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Abstract

Many hard faceted nanoparticles are known to undergo disorder-to-order phase transitions following a
classical nucleation and growth mechanism. In a previous study [J. Phys. Chem. B 2018, 122, 9264-9273]
it was shown that hard cubes undergo a non-classical phase transition with a bulk character instead of
originating from consolidated nuclei. Significantly, an unusually high fraction of ordered particles was
observed in the metastable basin of the disordered phase, even for very low degrees of supersaturation.
This work aims to substantiate the conjecture that these unique properties originate from a comparatively
low interfacial free energy between the disordered and ordered phases for hard cubes relative to other
hard particle systems. Using the cleaving wall method to directly measure the interfacial free energy for
cubes, it is found that its values are indeed small, e.g., at phase coexistence conditions it is only one fifth
that for hard spheres. A theoretical nucleation model is used to explore the broader implications of low

interfacial tension values and how this could result in a bulk ordering mechanism.
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1. Introduction

Recent advancements in chemical synthesis’™ have enabled an unprecedented control of the shape and
monodispersity of nanoparticles. Such tailored nano-scale colloids are important as building blocks for
bottom-up materials design*® with potential applications in photonics® and plasmonics.’®!! In the
absence of strong, ligand- or patch-mediated energetic interactions, the self-assembling properties of
colloidal nanoparticles can be largely traced to their shape and have been predicted through ‘hard’
particle models, e.g., the formation of different crystalline structures,'? and mesophases,**” and the
occurrence of phase transitions.’®* To date, many of these predictions have been confirmed through

experiments. 12729

Computer simulations have revealed that hard colloidal nanoparticles generally undergo first-order,
disorder-to-order phase transitions in 3D space.’®?1?2 One of the first cases studied through simulations
was that of hard spheres,° which form a face-centered cubic (FCC) lattice via nucleation and growth.'®*°
Adding anisotropy to the shape of the particle, say by adding facets, alters the phase behavior by favoring
ordered structures that enhance packing entropy.'>! As for the phase transition kinetics, the faceted

particles studied thus far have been found to generally order via nucleation and growth 2172331

13,32,33 and

Remarkably, simulations of hard cubic nanoparticles reveal both unusual phase behavior
ordering kinetics. Upon compression, they form an ordered phase with orientationally aligned particles
arranged in a simple cubic lattice. Near the phase transition, this ordered phase has an unusually high
diffusivity and concentration of vacancies for a crystalline phase when compared to that for other particle
shapes. In a recent study?* where the disorder-to-order transition of hard cubes was tracked and free-

energy barriers mapped via umbrella sampling, we observed that the kinetic pathway toward ordering

was also unusual. Unlike most other polyhedra that have been studied in literature,?t?? the phase
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transition in cubes is not well described by classical nucleation and growth. Instead, it undergoes a ‘bulk-

like’ transition behavior with the following features:

(i) Alarge number of sparse, small clusters of ordered particles are present in the disordered phase.
The concentration of ordered particles increases with supersaturation and, at a given
supersaturation, is much higher when compared to other polyhedra that undergo nucleation and
growth.

(ii) The apparent free energy barrier for the ordering transition was found to scale linearly with
system size, which would imply that in a system of macroscopic size the transition would be
practically impossible.

(iii) At no or minimal degree of supersaturation, a critical concentration of ordered cubes — rather
than a critically-sized ordered nucleus - needs to be attained for the transition to proceed. During
the transition, the fraction of ordered particles gradually increases, leading to consolidation of

ordered domains and an eventual transition to the ordered phase.

It is well established that any stable or metastable phase will exhibit local fluctuations in structural order
where motifs associated with another phase may occur.3* While these fluctuations will largely be
transient, they will also encompass the seeds of an incipient (stable) phase as it nucleates and grows
within a metastable phase. Of course, that such fluctuations also exist in a stable phase — albeit fewer and
too small to initiate any phase transition. The presence of a significant fraction of ordered particles in a
disordered phase reflects the ease of creating interfaces in the system, i.e., a small interfacial free energy
between ordered and disordered phases. Hence, we hypothesize that the abundance of such fluctuations
that resemble the ordered phase (henceforth simply referred to as cubatic fluctuations) in the disordered
phase of cubes could be attributed to a low surface tension. In this paper we conduct direct measurements
of the interfacial free energy of a disorder-order interface for hard cubes and compare the resulting values

to those of other hard-core systems. We also present a mass action-derived classical nucleation theory
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(MADCNT) model to qualitatively understand how the extent of cubatic fluctuations depends on

interfacial free energy.

The paper is structured as follows: In Section 2 we outline the implementation of the cleaving walls
method in Monte Carlo simulations. In Section 3 we present our results and discuss them in the context
of a theoretical model to explore the consequences of low surface tensions on concentration of cubatic

fluctuations. In Section 4 we provide a summary and outlook of our results.

2. Methods

2.1 Model

For any two cubic particles j and j, we use a hard pair-potential given by:

0 ifno overlap

Uy = {oo if overlap (1)

The overlap is detected by using the separating axis theorem.®

2.2 Monte Carlo Simulations

We use Metropolis®*® Monte Carlo (MC) simulations in either the canonical (NVT) or the isothermal-
isobaric (NpT) ensemble as necessary, where N is the total number of particles, V is the volume of the
system, p is the pressure, and T is the temperature. We use scaled units consistent with our previous

3

studies,®® with lengths scaled by the circumradius (a.) of the polyhedron. Thus, the dimensionless

. : 1 .
pressure is given by p = Bp,a3, where p, is the unscaled pressureand § = P where kg is Boltzmann’s
B

constant. The chemical potential 4 and free energy (AG) are scaled by kgT and the dimensionless

interfacial free energy is given by ¥y = fy,a? where y, is the unscaled interfacial free energy. For
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comparison among different particle shapes we tried to remove the dependence on the choice of length

scale a., by defining a reduced dimensionless interfacial free energy as y = ZLB, where p; is the density
Ps

of the solid/ordered phase. This definition is identical to that in an earlier study,?! and is consistent with
the dimensionless surface component of free energy in classical nucleation theory. The supersaturation
is defined as Apyq = Uo — Uaq, Where u, and u, are chemical potentials associated with ordered and
disordered phases, respectively. The coexistence pressure p., for hard cubes under this scalingis p = 4.0
as reported in literature.3? The simulations used periodic boundary conditions to mimic bulk behavior.
Each MC cycle included N translation, N rotation, and 2 isotropic volume moves (for NpT ensemble runs

only).

