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Abstract 9 

Many hard faceted nanoparticles are known to undergo disorder-to-order phase transitions following a 10 

classical nucleation and growth mechanism. In a previous study [J. Phys. Chem. B 2018, 122, 9264-9273] 11 

it was shown that hard cubes undergo a non-classical phase transition with a bulk character instead of 12 

originating from consolidated nuclei.  Significantly, an unusually high fraction of ordered particles was 13 

observed in the metastable basin of the disordered phase, even for very low degrees of supersaturation. 14 

This work aims to substantiate the conjecture that these unique properties originate from a comparatively 15 

low interfacial free energy between the disordered and ordered phases for hard cubes relative to other 16 

hard particle systems. Using the cleaving wall method to directly measure the interfacial free energy for 17 

cubes, it is found that its values are indeed small, e.g., at phase coexistence conditions it is only one fifth 18 

that for hard spheres. A theoretical nucleation model is used to explore the broader implications of low 19 

interfacial tension values and how this could result in a bulk ordering mechanism.  20 
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1. Introduction 1 

Recent advancements in chemical synthesis1–3 have enabled an unprecedented control of the shape and 2 

monodispersity of nanoparticles. Such tailored nano-scale colloids are important as building blocks for 3 

bottom-up materials design4–8 with potential applications in photonics9 and plasmonics.10,11  In the 4 

absence of strong, ligand- or patch-mediated energetic interactions, the self-assembling properties of 5 

colloidal nanoparticles can be largely traced to their shape and have been predicted through ‘hard’ 6 

particle models, e.g., the formation of different crystalline structures,12 and mesophases,13–17 and the 7 

occurrence of phase transitions.18–24 To date, many of these predictions have been confirmed through 8 

experiments.1,25–29 9 

Computer simulations have revealed that hard colloidal nanoparticles generally undergo first-order, 10 

disorder-to-order phase transitions in 3D space.18,21,22 One of the first cases studied through simulations 11 

was that of hard spheres,30 which form a face-centered cubic (FCC) lattice via nucleation and growth.18,19  12 

Adding anisotropy to  the shape of the particle, say by adding facets, alters the phase behavior by favoring 13 

ordered structures that enhance packing entropy.12,13 As for the phase transition kinetics, the faceted 14 

particles studied thus far have been found to generally order via nucleation and growth.21–23,31  15 

Remarkably, simulations of hard cubic nanoparticles reveal both unusual phase behavior13,32,33 and 16 

ordering kinetics. Upon compression, they form an ordered phase with orientationally aligned particles 17 

arranged in a simple cubic lattice. Near the phase transition, this ordered phase has an unusually high 18 

diffusivity and concentration of vacancies for a crystalline phase when compared to that for other particle 19 

shapes. In a recent study24 where the disorder-to-order transition of hard cubes was tracked and free-20 

energy barriers mapped via umbrella sampling, we observed that the kinetic pathway toward ordering 21 

was also unusual. Unlike most other polyhedra that have been studied in literature,21,22 the phase 22 
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transition in cubes is not well described by classical nucleation and growth. Instead, it undergoes a ‘bulk-1 

like’ transition behavior with the following features: 2 

(i) A large number of sparse, small clusters of ordered particles are present in the disordered phase. 3 

The concentration of ordered particles increases with supersaturation and, at a given 4 

supersaturation, is much higher when compared to other polyhedra that undergo nucleation and 5 

growth.  6 

(ii) The apparent free energy barrier for the ordering transition was found to scale linearly with 7 

system size, which would imply that in a system of macroscopic size the transition would be 8 

practically impossible.  9 

(iii) At no or minimal degree of supersaturation, a critical concentration of ordered cubes – rather 10 

than a critically-sized ordered nucleus - needs to be attained for the transition to proceed. During 11 

the transition, the fraction of ordered particles gradually increases, leading to consolidation of 12 

ordered domains and an eventual transition to the ordered phase. 13 

It is well established that any stable or metastable phase will exhibit local fluctuations in structural order 14 

where motifs associated with another phase may occur.34 While these fluctuations will largely be 15 

transient, they will also encompass the seeds of an incipient (stable) phase as it nucleates and grows 16 

within a metastable phase. Of course, that such fluctuations also exist in a stable phase – albeit fewer and 17 

too small to initiate any phase transition. The presence of a significant fraction of ordered particles in a 18 

disordered phase reflects the ease of creating interfaces in the system, i.e., a small interfacial free energy 19 

between ordered and disordered phases. Hence, we hypothesize that the abundance of such fluctuations 20 

that resemble the ordered phase (henceforth simply referred to as cubatic fluctuations) in the disordered 21 

phase of cubes could be attributed to a low surface tension. In this paper we conduct direct measurements 22 

of the interfacial free energy of a disorder-order interface for hard cubes and compare the resulting values 23 

to those of other hard-core systems. We also present a mass action-derived classical nucleation theory 24 
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(MADCNT) model to qualitatively understand how the extent of cubatic fluctuations depends on 1 

interfacial free energy. 2 

The paper is structured as follows: In Section 2 we outline the implementation of the cleaving walls 3 

method in Monte Carlo simulations. In Section 3 we present our results and discuss them in the context 4 

of a theoretical model to explore the consequences of low surface tensions on concentration of cubatic 5 

fluctuations. In Section 4 we provide a summary and outlook of our results. 6 

2. Methods 7 

2.1 Model 8 

For any two cubic particles i and j, we use a hard pair-potential given by: 9 

𝑈𝑖𝑗 = {
0 if no overlap
∞ if overlap

         (1) 10 

The overlap is detected by using the separating axis theorem.35  11 

2.2 Monte Carlo Simulations 12 

We use Metropolis30 Monte Carlo (MC) simulations in either the canonical (NVT) or the isothermal-13 

isobaric (NpT) ensemble as necessary, where N is the total number of particles, V is the volume of the 14 

system, p is the pressure, and T is the temperature. We use scaled units consistent with our previous 15 

studies,13 with lengths scaled by the circumradius ( 𝑎𝑐 ) of the polyhedron. Thus, the dimensionless 16 

