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Abstract— Although it is well-known that the negative effects
of VR sickness, and the desirable sense of presence are important
determinants of a user’s immersive VR experience, there remains
a lack of definitive research outcomes to enable the creation
of methods to predict and/or optimize the trade-offs between
them. Most VR sickness assessment (VRSA) and VR presence
assessment (VRPA) studies reported to date have utilized simple
image patterns as probes, hence their results are difficult to apply
to the highly diverse contents encountered in general, real-world
VR environments. To help fill this void, we have constructed a
large, dedicated VR sickness/presence (VR-SP) database, which
contains 100 VR videos with associated human subjective ratings.
Using this new resource, we developed a statistical model of
spatio-temporal and rotational frame difference maps to predict
VR sickness. We also designed an exceptional motion feature,
which is expressed as the correlation between an instantaneous
change feature and averaged temporal features. By adding
additional features (visual activity, content features) to capture
the sense of presence, we use the new data resource to explore
the relationship between VRSA and VRPA. We also show the
aggregate VR-SP model is able to predict VR sickness with an
accuracy of 90% and VR presence with an accuracy of 75%
using the new VR-SP dataset.

Index Terms— VR sickness assessment (VRSA), VR presence
assessment (VRPA), natural video statistics (NVS), human visual
system (HVS).

I. INTRODUCTION

IN RECENT decades, there have been tremendous advances
in the development of virtual reality (VR) technologies

[1]. VR devices have been successfully deployed as a way
of simulating real-world experiences in a wide variety of
domains including gaming, simulators and medical clinics,
using increasingly lightweight, comfortable, and immersive
head-mounted displays (HMD). However, the quality of expe-
rience (QoE) of VR users is often severely reduced by
VR sickness. In many ways, providing a satisfactory and
realistic sense of presence to VRs users involves navigating
trade-offs between immersion and comfort.
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Here we focus on the development of ways to navigate
these trade-offs. Specifically, we develop a model of VR sick-
ness assessment (VRSA) and also develop a VR presence
assessment (VRPA) model that takes advantage of predicted
VR sickness scores, inspired by the trade-off relationship
between VR sickness and VR presence. This allows the model
to predict an optimal combination of factors contributing to
satisfaction in VR.

In many previous studies, VR sickness has been reported
to induce oculomotor symptoms such as visual fatigue and
difficulty focusing; physiological reactions including burping,
salivation and sweating; and disorientation, dizziness, and ver-
tigo [2]–[4]. One of the most common causes of VR sickness
is a sensory mismatch between the vestibular system and the
visual system. The vestibular system, which perceives actual
movement, and the visual system, which perceives projected
motion fields, may provide conflicting visual percepts [5], [6].
When there is a visual perception of movement, especially
self-motion, that is experienced in a static physical state,
visual-vestibular conflicts may arise in the brain. Because of
this, a number of authors have reported ways of measuring
VR sickness by quantifying the amount of perceptual motion.
For example, the authors of [7] predict VR sickness by
calculating differences between perceived motions and head
movements using a visual-vestibular conflict model. In [8],
a deep autoencoder based model is developed that predicts
exceptional motion. The model is also generalized using a
generative adversarial network (GAN) [9].

However, these studies have not benefited from the avail-
ability of sizeable labeled datasets. We utilize a new, large
database that we have created to develop a new, highly
competitive model that is capable of predicting both the degree
of VR sickness that may be felt, as well as the VR sense of
presence. This dual model may prove useful for mediating
these negative and positive aspects during content creation or
display.

Our approach to VRSA differs from prior methods in
that it seeks to quantify losses of statistical regularity of
VR content that are predictive of sickness arising from
VR content. Specifically, the contributions that we make are
summarized:

1) We built the first large database addressing both
VR sickness and VR presence, including subjective
labels.

2) We develop new predictive models for VRSA and VRPA
that are based on natural VR content statistics.

3) We demonstrate state-of-the-art performance of the new
models for VR sickness and VR presence prediction.
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The remainder of the paper is organized as follows.
Section II introduces related works on VR sickness and
presence prediction. Section III describes the design of the pro-
posed VR-SP database. Section IV introduces the VRSA based
on predictive statistical features, while Section VI describes
our VRPA model, which uses the predicted VR sickness
scores, along with measures of visual activity and content.
Section V discusses experimental results, and conclusions are
given in Section VII.

II. RELATED WORKS

A. Sickness Assessment in VR Environment

There have been several studies of VR sickness from a
physiological or behavioral perspective [10]–[13]. Most of
these have involved simulator sickness questionnaires (SSQ) or
physiological tests such as electroencephalogram (EEG), gal-
vanic skin response (GSR), electrogastrogram (EGG), or heart
rate [10]–[12]. However, these sensor modalities are quite
noisy, and it is difficult to engage subjects in viewing and
rating a large amount of VR contents under these proto-
cols. Moreover, these tests have typically deployed simple
visual patterns (e.g., stripes) [6], [14], [15].