2.3 Cleaving Walls Method

2.3.1 Outline

The cleaving walls method used in this study is a Monte Carlo adaptation of an existing method3® typically
implemented using molecular dynamics simulations. While there have been several modifications of the
method over the years®’ to improve accuracy, we use an early, simple implementation which proved to
be sufficiently accurate for our purposes. To the best of our knowledge this is the first implementation of

the method using Monte Carlo simulations.
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Figure 1: Schematic illustration of steps in the cleaving walls method. (a) Bulk simulation boxes of solid and liquid phases with
three-dimensional periodic boundary conditions at the desired pressure. (b) Phases cleaved at the midplanes. (c) Transposed
simulation boxes with dissimilar phases facing each other. (d) Final two-phase state with the gap closed and the two interfaces

created.

The method involves three steps:

I.  Cleaving: Start from independent simulation boxes of the two phases at a given pressure (Figure
1a). The two boxes need to have the same cross-sectional dimensions along the cleaving plane
and satisfy periodic boundary conditions. Move the cleaving walls to create a gap in the midplane

of the simulation box such that particles do not interact across the gap (Figure 1b).
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II.  Transposition: Rearrange the boxes as shown in Figure 1c to create a larger simulation box with
two gaps with dissimilar phases facing each other.
[l Merging: Recede the two pairs of cleaving walls to close the gaps, creating two interfaces (Figure

1d).

The interfacial free energy is then defined as the work done through these steps per unit area of the
interface created. Since the interfacial particles do not undergo any change in energy at Step Il, the

interfacial free energy y is given by the following expression:
Yy =wr+wy (2)

Where wy; is the work done per unit area on both systems in Step |, and wy,; is the work done per unit
area on the transposed system in Step Ill. The latter is negative and smaller in magnitude, resultingin a

positive value for y.

The pressure faced by the cleaving wall is measured throughout steps | and Il and it is crucial to move the
wall very gradually to minimize hysteresis. The values were verified by also conducting the process in
reverse, i.e., by cleavage of an interface. The initial set up, definition of the cleaving wall, and the pressure

calculation are described in the next subsection.

2.3.2 Initial Setup

We performed all the calculations at the estimated bulk coexistence pressure p = 4.0. As described in
previous studies, the ordered phase of hard cubes at coexistence was generated by sequential NpT runs
of 3 X 10% MC cycles each, starting from a high pressure (p = 20) and gradually reducing the pressure to
p = 4.0. For the (100) crystal plane, configurations with N=1000 were prepared on a simple cubic lattice
aligned with the box vectors of a cubic box. The configurations presenting the (110) crystal plane were

obtained in a cuboidal box with N=1024 particles.
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To obtain the disordered phase simulation box, the ordered phase simulation box was melted at p = 1.0
with anisotropic volume moves along the z direction (orthogonal to the cleaving plane) to maintain the
cross sectional (x-y) dimensions consistent for transposition in Step Il. The system was then compressed
to p = 4.0 to obtain the equilibrium disordered phase at coexistence. To circumvent the finite-size effect
of the interfacial region propagating into bulk-phase structure, longer boxes with N = 2000 were
primarily studied; these systems were obtained by duplicating the box along the z direction, followed by

equilibration for 3 X 106 MC cycles.

2.3.3 Cleaving Walls

We implemented the cleaving walls as hard planes that only interact with the centroids of the particles
(see Supporting Information for discussion on walls that interact with the full particle shapes). There are
two walls, one which moves in +z and the other in -z direction. For a given simulation box, both walls start
at the midplane along the z-axis and particles are disallowed from crossing the midplane or the wall. A
given wall only interacts with particles in the direction of its movement during Step |. The simulation is
conducted in the NVT ensemble and at the end of each MC cycle, walls are moved in either direction by
small increments (< 1074, in reduced units) with smaller increments used in cases where a particle would
obstruct the wall. For example, if amovement of 10~* would lead to an overlapping particle, a movement
of 10~° would be considered. This process is continued until we have achieved a separation of at least
one particle circumradius, ensuring that the particles do not interact across the gap. Throughout the
process we output configurations at various separations to perform pressure calculations as described

later.

After transposing the two phases with dissimilar phases facing each other across the gaps, the two gaps

are closed in small steps corresponding to separations at which the pressure will be calculated (< 1073).
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Each time the separation is reduced the system is given 103 MC Cycles to relax. Eventually the gap is

entirely closed, and the system has two interfaces of area equal to the box cross section.

2.3.4 Pressure and Work Calculation
We calculate the pressure on the wall using virtual perturbations of the wall position following similar

well-known volume perturbation methods:3®

_(0F __In((e~BAYY)
P—(—JNT—‘—ZV—— (3)

where F is the free energy, V is the volume of box, U is the configurational energy, and the changes (AU,
AV) are obtained upon virtual movements of the wall. Let the initial wall position from the midplane be z
and the cross-sectional area in the xy plane be A. If the wall is moved by 6z then the change in volume

AV = —Abz, and we can write down Equation (3) as

n((e—BAU(z
p(z) = -2 @)

The expression (e "PAU) in our case can be interpreted as the ensemble-average probability of overlap
between the wall and any particle upon perturbation. For cubes we generally use §z = 0.001 (see

Supporting Information).

To accurately determine the pressure at a given separation, we conduct an NVT simulation with the initial
configurations as described previously. Each simulation was conducted for 10® MC cycles and overlap
with a virtual perturbation was checked every 10 cycles. The statistics thus obtained were analyzed to
calculate the pressure p(z) for Steps | and Ill. Assuming a reversible process, the work done per unit area
was calculated with the following expression that integrates pressure (force per unit area on the plane)

over the displacement of the wall:

w= fzzif p(2)dz (5)
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where z; and z¢ are the initial and final distance of the wall from the midplane. The work per unit area

thus calculated was used to obtain y using Equation 2.

2.3.5 Corrugated Cleaving Walls

To measure the interfacial free energy of the (110) plane in hard cubes crystal we needed to implement
corrugated walls®” compatible with the zigzagging interface, or else the crystal would spontaneously
reorient during the cleaving and merging processes. Here we present a simplified implementation for

corrugated walls that only interact with the centroids of the particles.

Let the plane be corrugated along the y-axis. The corrugated wall was simulated through a triangular wave
given by the following function for the z coordinate of the wall (z,,4;;) at a given y-coordinate and position

of the wall z:

A A—A
Zwall,i(y;Z) = ymodA—E _Z+Z+Z )

where =+ refers to different walls based on the direction of movement during Step |, and A is the
wavelength of corrugation along the y-axis. Note that the position of the wall z is defined as the z-
coordinate of the leading peaks of the triangular wave facing the direction of movement during Step I. In

this way, at z = 0 neither wall interacts with any particle at the beginning of the simulation.