pressure is given by 𝑝 = 𝛽𝑝𝑎𝑎𝑐
3, where 𝑝𝑎 is the unscaled pressure and 𝛽 =

1

𝑘𝐵𝑇
, where 𝑘𝐵  is Boltzmann’s 17 

constant. The chemical potential 𝜇  and free energy ( ∆𝐺 ) are scaled by 𝑘𝐵𝑇  and the dimensionless 18 

interfacial free energy is given by 𝛾 = 𝛽𝛾𝑎𝑎𝑐
2  where 𝛾𝑎  is the unscaled interfacial free energy. For 19 
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comparison among different particle shapes we tried to remove the dependence on the choice of length 1 

scale ac, by defining a reduced dimensionless interfacial free energy as 𝛾̅ =
𝛾

𝜌𝑠
2/3 , where 𝜌𝑠 is the density 2 

of the solid/ordered phase. This definition is identical to that in an earlier study,21 and is consistent with 3 

the dimensionless surface component of free energy in classical nucleation theory. The supersaturation 4 

is defined as  ∆𝜇𝑜𝑑 = 𝜇𝑜 − 𝜇𝑑 , where 𝜇𝑜  and 𝜇𝑑  are chemical potentials associated with ordered and 5 

disordered phases, respectively. The coexistence pressure 𝑝𝑐𝑜 for hard cubes under this scaling is 𝑝 = 4.0 6 

as reported in literature.32 The simulations used periodic boundary conditions to mimic bulk behavior. 7 

Each MC cycle included N translation, N rotation, and 2 isotropic volume moves (for NpT ensemble runs 8 

only).  9 

2.3 Cleaving Walls Method 10 

2.3.1 Outline 11 

The cleaving walls method used in this study is a Monte Carlo adaptation of an existing method36 typically 12 

implemented using molecular dynamics simulations. While there have been several modifications of the 13 

method over the years37 to improve accuracy, we use an early, simple implementation which proved to 14 

be sufficiently accurate for our purposes. To the best of our knowledge this is the first implementation of 15 

the method using Monte Carlo simulations. 16 
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 1 

Figure 1: Schematic illustration of steps in the cleaving walls method. (a) Bulk simulation boxes of solid and liquid phases with 2 

three-dimensional periodic boundary conditions at the desired pressure. (b) Phases cleaved at the midplanes. (c) Transposed 3 

simulation boxes with dissimilar phases facing each other. (d) Final two-phase state with the gap closed and the two interfaces 4 

created.  5 

The method involves three steps: 6 

I. Cleaving: Start from independent simulation boxes of the two phases at a given pressure (Figure 7 

1a). The two boxes need to have the same cross-sectional dimensions along the cleaving plane 8 

and satisfy periodic boundary conditions. Move the cleaving walls to create a gap in the midplane 9 

of the simulation box such that particles do not interact across the gap (Figure 1b). 10 
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II. Transposition: Rearrange the boxes as shown in Figure 1c to create a larger simulation box with 1 

two gaps with dissimilar phases facing each other.  2 

III. Merging: Recede the two pairs of cleaving walls to close the gaps, creating two interfaces (Figure 3 

1d).  4 

The interfacial free energy is then defined as the work done through these steps per unit area of the 5 

interface created. Since the interfacial particles do not undergo any change in energy at Step II, the 6 

interfacial free energy 𝛾 is given by the following expression: 7 

𝛾 = 𝑤𝐼 + 𝑤𝐼𝐼𝐼           (2) 8 

Where 𝑤𝐼 is the work done per unit area on both systems in Step I, and 𝑤𝐼𝐼𝐼 is the work done per unit 9 

area on the transposed system in Step III. The latter is negative and smaller in magnitude, resulting in a 10 

positive value for 𝛾.  11 

The pressure faced by the cleaving wall is measured throughout steps I and III and it is crucial to move the 12 

wall very gradually to minimize hysteresis. The values were verified by also conducting the process in 13 

reverse, i.e., by cleavage of an interface. The initial set up, definition of the cleaving wall, and the pressure 14 

calculation are described in the next subsection.  15 

2.3.2 Initial Setup 16 

We performed all the calculations at the estimated bulk coexistence pressure 𝑝 = 4.0. As described in 17 

previous studies, the ordered phase of hard cubes at coexistence was generated by sequential NpT runs 18 

of 3 × 106  MC cycles each, starting from a high pressure (𝑝 = 20) and gradually reducing the pressure to 19 

𝑝 = 4.0. For the (100) crystal plane, configurations with N=1000 were prepared on a simple cubic lattice 20 

aligned with the box vectors of a cubic box. The configurations presenting the (110) crystal plane were 21 

obtained in a cuboidal box with N=1024 particles. 22 
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To obtain the disordered phase simulation box, the ordered phase simulation box was melted at 𝑝 = 1.0 1 

with anisotropic volume moves along the z direction (orthogonal to the cleaving plane) to maintain the 2 

cross sectional (x-y) dimensions consistent for transposition in Step II. The system was then compressed 3 

to 𝑝 = 4.0 to obtain the equilibrium disordered phase at coexistence. To circumvent the finite-size effect 4 

of the interfacial region propagating into bulk-phase structure, longer boxes with 𝑁 = 2000  were 5 

primarily studied; these systems were obtained by duplicating the box along the z direction, followed by 6 

equilibration for 3 × 106  MC cycles.  7 

2.3.3 Cleaving Walls 8 

We implemented the cleaving walls as hard planes that only interact with the centroids of the particles 9 