However, content that is being viewed on modern
VR devices, such as the Oculus Rift/Quest and HTC-VIVE
HMDs, is trending towards increased realism and natural-
ness, along with more immersive experiences. Being able to
automatically and objectively predict VR sickness in HMD
environments has become highly desirable.

B. Natural Scene Statistics

A number of natural scene statistics (NSS) methods have
been developed to measure losses of statistical regularities
arising from distortions of picture and videos [16]. The effi-
cacy of this approach has been amply demonstrated by the
development of highly distortion-sensitive bandpass decom-
position methods in the wavelet domain [17], the discrete
cosine transform (DCT) [18], and in spatial [19] and frame
difference [20] domains. Inspired by these advances, we have
developed methods for predicting VR sickness from variations
in immersive video statistics.

C. Sense of Presence

There has been a variety of studies of the sense of presence
experienced when viewing 2D and stereoscopic 3D (S3D)
visual content. Early on, Ijsselsteijn et al., introduced the
concept of visual presence and how to measure it [21]. They
also conducted a study of subjective presence on S3D content,
and derived objective measures of the sense of presence [22].
They also gathered subjective opinions of both presence and
discomfort of viewers of stereoscopic cinema. Oh and Lee
[23] developed a visual presence assessment model utilizing
the geometry of S3D displays.

In connection with VR sickness, it is generally thought that
VR sickness is one of the most crucial factors causing users to
feel differences between virtuality and reality [24]–[28]. When
VR sickness in virtual space exceeds that experienced in the

real world, then the sense of realism is reduced [29]. However,
the relationship between VR sickness and VR presence has
not yet been quantified adequately, because of the lack of
a sufficiently large VR content database with subject labels
of presence and sickness. Because of this, the problem of
predicting VR presence and VR sickness, and the relationship
between them, remains unresolved.

III. VR-SP DATABASE

In this section, we describe the new VR-SP database. It is
well known that both VR sickness and presence are regarded
as critical factors that affect the popularity and viability of
VR products. Existing databases of psychometric scores are
quite limited in the number of included VR contents [8],
[9], [30]. Moreover, most of these databases focus only on
VR sickness, with little or no analysis of VR presence or its
relationship with VR sickness. Towards advancing progress
in this direction, our new VR-SP database contains a wide
variety of diverse VR source contents, along with corre-
sponding subjective scores on VR sickness and VR presence.
The VR-specific content in the database can be viewed on
any popular VR device, such as the HTC-VIVE or the
Oculus Rift.

A. VR Content

The new VR content database contains 10 reference
VR scenes providing a variety of virtual experiences (e.g.,
VR games, roller-coaster, and outer space), as tabulated
in Table I. To create diverse experiences of VR sickness, highly
diverse camera rotations (yaw, pitch, and roll) and translations
(forward, backward, and lateral) were deployed, depending on
each scene. All the reference contents were implemented with
various presets on the Unity platform.

Since our goal is to design a database enabling the analysis
and quantification of VR sickness and VR presence, a total
of 100 VR contents were created from the 10 reference
VR scenes. Toward this, each reference content was diversified
to 10 variations by combining two types of motion, and four
levels of velocity, applied to the 10 reference VR contents
in Fig. 1. In addition to spatially diversifying the VR contents,
we reduced the level of detail in the scenes. The detail-reduced
scenes were those containing only the two lower levels of
velocity. Fig. 2 diagrams the variations (V1-V10) of each
reference scene. As shown in the figure, the motion types and
velocity levels were applied to the individual reference and
detail-reduced contents. The reference videos have detailed
environments, as shown in Fig. 3, while the modified scenes
contain less detail. The VR-SP database also contains two
types of motion. The first motion category is a simple
movement, such as linear motion, while the second includes
complex motions, such as rotations and rapid transitions. Each
motion type includes four levels of velocity, while for the
detail-modified scenes, only motion type 1 was used at velocity
levels 1 and 2.

After processing them with the various motion types and
velocity levels mentioned above, a subjective study was
conducted, wherein all of the VR sequences were viewed
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TABLE I

VR CONTENT IN THE VR-SP DATABASE

Fig. 1. Exemplar reference scenes in the VR-SP database.

Fig. 2. 10 variations (V1-V10) of each scenario with two motion types and
four velocity levels on the reference scene and scenes with reduced detail,
in the VR-SP database.

Fig. 3. Exemplars of reference and their reduced detail scenes in the VR-SP
database.

by 21 human subjects wearing an HMD device. Each
60 fps VR video sequence has a resolution of 1080 × 600,
24-bits/pixel color frames and a duration of 9 seconds. All
of the sequences were encoded by the baseline H.264 Unity
video coder.