The final positions of the walls at the end of Step | was kept conservatively at zfiq+ = + (ac + %) to

ensure that particles cannot interact across the gap. The pressure calculations for the corrugated wall are
identical to those for the flat wall. The wavelength A is determined by the initial conditions of the crystal
simulation box and was chosen such that the box length along y-axis L, = n,A where n, is the number
of particle layers along the y-axis. This choice ensures compatibility with the periodic boundary conditions
and cleaves the systems in a manner conforming with the crystal plane. In principle this approach can be

generalized to other topographies with an appropriate wall function.

10
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2.4 Interfacial potential of mean force (PMF)

We calculated the PMF experienced by a free particle interacting with a perfect interface of particles in a
crystalline arrangement. NVT simulations were conducted comprising a single immobile layer of
crystalline particles and a free particle. The spacing of the crystalline particles was chosen to be consistent
with the volume fraction of the coexistence conditions. Statistics for free particle position were obtained
through 107 MC cycles. The coordinates of the free particles were histogrammed with a resolution of

0.05a.. The PMF experienced at a given bin i is given by:

PMF; = —kgTIn (}9) (7)

(o]

where f; and f,, are the visiting frequencies for the i*" bin and a distant bin where the particle is not
interacting with the immobile particles, respectively. The statistics were sufficient to obtain states with
PMF ~7 kgT. For comparison across different systems, the “effective” position of the interface was chosen

to correspond to the point where PMF = 5 kgT.

2.5 Measurement of Interfacial Thickness

We estimate the thickness of the interface using the final configuration at the end of Step Ill of the cleaving

process. The interface thickness 6 is defined in a manner analogous to phase field models:*

P(2) = %(1 + tanhzz—g) (8)

where ¢ is a scalar order parameter and z is the position with respect the interface. For our analysis we

define ¢ as:
_ ps=p(2)
¢= ps—p1 (9)

11
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where pg, p;, and p(z) are the densities of the bulk solid, bulk liquid, and system at position z. Thus, ¢ =
0 for the bulk solid, and ¢p = 1 for the bulk liquid. The starting interfacial configurations are simulated
further for 10® MC cycles in an NVT ensemble to obtain statistics for ¢(z). Equation 8 is fitted to the z vs.

¢ (z) data using a least squares method to obtain §, which is reported in circumradius units (a.).

3. Results and Discussion

3.1 Interfacial Free Energy

The calculation was carefully performed to ensure that the process does not significantly alter the bulk
behavior of either phase (e.g., by ordering of the disordered phase or disordering of the ordered phase).
The process was conducted for various system lengths, and it was observed that the cleaving process
influences the structure of a layer ~3 particles deep into the bulk phases. Hence a system size of N =
2000 particles (~20 layers) on each phase was chosen. Sample configuration at the end of Step Il for the
case that the interfacial plane faces the (100) crystal plane is shown in Figure 2a. Intermediate
configurations at other steps are shown in the Supporting Information. The pressure profiles for cleaving
and merging cubes at coexistence pressure p., = 4.0 are shown in Figure 2b and Figure 2c for the

ordered and disordered phase, respectively.

12
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Figure 2: Cleaving walls for hard cubes (100) plane at coexistence pressure p = 4.0. (a) Sample configuration at the end of Step
Ill. Ordered and disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are
shown in the Supporting Information. (b, c) Pressure variation with the position of the cleaving walls with respect to the midplane
(quantifying the gap width) for (b) ordered and (c) disordered phase. Step I-Cleaving is shown with a solid line and Step II-Merging

is shown with gray line. Scaling for the axes is described in Section 2.2.

The interfacial free energy for the (100) orientation of the ordered phase was determined as Y109 =
0.042 + 0.007. Attempts to calculate the interfacial tension for the (110) orientation y;1 with a flat (i.e.,
non-corrugated) cleaving wall resulted in the ordered phase reorienting in the (100) direction upon
merging. This rapid reorienting is rather unique to cubes as we have tested a variety of orientations of
other polyhedral crystals without facing the same problem. There could be several reasons for this. The
tendency to reorientation indicates that 199 < Y110, 50 that the system relaxes toward the more stable
interface. The short time scale of this process is likely facilitated by the unusually high diffusivity®® and

32,33

vacancy concentration in the ordered phase for cubes. Fast crystal domain reorientation is consistent

13
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with our observations in a previous study?* that hard cubes exhibit fast gran resolution dynamics. Also,
because the disordered phase is cleaved by a flat wall, the cubes in the closest layers tend to align parallel
to it, which in turn tend to realign (flatten) the closest zigzag (110) layer of the ordered phase during the
merging step. This limitation was resolved with implementation of a corrugated cleaving wall®’ as
described in the Section 2.3.5. This approach allows for the disordered phase to be cleaved with a zigzag
presentation of the particles compatible with the (110) crystal plane. The final configuration with (110)

interfaces at the end of Step Ill and pressure profiles for both phases are shown in Figure 3.

(b) ——cleaving (c) ——cleaving
merging | | merging

Figure 3: Cleaving walls for hard cubes (110) plane at coexistence pressure p=4.0. (a) Sample configuration at the end of Step IlI.
Ordered and disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are
shown in the Supporting Information. (b, c) Pressure variation with the position of the cleaving walls defined by the leading peak
of the corrugated wall (see Section 2.3.5) with respect to the midplane (quantifying the gap width) for (b) ordered and (c)
disordered phase. Step I-Cleaving is shown with a solid line and Step II-Merging is shown with dotted line. Scaling for the axes is

described in Section 2.2.
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The interfacial free energy for the (110) orientation of the ordered phase was determined as y;1o =
0.090 £ 0.010. This value is more than twice y1¢g, confirming that this difference is the main force driving
the crystal reorientation with a flat wall observed earlier. The physical reason for why ¥;190 < Y110 €an be
rationalized by examining the entropic and enthalpic effects associated with the particles in the
disordered region in contact with the different ordered planes, to be referred here as wetting layer. The
pV component of the enthalpy (and free energy) favors smaller volumes or denser packing (due to closer
contact) of the wetting layer; likewise, a more efficient packing (attained by partial lateral alignment)
would favor packing entropy of that layer. As the potential of mean force (PMF) calculations reveal (Figure
4), the (110) plane produces a longer-range repulsive field, which is a consequence of its rougher and
more intrusive profile (Figure 4 inset). This also translates into a thicker wetting layer as shown in Figure
5. These observations are consistent with a larger free energy penalty in the 110 wetting layer and hence

Y110 > Y100- Based on these physical considerations, we further anticipate that Y111 > Y110 > Y100-

15
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Figure 4: Interfacial potentials of mean force (PMF) at coexistence for various cases. Inset: two-dimensional PMF surface for (110)
plane of hard cubes, where crystalline cubes (blue) are placed in the middle at their fixed positions in the calculation. Details on

the calculation are provided in Section 2.4.
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Figure 5: Scalar order parameter ¢ as a function of position with respect to the interface (z, in circumradius a. units) for various
crystal planes of hard cubes. The interfacial thickness of (100) and (110) crystal planes were found to be 8,y = 1.6 + 0.2 and

6110 = 2.9 £ 0.3, respectively. Details on the calculation are provided in Section 2.5.