(see Supporting Information for discussion on walls that interact with the full particle shapes).  There are 10 

two walls, one which moves in +z and the other in -z direction. For a given simulation box, both walls start 11 

at the midplane along the z-axis and particles are disallowed from crossing the midplane or the wall. A 12 

given wall only interacts with particles in the direction of its movement during Step I. The simulation is 13 

conducted in the NVT ensemble and at the end of each MC cycle, walls are moved in either direction by 14 

small increments (< 10−4, in reduced units) with smaller increments used in cases where a particle would 15 

obstruct the wall. For example, if a movement of 10−4  would lead to an overlapping particle, a movement 16 

of 10−5 would be considered. This process is continued until we have achieved a separation of at least 17 

one particle circumradius, ensuring that the particles do not interact across the gap. Throughout the 18 

process we output configurations at various separations to perform pressure calculations as described 19 

later.  20 

After transposing the two phases with dissimilar phases facing each other across the gaps, the two gaps 21 

are closed in small steps corresponding to separations at which the pressure will be calculated (< 10−3). 22 
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Each time the separation is reduced the system is given 103 MC Cycles to relax. Eventually the gap is 1 

entirely closed, and the system has two interfaces of area equal to the box cross section.  2 

2.3.4 Pressure and Work Calculation 3 

We calculate the pressure on the wall using virtual perturbations of the wall position following similar 4 

well-known volume perturbation methods:38  5 

𝑝 = (
𝜕𝐹

𝜕𝑉
)

𝑁,𝑇
=

ln(〈𝑒−βΔU〉)

Δ𝑉
          (3) 6 

where 𝐹 is the free energy, 𝑉 is the volume of box, 𝑈 is the configurational energy, and the changes (∆𝑈, 7 

∆𝑉) are obtained upon virtual movements of the wall. Let the initial wall position from the midplane be 𝑧 8 

and the cross-sectional area in the xy plane be A. If the wall is moved by 𝛿𝑧 then the change in volume 9 

∆𝑉 = −𝐴𝛿𝑧, and we can write down Equation (3) as 10 

𝑝(𝑧) = −
ln(〈𝑒−βΔU(z)〉)

𝐴𝛿𝑧
           (4) 11 

The expression 〈𝑒−βΔU〉 in our case can be interpreted as the ensemble-average probability of overlap 12 

between the wall and any particle upon perturbation. For cubes we generally use 𝛿𝑧 = 0.001  (see 13 

Supporting Information).  14 

To accurately determine the pressure at a given separation, we conduct an NVT simulation with the initial 15 

configurations as described previously. Each simulation was conducted for 106  MC cycles and overlap 16 

with a virtual perturbation was checked every 10 cycles. The statistics thus obtained were analyzed to 17 

calculate the pressure 𝑝(𝑧) for Steps I and III. Assuming a reversible process, the work done per unit area 18 

was calculated with the following expression that integrates pressure (force per unit area on the plane) 19 

over the displacement of the wall: 20 

𝑤 = ∫ 𝑝(𝑧)𝑑𝑧
𝑧𝑓  

𝑧𝑖
          (5) 21 
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where 𝑧𝑖 and 𝑧𝑓 are the initial and final distance of the wall from the midplane. The work per unit area 1 

thus calculated was used to obtain 𝛾 using Equation 2.  2 

2.3.5 Corrugated Cleaving Walls 3 

To measure the interfacial free energy of the (110) plane in hard cubes crystal we needed to implement 4 

corrugated walls37 compatible with the zigzagging interface, or else the crystal would spontaneously 5 

reorient during the cleaving and merging processes. Here we present a simplified implementation for 6 

corrugated walls that only interact with the centroids of the particles.  7 

Let the plane be corrugated along the y-axis. The corrugated wall was simulated through a triangular wave 8 

given by the following function for the z coordinate of the wall (𝑧𝑤𝑎𝑙𝑙) at a given y-coordinate and position 9 

of the wall 𝑧:  10 

𝑧𝑤𝑎𝑙𝑙,±(𝑦, 𝑧) = |𝑦 mod 𝜆 −
𝜆

2
| −

𝜆

4
∓

𝜆

4
+ 𝑧       (6) 11 

where ±  refers to different walls based on the direction of movement during Step I, and 𝜆  is the 12 

wavelength of corrugation along the y-axis. Note that the position of the wall 𝑧  is defined as the z-13 

coordinate of the leading peaks of the triangular wave facing the direction of movement during Step I. In 14 

this way, at 𝑧 = 0 neither wall interacts with any particle at the beginning of the simulation.  15 

The final positions of the walls at the end of Step I was kept conservatively at 𝑧𝑓𝑖𝑛𝑎𝑙,± = ± (𝑎𝑐 +
𝜆

2
)  to 16 

ensure that particles cannot interact across the gap. The pressure calculations for the corrugated wall are 17 

identical to those for the flat wall. The wavelength 𝜆 is determined by the initial conditions of the crystal 18 

simulation box and was chosen such that the box length along y-axis 𝐿𝑦 = 𝑛𝑝𝜆  where 𝑛𝑝 is the number 19 

of particle layers along the y-axis. This choice ensures compatibility with the periodic boundary conditions 20 

and cleaves the systems in a manner conforming with the crystal plane. In principle this approach can be 21 

generalized to other topographies with an appropriate wall function. 22 
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2.4 Interfacial potential of mean force (PMF) 1 

We calculated the PMF experienced by a free particle interacting with a perfect interface of particles in a 2 

crystalline arrangement. NVT simulations were conducted comprising a single immobile layer of 3 

crystalline particles and a free particle. The spacing of the crystalline particles was chosen to be consistent 4 

with the volume fraction of the coexistence conditions. Statistics for free particle position were obtained 5 

through 107 MC cycles. The coordinates of the free particles were histogrammed with a resolution of 6 

0.05𝑎𝑐. The 𝑃𝑀𝐹 experienced at a given bin 𝑖 is given by: 7 

𝑃𝑀𝐹𝑖 = −𝑘𝐵𝑇 ln (
𝑓𝑖

𝑓∞
)          (7) 8 

where 𝑓𝑖  and 𝑓∞  are the visiting frequencies for the 𝑖𝑡ℎ  bin and a distant bin where the particle is not 9 

interacting with the immobile particles, respectively. The statistics were sufficient to obtain states with 10 

PMF ~7 𝑘𝐵𝑇. For comparison across different systems, the “effective” position of the interface was chosen 11 

to correspond to the point where 𝑃𝑀𝐹 = 5 𝑘𝐵𝑇. 12 

2.5 Measurement of Interfacial Thickness  13 

We estimate the thickness of the interface using the final configuration at the end of Step III of the cleaving 14 

process. The interface thickness 𝛿 is defined in a manner analogous to phase field models:39 15 

