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Capturing Video Frame Rate Variations
via Entropic Differencing

Pavan C. Madhusudana , Neil Birkbeck, Yilin Wang, Balu Adsumilli, and Alan C. Bovik

Abstract—High frame rate videos are increasingly getting pop-
ular in recent years, driven by the strong requirements of the
entertainment and streaming industries to provide high quality
of experiences to consumers. To achieve the best trade-offs be-
tween the bandwidth requirements and video quality in terms of
frame rate adaptation, it is imperative to understand the effects of
frame rate on video quality. In this direction, we devise a novel
statistical entropic differencing method based on a Generalized
Gaussian Distribution model expressed in the spatial and tempo-
ral band-pass domains, which measures the difference in quality
between reference and distorted videos. The proposed design is
highly generalizable and can be employed when the reference
and distorted sequences have different frame rates. Our proposed
model correlates very well with subjective scores in the recently
proposed LIVE-YT-HFR database and achieves state of the art
performance when compared with existing methodologies.

Index Terms—High frame rate, video quality assessment, full
reference, entropy, natural video statistics, generalized Gaussian
distribution.

I. INTRODUCTION

A S CURRENT media technology continues to emphasize
ever higher quality regimes and to involve more immersive

and engaging experiences for consumers, the need to extend
current video parameter spaces along spatial and temporal res-
olutions, screen sizes and dynamic ranges has become a topic
of extreme importance, especially in the media and streaming
industry. Existing and emerging standards have increasingly
focused on improving spatial resolution (4K/8K) [1], High
Dynamic Range (HDR) [2], [3], and multiview formats [4],
[5]. However there has been much less emphasis placed on
increasing frame rates, and for a long time the frame rates
associated with television, cinema and other video streaming
applications have changed little - rarely above 60 frames per
second (fps).

Various factors have limited increased adoptions of High
Frame Rate (HFR) videos. Switching to HFR requires employ-
ing complex capture and display technologies which were not
commonly available. Another possible reason for the limited
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popularity of HFR relates to limited knowledge about the per-
ceptual benefits of employing HFR, which partly arises due to
insufficient availability of HFR content. Recently, HFR has gath-
ered significant interest among the research community, along
with publication of databases such as the Waterloo HFR [6],
BVI-HFR [7] and LIVE-YT-HFR [8] datasets that exclusively
target HFR contents.

Perceptual Video Quality Assessment (VQA) is an integral
component in numerous video applications such as digital cin-
ema, video streaming applications (such as YouTube, Netflix,
Hulu etc.) and social media (Facebook, Instagram etc). VQA
models can be broadly classified into three main categories
[9]: Full-Reference (FR), Reduced-Reference (RR) and No-
Reference (NR) models. FR VQA models require entire pristine
undistorted stimuli along with degraded versions [10]–[16],
while RR models operate with limited reference information
[17]–[21]. NR models operate without any knowledge of pristine
stimuli [22]–[25]. This work addresses the problem of quality
evaluation when pristine and distorted sequences can possibly
have different frame rates, thus our primarily focus will be on
FR and RR VQA methods.

There has been very limited work done on addressing VQA
in the HFR domain. One of the first models was proposed by
Nasiri et al. [26], where they measured the amount of aliasing
occurring in the temporal frequency spectrum, employing that
as a measure of quality. In [27] a motion smoothness measure
was proposed for cross frame rate quality evaluation. Zhang
et al. [28] proposed a wavelet domain based Frame Rate Quality
Metric (FRQM), where the differences between the wavelet
coefficients of reference and temporally upsampled distorted
sequences were used to predict quality. FRQM has a restriction
that it cannot be employed when the reference and distorted
videos have same frame rate, thus limiting its generalizability.

In this letter, we propose a statistical VQA model that can
capture distortions arising due to frame rate variations, and
provide quality predictions that correlate well with human per-
ception. This model is primarily motivated by temporal vari-
ations observed in the distributions of band-pass coefficients.
We propose a novel entropic differencing method using Gen-
eralized Gaussian Distribution (GGD) model for both spatial
and temporal band-pass responses, and show its effectiveness
in capturing spatio-temporal artifacts. We evaluate our model
on the LIVE-YT-HFR database and show that the predicted
quality estimates have superior correlations against human judg-
ments as compared to existing methods. Our proposed method
is simplistic in nature, has very few hyperparameters to tune
and does not require any computationally intensive training
process.