4043 could be performed to obtain information

Based on the y values thus calculated, a Wulff construction
about the nucleus geometry. The governing principle of Wulff construction states that the length h of a
perpendicular to a crystal plane passing through the centroid is proportional to its interfacial free energy
y. Based on this principle, the perpendiculars of (100) and (110) facets should be related as hy1¢y =
2.14h4¢0- This relation would put the (110) plane outside the inner volume enclosed by (100) plane since
hy10 > V2hqgo. This implies that, if we restrict ourselves to the closed-packed facets,*? the (110) should
not show up in an equilibrium nucleus geometry. Regardless, since the (100) facet is the most closed-

packed”® facet for this crystal, y;90 can be used as a representative value for comparison across different

shapes.

We use reduced interfacial free energies y as defined in Section 2.2 for comparison across different

shapes. In most studies of hard polyhedra the interfacial free energy has been calculated indirectly
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through nucleation free energy barrier calculations'®?! leveraging classical nucleation theory (CNT). These
approaches are sensitive to the definition of the order parameter used to ascertain the interface of the
nucleus.** Nevertheless, these indirect estimates for hard spheres are very much comparable to those
obtained from direct methods including the cleaving walls approach.*® Hence we use CNT estimates for

comparison among shapes when results from any direct method is unavailable.

At coexistence, the value of the reduced interfacial free energy for the (100) crystal facet in cubes (V190 =
0.088) is about one sixth the value for hard spheres (yys™ 0.52 for all closed packed orientations). For
comparison, orientationally-average interfacial free energies reported for faceted particles (at the
disorder-order phase transition) have been at most 20% lower than that of hard spheres (e.g., for
cuboctahedra, truncated octahedra and rhombic dodecahedra),?* and often higher than that (e.g., for
octahedra and gyrobifastigia). 2% We illustrate these observations in Figure 6 where we plot reduced
interfacial free energy y at a given supersaturation Au,4 for a number of shapes as reported in the
literature. It is evident that cubes have by far the lowest value of reduced interfacial free energy, which

generally increases with Apyg.

18
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Figure 6: Reduced interfacial free energy y at a given supersaturation Ap,q for various shapes (HS: hard spheres, OCT: octahedra,
GBF: gyrobifastigia, CO: cuboctahedra, TO: truncated octahedra, RD: rhombic dodecahedra, TC25: truncated cubes with s=0.25,
and Cubes) reported in literature using a variety of methods (CW: cleaving walls, US: umbrella sampling and classical nucleation
theory, NSP: nucleus-size pinning with classical nucleation theory). Data sources: HS(CW)3, HS(US)*°, HS(NSP)?3, OCT(US)?,

GBF(CW)*, GBF(NSP)?, CO-TO-RD(US),2! Cubes and TC25: this work.

Physically, the small ¥ for hard cubes implies a small penalty for creating solid-liquid interfaces, which
correlates with the observation of a relatively high incidence of ordered and disordered domains co-
existing next to each other in both the disordered and ordered phase. This results in a significant
concentration of ordered domains in the disordered phase and hence a high fraction of ordered particles
(about 3% at coexistence compared to less than 0.05 % for hard spheres). Likewise, the high content (>6%)
of mobile vacancies in the solid phase3? connotes some localized liquid-like behavior. This similarity
between some local configurations from its disordered and ordered phases means that both phases share
a fraction of the same phase space in the terms of translational and orientational order, which enhance

their interfacial affinity.
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The low y could also be indicative of the proximity between the binodal and spinodal conditions for cubes,
as a zero interfacial tension is a characteristic of the spinodal point in other systems.*”*® This hypothesis
is strengthened by the fact that the orientational correlation length diverges with pressure (see SI). We
attempted a calculation of y for cubes at finite degrees of supersaturation, but the results were
inconclusive due to large statistical variations associated with a significant tendency for ordering in the
disordered phase. A more complete picture of the consequences of low ¥ values is provided in the next

section through a theoretical analysis.

We also examined the effect of a small perturbation to the cubic shape on interfacial tension by computing
V100 for truncated cubes with truncation parameter'® s = 0.25, hereafter referred to as TC25. The phase
behavior is similar to that of hard cubes, with a first order transition from a disordered phase to a simple
cubic crystal. Moreover, the disordered phase also has abundance of cubatic fluctuations, and the
ordering transition progresses spontaneously at very low supersaturations. We also calculated the free
energy barrier for the TC25 disorder to order transition at coexistence through umbrella sampling as
described elsewhere?* (see crucial details in the Supporting Information). The free energy profile as a
function for fraction of ordered particles (X,,gereq) at coexistence pressure for TC25 is shown in Figure
7, along with previously reported?* results for hard cubes. At coexistence, the free energy barrier for TC25
is over three times larger than that of hard cubes. While there is no clear theoretical framework that can
describe the exact relationship between y and AG* for this non-classical phase transition, the much
higher barrier would indicate a correspondingly higher value for interfacial free energy. Indeed, we find
that the interfacial free energy for the (100) plane of TC25 using the cleaving walls method at the
coexistence pressure™ p., = 3.64 is V199 7c25 = 0.194, which is about two times that for hard cubes.
Another important observation is that X,,4ereq @t both the disordered-state basin and the top of the
barrier is much higher for TC25 compared to cubes. We note, however, that the order parameter

definitions (see Supporting Information) are not identical for hard cubes and TC25 and hence the X, ,4ered
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for the two systems cannot be unambiguously compared. While the PMF for cubes and TC25 (associated
with the 100 plane) are expectedly comparable, the densities of the coexistence phases are higher for

TC25 than those for cubes, which would be expected to increase y.