B. Subjective Assessment

As recommended in the ITU-R BT.500-13 [31] and BT.2021
[32] standards, we adopt a single-stimulus subjective scoring
methodology for both sickness and presence assessments.
The 21 inexperienced subjects (satisfying the subject criteria
recommended in [31]) were of ages ranging from 22 to
34 years. All of the subjects were screened for normal visual

acuity on the Landolt chart. The overall protocol included
four evaluation sessions, each containing 25 randomly shuffled
VR contents from the database. After each individual session,
rest periods of 5 min duration were inserted, to minimize any
accumulated feeling of VR sickness [33]. In each session,
a VR sequence was displayed for 9 seconds, after which
the subject assessed their feelings of sickness and presence.
Similar to previous work [34], VR presence is defined here as
the subjective sense of presence (“actually being there”) in the
user’s space or environment. To measure VR sickness, a simple
scale of experienced sickness was used rather than using a
lengthy questionnaire, which would have subjected the sub-
jects to unnecessarily long sessions (several hours), and would
have made it impossible to collect large amounts of data. This
was facilitated by a user controller-based VR interface that
allowed the subjects to interactively score in the same display
environment. The subjects rated the contents on a discrete,
5-points Likert scale marked as follows.

We and others [35] have found that viewers do experience
VR sickness on such short time scales, and indeed early
sensations of sickness may be the most important to detect,
before they accumulate and become more severe.

The VR Sickness labels on the scale were: Extremely
Uncomfortable (5), Uncomfortable (4), Mildly Comfortable
(3), Comfortable (2), and Very Comfortable (1). The VR Pres-
ence labels were Excellent (5), Good (4), Fair (3), Poor (2),
and Bad (1).

The parenthetical numbers indicate the numerical associa-
tions with the labels. After all the subjects scored the videos,
the mean opinion scores (MOS) of both sickness/presence
were obtained. Fig. 4 plots the distribution of MOS values
of both VR sickness and VR presence. As shown in the
figure, the distribution is not biased to a specific score for
each target value. We summarize major information about the
test environment in Table II.

C. Trade-Offs Between VR Sickness and VR Presence

Fig. 5 shows a scatter diagram and fitted curve of the MOS
scores of VR sickness and VR presence plotted against each
other, over all samples on the VR-SP database. Interestingly,
the VR presence score is gradually lowered in the very low
VR sickness region (MOS < 0.4). Furthermore, in the region
with excessively high VR sickness (MOS > 0.8), the VR pres-
ence scores also trended gradually lower. However, most of the
areas with high VR presence were accompanied by moderate
VR sickness scores. This relationship may be more clearly
seen by the fitted curve. By observation, the most intuitive
way to predict VR presence is to discover a specific range
where the user experiences moderate VR sickness and proper
immersion. Therefore, we will use the predicted VR sickness
score as a feature of VRPA in Section V.

IV. PROPOSED VR SICKNESS ASSESSOR

Most VRSA studies have focused on understanding
VR sickness, by using motion estimation to probe the level of
visual-vestibular sensory conflict. Here we instead use natural
video statistic (NVS) models derived in the context of a set
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TABLE II

VR-SP DATABASE CONFIGURATION AND SUBJECTIVE

EXPERIMENTAL CONDITIONS

Fig. 4. Histograms of MOS values for (a) VR sickness and (b) VR presence
in the VR-SP database.

of perceptually relevant processes. Moreover, we devise an
exceptional motion feature using a measurement of the correla-
tion between statistical features drawn from instantaneous and
averaged temporal processing. The design of our VR sickness
model is inspired by prior NVS approaches [20], [36] whereby
the losses of statistical regularities arising from undesirable
visual content, such as distortions. The overall flow of the
VRSA framework is depicted in Fig. 6.

A. Preprocessing

To realize the most vivid VR experiences, providing a wide
field of view (FoV) is an important factor. Most HMD devices
are designed with rectangular displays via a lens system,
hence barrel distortion is unavoidable, leading to geometric
distortions along the image border.

For example, Fig 7 shows an example of a rendered
VR content, and its distortion corrected version. As shown
in Fig. 7 (a) (red boxes), borderline pixels are stretched
compared to those in the central regions. Accordingly, when
a motion estimation method or an optical flow algorithm
is applied, prediction errors arising from lens distortion
occur. To overcome this, we geometrically correct each
rendered frame via a pincushion transformation, as shown
in Fig. 7 (b) (See red boxes in Fig. 7 (b)) [37]. This also
matches the corrected image that viewer sees.

Fig. 5. Scatter plot of normalized subjective scores of VR sickness and
VR presence (along with a curve fit) from the VR-SP database. All MOS
values were scaled to [0, 1], where 1 equates to stronger feelings of sickness
or presence.

B. Spatio-Temporal Frame Differences

After preprocessing the VR sequence, we have luminance
frames {F1, F2, . . . , FT } of dimensions N

H×W×T, where H,W
and T are the height, width and total number of frames, respec-
tively. Given each VR video, we do not explicitly estimate
motion, but instead compute temporal changes of luminance.
As discussed in [38] temporal frame differences obey regular
statistical laws, while optical flow/motion vectors are much
less regular. The time-averaged p-norm frame difference is
defined as:

�Ft
p(x) = |Fτ (x)− Fτ+1(x)|p (1)

where x represents a tuple of spatial indices (x = {x1, x2},
x1 ∈ [1, H ] and x2 ∈ [1,W ]), over a set of consecutive frames
indexed t .