The rest of the letter is organized as follows. In Section II we
provide a detailed description of our proposed VQA model. In
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Fig. 1. Distributions of band-pass coefficients for six different frame rates.

Section III we report and analyze various experimental results,
and provide some concluding remarks in Section IV.

II. PROPOSED METHOD

Consider a bank of K temporal band-pass filters denoted by
bk for k ∈ {1, . . .K}, the temporal band-pass response for a
video V (x, t) (x = (x, y) represents spatial co-ordinates and t
denotes temporal dimension) is given by

Bk(x, t) = V (x, t) ∗ bk(t) ∀k ∈ {1, . . .K}, (1)

where Bk denotes band-pass response of kth filter. Note that
these are 1D filters applied only along the temporal dimension.
We empirically observe that the distributions of the coefficients
of Bk vary as a function of frame rate. This is illustrated in
Fig. 1, where distributions at different frame rates are shown for
a 4-level Haar wavelet filter. From Fig. 1 it maybe observed that
as frame rates increase, the distribution becomes more peakier
as the correlation between the consecutive frames increase with
frame rate. Since coefficients ofBk are band-pass in nature, they
can be well modelled as following a Generalized Gaussian Dis-
tribution (GGD). GGD models have been widely used to model
band-pass coefficients in many previous applications, such as
image denoising [29], texture retrieval [30] etc. In this work
we propose to employ entropic differences of band-pass GGD
samples to quantify the deviations in distribution of band-pass
coefficients.

A. GGD Based Statistical Model

Let the reference and distorted videos be denoted by R and D
respectively, with Rt, Dt representing corresponding frames at
time t. Note that R and D can have different frame rates though
we require them to have same spatial resolution. Let the response
of the kth band pass filter bk, k ∈ {1, 2, . . . K} on reference and
distorted videos be denoted by BR

kt and BD
kt respectively. We

assume that every frame of BR
kt, B

D
kt follows a GGD model with

zero-mean. We divide each frame into P spatial blocks each of
size
√
M ×√M . Let BR

kpt and BD
kpt denote vector of band pass

coefficients in block p for subband k and frame t for reference
and distorted respectively. We allow the band-pass coefficients
to pass through a Gaussian channel to model perceptual imper-
fections such as neural noise [12], [20]. Let B̃R

kpt, B̃
D
kpt represent

coefficients which undergo channel imperfections to obtain the
observed responsesBR

kpt, B
D
kpt respectively. Also let B̃R

kpt, B̃
D
kpt

both be modeled as following GGD. This model is expressed as:

BR
kpt = B̃R

kpt +WR
kpt BD

kpt = B̃D
kpt +WD

kpt (2)

where B̃R
kpt is independent of WR

kpt, B̃
D
kpt is independent of

WD
kpt, and where WR

kpt, W
D
kpt are drawn from the Gaussian

distribution N (0, σ2
W IM). It can be inferred from (2) that

BR
kpt, B

D
kpt need not necessarily be GGD, although it can be

well approximated by a GGD [31] due to the independence
assumption. As shown in the VIF [12] formulation, distortion
results in a loss of “natural” image information as measured by
suitably defined entropies. Variations over time of video frames
from distortion can affect this visual information flow, and may
depend on frame rate. For example, a lower frame rate may
result in judder, which measurably affects the information flow,
as measured by entropy under the statistical model of videos. The
entropy of a GGD random variable X ∼ GGD(0, α, β) has a
closed form expression given by:

h(X) =
1

β
− log

(
β

2αΓ(1/β)