An interesting trend in Figure 6 is that particles shapes having more similarity to cubes tend to have lower
¥ (e.g., TC25 and CO). This could reflect the fact that a preference of local ordered motifs with 6-fold
coordination and smaller unit cells are easier to generate than structures requiring the coordination for
more nearest-neighbor particles (like 8 or 12) and larger unit cells. The low coordination number of cube-
like shapes is a likely contributor to low yvalues by promoting low-free-energy-cost 6-fold configurations
in route to the ordered phases they form (even if not a simple cubic). Since no other hard particle is able
to order with a smaller coordination number and unit cell, we surmise that hard cubes likely possess the
lowest yvalue of all athermal systems at the order-disorder transition (note that we exclude the case of

tetrahedra whose isotropic phase does not transition into a simple-unit-cell solid*).
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Figure 7: Free energy (AG) profile calculated as function of fraction of ordered particles (xyrgereq) for TC25 via umbrella sampling

at coexistence p = 3.64. Previously reported? free energy profile for a hard cubes system of identical size (N=1000) is also shown

for comparison. Free energy is in kg T units.

3.2 Theoretical quantification of cubatic fluctuations

We aim to provide a simple description of how the fraction of ordered particles (x,;gereq) COMpounding
the local solid-like fluctuations in the disordered phase is related to ¥ at a given supersaturation Agyg. In
this model, the cubatic fluctuations are in the form of nuclei which are non-interacting with each other
and distributed uniformly throughout the bulk.>® Let AG (n) be the free energy change associated with
the formation of an ordered cluster of size n (analogous to n particles), the classical nucleation theory

(CNT) provides the following expression:
AG(n) = Apggn + Ayn?/3 (10)

where A is a geometric factor capturing the shape of the nucleus assuming that its surface area scales

with the two-thirds power of the volume. For simplicity, we assume that both the inner and the interfacial
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regions of a cluster can be described by u, and y. This is not true for clusters smaller than a characteristic
length and there are models that could be used to account for such an effect.>>3 As such, our model will
overestimate X,,qereq if ¥V is higher for smaller clusters than larger ones in the system being considered,

such as in hard spheres.>*

For steady state conditions for a system evolving from the metastable disorder-phase basin, the
distribution of fraction of particles x,, belonging to clusters of size n can be described by the law of mass

action®® as:
X, = nxfe A6M (11)

where x; is the fraction of disordered particles. We note that such a formulation assumes no inter-cluster
interactions, that is, the effect of impingements between clusters is neglected so that each cluster is
independent from others and only surrounded by disordered cubes. Further, the ordered clusters
exhibiting a range of representative sizes are assumed to be well mixed (uniformly distributed) throughout
a “continuous” phase of disordered cubes. Despite the limitations imposed by these assumptions (i.e., a
scenario of relatively dilute clusters), this model forms a good basis for illustrating the consequences of
interfacial tension on the concentration of ordered particles in the metastable disordered basin. We
define the metastable basin as a disordered phase that may contain clusters up to the critical cluster size

at the top of the barrier defined as:

nt = (ﬂf (12)

3|Auoql

The fraction of ordered particles in the basin can then be evaluated as an integral over various sizes of

ordered clusters described by Equation 11:

n*
Xordered = f0+ Xpdn (13)
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A discrete version of the model could also be formulated considering only integer nucleus sizes (see
Supporting Information). We favor here the continuous version of the model as it avoids discontinuous

jumps in values and makes trends easier to follow. Applying mass balance on all particles:
Xo + Xorderea = 1 (14)

Since the left-hand side of Equation 14 (when coupled to Equations 12 and 13) consists of continuous
functions and takes a value of zero for x, = 0 and a value greater than unity for x, = 1, then the
intermediate value theorem ensures that a solution for x € [0, 1] exists where the equality of Equation

(14) holds. We can then numerically solve for this value of x, at any given conditions of Ay, and .

We can follow the consequences of this mass action-derived classical nucleation theory (MADCNT) model
in the context of the cubatic fluctuations observed in the disordered phase of hard cubes by evaluating
Xorderea @S @ function of Au,4 and y for a particular case. For simplicity, if the ordered clusters are

spherical, the geometric factor will be:

A = (36m)3 (15)

As an example, Figure 8a shows a plot of X, 4ereq s @ function of Ap,4 and 7.
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Figure 8: Predictions from the MADCNT model for spherical ordered clusters. (a) Fraction of ordered particles X,rqereq and (b)
Average cluster size (n) as a function of Au,q and y. The isolines for the nucleation barrier AG* are shown in green. The

calculations were performed with a resolution of 100 points along each axis.

In general, X, qereq femains relatively low (< 0.01) except for a diagonal ‘band’ where it can get as high
as 0.697. The model also allows us to extract information about the cluster size distribution. Sample
distributions x,, at coexistence as a function of cluster size n are shown in Figure 9. Ordered clusters

predominantly exist in clusters of small sizes, with the spread of cluster sizes generally decreasing with

increasing y. It is informative to evaluate the average cluster size:

(n) = ___Yordered (15)

=—
Jo+ xGe=26Mdn

Figure 8b reveals that the average cluster size generally correlates with X, gereq, also attaining higher

values along the diagonal band.
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The trends in these MADCNT predictions can be understood by considering two effects at play relating to
the metastable basin: its depth (embodied by AG (n*)) and its width (embodied by n*). The width of the
basin, n* determines the upper limit to the integral in Equation 13. A larger n* would imply that more
numerous ordered species are competing against the disordered particles, resulting in a larger X,rdered-
Hence the width contributes positively to Xy,gereq- On the other hand, the depth of the basin is related

to the nucleation barrier:

. (0. Ok
AG(n") = AG™ = 20— (16)

andsince AG(n) < AG(n™"), larger values will translate into smaller exponential factors within the integral
in Equation 13, making the larger clusters rare. Hence an increased depth of the metastable basin
contributes negatively to X,,gereq- Since both width and depth of the metastable basin increase with y
and decrease with Ay, 4, the following three distinct regions in the plot can be identified depending on

whether one effect dominates or both effects are in play:

l. Bottom-left triangular region: This region has very low X,,g4ereq << 1 due to narrow metastable
basins ensuing from a low y and high |Au,q4|. In practice, it would be very difficult to sustain a
metastable state located in this region due to the very small critical nucleus sizes and barriers (see
isolines in Figure 8), which will likely manifest as a spinodal decomposition. Interestingly, the line
for n* = 1 demarcates the boundary of this region where n* < 1.