C. Rotational Frame Differences

From previous studies, it is well known that rotational image
motions, such as roll or pitch, are highly related to VR sick-
ness [39], [40]. One feasible strategy to model rotational
statistics is to reconstruct rotational representations using the
frame difference maps, then estimate statistical features on
them. Fig. 8 shows nine directional modes with corresponding
angles and their reconstructed rotational motion maps (i.e.,
roll motion, zoom-in/out, horizontal and vertical motions).
Fig. 8 (a), we first calculate spatially displaced frame dif-
ferences over frames, depending on the directional mode.
As shown in [41], spatially-displaced frame differences are
an effective way to capture space-time statistical regularities
predictive of distortion. At each frame index t and spatial index
x, spatially displaced frame difference maps are computed as

�Ft
p(x; θ) = |Fτ (x)− Fτ+1(w(x; aθ ))|p (2)

where w(·; aθ ) is a warping function over the vector
of mode parameters dictated by the angle θ . We use
eight mode directions to represent motion elements, thus
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Fig. 6. Block diagram of the proposed sickness and presence predictor.

Fig. 7. Example of geometric preprocessing. (a) original “Space” scene in
the VR-SP database; (b) geometric distortion corrected version.

the parameters are obtained as: (a0◦, a45◦, . . . , a315◦) =
([1, 0], [1, 1], . . . , [1, −1]). Let �F denote the
spatio-temporal frame difference map, obtained by the
same procedure in (1). Then the eight spatially displaced
frame difference maps with their corresponding modes are
{H1, D1, V1, D2, H2, D3, V2, D4}.

To represent a rotational frame difference, first divide
the difference map of each mode into nine local patches.
Then, as shown in Figs. 8 (b)-(e), the corresponding local
patch of each mode is reconstructed to capture roll, zoom-
in/out, horizontal and vertical motions (Figs. 8 (b)→(R1, R2),
(c)→(Z1, Z2), (d)→(H1, H2) and (e)→(V1, V2)). Each rota-
tional motion includes directional coefficient pairs, and the
final rotational frame difference is defined as the sum of each
pair: �R = R1 + R2, �Z = Z1 + Z2, �H = H1 + H2,
�V = V1 + V2.

D. Natural Video Statistics

1) Frame Difference Normalization: Given a frame differ-
enced sequence �Ft , the mean subtracted contrast normaliza-
tion (MSCN) coefficients of it are obtained as [42]:

�F̂ t (x) = �Ft (x)−�μt (x)
�σ t (x)+ C

, (3)

over spatial indices (x = {x1, x2} where x1 ∈ [1, H ] and x2 ∈
[1,W ]), and over a set of consecutive frame time samples

(frame indices), t ∈ [1, T ] where

�μt (x) =
K∑

k=−K

L∑
l=−L

wk,l�Ft (x1 + k, x2 + l) (4)

and

�σ t (x) =
√√√√ K∑

k=−K

L∑
l=−L

wk,l [�Ft (x1 + k, x2 + l)−�μ(x)]2

(5)

denote the weighted local mean and weighted contrast of each
frame difference map, respectively, where wk,l is a Gaussian
weighting function sampled out to 3 standard deviations
and rescaled to unit volume over (k = −K , . . . , K ),
(l = −L, . . . , L). In our experiments, we fixed the
semi-saturation constant in the divisive normalization to
C = 0.01 and took K = L = 9. The same MSCN process
is also applied to each spatial frame Ft , yielding normalized
coefficients F̂ t . Here after we will drop the temporal index t
and the spatial indices x in (1)-(5)

2) Statistical Characterization: To characterize the statis-
tical features from the normalized MSCN maps, we use
the parametric asymmetric generalized Gaussian distribution
(AGGD) [43]:

f (x;μ, γ, βl, βr )

=

⎧⎪⎪⎨
⎪⎪⎩

γ

(βl + βr )�(
1
γ )

exp((−(−x

βl
)γ )), ∀ x ≤ 0

γ

(βl + βr )�(
1
γ )

exp((−(−x

βr
)γ )), ∀ x ≥ 0.

(6)

To estimate the parameters of the AGGD (μ, γ , βl , βr ), we fit
it to the histograms of MSCN coefficients over T frames
on each VR video sample (and on frames, displaced frame
differences, and rotated frame differences), using the popular
moment-matching based approach in [43].

In this way, we extract various statistical features on five
frame difference maps: �Fp , �Rp, �Z p , �Hp, and �Vp

(all of which are functions of (x,t), with notation dropped for
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Fig. 8. Depiction of modes and reconstructed maps; (a) nine direction modes according to cardinal angle, (b) reconstructed roll motion maps, (c) zoom
in/out motion maps, (d) linear horizontal motion maps, (e) linear vertical motion maps.