)
(3)

where α and β are the scale and shape parameters of GGD
respectively. Entropy computation requires the values of the
GGD parameters of B̃R

kpt and B̃D
kpt. However we only have

access to BR
kpt and BD

kpt. In order to estimate these parameters
we follow the kurtosis matching procedure detailed in [32] from
which kurtosis values of B̃R

kptand B̃D
kpt can be obtained. The

GGD parameters and kurtosis follow a bijective mapping [32]
where the kurtosis of a GGD random variable is given by:

Kurtosis(X) =
Γ(5/β)Γ(1/β)

Γ(3/β)2
(4)

A simple grid search can be used to estimate the shape
parameter β from obtained kurtosis value. The other parameter
α can be obtained using the relation

α = σ

√
Γ(1/β)

Γ(3/β)
(5)

Plugging the parameters obtained from (4) and (5) in (3), the
entropies h(B̃R

kpt) and h(B̃D
kpt) can be computed. In the next

section we show how these entropies can be effectively used to
assess the quality of videos.

B. Temporal Measure

We define entropy scaling factors given by:

γR
kpt = log(1 + σ2(B̃R

kpt)), γD
kpt = log(1 + σ2(B̃D

kpt))

These scaling factors are similar to the ones used in [19], [20].
Scaling factors lend a more local nature to our model and provide
numerical stability on regions having low variance, where the
entropy estimates are less stable. The entropies are modified by
premultiplying with the scaling factors as shown in (6). Regions
having low variances will have small scaling factors, reducing
the impact of noise on the entropy values:

εRkpt = γR
kpth(B̃

R
kpt), εDkpt = γD

kpth(B̃
D
kpt). (6)

There exists a frame rate bias associated with the entropy values
where different frame rates have entropies at different scales.
High frame rate sequences such as 120 fps have much lower
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TABLE I
PERFORMANCE COMPARISON OF FR-VQA ALGORITHMS ON THE HFR

DATABASE. IN EACH COLUMN THE FIRST AND SECOND BEST VALUES ARE

BOLDFACED AND UNDERLINED, RESPECTIVELY

entropy values when compared to lower frame rates such as
24 fps, 30 fps etc. Thus simple entropy subtraction measures the
difference between the frame rates of R and D. Though this is
desirable, this can be inefficient when comparing videos which
only differ by compression artifacts. To remove this bias, we
employ an additional video sequence termed Pseudo Reference
(PR) signal, which is obtained by temporally downsampling
the reference to match the frame rate of the distorted video.
In our implementation we use frame dropping to conduct tem-
poral downsampling using the FFmpeg [33] tool. In the case
when the distorted sequence has the same frame rate as the
reference, PR will be the same as R. Similar to εRkpt and εDkpt,
we calculate εPR

kpt . We define the Generalized Temporal Index
(GTI) as:

GTIkt =
1

P

P∑
p=1

∣∣∣∣∣ (1 + |εDkpt − εPR
kpt |

) εRkpt + 1

εPR
kpt + 1

− 1

∣∣∣∣∣. (7)

(7) can be interpreted by decomposing into two factors: absolute
difference term and ratio term. Absolute difference term removes
frame rate bias and captures the quality changes as if R and D
were at the same frame rate. The ratio term weights these factors
depending on the reference and distorted frame rate. In the case
of reference and distorted videos having same frame rate, the
ratio term will be 1, thus making (7) depend only on absolute
difference. The unit terms within the absolute values ensure that
GTI does not become zero whenD = PR �= R, which happens
when distorted sequence is temporally subsampled version of
the reference. Note that GTI = 0 only when D = PR = R.
The unit terms in the ratio avoid indeterminate values in regions
having small entropy values.

C. Spatial Measure

Although GTI does capture spatial information due to its
spatial block based nature, it is primarily influenced by the
temporal filtering. To extract information about spatial artifacts,
we employ spatial band-pass filters applied to every frame of
the video. For this purpose we employ a local Mean Subtracted
(MS) filtering similar to [21]. LetRMS

t = Rt − μR
t andDMS

t =
Dt − μD

t be the reference and distorted MS coefficients where

local mean is calculated as

μR
t (i, j) =

G∑
g=−G

H∑
h=−H

ωg,hRt(i+ g, j + h),

μD
t (i, j) =

G∑
g=−G

H∑
h=−H

ωg,hDt(i+ g, j + h)