II.  Top-right triangular region: This region also has a low X,,g4ereq < 1 but due to reasons different
from those for region I. Due to the high 7, the basins are wide and deep. This would result in a
rather robust metastable state with rare occurrence of nuclei akin to systems where nucleation
and growth is the mechanism of phase transition. Generally, X,,gereq decreases as y increases
(interfaces become more expensive) and/or as Au,4 increases (ordered phase becomes less

stable). In contrast with region |, (n) is slightly higher because larger clusters are being
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considered. In this region we can sufficiently describe the fraction of ordered particles through
MADCNT, since a low fraction implies the nuclei are not likely to interact with each other. The
values of X,,gereq Predicted by the model in this scenario have been validated for specific
conditions for hard spheres, and are consistent with predictions of models that use appropriate
corrections for interfacial tension as a function of nucleus size.>

Downward diagonal band: In this region neither of the effects dominate, leading to a metastable
basin that is neither too narrow nor too deep. This results in a non-negligible Xy, qereq that could
take up values greater than 0.5, especially near the lower-right corner (low ¥, |Au,41). This is a
scenario that MADCNT is ill-suited to describe since beyond a certain X,,qereq the ordered
clusters are likely to interact with each other and form motifs that are not described by Equation
10. Indeed, at sufficiently high x,,g4ereq, @ percolating network of ordered cluster might form. We
refrain from assigning a percolation threshold as it will depend on the cluster size distribution
which varies with conditions ¥, |Au,q|. For example, for completely uncorrelated ordered
particles distributed throughout the bulk, the three-dimensional percolation threshold for site
percolation of the intrinsic crystal lattice might be an appropriate bound. The band becomes more

diffused as we go to higher supersaturations, eventually connecting regions | and II.
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Figure 9: Sample distributions (x,) of ordered particles over various cluster sizes (n) at coexistence for various values of y as
predicted by MADCNT model.

While y and Au,4 are easy-to-interpret physical properties, the trends get simplified when we evaluate
Xordered aS a function of AG* and n*, surrogates of depth and width of the metastable basin respectively,
as shown in Figure 10. We notice that regions | and Il are mapped into a single triangular region (light area
in Figure 10), and X,,4creq generally increases with increasing n* and/or decreasing AG*. Thus, the
fraction of ordered particles in the metastable phase increases with shallower and wider basins. We note
that this alternative mapping preserves the general trends described earlier but it shrinks certain areas of

Figure 8 and expands others, with certain regions involving infeasible/unusual conditions.
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Figure 10: Predictions from the MADCNT model for spherical ordered clusters with: (a) Fraction of ordered particles X,rqereq and
(b) Average cluster size (n) as a function of n* and AG*. The isolines for the supersaturation Ap,, are shown in green. The

calculations were performed with a resolution of 100 points along each axis.

Itis instructive to compare Figure 8a with Figure 6. While direct quantitative comparison may be difficult
since the geometric factor A is system specific, it can be observed that most shapes would likely be placed
in region Il given the relatively low concentration of ordered particles observed in the metastable
disordered phases of those systems. On the other hand, both cubes and TC25 could be placed in region Ill
by the virtue of their low y, which is corroborated by the observation of non-negligible x,,4ereq in their

metastable phases in simulations and can be associated with a wide, shallow metastable basin.

The validity of a nucleation scenario rests on the basic assumption that at the early stages of phase
transformation the nuclei of the incipient phase are rare and grow without interacting with other nuclei
before approaching their critical size. This would largely hold for the region Il but would eventually not be
true for systems in region lll. For cubes, an abundance of cubatic fluctuations of the incipient ordered

phase (as predicted for lower interfacial free energy) would violate this assumption. Under such
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circumstances, the dominant mechanism cannot be nuclei growth by conversion of disordered particles
at the interface since there would also exist interfaces between ordered domains of non-negligible size.
Usually, such impingement of nuclei leads to a halt in growth®® and a final polycrystalline state. However,
as illustrated in our previous publication,?* hard cubes exhibit fast dynamics of grain resolution by quickly
reorienting intermediate layers along the boundary of two grains and then propagating a uniform
alignment. Hence, any two impinging clusters could merge in a process similar to Oswald ripening. An
increase in concentration of ordered clusters would increase instances of such growth mechanisms. There
would be a critical concentration beyond which such instances of consolidation (or ripening) would
become more probable than the breaking of clusters into smaller clusters. This would be consistent with

t2% of a critical concentration of ordered cubes being required to effect

our observation in a previous repor
the disorder-to-order phase transition. Indeed, we found that cubes exhibit a transition that involves

ordered phase nuclei gradually consolidating by resolving grain boundaries through local reorientation

events.

4. Conclusion and Outlook

In this study, we implemented the cleaving-walls method to directly measure order-disorder interfacial
free energy for the (100) and (110) crystal planes of hard cubes. We found them to be substantially lower
than those for other reported cases of hard-core particles where nucleation and growth is reported. Our
MADCNT model predicts that a lower interfacial tension gives rise to more abundant ordered clusters in
the disordered phase, which could explain the abundance of cubatic fluctuations in the disordered phase
for hard cubes. We also find that hard truncated cubes (TC25) have a higher y;o0 than hard cubes which

also translates into higher free energy barriers at comparable coexistence conditions.
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There are however many open questions regarding the non-classical characteristics of the ordering phase
transition of hard cubes. It would be of interest to attain a deeper understanding of why hard cubes have
alower surface tension than other shapes. Given that TC25 also has a smaller ¥ compared to other particle
shapes points to the cubic lattice structure of the ordered phase, and its known peculiarities, as playing a
central role. Of course, cubic symmetry may not be a sufficient condition for a low y; indeed, we expect
that if interparticle attractions are enacted among cubes, ¥ could be made significatively larger. In this
context, interfacial tension calculations for other hard-core shapes and crystal planes would be
informative and could help illuminate any trends therein. For example, while we found that truncation of
the cubes increases the interfacial free energy (i.e., going from perfect cubes to TC25), it would be
worthwhile to explore if larger perturbations can alter the behavior to the point where the classical
nucleation and growth picture becomes a valid description. In assessing the role of ¥ in the ordering of
cubes and concomitant theories, it is also important to keep in mind that since most cubatic fluctuations
are small and encompass only ten or fewer particles, bulk-like domains and their interfaces are not well
defined. Further, as we have noticed in our simulations, the effect of the interface could reach ~3

53,54,57,58 and

particles deep into either phase. There are interesting approaches to address these effects
describe the free energy of small clusters. Even in cases where nuclei are large enough to have well
defined geometries, it would be interesting to investigate the morphology of the nuclei through Wulff

40,43

construction, especially in cases with aspherical nuclei®® as this would help evaluating the geometric

factor (A4) in CNT-like theories.

Further studies could aim to provide a more rigorous theoretical treatment that is applicable to region llI
described in Section 3.2. The key element would be a description of ordered motifs that are preferred
when the classical theory predicts the presence of too many ordered nuclei. At high y there would be a
preference to make compact motifs like nuclei but at lower y the ordered domains could comprise loose

dendritic structures. Also needing description is a mechanism that captures how the ordered motifs grow,
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analogous to nucleus growth in CNT. For non-compact ordered domains, the interfacial contribution to
the free energy would not necessarily grow monotonously with concentration of ordered particles (see

SI), hence leading to more complex free energy landscapes.