Fig. 9. Histograms of processed frame difference maps ((a) p = 1 and (b) p = 2) computed on the “Boat” VR contents for various sickness MOS levels.

brevity), where the norm index in 1 is either p = 1 or p = 2.
Specifically, after applying MSCN normalization, 11 feature
maps are obtained for each frame on the spatio-temporal
frame difference map ˆ�Fp and the normalized rotational
frame difference maps ( ˆ�Rp , ˆ�Z p, ˆ�Hp and ˆ�Vp) using
two norms (p ∈ {1, 2}) in addition to the normalized spatial
frame F̂ . Finally, we extract statistical features (μ, γ , βl ,
βr ) from each spatial feature map, denoting them collectively
as ξ k , k ∈ {1, . . . , 4}, and likewise extract spatio-temporal
features φl

p , l ∈ {1, . . . , 4} on normalized frame differences,
and rotational features δm

p , m ∈ {1, . . . , 16} on normalized,
rotated frame differences.

Fig. 9 depicts the histogram of MSCN coefficients of �Fp

for p-norm parameters (a) p = 1 and (b) p = 2 on the ‘Boat’
VR sequence, along with and the corresponding sickness
mean opinion scores (MOS). As shown in the figure, the two
different norm parameters result in different histogram shapes.
As the MOS increases, the histograms widen.

Furthermore, Fig. 10 shows 3D scatter plots of the (loga-
rithms of the) extracted parameters γ , βl , βr obtained by the
fitting process in (6), on the five different frame difference
maps (�F , �R, �Z , �H and �V ), on all the VR sequence
samples in the VR-SP database. Each sample is colored as

closer to purple as the feelings of VR sickness MOS increased,
and towards yellow with decreased feelings of VR sickness.
It may be seen that the samples vary with the degree of
sickness, suggesting that the extracted features can play an
important role in predicting VR sickness.

E. Exceptional Motion Feature

1) Instantaneous vs. Averaged Temporal Correlation: Prior
VR sickness studies [44], [45], have suggested that the
visual-vestibular conflict is strongly affected by exceptional
motions such as rapid turning movements, e.g., a user experi-
encing VR content of driving a racing car on a road with many
roadblocks. An intuitive way to model exceptional motion is
to compare temporal motion flow to spatially local motion
flow. To do this, we utilize instantaneous vs. local tempo-
ral correlation feature, whereby we measure the correlations
between features drawn from instantaneous normalized coeffi-
cients (i.e., spatio-temporal features φl

p) and locally averaged
temporal normalized coefficients.

2) Temporal Normalization: We slightly modify the statis-
tics of the MSCN normalization (3) to characterize averaged
temporal statistics over multiple frames. Using the subscript

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:44:35 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: VR SICKNESS VERSUS VR PRESENCE: A STATISTICAL PREDICTION MODEL 565

Fig. 10. 3D scatter plots of (logarithms of) shape, left scale and right scale obtained by fitting the AGGD model to (a) the spatio-temporal frame differences,
(b) the roll motion frame differences, (c) the zoom-in/out motion frame differences, (d) the horizontal motion frame differences and (e) the vertical motion
frame differences, using all the VR video samples from the VR-SP database. Purple colors indicate MOS associated with greater feelings of sickness, while
yellow samples indicate MOS values associated with lesser feelings of sickness.

‘MF’ to denote multi-frame, define

�μt
MF(x)

=
K∑

k=−K

L∑
l=−L

M∑
m=−M

wk,l,m�Ft (x1+ k, x2 + l, t + m) (7)

and

�σ t
MF(x)

=
( K∑

k=−K

L∑
l=−L

M∑
m=−M

wk,l,m [�Ft (x1 + k, x2 + l, t + m)

−�μt
inter(x)]2

) 1
2

(8)

where �Ft (x) is as before, over a set of consecutive
frame time samples t ∈ [1, T ]. Then the multi-frame
MSCN normalization �F̂ t

MF is computed by using �μMF
and �σMF as in (3). We compute all the same parame-
ters as before, and denote the overall feature vector as
� p = {ψ l

p; l = 1, . . . , 4}.
3) Correlation Between Instantaneous and Averaged Coef-

ficients: The spatio-temporal features ψ l
p , l ∈ {1, . . . , 4} of

�F̂MF are obtained by the same AGGD fitting procedure
as in Section IV-D. The correlation feature ßp between the
instantaneous and averaged feature vectors (�p = {φl

p} and
� p = {ψn

p}) is

ßp =
∑

l

(
φl

p − μ(�p)

σ (�p)

) (
ψ l − μ(� p)

σ (� p)

)
, (9)

where p is the norm parameter p ∈ {1, 2}, and μ(·) and
σ(·) denote the average and variance of each feature vector,
respectively.

Fig. 11 plots the histograms of the correlation feature ß1
for low sickness MOS (MOS < 0.2) and high sickness MOS
(MOS > 0.7) instances on the VR-SP database. As may be
seen, the correlations are widely distributed for low sickness
VR sequences, as compared to high sickness VR sequences.

