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Learning to Distort Images Using Generative
Adversarial Networks

Li-Heng Chen ", Christos G. Bampis

Abstract—Modeling image and video distortions is an important,
but difficult problem of great consequence to numerous and diverse
image processing and computer vision applications. While many
statistical models have been proposed to synthesize different types
of image noise, real-world distortions are far more difficult to
emulate. Toward advancing progress on this interesting problem,
we consider distortion generation as an image-to-image transfor-
mation problem, and solve it via a data-driven approach. Specifi-
cally, we use a conditional generative adversarial network (cGAN)
which we train to learn four kinds of realistic distortions. We
experimentally demonstrate that the learned model can produce
the perceptual characteristics of several types of distortion.

Index Terms—Convolutional neural networks (CNNs),
distortion model, generative adversarial networks (GANSs),
perceptual image quality.

I. INTRODUCTION

HERE has long been a great interest in removing un-

pleasant artifacts from image or video signals. However,
the “reverse” problem of generating artifacts on pristine source
pictures has been studied hardly at all. Being able to model
distortions of image/video is a crucial research problem, owing
to the boom of social media and streaming video content and
the great diversity of complex and commingled distortions that
afflict them. While some distortions may be easily synthesized,
such as compression artifacts (blocking, ringing, etc.), the broad
spectrum of real-world distortions are complex, hard to model,
and generally hard to synthesize. Moreover, multiple distortions
may coexist and combine [1], creating more difficult synthesis
scenarios.

Blur arising from camera or object motion, defocus or low
light commonly arises in modern digital cameras is notoriously
hard to model and synthesize. Being able to synthesize realistic
examplars of complex picture distortions would be a boon
to algorithms developers seeking to recognize, evaluate, and
remediate distortions. There are also a wide variety of noise
processes that arise in imaging which interact with other distor-
tions, such as compression, creating composite, hard-to-describe
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distortions. Banding is a severe compression distortion of great
concern to the streaming video industry [2]. Although banding
is produced by compression algorithms, it is difficult to predict
where it will occur, and in what configuration, making it hard to
synthesize.

The question thus arises whether data-driven methods of
distorted picture synthesis might be feasible, using deep gen-
erative neural networks. For example, generative networks have
been trained to reconstruct high-quality pictures from degraded
pictures [3]-[6]. An important barrier, however, is obtaining
enough before-and-after distortion picture samples, especially of
degradations not produced by an algorithm (like compression).

Motivated by the significant potential of generative models to
create pictures that are realistic but not genuine, we investigated
the potential capacity of GANSs to learn a pristine-to-distorted
mapping function, given adequate, representative training data.
Hence, we built four dedicated training datasets containing
images impaired by single distortions, on which we trained GAN
models to emulate distortions of real pictures.

Related Work: Little attention has been paid to studying the
generation of picture distortions using deep networks. Of course,
there has long been an interest in modeling and synthesizing
noise and blur pictures as part of testing de-noising and de-
blurring algorithms [8]-[13]. Modeling picture blur has long
been treated as a linear kernel estimation problem [14], [15].
However, blur is often nonlinear, space-variant, and can arise in
many ways, making it hard to model.

Several learning-based noise modeling approaches have been
proposed, such as Noise Flow [16], which applies a flow-based
generative model to maximize the likelihood of image noise. An
early GAN model [17] generated noise to train a denoiser, but did
not utilize any information from pristine images. The Grouped
Residual Dense Network (GRDN) denoiser [18] is trained on
images generated by a GAN generator with conditional side
information. All these deep noise models are designed to model
specific camera noises. Deep neural networks (DNN5s) have also
been used to estimate blur convolutional kernels [19], [20].

Our goal is to better understand the capabilities of GANs
to generate broader classes of distortions. Learning accurate
models that generate the gamut of possible distortions is an
ambitious goal, given the diversity of impairments and the
complex ways they depend on and interact with picture content
(and other distortions), and how they affect appearance. We
make no claims to have solved this large problem, which will
require large datasets of all kinds of real distortions. In fact, we
only attempt to generate distortions easily synthesized by other
means, to probe the capabilities of GAN models to generate
complex distortions.
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Schematic diagram of how the proposed GAN-based distortion generator is trained. For each block of the generator, the convolutional parameters are

denoted as: kernel size (height x width) | number of filters | stride. The operation ¢ denotes concatenation. The discriminator is identical to PatchGAN [7].

Specifically, we train the GAN on large datasets of syntheti-
cally created JPEG, JPEG2000, Gaussian white noise, and pink
noise. The successes of our attempts are interesting enough to
motivate future attempts to learn distortions not easily simu-
lated by other means. Successes on this spectrum of problems
could impact future picture correction, quality assessment, and
compression algorithms.

The letter is arranged as follows. We present the details of
our GAN-based distortion synthesizer in Section II. Section III
provides experimental results and analysis. Finally, Section IV
concludes the letter.