5. Supporting Information

Additional details pertaining to the cleaving walls method, the truncated cube system, and the MADCNT

model.

Acknowledgements

Funding support from NSF award CBET-1907369 is gratefully acknowledged. We would also like to
acknowledge Dr. Vikram Thapar for sharing base simulation code, Dr. Karthik Nayani for sharing useful

literature, and Prof. Donald Koch and Prof. Marjolein Dijkstra for insightful discussions.

References

(1) Henzie, J.; Griinwald, M.; Widmer-Cooper, A.; Geissler, P. L.; Yang, P. Self-Assembly of Uniform
Polyhedral Silver Nanocrystals into Densest Packings and Exotic Superlattices. Nat. Mater. 2012,
11,131-137.

(2) Seo, D.; Ji, C. P.; Song, H. Polyhedral Gold Nanocrystals with Oh Symmetry: From Octahedra to
Cubes. J. Am. Chem. Soc. 2006, 128, 14863—14870.

(3) Tao, A. R.; Habas, S.; Yang, P. Shape Control of Colloidal Metal Nanocrystals. Small 2008, 4, 310—
325.

(4) Cademartiri, L.; Bishop, K. J. M. Programmable Self-Assembly. Nat. Mater. 2015, 14, 2-9.

(5) Whitesides, G. M.; Boncheva, M. Beyond Molecules: Self-Assembly of Mesoscopic and
Macroscopic Components. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4769-4774.

(6) Whitesides, G. M.; Grzybowski, B. Self-Assembly at All Scales. Science 2002, 295, 2418-2421.

(7) Cademartiri, L.; Bishop, K. J. M.; Snyder, P. W.; Ozin, G. A. Using Shape for Self-Assembly.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering

32



v b w

Vo] (o I NIe)}

10
11

12
13

14
15

16
17

18
19

20
21
22

23
24

25
26

27
28

29
30
31

32
33

34
35
36

37
38

(8)
(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

Sciences. 2012, pp 2824-2847.
Manoharan, V. N. Colloidal Matter: Packing, Geometry, and Entropy. Science 2015, 349, 1253751.

Kempa, T. J.; Kim, S. K.; Day, R. W.; Park, H. G.; Nocera, D. G.; Lieber, C. M. Facet-Selective Growth
on Nanowires Yields Multi-Component Nanostructures and Photonic Devices. J. Am. Chem. Soc.
2013, 135, 18354-18357.

Bian, K.; Schunk, H.; Ye, D.; Hwang, A.; Luk, T. S.; Li, R.; Wang, Z.; Fan, H. Formation of Self-
Assembled Gold Nanoparticle Supercrystals with Facet-Dependent Surface Plasmonic Coupling.
Nat. Commun. 2018, 9.

Pietrobon, B.; McEachran, M.; Kitaev, V. Synthesis of Size-Controlled Faceted Pentagonal Silver
Nanorods with Tunable Plasmonic Properties and Self-Assembly of These Nanorods. ACS Nano
2009, 3, 21-26.

Damasceno, P. F.; Engel, M.; Glotzer, S. C. Predictive Self-Assembly of Polyhedra into Complex
Structures. Science (80-. ). 2012, 337, 453-457.

Agarwal, U.; Escobedo, F. A. Mesophase Behaviour of Polyhedral Particles. Nat. Mater. 2011, 10,
230-235.

Gantapara, A. P.; De Graaf, J.; Van Roij, R.; Dijkstra, M. Phase Behavior of a Family of Truncated
Hard Cubes. J. Chem. Phys. 2015, 142, 054904.

Ni, R.; Gantapara, A. P.; De Graaf, J.; Van Roij, R.; Dijkstra, M. Phase Diagram of Colloidal Hard
Superballs: From Cubes via Spheres to Octahedra. Soft Matter 2012, 8, 8826—-8834.

Gantapara, A. P.; De Graaf, J.; Van Roij, R.; Dijkstra, M. Phase Diagram and Structural Diversity of a
Family of Truncated Cubes: Degenerate Close-Packed Structures and Vacancy-Rich States. Phys.
Rev. Lett. 2013, 111, 1-5.

Onsager, L. The Effects of Shape on the Interaction of Colloidal Particles. Ann. N. Y. Acad. Sci. 1949,
51,627-659.

Auer, S.; Frenkel, D. Prediction of Absolute Crystal-Nucleation Rate in Hard-Sphere Colloids. Nature
2001, 409, 1020-1023.

Auer, S.; Frenkel, D. Numerical Prediction of Absolute Crystallization Rates in Hard-Sphere Colloids.
J. Chem. Phys. 2004, 120, 3015-3029.

Filion, L.; Hermes, M.; Ni, R.; Dijkstra, M. Crystal Nucleation of Hard Spheres Using Molecular
Dynamics, Umbrella Sampling, and Forward Flux Sampling: A Comparison of Simulation
Techniques. J. Chem. Phys. 2010, 133, 244115.

Thapar, V.; Escobedo, F. A. Localized Orientational Order Chaperones the Nucleation of Rotator
Phases in Hard Polyhedral Particles. Phys. Rev. Lett. 2014, 112, 048301.

Sharma, A. K.; Thapar, V.; Escobedo, F. A. Solid-Phase Nucleation Free-Energy Barriers in Truncated
Cubes: Interplay of Localized Orientational Order and Facet Alignment. Soft Matter 2018, 14, 1996—
2005.

Sharma, A. K.; Escobedo, F. A. Nucleus-Size Pinning for Determination of Nucleation Free-Energy
Barriers and Nucleus Geometry. J. Chem. Phys. 2018, 148, 184104.

33



N

B~ w

Vo] [e BN a U

10

11
12

13
14

15
16
17

18
19

20
21

22
23
24

25
26
27

28
29

30
31

32
33

34
35

36
37

38

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

Sharma, A. K.; Escobedo, F. A. Disorder Foreshadows Order in Colloidal Cubes. J. Phys. Chem. B
2018, 122, 9264-9273.

Gasser, U.; Weeks, E. R.; Schofield, A.; Pusey, P. N.; Weitz, D. A. Real-Space Imaging of Nucleation
and Growth in Colloidal Crystallization. Science (80-. ). 2001, 292, 258-262.

Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral Silver Nanocrystals with Distinct Scattering
Signatures. Angew. Chemie - Int. Ed. 2006, 45, 4597-4601.