V. APPLICATION: VR PRESENCE ASSESSOR

As mentioned earlier in Section III (also shown in Fig. 5),
there are strong non-linear trade-offs between VR sickness and

Fig. 11. Probability distributions of correlation feature ß1 on VR sequences
having low sickness MOS (MOS < 0.2) and having high sickness MOS
(MOS > 0.7) on the VR-SP database.

VR presence. Therefore, we use the predicted VR sickness
scores produced by VRSA as a feature, to help estimate the
degree of VR presence. As shown in Fig. 5, the VR presence
scores (vertical axis) are distributed with a large variance.
Therefore, to accurately estimate VR presence, a number of
presence-directed features are used to drive the VRPA model
[46], [47]: a visual activity feature, and several content features
(luminance gradient, color gradient, luminance saturation, and
color saturation).

A. Additional Features for VR Presence

Fig. 12 shows the same scatter diagram as Fig. 5, but with
each plotted point color-coded by the values of each of the
additional features. Specifically, in Fig. 12 (a)-(e), the color
of each sample indicates larger feature values close to yellow,
and lower feature values are closer to purple. It may be seen
that the distribution of each feature is nicely divided in the
vertical direction. Each feature is calculated as follows:

1) Visual Activity: Visual activity has previously been used
to quantify visual comfort, preference and presence based
on statistical analyses of visual content feature maps [46],
[47]. To calculate visual activity, first compute the content
feature maps (luminance/color gradient and saturation). Then,
the normalized luminance/color gradient map is obtained as

Gl = 1

Gm
l

√
∂ I 2

∂u
+ ∂ I 2

∂u
(10)
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Fig. 12. Distributions of VR presence feature values coded by color in scatter plot of Fig. 5; for features: (a) visual activity, (b) luminance gradient, (c) color
gradient, (d) luminance saturation, and (e) color saturation. Yellow colors indicate larger values, while purple colors indicate lower values.

Fig. 13. Examples of content feature maps. (a) Original “Horse” scene
from the VR-SP database, and its (b) normalized luminance gradient map
and (c) normalized saturation maps.

and

Gc = 1

2Gm
c,a

√
∂C2

a

∂u
+ ∂C2

a

∂u
+ 1

2Gm
c,b

√
∂C2

b

∂u
+ ∂C2

b

∂u
(11)

where Gl and Gc are the normalized luminance and color
gradients, and u and v are horizontal and vertical indices,
respectively. I is the luminance map, and Gm

l is the maximum
luminance gradient of I , which is used as a normalization
factor. Ca and Cb are color maps computed after converting
the images into the perceptually uniform CIELab color space
[48]. Gm

c,a and Gm
c,b are the maximum color gradients of Ca and

Cb, which are used for normalization. Fig. 13 (b) shows an
exemplar luminance gradient map. In addition, the normalized
luminance/color saturation is given by

Sl = 127 − I (u, v)

127
(12)

and ⎧⎪⎨
⎪⎩
Sca = 127 − Ca(u, v)

127
,

Scb = 127 − Cb(u, v)

127

(13)

where Sca and Scb are the normalized color saturations on
color spaces Ca and Cb, respectively. Then the normalized
color saturation is represented by Sc = Sca × Scb . When
the luminance/color saturation values are towards brighter or
darker, then the saturation values approach 1. Fig. 13 (c) shows
an example of a normalized luminance saturation map.

A discrete wavelet transform is performed on each nor-
malized luminance/color gradient and saturation map. Then,
the histogram of the wavelet coefficients of each subband are
fitted with a generalized Gaussian distribution (GGD) [49].
Let γk,i denote the GGD shape parameter of the i th wavelet
sub-band of the kth feature map (k ∈ {Gl , Gc, Sl and Sc}).

We use the shape parameter as a major descriptor of visual
activity, since it captures the distribution of energy across

the wavelet-transformed feature maps [47]. Using the shape
parameter, the visual activity Ak,i of the i th sub-band of the
kth feature map is defined as:

Ak,i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 1

1 + exp{−2( γk,i −ck
ck,D

)} , γk,i < ck

1 − 1

1 + exp{−2( γk,i −ck
ck,U

)} , otherwise
(14)

where the decomposition level is set to 2 while the number
of sub-bands i is set to 7; ck , ck,D and ck,U are normalization
factors on the kth feature map. Since the range of visual
activity varies with the feature maps, the normalization factors
ck , ck,D and ck,U are applied on the kth feature map, where
ck is the reference operating point of the kth feature map,
and ck,D and ck,U are the trailing and leading edges of
the region over which (14) is approximately linear [47].
In our experiments, the normalization factors were obtained
by in [50],⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(cGl , cGl,D , cGl,U ) = (0.964, 0.853, 1.554),

(cGc , cGc,D , cGc,U ) = (0.964, 0.853, 1.554),

(cSl , cSl,D , cSl,U ) = (1.312, 0.677, 1.388),

(cSc , cSc,D , cSc,U ) = (1.172, 0.398, 1.075).