where ω = ωg,h|g = −G, . . . G, h = −H, . . .H is a 2D circu-
larly symmetric Gaussian weighting function sampled out to 3
standard deviations. In our implementation we use G = H = 7.
The MS coefficients RMS

t , DMS
t are modeled as following a

GGD model. Similar to the temporal measure, we divide each
frame into P nonoverlapping blocks and calculate entropies
h(R̃MS

t ) and h(D̃MS
t ) as detailed in Subsection II-A by re-

placing temporal band-pass responses with corresponding MS
coefficients. Similarly we define scaling factors and modified
entropies:

ηRpt = log(1 + σ2(R̃MS
pt )), ηDpt = log(1 + σ2(D̃MS

pt ))

θRpt = ηRpth(R̃
MS
pt ), θDpt = ηDpth(D̃

MS
pt ).

Since spatial entropies are computed using only the information
from a single frame, the values are frame rate agnostic. Thus
there does not arise any scale variations due to frame rate, as
seen in the temporal case. The Generalized Spatial Index (GSI)
is then defined as:

GSIt =
1

P

P∑
p=1

|θDpt − θRpt|. (8)

D. Spatio-Temporal Measure

GSI and GTI operate individually on data obtained by sep-
arate processing of spatial and temporal frequency responses.
Interestingly, while GSI is obtained in a purely spatial manner,
GTI has both spatial and temporal information embedded in
it (as entropies are obtained in a spatial blockwise manner).
Thus temporal artifacts such as judder etc. only influence GTI,
while spatial artifacts affect both GTI and GSI. A combined
Generalized Spatio-Temporal Index (GSTI) is defined as:

GSTIkt = GTIktGSIt. (9)

The quality score obtained from (9) provides scores at frame
level. To obtain a video level quality score we average pool
(tacitly assuming frames are temporally consistent, i.e., do not
contain scene cuts, which are easily detected) the frame scores:

GSTIk =
1

T

T∑
t=1

GSTIkt. (10)

Implementation Details: For simplicity we implemented our
method only in the luminance domain. We use a 3-level Haar
wavelet filter as the temporal band-pass filter bk with k ∈
{1, . . . 7} (we ignore the low pass response), where a higher k
value denotes a larger center frequency. We used wavelet packet
(constant linear bandwidth) (WP) filter bank [36] as we found it
to be more effective than using constant octave bandwidth filters.
For entropy calculation we choose spatial blocks of size 5× 5
(i.e.,

√
M = 5). We choose neural noise variance σ2

W = 0.1
defined in (2). Note that similar values were employed in [12]
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TABLE II
PERFORMANCE COMPARISON OF VARIOUS FR METHODS FOR INDIVIDUAL FRAME RATES IN THE LIVE-YT-HFR DATABASE. IN EACH COLUMN FIRST AND

SECOND BEST VALUES ARE BOLDFACED AND UNDERLINED, RESPECTIVELY

and [19]. We observed that our algorithm is most effective
when spatial resolution is downsampled 16 times along both
dimensions. Similar observations were made in [20] and [21]
and is attributed to the motion downshifting phenomenon where,
in presence of motion, human vision tends to be more sensitive
to coarser scales than finer ones. Since reference and distorted
sequences can have different frame rates, the reference entropy
terms εRkpt, θ

R
kt will have a different number of frames when

compared to their counterpart distorted entropy terms εDkpt, θ
D
pt.

Thus we temporally average reference entropy terms as:

εRkpt ←
1

F

F∑
n=1

εRkpt′ where

{
F = FPSref

FPSdist
,

t′ = (t− 1)F + n

θRpt ←
1

F

F∑
n=1

θRpt′

III. EXPERIMENTS

Experimental Settings: We selected 4 FR-IQA methods:
PSNR, SSIM [10], MS-SSIM [11] and FSIM [13] for compari-
son. Since these are image indices, they are computed on every
frame and averaged across all frames to obtain the video scores.
In addition to the above IQA indices, we also include 5 FR-VQA
indices: ST-RRED [20], SpEED [21], FRQM[28], VMAF1 [34]
and deepVQA [35]. For deepVQA, we use only stage-1 of the
pretrained model (trained on the LIVE-VQA [37] database)
obtained from the code released by the authors. Since the above
methods require same frame rates for reference and distorted
videos, for cases with differing frame rates, the distorted video
was temporally upsampled by frame duplication to match the
reference frame rate. Although we can downsample the refer-
ence as well, we avoided this method since it can potentially
introduce artifacts (e.g., judder) in the reference video which is
not desirable. All the above VQA models were evaluated at their
original spatial resolution. Spearman’s rank order correlation co-
efficient (SROCC), Kendall’s rank order correlation coefficient
(KROCC), Pearson’s linear correlation coefficient (PLCC) and
root mean squared error (RMSE) were the main performance
criteria employed to evaluate the VQA methodologies. Before
computing PLCC and RMSE, the predicted scores were passed
through a four-parameter logistic non-linearity, as described
in [38].

1We use the pretrained VMAF model available at https://github.com/Netflix/
vmaf

A. Correlation Against Human Judgments

The correlations between objective scores predicted by vari-
ous FR models against the human judgments in the LIVE-YT-
HFR database are compared in Table I. Our proposed method
outperformed all the existing models across every evaluation
criteria, as illustrated in Table I. The reported results for GSTI
in Table I correspond to the first subband (i.e., b1) of the band-
pass filter, which was empirically observed to achieve highest
performance when compared to other subbands.

B. Performance Analysis With Individual Frame Rates

In this experiment we subdivided the LIVE-YT-HFR database
into sets which contain videos having the same frame rate, and
individually analyzed the performance on them. The perfor-
mance comparison is shown in Table II. To avoid clutter we only
include SROCC and PLCC for evaluation. At high frame rates,
there are naturally reduced temporal distortions, hence distor-
tions are primarily from compression, which VMAF is (Pareto)
optimized to handle. We also observed an interesting anomaly
where PSNR achieved higher performance at lower frame rates
when compared to other prior VQA models, which is surprising,
since PSNR correlates poorly against human quality perception
[39]. It is possible that frame-based models like SSIM, which
accurately predict spatial distortions, have a “spatial bias” on
this database. PSNR, which is merely a space-time difference
signal will not have such a bias. For FRQM, correlation values
are not reported for 120 fps, as it requires the compared videos to
have different frame rates. It should be noted that a factor in the
performance of FRQM (Table II) could be that it was designed
on frame averaging, rather than frame dropping.

IV. CONCLUSION AND FUTURE WORK

We presented a simple, highly generalizable video quality
evaluation method that can be employed when reference and
distorted videos having different frame rates, and gauged its
performance on the new LIVE-YT-HFR database. We performed
a holistic evaluation of our method in terms of correlation against
human perception and established that our method is superior
and more robust than existing algorithms.

For band-pass filtering, a simple Haar filter was used, which
can potentially limit performance. As part of future work we
plan to explore other band-pass filters with superior frequency
responses. Another avenue we wish to explore is to incorporate
GSTI into a data driven quality model such as VMAF [34], to
further enhance performance.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:38:04 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/Netflix/vmaf


MADHUSUDANA et al.: CAPTURING VIDEO FRAME RATE VARIATIONS VIA ENTROPIC DIFFERENCING 1813

REFERENCES

[1] C. Ge, N. Wang, G. Foster, and M. Wilson, “Toward QoE-assured 4k
video-on-demand delivery through mobile edge virtualization with adap-
tive prefetching,” IEEE Trans. Multimedia, vol. 19, no. 10, pp. 2222–2237,
Oct. 2017.

[2] Z. Mai, H. Mansour, R. Mantiuk, P. Nasiopoulos, R. Ward, and W.
Heidrich, “Optimizing a tone curve for backward-compatible high dy-
namic range image and video compression,” IEEE Trans. Image Process.,
vol. 20, no. 6, pp. 1558–1571, Jun. 2011.