𝜙(𝑧) =
1

2
(1 + tanh

𝑧

2𝛿
)          (8) 16 

where 𝜙 is a scalar order parameter and 𝑧  is the position with respect the interface. For our analysis we 17 

define 𝜙 as: 18 

𝜙 =
𝜌𝑠−𝜌(𝑧)

𝜌𝑠−𝜌𝑙
             (9) 19 
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where 𝜌𝑠, 𝜌𝑙, and 𝜌(𝑧) are the densities of the bulk solid, bulk liquid, and system at position 𝑧. Thus, 𝜙 =1 

0 for the bulk solid, and 𝜙 = 1 for the bulk liquid. The starting interfacial configurations are simulated 2 

further for 106 MC cycles in an NVT ensemble to obtain statistics for 𝜙(𝑧). Equation 8 is fitted to the 𝑧 vs. 3 

𝜙(𝑧) data using a least squares method to obtain 𝛿, which is reported in circumradius units (𝑎𝑐). 4 

3. Results and Discussion 5 

3.1 Interfacial Free Energy 6 

The calculation was carefully performed to ensure that the process does not significantly alter the bulk 7 

behavior of either phase (e.g., by ordering of the disordered phase or disordering of the ordered phase). 8 

The process was conducted for various system lengths, and it was observed that the cleaving process 9 

influences the structure of a layer ~3 particles deep into the bulk phases. Hence a system size of 𝑁 =10 

2000 particles (~20 layers) on each phase was chosen. Sample configuration at the end of Step III for the 11 

case that the interfacial plane faces the (100) crystal plane is shown in Figure 2a. Intermediate 12 

configurations at other steps are shown in the Supporting Information. The pressure profiles for cleaving 13 

and merging cubes at coexistence pressure 𝑝𝑐𝑜 = 4.0 are shown in Figure 2b and Figure 2c for the 14 

ordered and disordered phase, respectively.  15 
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 1 

Figure 2: Cleaving walls for hard cubes (100) plane at coexistence pressure  𝑝 = 4.0. (a) Sample configuration at the end of Step 2 

III. Ordered and disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are 3 

shown in the Supporting Information. (b, c) Pressure variation with the position of the cleaving walls with respect to the midplane 4 

(quantifying the gap width) for (b) ordered and (c) disordered phase. Step I-Cleaving is shown with a solid line and Step II-Merging 5 

is shown with gray line. Scaling for the axes is described in Section 2.2.  6 

The interfacial free energy for the (100) orientation of the ordered phase was determined as 𝛾100 =7 

0.042 ± 0.007. Attempts to calculate the interfacial tension for the (110) orientation 𝛾110 with a flat (i.e., 8 

non-corrugated) cleaving wall resulted in the ordered phase reorienting in the (100) direction upon 9 

merging.  This rapid reorienting is rather unique to cubes as we have tested a variety of orientations of 10 

other polyhedral crystals without facing the same problem. There could be several reasons for this. The 11 

tendency to reorientation indicates that 𝛾100 < 𝛾110, so that the system relaxes toward the more stable 12 

interface. The short time scale of this process is likely facilitated by the unusually high diffusivity13 and 13 

vacancy concentration32,33 in the ordered phase for cubes. Fast crystal domain reorientation is consistent 14 
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with our observations in a previous study24 that hard cubes exhibit fast gran resolution dynamics. Also, 1 

because the disordered phase is cleaved by a flat wall, the cubes in the closest layers tend to align parallel 2 

to it, which in turn tend to realign (flatten) the closest zigzag (110) layer of the ordered phase during the 3 

merging step. This limitation  was  resolved with implementation of a corrugated cleaving wall37 as 4 

described in the Section 2.3.5. This approach allows for the disordered phase to be cleaved with a zigzag 5 

presentation of the particles compatible with the (110) crystal plane. The final configuration with (110) 6 

interfaces at the end of Step III and pressure profiles for both phases are shown in Figure 3. 7 

 8 

Figure 3: Cleaving walls for hard cubes (110) plane at coexistence pressure p=4.0. (a) Sample configuration at the end of Step III. 9 

Ordered and disordered phase particles are colored blue and red, respectively. Intermediate configurations at other steps are 10 

shown in the Supporting Information. (b, c) Pressure variation with the position of the cleaving walls defined by the leading peak 11 

of the corrugated wall (see Section 2.3.5) with respect to the midplane (quantifying the gap width) for (b) ordered and (c) 12 

disordered phase. Step I-Cleaving is shown with a solid line and Step II-Merging is shown with dotted line. Scaling for the axes is 13 

described in Section 2.2. 14 
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The interfacial free energy for the (110) orientation of the ordered phase was determined as 𝛾110 =1 

0.090 ± 0.010.  This value is more than twice 𝛾100, confirming that this difference is the main force driving 2 

the crystal reorientation with a flat wall observed earlier. The physical reason for why 𝛾100 < 𝛾110 can be 3 

rationalized by examining the entropic and enthalpic effects associated with the particles in the 4 

disordered region in contact with the different ordered planes, to be referred here as wetting layer. The 5 

pV component of the enthalpy (and free energy) favors smaller volumes or denser packing (due to closer 6 

contact) of the wetting layer; likewise, a more efficient packing (attained by partial lateral alignment) 7 

would favor packing entropy of that layer. As the potential of mean force (PMF) calculations reveal (Figure 8 

4), the (110) plane produces a longer-range repulsive field, which is a consequence of its rougher and 9 

more intrusive profile (Figure 4 inset). This also translates into a thicker wetting layer as shown in Figure 10 

5. These observations are consistent with a larger free energy penalty in the 110 wetting layer and hence 11 

𝛾110 > 𝛾100. Based on these physical considerations, we further anticipate that 𝛾111 > 𝛾110  >  𝛾100. 12 
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 1 