Finally, we calculate the visual activity of each feature map
by aggregating them over all sub-bands:

A =
∑

k

wkAk , (15)

where Ak is the activity of the kth feature map having Nsub

sub-bands: Ak = ∑
i
Ak,i
Nsub

. Here, wk is an empirical weight
on each feature map.

2) Content Features: We summarize the content feature
maps (CFs) using three different pooling methods. The first
is the mean value of (each) feature map, while the other two
features are computed by calculating the upper and lower s-
percentiles % (mean of upper/lower s% of each feature map,),
respectively. This yields 12 pooled CF features.

B. Overall Feature Configurations

We use the features defined above in Sections IV-V and
the VR sickness/presence MOS scores to train a support
vector regression (SVR). The extracted VRSA features can
be categorized as spatial features (SF), spatio-temporal fea-
tures (STF), rotational features (RF) and exceptional motion
features (EMF). For VRPA, there are sickness features (SCF),
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visual activity features (AF), and content features (CF). Over-
all, there are 46 VR sickness features and 14 VR presence
features.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To validate the performance of VRSA and VRPA,
we employed two standard measures: Pearson’s linear cor-
relation coefficient (PLCC) [52], and Spearman’s rank-order
correlation coefficient (SROCC). A value close to 1 for
SROCC and PLCC indicates better performance. We fol-
lowed the validation strategy in [53]–[57]: first, we randomly
divided the VR video database (reference and training) into
two content-separated subsets (80% for training and 20%
for testing). An SVR was utilized as the regression tool,
since it has demonstrated excellent performance on other
high-dimensional regression problems, such as 3D discomfort
assessment and visual preference prediction [46]. To imple-
ment the SVR, we used the libSVM package [58] with the
radial basis kernel.

The correlation results that we report are the median corre-
lation over 2000 iterations of randomly dividing the training
and testing sets to eliminate any biases (cross-validation).

B. Dataset

We benchmarked the VRSA prediction model on two dif-
ferent datasets: ETRI-VR [30] and the new VR-SP dataset.
The VRPA prediction model was tested on the VR-SP dataset.
The ETRI-VR database includes 2 reference VR contents with
52 slightly modified scenarios, along with corresponding sub-
jective sickness scores [30]. As mentioned earlier, the VR-SP
dataset includes 10 reference VR contents and 100 variations
of the reference VR contents with their corresponding sickness
and presence MOS. All sickness MOS values in these data-
bases are scaled to [0, 1], where 1 represents to the extreme
discomfort.

C. VRSA Prediction Results

We compared the predictions of VRSA against five VR sick-
ness assessment models: the optical flow-based method in [51],
VRSP [7], Kim et al. [30], Kim et al. [8] and VRSA-NET
[9]. For the optical flow-based method, the model was imple-
mented using an estimated average optical flow magnitude
[51]. For Kim et al. [8] and VRSA-NET [9], the experimental
setup was the same as in the original work. In the case of Kim
et al. [30], since our database does not include brain signals,
we only utilized visual features from the combined CNN-RNN
network.

1) Benchmark Results: Table III tabulates the perfor-
mance comparison over the tested models on the VR-SP
and ETRI-VR databases. When measured on all databases,
the standard deviations of PLCC and SROCC after 2000 trials
were less than ∼0.03. As shown in Table, VRSA delivered sig-
nificantly better predictive performance than the other models
in terms of both correlation and reliability.

TABLE III

PLCC AND SROCC COMPARISON ON TWO VR SICKNESS
ASSESSMENT DATABASES

Fig. 14. Mean PLCC performance of VRSA against the percentage of the
overall dataset that was used for training.

We also conducted a t-test of statistical significance on
the SROCC values over 50 trials of all pairs of benchmark
models. Table VI shows the results of the t-tests on the VR-SP
database. The symbols “1”, “0” and “−1” indicate that the
performance of the model in the row is statistically better,
indistinguishable, or worse, respectively, than the compared
methods in the column. We set the confidence level to be 95%
(i.e., significance is determined when the p-value is less than
0.05). As shown in the results, VRSA was more predictive of
VR sickness than the other benchmark models with statistical
significance.

2) Performance on Individual Motion Types: Since the
VR-SP database contains a variety of motion types, we also
tested the model according to these types. Table V reports
the SROCC of the compared VRSA algorithms on the VR-SP
database against motion type. As shown in the table, VRSA
delivered the best performance on both motion types.

3) Dependency on Train/Test Proportion: In order to study
the degree on the performance of the model, we measured the
mean values of the PLCCs over 2000 trials as a function of the
training set percentage as it ranged from 10% to 90% in 10%
increments. Fig. 14 shows as the percentage of the training
set increased from 50% to 90%, the performance difference
varied less than 10%.