[3] D. Kundu, D. Ghadiyaram, A. C. Bovik, and B. L. Evans, “No-reference
quality assessment of tone-mapped HDR pictures,” IEEE Trans. Image
Process., vol. 26, no. 6, pp. 2957–2971, Jun. 2017.

[4] A. Smolic et al., “Coding algorithms for 3DTV—A survey,” IEEE Trans.
Circuits Syst. Video Technol., vol. 17, no. 11, pp. 1606–1621, Nov. 2007.

[5] V. De Silva, H. K. Arachchi, E. Ekmekcioglu, and A. Kondoz, “Toward an
impairment metric for stereoscopic video: A full-reference video quality
metric to assess compressed stereoscopic video,” IEEE Trans. Image
Process., vol. 22, no. 9, pp. 3392–3404, Sep. 2013.

[6] R. M. Nasiri, J. Wang, A. Rehman, S. Wang, and Z. Wang, “Perceptual
quality assessment of high frame rate video,” in Proc. IEEE Int. Workshop
Multimedia Signal Process., 2015, pp. 1–6.

[7] A. Mackin, F. Zhang, and D. R. Bull, “A study of high frame rate
video formats,” IEEE Trans. Multimedia, vol. 21, no. 6, pp. 1499–1512,
Jun. 2019.

[8] P. C. Madhusudana, X. Yu, N. Birkbeck, Y. Wang, B. Adsumilli, and A.
C. Bovik, “Subjective and objective quality assessment of high frame rate
videos,” 2020, arXiv:2007.11634.

[9] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam, “Objective
video quality assessment methods: A classification, review, and perfor-
mance comparison,” IEEE Trans. Broadcast., vol. 57, no. 2, pp. 165–182,
Jun. 2011.

[10] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality
assessment: From error visibility to structural similarity,” IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[11] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similar-
ity for image quality assessment,” in Proc. Asilomar Conf. Signals, Syst.
Comput., Nov. 2003, pp. 1398–1402.

[12] H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Trans. Image Process., vol. 15, no. 2, pp. 430–444, Feb. 2006.

[13] L. Zhang, L. Zhang, X. Mou, and D. Zhang, “FSIM: A feature similarity
index for image quality assessment,” IEEE Trans. Image Process., vol. 20,
no. 8, pp. 2378–2386, Aug. 2011.

[14] K. Seshadrinathan and A. C. Bovik, “Motion tuned spatio-temporal quality
assessment of natural videos,” IEEE Trans. Image Process., vol. 19, no. 2,
pp. 335–350, Feb. 2010.

[15] P. V. Vu, C. T. Vu, and D. M. Chandler, “A spatiotemporal most-apparent-
distortion model for video quality assessment,” in Proc. IEEE Int. Conf.
Image Process., Sep. 2011, pp. 2505–2508.

[16] K. Manasa and S. S. Channappayya, “An optical flow-based full reference
video quality assessment algorithm,” IEEE Trans. Image Process., vol. 25,
no. 6, pp. 2480–2492, Jun. 2016.

[17] Z. Wang and E. P. Simoncelli, “Reduced-reference image quality assess-
ment using a wavelet-domain natural image statistic model,” in Proc.
Human Vis. Electron. Imag. X, 2005, pp. 149–159.

[18] Q. Li and Z. Wang, “Reduced-reference image quality assessment using
divisive normalization-based image representation,” IEEE J. Sel. Topics
Signal Process., vol. 3, no. 2, pp. 202–211, Apr. 2009.

[19] R. Soundararajan and A. C. Bovik, “RRED indices: Reduced reference
entropic differencing for image quality assessment,” IEEE Trans. Image
Process., vol. 21, no. 2, pp. 517–526, Feb. 2012.

[20] R. Soundararajan and A. C. Bovik, “Video quality assessment by reduced
reference spatio-temporal entropic differencing,” IEEE Trans. Circuits
Syst. Video Technol., vol. 23, no. 4, pp. 684–694, Apr. 2013.

[21] C. G. Bampis, P. Gupta, R. Soundararajan, and A. C. Bovik, “SpEED-QA:
Spatial efficient entropic differencing for image and video quality,” IEEE
Signal Process. Lett., vol. 24, no. 9, pp. 1333–1337, Sep. 2017.