Figure 4: Interfacial potentials of mean force (PMF) at coexistence for various cases. Inset: two-dimensional PMF surface for (110) 2 

plane of hard cubes, where crystalline cubes (blue) are placed in the middle at their fixed positions in the calculation. Details on 3 

the calculation are provided in Section 2.4. 4 
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 1 

Figure 5: Scalar order parameter 𝜙 as a function of position with respect to the interface (𝑧, in circumradius 𝑎𝐶 units) for various 2 

crystal planes of hard cubes. The interfacial thickness of (100) and (110) crystal planes were found to be 𝛿100 = 1.6 ± 0.2 and 3 

𝛿110 = 2.9 ± 0.3, respectively. Details on the calculation are provided in Section 2.5. 4 

Based on the 𝛾 values thus calculated, a Wulff construction40–43 could be performed to obtain information 5 

about the nucleus geometry. The governing principle of Wulff construction states that the length ℎ of a 6 

perpendicular to a crystal plane passing through the centroid is proportional to its interfacial free energy 7 

𝛾. Based on this principle, the perpendiculars of (100) and (110) facets should be related as ℎ110 =8 

2.14ℎ100. This relation would put the (110) plane outside the inner volume enclosed by (100) plane since 9 

ℎ110 > √2ℎ100. This implies that, if we restrict ourselves to the closed-packed facets,43 the (110) should 10 

not show up in an equilibrium nucleus geometry. Regardless, since the (100) facet is the most closed-11 

packed43 facet for this crystal, 𝛾100 can be used as a representative value for comparison across different 12 

shapes.  13 

We use reduced interfacial free energies 𝛾̅  as defined in Section 2.2 for comparison across different 14 

shapes. In most studies of hard polyhedra the interfacial free energy has been calculated indirectly 15 
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through nucleation free energy barrier calculations18,21 leveraging classical nucleation theory (CNT). These 1 

approaches are sensitive to the definition of the order parameter used to ascertain the interface of the 2 

nucleus.44 Nevertheless, these indirect estimates for hard spheres are very much comparable to those 3 

obtained from direct methods including the cleaving walls approach.45 Hence we use CNT estimates for 4 

comparison among shapes when results from any direct method is unavailable.  5 

At coexistence, the value of the reduced interfacial free energy for the (100) crystal facet in cubes (𝛾̅100 =6 

0.088) is about one sixth the value for hard spheres (𝛾̅𝐻𝑆~ 0.52 for all closed packed orientations). For 7 

comparison, orientationally-average interfacial free energies reported for faceted particles (at the 8 

disorder-order phase transition) have been at most 20% lower than that of hard spheres (e.g.,  for 9 

cuboctahedra, truncated octahedra and rhombic dodecahedra),21 and often higher than that (e.g., for 10 

octahedra and gyrobifastigia). 22,23 We illustrate these observations in Figure 6 where we plot reduced 11 

interfacial free energy 𝛾̅  at a given supersaturation ∆𝜇𝑜𝑑  for a number of shapes as reported in the 12 

literature. It is evident that cubes have by far the lowest value of reduced interfacial free energy, which 13 

generally increases with Δ𝜇𝑜𝑑.  14 
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 1 

Figure 6: Reduced interfacial free energy 𝛾̅ at a given supersaturation ∆𝜇𝑜𝑑 for various shapes (HS: hard spheres, OCT: octahedra, 2 

GBF: gyrobifastigia, CO: cuboctahedra, TO: truncated octahedra, RD: rhombic dodecahedra, TC25: truncated cubes with s=0.25, 3 

and Cubes) reported in literature using a variety of methods (CW: cleaving walls, US: umbrella sampling and classical nucleation 4 

theory, NSP: nucleus-size pinning with classical nucleation theory). Data sources: HS(CW)37, HS(US)19,  HS(NSP)23, OCT(US)22, 5 

GBF(CW)46, GBF(NSP)23, CO-TO-RD(US),21  Cubes and TC25: this work. 6 

Physically, the small 𝛾̅ for hard cubes implies a small penalty for creating solid-liquid interfaces, which 7 

correlates with the observation of a relatively high incidence of ordered and disordered domains co-8 

existing next to each other in both the disordered and ordered phase. This results in a significant 9 

concentration of ordered domains in the disordered phase and hence a high fraction of ordered particles 10 

(about 3% at coexistence compared to less than 0.05 % for hard spheres). Likewise, the high content (>6%) 11 

of mobile vacancies in the solid phase32 connotes some localized liquid-like behavior. This similarity 12 

between some local configurations from its disordered and ordered phases means that both phases share 13 

a fraction of the same phase space in the terms of translational and orientational order, which enhance 14 

their interfacial affinity.  15 
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The low 𝛾 could also be indicative of the proximity between the binodal and spinodal conditions for cubes, 1 

as a zero interfacial tension is a characteristic of the spinodal point in other systems.47,48 This hypothesis 2 

is strengthened by the fact that the orientational correlation length diverges with pressure (see SI). We 3 

attempted a calculation of 𝛾  for cubes at finite degrees of supersaturation, but the results were 4 

inconclusive due to large statistical variations associated with a significant tendency for ordering in the 5 

disordered phase.  A more complete picture of the consequences of low 𝛾̅ values is provided in the next 6 

section through a theoretical analysis.  7 

We also examined the effect of a small perturbation to the cubic shape on interfacial tension by computing 8 

𝛾̅100 for truncated cubes with truncation parameter16 𝑠 = 0.25, hereafter referred to as TC25. The phase 9 

behavior is similar to that of hard cubes, with a first order transition from a disordered phase to a simple 10 

cubic crystal. Moreover, the disordered phase also has abundance of cubatic fluctuations, and the 11 

ordering transition progresses spontaneously at very low supersaturations.  We also calculated the free 12 

energy barrier for the TC25 disorder to order transition at coexistence through umbrella sampling as 13 

described elsewhere24 (see crucial details in the Supporting Information). The free energy profile as a 14 

function for fraction of ordered particles (𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑)  at coexistence pressure for TC25 is shown in Figure 15 

