence of the indentation 

on the C* phase for the minimum values ε* of Fig. 6(b). First, we calculated the structural factor 

S(k) of all particles to check the maintenance of translational order in the form of the periodic 

patterns. Figure 7 shows selected snapshots and their corresponding projections of S(k) on the x-

y (100 crystal) plane which confirm the conservation of the expected crystalline structure, even 
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for 𝜀∗ close or equal to zero. Additional snapshots for other , * values are available in the 

supplementary information. Figure 8 shows the average P4 of the cubes and the average SROP 

order parameters (including the packing fraction η for reference) for these minimum * boundary 

points, further confirming that orientational and compositional ordering of the C* phase is 

maintained. The increase in both the SROP and P4 parameters with λ, even in the absence of 

energetic interactions, is indicative of the growing strength of the entropic bonds enacted by the 

larger/deeper indentations. For the I phase, the SROP fluctuated closely around 0.5 and the P4 

values were almost zero for all conditions examined.  

 

       (a) 

      (b)  

 
Figure 7: Representative snapshots of the C* phase and (as insets) projection of the structure factor S(k) on the x-y 

plane at phase coexistence  for  (a)  λ =0 and ε* = 0.51 (b)   λ =0.9 and ε* = 0.  The latter exhibits stronger signals of 

positional and substitutional ordering.  
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Figure 8: Order parameter values for SROP, P4, and packing fraction (η) for the C* phase at its low-ε* stability limit 

corresponding to each λ. Standard errors for the average order parameters were smaller than 0.01. 

 

3.2. Combine effect of  𝜻  and  on I-C* phase behavior 

 Using the results of Section 3.1 as initial I-C* phase coexistence points, we integrated over 𝜁 

to find if other combinations of  𝜆  and 𝜁 would stabilize the athermal C* phase, as explained in 

Section 2.4. We started with 𝜆 = 0.8 since the minimum ε* was already close to zero. The 

integration resulted in a value of   𝜁 =  1.26  as the minimum value for which athermal I-C* 

equilibrium is possible. Figure 9 shows this stability region of the C* and the I-C* coexistence 

pressures. The same procedure was repeated for 𝜆 = 0.7 , and we found the correspondent 

minimum value of 𝜁 to be equal to 1.30 (see Figure 10). The error bars in the pressures were 

estimated as described in Sec. 2.2. Note that as illustrated by red lines in Fig. 2, different integration 

paths were used to get the points (and respective errors) in Figure 9 (b) and 10 (b). As an example, 

we started from the point  𝜁 =1.23, ε*= 0.1, 𝜆 = 0.8 and integrated first over 𝜁 and then over ε*. 

The resulting point  𝜁 =1.26 , 𝜆 = 0.8, ε*=0 was then used as the starting point for the new 

integration over  𝜁.  We also performed integrations in the direction of decreasing 𝜁 until a value 

of 1.19, but they did not result in a smaller value of ε* as the terminal point for the I-C* phase 



23 

 

equilibrium. This may happen because smaller spheres allow an increased contact among 

neighboring cubes, and edge-concave region contacts (see Figure 2 (b)) tend to favor the I phase. 

Also, the nonadditive mixing is not geometrically favorable for smaller spheres, as seen in Figure 

3. The fact that the smallest  at which the athermal C* phase stabilizes is  = 0.9 for  = 1.23 but 

only  = 0.7 (a smaller cavity) for  = 1.30 is consistent with the curves in Fig. 3 that show that 

the negative mixing effect is stronger for  = 1.30. 

 
(a) 

 
(b) 

Figure 9: (a) Minimum value of ε* capable of stabilizing the crystal phase for 𝜆 = 0.8 as a function of  𝜁. (b) I-C* 

coexistence pressure (p) (red) and P4 (blue) vs. 𝜁  for the points in (a). Estimated errors in p were smaller than 0.01, 

and standard errors in P4 were ~ 0.003.  
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(a) 

 
(b) 

Figure 10: (a) Minimum value of ε* capable of stabilizing the crystal phase for 𝜆 = 0.7 as a function of  𝜁. (b) I-C* 

coexistence pressure (p) (red) and P4 (blue) vs. 𝜁  for the points in (a). Errors in p estimated to be ~ 0.005, and 

standard errors in P4 to be ~ 0.004. 

  

Besides the plots of P4 in Figures 9(b) and 10(b) that check the persistence of orientational 

order of the cubes, we also calculated the S(k) to confirm the translational order of the athermal 

C* phases. In Figure S.2, we show sample S(k) plots as insets for representative snapshots. Since 

the athermal I-C* phase transition was attained for  = these conditions were used as starting 
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point for the integrations over    for  = 0.9 and  = 1.0 at ε*= 0  These pressure-  phase diagrams 

are shown in the supplementary information. 

Figure 11 shows the relative free-energy of the athermal C* phase, coex (at the I-C* athermal 

coexistence boundary) for several  values in the [0.7-1.0] range. Such coex values are readily 

accessible from the FENEX calculation.9,15 Following the optimization rule demonstrated in Ref. 

[9], lower coex values signal a more stable C* phase. Accordingly, it is clear that for a given  

value, increasing  tends to lower the stability of the C* phase, a result consistent with the notion 

that a larger  means that a smaller portion of the sphere can nestle in the fixed-sized cube dimple, 

creating a weaker entropic bond. This trend also aligns with the corresponding trend of coexisting 

pressures seen in Figures 9 and 10 (with higher p needed to accentuate the pressure-volume 

contribution to the free-energy associated with the negative nonadditive mixing in the C* phase). 