[22] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality
assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,
no. 12, pp. 4695–4708, Dec. 2012.

[23] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a ‘completely
blind’ image quality analyzer,” IEEE Signal Process. Lett., vol. 20, no. 3,
pp. 209–212, Mar. 2013.

[24] M. A. Saad, A. C. Bovik, and C. Charrier, “Blind prediction of natural
video quality,” IEEE Trans. Image Process., vol. 23, no. 3, pp. 1352–1365,
Mar. 2014.

[25] X. Li, Q. Guo, and X. Lu, “Spatiotemporal statistics for video quality
assessment,” IEEE Trans. Image Process., vol. 25, no. 7, pp. 3329–3342,
Jul. 2016.

[26] R. M. Nasiri and Z. Wang, “Perceptual aliasing factors and the impact
of frame rate on video quality,” in Proc. IEEE Int. Conf. Image Process.,
2017, pp. 3475–3479.

[27] R. M. Nasiri, Z. Duanmu, and Z. Wang, “Temporal motion smoothness
and the impact of frame rate variation on video quality,” in Proc. 25th
IEEE Int. Conf. Image Process., 2018, pp. 1418–1422.

[28] F. Zhang, A. Mackin, and D. R. Bull, “A frame rate dependent video qual-
ity metric based on temporal wavelet decomposition and spatiotemporal
pooling,” in Proc. IEEE Int. Conf. Image Process., Sep. 2017, pp. 300–304.

[29] S. G. Chang, B. Yu, and M. Vetterli, “Adaptive wavelet thresholding for
image denoising and compression,” IEEE Trans. Image Process., vol. 9,
no. 9, pp. 1532–1546, Sep. 2000.

[30] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using general-
ized Gaussian density and Kullback–Leibler distance,” IEEE Trans. Image
Process., vol. 11, no. 2, pp. 146–158, Feb. 2002.

[31] Q. Zhao, H.-W. Li, and Y.-T. Shen, “On the sum of generalized Gaussian
random signals,” in Proc. IEEE Int. Conf. Signal Process., 2004, pp. 50–53.

[32] H. Soury and M.-S. Alouini, “New results on the sum of two generalized
Gaussian random variables,” in Proc. IEEE Global Conf. Signal Inf.
Process., 2015, pp. 1017–1021.

[33] FFmpeg, “Encoding for streaming sites.” Accessed: Nov. 1, 2019. [On-
line]. Available: https://trac.ffmpeg.org/wiki

[34] Z. Li, A. Aaron, I. Katsavounidis, A. Moorthy, and M. Manohara, “Toward
a practical perceptual video quality metric,” 2016. [Online] Available: http:
//techblog.netflix.com/2016/06/toward-practical-perceptual-video.html

[35] W. Kim, J. Kim, S. Ahn, J. Kim, and S. Lee, “Deep video quality assessor:
From spatio-temporal visual sensitivity to a convolutional neural aggrega-
tion network,” in Proc. Eur. Conf. Comput. Vis., Sep. 2018, pp. 219–234.

[36] R. R. Coifman and M. V. Wickerhauser, “Entropy-based algorithms for
best basis selection,” IEEE Trans. Inf. Theory, vol. 38, no. 2, pp. 713–718,
Mar. 1992.

[37] K. Seshadrinathan, R. Soundararajan, A. C. Bovik, and L. K. Cormack,
“Study of subjective and objective quality assessment of video,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1427–1441, Jun. 2010.

[38] VQEG, “Final report from the Video Quality Experts Group on the
validation of objective quality metrics for video quality assessment,” 2000.

[39] Z. Wang and A. C. Bovik, “Mean squared error: Love it or leave it? A
new look at signal fidelity measures,” IEEE Signal Process. Mag., vol. 26,
no. 1, pp. 98–117, Jan. 2009.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:38:04 UTC from IEEE Xplore.  Restrictions apply. 

https://trac.ffmpeg.org/wiki
http://techblog.netflix.com/2016/06/toward-practical-perceptual-video.html