7, along with previously reported24 results for hard cubes. At coexistence, the free energy barrier for TC25 16 

is over three times larger than that of hard cubes. While there is no clear theoretical framework that can 17 

describe the exact relationship between 𝛾̅  and ∆𝐺∗  for this non-classical phase transition, the much 18 

higher barrier would indicate a correspondingly higher value for interfacial free energy. Indeed, we find 19 

that the interfacial free energy for the (100) plane of TC25 using the cleaving walls method at the 20 

coexistence pressure14 𝑝𝑐𝑜 = 3.64 is 𝛾̅100,𝑇𝐶25 = 0.194, which is about two times that for hard cubes. 21 

Another important observation is that 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  at both the disordered-state basin and the top of the 22 

barrier is much higher for TC25 compared to cubes. We note, however, that the order parameter 23 

definitions (see Supporting Information) are not identical for hard cubes and TC25 and hence the 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 24 
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for the two systems cannot be unambiguously compared. While the PMF for cubes and TC25 (associated 1 

with the 100 plane) are expectedly comparable, the densities of the coexistence phases are higher for 2 

TC25 than those for cubes, which would be expected to increase 𝛾. 3 

An interesting trend in Figure 6 is that particles shapes having more similarity to cubes tend to have lower 4 

 (e.g., TC25 and CO). This could reflect the fact that a preference of local ordered motifs with 6-fold 5 

coordination and smaller unit cells are easier to generate than structures requiring the coordination for 6 

more nearest-neighbor particles (like 8 or 12) and larger unit cells. The low coordination number of cube-7 

like shapes is a likely contributor to low  values by promoting low-free-energy-cost 6-fold configurations 8 

in route to the ordered phases they form (even if not a simple cubic). Since no other hard particle is able 9 

to order with a smaller coordination number and unit cell, we surmise that hard cubes likely possess the 10 

lowest  value of all athermal systems at the order-disorder transition (note that we exclude the case of 11 

tetrahedra whose isotropic phase does not transition into a simple-unit-cell solid49). 12 
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 1 

Figure 7: Free energy (∆𝐺) profile calculated as function of fraction of ordered particles (𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑) for TC25 via umbrella sampling 2 

at coexistence 𝑝 = 3.64. Previously reported24 free energy profile for a hard cubes system of identical size (N=1000) is also shown 3 

for comparison. Free energy is in 𝑘𝐵𝑇 units.  4 

3.2 Theoretical quantification of cubatic fluctuations 5 

We aim to provide a simple description of how the fraction of ordered particles (𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑) compounding 6 

the local solid-like fluctuations in the disordered phase is related to  𝛾̅ at a given supersaturation ∆𝜇𝑜𝑑. In 7 

this model, the cubatic fluctuations are in the form of nuclei which are non-interacting with each other 8 

and  distributed uniformly throughout the bulk.50 Let ∆𝐺(𝑛) be the free energy change associated with 9 

the formation of an ordered cluster of size 𝑛 (analogous to 𝑛 particles), the classical nucleation theory 10 

(CNT) provides the following expression: 11 

 ∆𝐺(𝑛) = ∆𝜇𝑜𝑑𝑛 + 𝐴𝛾̅𝑛2/3          (10) 12 

where 𝐴 is a geometric factor capturing the shape of the nucleus assuming that its surface area scales 13 

with the two-thirds power of the volume. For simplicity, we assume that both the inner and the interfacial 14 
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regions of a cluster can be described by 𝜇𝑜 and 𝛾̅. This is not true for clusters smaller than a characteristic 1 

length and there are models that could be used to account for such an effect.51–53 As such, our model will 2 

overestimate 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 if 𝛾̅ is higher for smaller clusters than larger ones in the system being considered, 3 

such as in hard spheres.54  4 

For steady state conditions for a system evolving from the metastable disorder-phase basin, the 5 

distribution of fraction of particles 𝑥𝑛  belonging to clusters of size 𝑛 can be described by the law of mass 6 

action55 as: 7 

𝑥𝑛 = 𝑛𝑥0
𝑛𝑒−∆𝐺(𝑛)          (11) 8 

where 𝑥0 is the fraction of disordered particles. We note that such a formulation assumes no inter-cluster 9 

interactions, that is, the effect of impingements between clusters is neglected so that each cluster is 10 

independent from others and only surrounded by disordered cubes. Further, the ordered clusters 11 

exhibiting a range of representative sizes are assumed to be well mixed (uniformly distributed) throughout 12 

a “continuous” phase of disordered cubes. Despite the limitations imposed by these assumptions (i.e., a 13 

scenario of relatively dilute clusters), this model forms a good basis for illustrating the consequences of 14 

interfacial tension on the concentration of ordered particles in the metastable disordered basin. We 15 

define the metastable basin as a disordered phase that may contain clusters up to the critical cluster size 16 

at the top of the barrier defined as:  17 

𝑛∗ = (
2𝐴𝛾̅

3|∆𝜇𝑜𝑑|
)

3
           (12) 18 

The fraction of ordered particles in the basin can then be evaluated as an integral over various sizes of 19 

ordered clusters described by Equation 11: 20 

𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = ∫ 𝑥𝑛𝑑𝑛
𝑛∗

0+           (13) 21 



24 
 

A discrete version of the model could also be formulated considering only integer nucleus sizes (see 1 

Supporting Information). We favor here the continuous version of the model as it avoids discontinuous 2 

jumps in values and makes trends easier to follow.  Applying mass balance on all particles: 3 

𝑥0 + 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 1           (14) 4 

Since the left-hand side of Equation 14 (when coupled to Equations 12 and 13) consists of continuous 5 

functions and takes a value of zero for 𝑥0 = 0  and a value greater than unity for 𝑥0 = 1 , then the 6 

intermediate value theorem ensures that a solution for 𝑥0 ∈ [0, 1] exists where the equality of Equation 7 

(14) holds. We can then numerically solve for this value of 𝑥0 at any given conditions of ∆𝜇𝑜𝑑 and 𝛾̅. 8 

We can follow the consequences of this mass action-derived classical nucleation theory (MADCNT) model 9 

in the context of the cubatic fluctuations observed in the disordered phase of hard cubes by evaluating  10 

𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  as a function of ∆𝜇𝑜𝑑  and 𝛾̅  for a particular case. For simplicity, if the ordered clusters are 11 

spherical, the geometric factor will be: 12 

𝐴 = (36𝜋)
1

3           (15) 13 

As an example, Figure 8a shows a plot of 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  as a function of ∆𝜇𝑜𝑑 and 𝛾̅.  14 
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 1 

Figure 8: Predictions from the MADCNT model for spherical ordered clusters. (a) Fraction of ordered particles  𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 and (b) 2 

Average cluster size 〈𝑛〉  as a function of ∆𝜇𝑜𝑑  and  𝛾̅ . The isolines for the nucleation barrier ∆𝐺∗  are shown in green. The 3 

calculations were performed with a resolution of 100 points along each axis. 4 

In general, 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 remains relatively low (< 0.01) except for a diagonal ‘band’ where it can get as high 5 

as 0.697. The model also allows us to extract information about the cluster size distribution. Sample 6 

distributions 𝑥𝑛  at coexistence as a function of cluster size 𝑛 are shown in Figure 9. Ordered clusters 7 

predominantly exist in clusters of small sizes, with the spread of cluster sizes generally decreasing with 8 

increasing 𝛾̅. It is informative to evaluate the average cluster size: 9 

⟨𝑛⟩ =
𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑

∫ 𝑥0
𝑛𝑒−∆𝐺(𝑛)𝑑𝑛

𝑛∗

0+

          (15) 10 

Figure 8b reveals that the average cluster size generally correlates with 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑, also attaining higher 11 

values along the diagonal band.  12 
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The trends in these MADCNT predictions can be understood by considering two effects at play relating to 1 

the metastable basin: its depth (embodied by Δ𝐺(𝑛∗)) and its width (embodied by 𝑛∗). The width of the 2 

basin, 𝑛∗ determines the upper limit to the integral in Equation 13. A larger 𝑛∗ would imply that more 3 

numerous ordered species are competing against the disordered particles, resulting in a larger 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑. 4 

Hence the width contributes positively to 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑. On the other hand, the depth of the basin is related 5 

to the nucleation barrier: 6 

∆𝐺(𝑛∗) = ∆𝐺∗ =
4(𝐴𝛾̅)3

27|∆𝜇𝑜𝑑|2          (16)  7 

and since Δ𝐺(𝑛) < Δ𝐺(𝑛∗), larger values will translate into smaller exponential factors within the integral 8 

in Equation 13, making the larger clusters rare. Hence an increased depth of the metastable basin 9 

contributes negatively to 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑. Since both width and depth of the metastable basin increase with  𝛾̅ 10 

and decrease with ∆𝜇𝑜𝑑, the following three distinct regions in the plot can be identified depending on 11 

whether one effect dominates or both effects are in play: 12 

I. Bottom-left triangular region: This region has very low 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ≪ 1 due to narrow metastable 13 

basins ensuing from a low 𝛾̅ and high |∆𝜇𝑜𝑑|.  In practice, it would be very difficult to sustain a 14 

metastable state located in this region due to the very small critical nucleus sizes and barriers (see 15 

isolines in Figure 8), which will likely manifest as a spinodal decomposition. Interestingly, the line 16 

for 𝑛∗ = 1 demarcates the boundary of this region where 𝑛∗ < 1.  17 

II. Top-right triangular region: This region also has a low 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 ≪ 1 but due to reasons different 18 

from those for region I. Due to the high 𝛾̅, the basins are wide and deep. This would result in a 19 

rather robust metastable state with rare occurrence of nuclei akin to systems where nucleation 20 

and growth is the mechanism of phase transition. Generally, 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 decreases as 𝛾̅ increases 21 

(interfaces become more expensive) and/or as ∆𝜇𝑜𝑑  increases (ordered phase becomes less 22 

stable). In contrast with region I, 〈𝑛〉  is slightly higher because larger clusters are being 23 
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considered. In this region we can sufficiently describe the fraction of ordered particles through 1 

MADCNT, since a low fraction implies the nuclei are not likely to interact with each other. The 2 

values of 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  predicted by the model in this scenario have been validated for specific 3 

conditions for hard spheres, and are consistent with predictions of models that use appropriate 4 

corrections for interfacial tension as a function of nucleus size.54 5 

III. Downward diagonal band: In this region neither of the effects dominate, leading to a metastable 6 

basin that is neither too narrow nor too deep. This results in a non-negligible 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 that could 7 

take up values greater than 0.5, especially near the lower-right corner (low 𝛾̅, |∆𝜇𝑜𝑑|). This is a 8 

scenario that MADCNT is ill-suited to describe since beyond a certain 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  the ordered 9 

clusters are likely to interact with each other and form motifs that are not described by Equation 10 

10. Indeed, at sufficiently high 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑, a percolating network of ordered cluster might form. We 11 

refrain from assigning a percolation threshold as it will depend on the cluster size distribution 12 

which varies with conditions  𝛾̅ , |∆𝜇𝑜𝑑| . For example, for completely uncorrelated ordered 13 

particles distributed throughout the bulk, the three-dimensional percolation threshold for site 14 

percolation of the intrinsic crystal lattice might be an appropriate bound. The band becomes more 15 

diffused as we go to higher supersaturations, eventually connecting regions I and II. 16 
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 1 

Figure 9: Sample distributions (𝑥𝑛) of ordered particles over various cluster sizes (𝑛) at coexistence for various values of 𝛾̅ as 2 

predicted by MADCNT model. 3 

While 𝛾̅ and ∆𝜇𝑜𝑑 are easy-to-interpret physical properties, the trends get simplified when we evaluate 4 

𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 as a function of ∆𝐺∗ and 𝑛∗, surrogates of depth and width of the metastable basin respectively, 5 

as shown in Figure 10. We notice that regions I and II are mapped into a single triangular region (light area 6 

in Figure 10), and 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑  generally increases with increasing 𝑛∗  and/or decreasing ∆𝐺∗ . Thus, the 7 

fraction of ordered particles in the metastable phase increases with shallower and wider basins. We note 8 

that this alternative mapping preserves the general trends described earlier but it shrinks certain areas of 9 