Sun, Y.; Xia, Y. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science (80-. ). 2002,
298,2176-2179.

Gong, J.; Newman, R. S.; Engel, M.; Zhao, M.; Bian, F.; Glotzer, S. C.; Tang, Z. Shape-Dependent
Ordering of Gold Nanocrystals into Large-Scale Superlattices. Nat. Commun. 2017, 8.

Shukla, N.; Liu, C.; Roy, A. G. Oriented Self-Assembly of Cubic FePt Nanoparticles. Mater. Lett. 2006,
60, 995-998.

Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Equation of State
Calculations by Fast Computing Machines. J. Chem. Phys. 1953, 21, 1087-1092.

Lee, S.; Teich, E. G.; Engel, M.; Glotzer, S. C. Entropic Colloidal Crystallization Pathways via Fluid—
Fluid Transitions and Multidimensional Prenucleation Motifs. Proc. Natl. Acad. Sci. U. S. A. 2019,
116, 14843-14851.

Smallenburg, F.; Filion, L.; Marechal, M.; Dijkstra, M. Vacancy-Stabilized Crystalline Order in Hard
Cubes. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17886—17890.

van der Meer, B.; van Damme, R.; Dijkstra, M.; Smallenburg, F.; Filion, L. Revealing a Vacancy
Analog of the Crowdion Interstitial in Simple Cubic Crystals. Phys. Rev. Lett. 2018, 121, 258001.

James, D.; Beairsto, S.; Hartt, C.; Zavalov, O.; Saika-Voivod, |.; Bowles, R. K.; Poole, P. H. Phase
Transitions in Fluctuations and Their Role in Two-Step Nucleation. J. Chem. Phys. 2019, 150,
074501.

Gottschalk, S.; Lin, M. C.; Manocha, D. OBB Tree: A Hierarchical Structure for Rapid Interference
Detection. Proc. 23rd Annu. Conf. Comput. Graph. Interact. Tech. SIGGRAPH 1996 1996, No.
8920219, 171-180.

Davidchack, R. L.; Laird, B. B. Direct Calculation of the Hard-Sphere Crystal/Melt Interfacial Free
Energy. Phys. Rev. Lett. 2000, 85, 4751-4754.

Davidchack, R. L. Hard Spheres Revisited: Accurate Calculation of the Solid-Liquid Interfacial Free
Energy. J. Chem. Phys. 2010, 133, 234701.

De Miguel, E.; Jackson, G. The Nature of the Calculation of the Pressure in Molecular Simulations
of Continuous Models from Volume Perturbations. J. Chem. Phys. 2006, 125, 1-11.

Boettinger, W. J.; Warren, J. A.; Beckermann, C.; Karma, A. Phase-Field Simulation of Solidification.
Annu. Rev. Mater. Sci. 2002, 32, 163-194.

Ogura, T.; Hayami, R.; Kadota, M. Kinetics and Mechanism of Crystallization of Lithium Silicate
Glasses. J. Ceram. Assoc. Japan 1968, 76, 277-284.

Tutton, A. E. H.; Hilton, H. Mathematical Crystallography and the Theory of Groups of Movements.

34



w N

S

O 0 N oo

10
11

12
13
14

15
16

17
18

19
20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35
36

37

38

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)
(54)

(55)

(56)

(57)

(58)

Math. Gaz. 1904, 2, 387.

Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting Nanocrystal
Shape through Consideration of Surface-Ligand Interactions. ACS Nano 2012, 6, 2118-2127.

Frank, F. C. Crystal Growth and Dislocations. Adv. Phys. 1952, 1, 91-109.

Zimmermann, N. E. R.; Vorselaars, B.; Espinosa, J. R.; Quigley, D.; Smith, W. R.; Sanz, E.; Vega, C,;
Peters, B. NaCl Nucleation from Brine in Seeded Simulations: Sources of Uncertainty in Rate
Estimates. J. Chem. Phys. 2018, 148.

Espinosa, J. R.; Vega, C.; Valeriani, C.; Sanz, E. Seeding Approach to Crystal Nucleation. J. Chem.
Phys. 2016, 144, 034501.

Sharma, A. K.; Escobedo, F. A. Determination of Interfacial Free Energy for Gyrobifastagia.
Submitted for publication 2021.

Fortini, A.; Dijkstra, M.; Schmidt, M.; Wessels, P. P. F. Wall-Fluid and Liquid-Gas Interfaces of Model
Colloid-Polymer Mixtures by Simulation and Theory. Phys. Rev. E - Stat. Nonlinear, Soft Matter
Phys. 2005, 71, 1-13.

Ni, R.; Belli, S.; Van Roij, R.; Dijkstra, M. Glassy Dynamics, Spinodal Fluctuations, and the Kinetic
Limit of Nucleation in Suspensions of Colloidal Hard Rods. Phys. Rev. Lett. 2010, 105, 7-10.

Haji-Akbari, A.; Engel, M.; Glotzer, S. C. Phase Diagram of Hard Tetrahedra. J. Chem. Phys. 2011,
135,194101.

Cheng, B.; Ceriotti, M. Bridging the Gap between Atomistic and Macroscopic Models of
Homogeneous Nucleation. J. Chem. Phys. 2017, 146, 034106.

Wilemski, G. The Kelvin Equation and Self-Consistent Nucleation Theory. J. Chem. Phys. 1995, 103,
1119-1126.

Ford, I. J. Statistical Mechanics of Nucleation: A Review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng.
Sci. 2004, 218, 883—899.

Kalikmanov, V. I. Nucleation Theory. Lect. Notes Phys. 2013, 860, 1-331.

Cacciuto, A.; Auer, S.; Frenkel, D. Solid-Liquid Interfacial Free Energy of Small Colloidal Hard-Sphere
Crystals. J. Chem. Phys. 2003, 119, 7467-7470.

Israelachvili, J. N. Thermodynamic Principles of Self-Assembly. In Intermolecular and Surface
Forces; Elsevier, 2011; pp 503-534.

Riedel, M. R.; Karato, S. I. Microstructural Development during Nucleation and Growth. Geophys.
J. Int. 1996, 125, 397-414.

Heermann, D. W. Classical Nucleation Theory with a Tolman Correction. J. Stat. Phys. 1982, 29,
631-640.

Montero De Hijes, P.; Espinosa, J. R.; Bianco, V.; Sanz, E.; Vega, C. Interfacial Free Energy and
Tolman Length of Curved Liquid-Solid Interfaces from Equilibrium Studies. J. Phys. Chem. C 2020,
124, 8795-8805.

35



1  TOC Graphic

N YTy

- Disorder.

4

36