II. LEARNING A PRISTINE-TO-DISTORTED PICTURE FUNCTION

Asillustrated in Fig. 1, the idea is touse a GAN [21] to corrupt
a pristine picture. This involves optimizing both a generative
network (G, and a discriminative network D. The generator G
produces distorted pictures, while the discriminator D decides
whether the input was produced by G, or is a picture afflicted
by true distortion. The pristine “conditioning” picture is input
to both the generator and the discriminator.

A. Network Architecture

We used a 14-layer U-Net similar to [22] as the generator. The
output of each block in the encoder is concatenated with the input
of a corresponding block in the decoder. On the encoder side,
each convolutional layer (stride = 2) has 4 x 4 filter kernels
followed by Batch Normalization (BN) and Leaky ReLU (LR)
activation. Each block on the decoder side is composed of
upsampling, with symmetric parameters, followed by BN and
LR. Different from the original structure in [22], an additional
skip connection is used at the input and output of the generator,
allowing the network to learn residuals (the distortions) rather
than the distorted pictures.

Since the perception of picture distortions is content-
dependent, because of, e.g., masking effects, its perceived vis-
ibility and severity varies with a picture [23]. Thus, aiming to
learn local distortion structures, we reward or penalize generated
distortions on local patches, instead of on entire pictures. We
deployed the PatchGAN [7] architecture as the discriminator.
PatchGAN classifies each patch as real or fake. The contractive

discriminator yields a 30 x 30 output receptive field of the patch
classes.

B. Loss Functions

Denote a distorted batch of corresponding pictures from
ground truth and the generator by y and ¥y, respectively. Let
x be the batch of corresponding pristine pictures. When training
the GAN, we used the hinge version of the adversarial loss [24],
[25], which empirically performed better than the standard GAN
losses in our tasks. The generator and discriminator networks are
trained alternately as follows.

Updating the generator: The goal of the generator is to
“fool” the discriminator by producing realistic distortions. To
minimize the classification error, the discriminator output D
drives the optimization of G

Eadv = _Ex,y [D(Xa y)] = _EX,S’ [D(X7 G(X))] . (1)

We also introduce a regularization term on the learned residu-
als. The underlying assumption is that common distortions are
generally sparse in some space. Hence, we use the ¢; norm to
preserve sparsity and also improve training stability

= Exy [1G(x) —x]]. 2

ﬁsparse

Finally, the model parameters of D are fixed, while training G
using the weighted loss function

£G = ‘Cadv + )L‘cspars& 3)

By back-propagating through the forward model, the loss deriva-
tive is used to drive G. We used A = 0.1 as the weighting factor
in all of the experiments.

Updating the discriminator: To learn to distinguish between
real distorted pictures and generated data, D is updated by
minimizing the hinge discriminator loss function:

Lp =Exy min(0,1+ D(x,y))]
+ Exy [min(0,1 - D(x,y))]. 4)

Similarly, the model parameters of G are fixed while training
the discriminator.
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Example qualitative and quantitative result comparisons on four distortions. The NSS histograms show the empirical probability distributions of products

of adjacent MSCN coefficients. The Jensen Shannon divergence (JSDnss) is used to measure the similarity between two NSS distributions of each distortion.

III. EXPERIMENTS

A. Implementation and Training Details

We used the TensorFlow framework (version 2.3.0) to imple-
ment the distortion generation system. The Adam solver [26]
was used to optimize both networks with a batch size of 16. We
set the learning rates at fixed values of 3e — 4 for the generator,
and le — 4 for the discriminator. The pictures were randomly
cropped to size 256 x 256.

We used a subset of 4700 pristine pictures from the Waterloo
Exploration Database [27] as training data, keeping out 44
pristine pictures for validation. Each picture was distorted by
four distortions: JPEG compression, JPEG2000 compression,
additive white Gaussian noise, and pink noise to serve as ground
truth data. While generative models have been used for noise
generation, modeling compression is a challenging problem.
Compression engines like JPEG are nonlinear, lossy, multi-stage
processes for which no tractible models exist, but which repre-
sent complex pixel distribution mappings.

B. Quantitative and Subjective Evaluation

While several GAN image quality evaluation measures have
been recently introduced, there is no consensus on their relevant
efficacies [28]. These were designed to assess “good quality,”
whereas our goal is to assess “good distortion”. The inception

score [29] and the FID score [30] capture both result diversity
and the distance between distributions, which are not related
to our scenario. Existing full-reference (FR) picture quality
models [31]-[34] measure perceptual fidelity between images,
hence are not well suited for this task. Natural scene statistics
(NSS) models are a more direct way to assess performance on
this problem [35]. For example, bandpass, normalized picture
coefficients [36], [37] analyzed under a Gaussian scale mixture
model can accurately distinguish distortions [38], [39]. Given
a picture I at pixel location (i, j), we use the mean subtracted
contrast normalized (MSCN) coefficients

I(Zv.j) _M(ivj)

o)+l ©

Inss(i,5) =
where 1 and o are Gaussian-weighted sample means and stan-

dard deviations [36], [37]. The product of diagonally adjacent
coefficients captures local spatial correlations:

Ipmsen (7, ) = Inss (i, §) Inss (i + 1,5 + 1). (6)

We refer the reader to [36], [37] for more details. The goal is
to compare the statistics of true distortions with those generated
by the GAN. To do this, we used the Jensen Shannon diver-
gence [40] computed on the empirical distributions of (6), which
we denote by JSDyss. A smaller JSDyss value indicates that two
distributions are more similar.
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TABLE I
OVERALL COMPARISON OF GENERATED VS. GROUND TRUTH DISTORTIONS.
THE SMALLEST MEAN JSDyss IN EACH ROW AND COLUMN ARE
HIGHLIGHTED BY BOLDFACE AND UNDERLINE, RESPECTIVELY

Ground truth

JPEG JP2K WN PN
E JPEG | 0.0107 0.0043 0.2191 0.0470
§ JP2K | 0.0116 0.0031 0.2321  0.0541
z WN | 0.1847 0.2149 0.0008 0.0959
5 PN | 0.0195 0.0317 0.1377  0.0062

Fig. 2 visually compares exemplar ground truth distorted
pictures and corresponding GAN-synthesized pictures, for each
distortion type. The characteristics of each distortion are effec-
tively captured by the GAN models, including blocking and
detail-crushing JPEG artifacts, and JPEG2000 edge ringing
effects. Of course, the synthesized pictures are not replicas
of the compressed ones. Instead, they are statistical models
that perceptually resemble the ground truth distortions. The
synthesized white noise picture is perceptually nearly identical
to ground truth, while the synthesized pink noise result is also
highly similar to ground truth, albeit with shifting color effects.

We summarize quantitative similarities computed on the vali-
dation set in Table I. Each cell presents averaged JSDyss values
between the generated row distortions and the ground truth
column distortions. The results the four GAN distortion models
yielded MSCN distributions similar to the ground truth distor-
tions (Table diagonal). The larger off-diagonal values were cal-
culated from different distortion types having distinct distribu-
tions. Ideally, the ith diagonal value should be the smallest value
of both the ith column and the ith row. The JSDyss values be-
tween the simulated and real noise distortions are indeed small,
and somewhat larger for the compression distortions. There was
one interesting anomaly, as the GAN-synthesized JPEG pictures
were found to be statistically more similar to the JPEG2000
ground truth, despite their accurate appearances. This is likely a
failing of the rather simplistic statistical similarity measure (6),
given the nearly copacetic appearance of the synthesized pic-
tures. We are making available many other generated examples
at: https://live.ece.utexas.edu/research/liheng/distortiongan/.

C. Study of the Sparsity Constraint

Figure 3 shows the effects of varying the sparsity weight A.
Severe, unrealistic artifacts are observed without the sparsity loss
(A = 0). We found choosing . = 0.1 reduces excessive artifacts,
while yielding perceptually similar results to ground truth JPEG
distortions. Larger weights caused the artifacts to more subtle,
since the learned residuals are regularized too heavily. Selecting
A = 0.1 also yielded low JSDyss values, indicating MSCN
distributions closer to the ground truth.

D. Why Not Train With Pixel-Wise Losses?

Of course, we also explored the simplest training method:
minimizing pixel-wise errors between the ground truth distorted
patches and the synthesized distortions to obtain the generative
network G. Unfortunately, severe complications arise when
applying these methods.
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Fig. 3.  Effect of the sparsity 10ss Lgparse in (2) using different values of A.
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Fig.4. Examples of learned JPEG distortions using pixel-wise loss functions.

We observed that using simple £, norms (p = 1, 2) as the loss
function always yields blurry results. Figure 4 shows an example
generated using two common pixel losses. Prior studies have
shown that /,, losses lead to blurry images when the data are
drawn from multi-modal distributions [41]. This is understand-
able: the optimal solution to the £, reconstruction loss of the
decoder is the expectation of a set of images [42], hence details
may be expected to be “averaged out.”

E. Limitations

Despite the successes we have obtained, we still observe
several limitations of our model. Some distortion characteristics
are hard to learn, such as large, continuous false contours (“band-
ing”) [43] on JPEG-compressed smooth regions. Since banding
is a relatively global effect, banding may be better learned by
deepening the network to produce broader-scale feature maps.

IV. CONCLUSION AND FUTURE WORK

We have shown that GANs can be used to produce different
types of realistic distortions. In the future, this idea may be
extended to generate distortions that are hard to collect, or cannot
be synthesized to build ground truth datasets. The proposed
JSDnss metric could be further justified by conducting a series of
subjective tests, or improved by aggregating more NSS features
into (6). We are also seeking ways to use this kind of model for
picture quality assessment research. Large numbers of generated
distorted pictures could be used in perceptual studies [44].
Moreover, learned generative models could be “unrolled” [45] to
study distortions, or plugged into end-to-end training protocols
to act as “surrogates” [46] for non-differentiable degradation
modules.
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