Moreover, Figure 11 shows that for a given  the larger the cavity (bigger ) the lower the free 

energy and hence the better the system is in stabilizing the C* phase.  

 
 
Figure 11: Coexistence free energy coex of the athermal (ε* = 0) C* phase as a function of ζ for different values 

of . The points correspond to those shown in Figs. 9, 10, and S3. Errors estimated to be < 0.05. 
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Figure 12 summarizes the − conditions at which the athermal I-C* phase coexistence was 

observed in our simulations. This athermal parameter space is enclosed by a tentative gray area 

akin to the target region depicted in Figure 4. We observed that the athermal phase transition is 

restricted to high values of the indentation diameter. Size ratios  smaller than 1.23 did not stabilize 

the athermal C* phase even for  > 0.9, while larger than 1.35 ratios destabilized the I phase for  

= 0.9. These results and the gray region in Fig. 12 are roughly consistent with the combination of 

- values for which our non-additive mixing parameter v is negative (see pink-shaded region in 

Fig. 3). For   0.8, certain combinations of  and  outside the gray region generated a 

coexistence between the C* and another crystalline phase. Selected results and analysis about this 

outer area of the phase diagram are provided in the supplementary information.  

 
Figure 12 - region (shaded in gray and black dots) where athermal (ε* = 0) I-C* phase behavior occurred in 

our simulations. Points outside this athermal boundary are marked by the phase transformation observed: C*→ I (C* 

phase melted), I →  Solid Sol. (I phase became a substitutionally disorder solid), and I  →  Two-Phase (I phase 

separated into sphere-rich crystal + cube-rich crystal). Pink shaded region corresponds to negative values of 

nonadditive mixing parameter v calculated as per Eq. (7).  
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4. CONCLUSIONS 

We studied the I-C* phase transition of spheres and non-convex dimpled cubes to elucidate the 

effect of varying non-convexity and hence varying degrees of component nonadditivity. We used 

a known and previously studied system of convex (flat-faced) cubes and spheres as a testbed since 

these mixtures can form a substitutionally ordered C* phase when energetic attractions 

(characterized by a well-depth parameter *) are present. Using this as a reference system, we 

mapped the progression in phase behavior as we increased the size  of the indentation of the cubes 

by using the FENEX method. This method can trace coexistence properties by thermodynamic 

integration along a single variable using polynomial models to fit free-energy data. We used the 

point 𝜆 = 0 and 𝜀∗ = 0.55, 𝜁 = 1.23 as a starting state to obtain coexistence curves for different 

non-convexity ratios ( > 0) of the cubes. We also performed structural analyses to ensure that the 

states being mapped corresponded to coexistence conditions between the I and C* phase.  

The integration carried at fixed 𝜀∗ and 𝜁 for increasing value of  showed that the presence of 

concave regions on the cubes results in lower coexistence free-energies and pressures (noting that 

pressure is the main knob used to drive the C*-phase efficient packing), these trends indicate that 

the indentation helped to stabilize the crystal phase. Furthermore, multiple coexistence lines were 

estimated for different 𝜆s to find out a crossover value of the concavity that would render the cube-

sphere energetic attractions unnecessary to form the C* phase. For a fixed 𝜁 = 1.23, that crossover 

value was 𝜆 = 0.9, which suggests that high non-convexity ratios are necessary to enact a strong 

entropic bond. Another effect of the cube indentation was that the C* phase had fewer defects and 

stronger orientational order for higher values of 𝜆. We further conducted integrations over the 

sphere-to-cube size ratio 𝜁 and 𝜆 to outline the region in the 𝜆 − 𝜁 design space where athermal I-
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C* phase coexistence is attainable, showing that the viable 𝜁 range narrows as 𝜆 decreases down 

to  𝜆 = 0.7. We also found that certain combinations of  𝜆 and 𝜁 led to states where congruent 

melting no longer occurs as another phase outcompeted the I phase for coexistence with the C* 

phase.   

In general, these results show that one can tune the strength of the inter-species entropic bonds 

to favor ordered phases by adjusting either the size of the concavity on the polyhedral facets or the 

relative sphere-to-cube ratio. Similar studies of mixtures of spheres and other types of indented 

polyhedra, like octahedra and dodecahedra, can probe the effect of different NP “valence” (i.e., 

facets per polyhedron) on the nonadditivity effect of other crystalline compounds. Indeed, some 

of these types of concave cubical,61,62 octahedral and dodecahedral frames63,64 have already been 

synthesized experimentally. Hence, NPs such as these could be used to try to realize 

experimentally the congruent phase behavior predicted by simulations. Additionally, the square-

well potential used here describes the energetic interactions simplistically because the focus was 

on the entropic effect of the cube dimples. For future work, we can improve the description of 

DNA-mediate-interactions with more detailed representations, such as distance-dependent inter-

particle contact energies and polybead models,57,65 to identify more subtle multi-body effects on 

the phase behavior. Beyond thermodynamic stability, it would be interesting to identify design 

parameters and conditions that lead to robust I  C* phase-transition kinetic pathways.65 

Simulation work along these lines is currently underway. 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for additional snapshots of the C* phase and I-C* phase coexistence 

data for different conditions  
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