Figure 8  and expands others, with certain regions involving infeasible/unusual conditions.  10 
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 1 

Figure 10: Predictions from the MADCNT model for spherical ordered clusters with:  (a) Fraction of ordered particles  𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 and 2 

(b) Average cluster size 〈𝑛〉 as a function of 𝑛∗  and ∆𝐺∗ . The isolines for the supersaturation ∆𝜇𝑜𝑑  are shown in green. The 3 

calculations were performed with a resolution of 100 points along each axis. 4 

It is instructive to compare Figure 8a with Figure 6. While direct quantitative comparison may be difficult 5 

since the geometric factor 𝐴 is system specific, it can be observed that most shapes would likely be placed 6 

in region II given the relatively low concentration of ordered particles observed in the metastable 7 

disordered phases of those systems. On the other hand, both cubes and TC25 could be placed in region III 8 

by the virtue of their low 𝛾̅, which is corroborated by the observation of non-negligible 𝑥𝑜𝑟𝑑𝑒𝑟𝑒𝑑 in their 9 

metastable phases in simulations and can be associated with a wide, shallow metastable basin.  10 

The validity of a nucleation scenario rests on the basic assumption that at the early stages of phase 11 

transformation the nuclei of the incipient phase are rare and grow without interacting with other nuclei 12 

before approaching their critical size. This would largely hold for the region II but would eventually not be 13 

true for systems in region III. For cubes, an abundance of cubatic fluctuations of the incipient ordered 14 

phase (as predicted for lower interfacial free energy) would violate this assumption. Under such 15 
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circumstances, the dominant mechanism cannot be nuclei growth by conversion of disordered particles 1 

at the interface since there would also exist interfaces between ordered domains of non-negligible size. 2 

Usually, such impingement of nuclei leads to a halt in growth56 and a final polycrystalline state.  However, 3 

as illustrated in our previous publication,24 hard cubes exhibit fast dynamics of grain resolution by quickly 4 

reorienting intermediate layers along the boundary of two grains and then propagating a uniform 5 

alignment. Hence, any two impinging clusters could merge in a process similar to Oswald ripening. An 6 

increase in concentration of ordered clusters would increase instances of such growth mechanisms. There 7 

would be a critical concentration beyond which such instances of consolidation (or ripening) would 8 

become more probable than the breaking of clusters into smaller clusters. This would be consistent with 9 

our observation in a previous report24 of a critical concentration of ordered cubes being required to effect 10 

the disorder-to-order phase transition. Indeed, we found that cubes exhibit a transition that involves 11 

ordered phase nuclei gradually consolidating by resolving grain boundaries through local reorientation 12 

events. 13 

4. Conclusion and Outlook 14 

In this study, we implemented the cleaving-walls method to directly measure order-disorder interfacial 15 

free energy for the (100) and (110) crystal planes of hard cubes. We found them to be substantially lower 16 

than those for other reported cases of hard-core particles where nucleation and growth is reported. Our 17 

MADCNT model predicts that a lower interfacial tension gives rise to more abundant ordered clusters in 18 

the disordered phase, which could explain the abundance of cubatic fluctuations in the disordered phase 19 

for hard cubes. We also find that hard truncated cubes (TC25) have a higher 𝛾̅100 than hard cubes which 20 

also translates into higher free energy barriers at comparable coexistence conditions.  21 
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There are however many open questions regarding the non-classical characteristics of the ordering phase 1 

transition of hard cubes. It would be of interest to attain a deeper understanding of why hard cubes have 2 

a lower surface tension than other shapes. Given that TC25 also has a smaller 𝛾̅ compared to other particle 3 

shapes points to the cubic lattice structure of the ordered phase, and its known peculiarities, as playing a 4 

central role. Of course, cubic symmetry may not be a sufficient condition for a low 𝛾̅; indeed, we expect 5 

that if interparticle attractions are enacted among cubes, 𝛾̅ could be made significatively larger. In this 6 

context, interfacial tension calculations for other hard-core shapes and crystal planes would be 7 

informative and could help illuminate any trends therein. For example, while we found that truncation of 8 

the cubes increases the interfacial free energy (i.e., going from perfect cubes to TC25), it would be 9 

worthwhile to explore if larger perturbations can alter the behavior to the point where the classical 10 

nucleation and growth picture becomes a valid description. In assessing the role of 𝛾 in the ordering of 11 

cubes and concomitant theories, it is also important to keep in mind that since most cubatic fluctuations 12 

are small and encompass only ten or fewer particles, bulk-like domains and their interfaces are not well 13 

defined. Further, as we have noticed in our simulations, the effect of the interface could reach ~3 14 

particles deep into either phase. There are interesting approaches to address these effects53,54,57,58 and 15 

describe the free energy of small clusters. Even in cases where nuclei are large enough to have well 16 

defined geometries, it would be interesting to investigate the morphology of the nuclei through Wulff 17 

construction,40,43 especially in cases with aspherical nuclei23 as this would help evaluating the geometric 18 

factor (𝐴) in CNT-like theories. 19 

Further studies could aim to provide a more rigorous theoretical treatment that is applicable to region III 20 

described in Section 3.2. The key element would be a description of ordered motifs that are preferred 21 

when the classical theory predicts the presence of too many ordered nuclei. At high 𝛾̅ there would be a 22 

preference to make compact motifs like nuclei but at lower 𝛾̅ the ordered domains could comprise loose 23 

dendritic structures. Also needing description is a mechanism that captures how the ordered motifs grow, 24 
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analogous to nucleus growth in CNT. For non-compact ordered domains, the interfacial contribution to 1 

the free energy would not necessarily grow monotonously with concentration of ordered particles (see 2 

SI), hence leading to more complex free energy landscapes. 3 

5. Supporting Information 4 

Additional details pertaining to the cleaving walls method, the truncated cube system, and the MADCNT 5 

model. 6 
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