4) Feature Ablation Study: We also studied the perfor-
mances of the feature groups and combinations of feature
groups. Table IV shows the LCC and SROCC for each feature
group of combinationsacross 2000 train-test trials. Specifically,
we tested SF, STF, RF, EMF, and combinations (SF+STF),
(SF+RF), (SF+EMF), (SF+STF+RF) and (SF+RF+EMF).
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Fig. 15. Plots of PLCC and SROCC on each reference VR video: ‘Horse’, ‘Centrifuge’, ‘Boat’, ‘Drift’, ‘AirFighter’, ‘BounceBall’, ‘Car’, ‘RollerCoaster’,
‘Indoor’,‘Space’.

TABLE IV

PLCC AND SROCC OF FEATURES AND THEIR COMBINATIONS OVER

2000 TRAIN-TEST TRIALS ON THE VR-SP DATABASE

TABLE V

SROCC OF THE VRSA MODELS AGAINST MOTION TYPES ON THE VR-SP
DATABASE

TABLE VI

RESULTS OF ONE SIDED T-TEST PERFORMED ON THE SRCC RESIDUALS

ON THE VR-SP DATABASE. THE SIGNIFICANCE LEVEL WAS

SET TO 95%

Since the spatial feature SF is not a major contributor to
VR sickness, its correlation against MOS is only about 0.3.
However, the frame difference map-based statistical features
(STF, RF and EMF) delivered reliable predictive performance.
In particular, the correlation obtained by RF were higher
than those of the other single features. When SF was com-
bined with STF, RF and EMF, the correlation SF+RF+EMF
delivered even higher SROCC performance, indicating that

TABLE VII

PERFORMANCE OF VRSA AS A FUNCTION OF FILTER WINDOW

SIZE ON THE VR-SP DATABASE

EMF efficiently contributes to performance as well. Overall,
when all the features were used together, VRSA much better
performance than the other models.

D. Content Dependence

We also explored the way that VRSA behaves across diverse
video contents. Fig. 15 shows the performance of VRSA
over the 2000 trials on each of the reference VR videos in
the VR-SP database. Although the correlation it attained was
slightly better on some scenarios than the others, the variation
in performance lay within a fairly small range.

E. Effect of Model Parameters

To study model behavior against the parameters of VRSA,
we tabulated performance while varying the filter window
sizes. Table VII shows performances for four filter windows
on the VR-SP database. It can be seen that the algorithm
performed best for a Gaussian filter window of size 15.

F. VRPA Prediction Results

To evaluate the performance of VRPA, we used the sub-
jective presence assessment in Section III and the additional
features defined in Section IV. Similar to the analysis of
VRSA, SROCC and PLCC were used to measure perfor-
mance. The overall experimental protocol was as described in
Section VI-A.
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Fig. 16. Example of VR sequences and their predicted (MOS scaled to [0, 1]) sickness/presence scores on the VR-SP database. (a) ‘Horse-7’ sequence,
(b) ‘Centrifuge-6’ sequence, (c) ‘RollerCoaster-2’ sequence, and (d) ‘Space-1’ sequence.

TABLE VIII

PLCC AND SROCC OF VRPA ON THE VR-SP DATABASE

1) Feature Ablation Study: We studied the individual per-
formances of the proposed VR presence feature sets and
combinations of them. Table VIII shows the LCC and SROCC
obtained for each feature set and their combinations across
2000 train-test trials. We tested four different models: SCF,
VAF, CF and VRPA (full).

As discussed in Section V, the VR sickness feature is a
good prediction of the sense of VR presence, and it delivers a
reliable correlation of ∼0.69. When all of the features are used
together, VRPA attains a top correlation performance about
∼0.75. These results infer the necessity of considering all of
the sickness, visual activity and content features simultane-
ously to evaluate VR presence accurately.

2) Predicted Results: To determine whether VR sick-
ness is related to presence, four sampled VR sequences
and their predicted sickness/presence scores (MOS scaled
to [0, 1]) are illustrated in Fig. 16. Overall, it can be
seen that the predicted scores are close to MOS. Also,
the sequences with high VR sickness scores, such as shown
in Figs. 16 (a) and (b), have relatively low VR presence

scores. Similarly, as shown in Fig. 16 (d), when there is a very
low level of VR sickness, VR presence becomes quite reduced.
However, in Fig. 16 (c) exemplifying an appropriate level of
VR sickness, the sense of presence is relatively maximized.
Broadly, it may be seen that there is a strong relationship
between VR sickness and VR presence, and our prediction
models agree with that observation.

VII. CONCLUSION

Recently, virtual experience technology has improved
remarkably, raising the importance of VR sickness/presence
predictors in commercial HMD products. Reliable QoE assess-
ment algorithms could help provide users with more realistic
and comfortable visual experiences when using VR. In the
VR industry, significant efforts have been made to improve
software/hardware techniques to better deliver viewers’ visual
satisfaction. Here, we described a new large-scale database
of VR sickness/presence and that we created, and used it
to formulate new VR prediction models. Our simulation
results show that our proposed models can autonomously
and effectively predict VR sickness/presence, achieving much
better performance than conventional algorithms. We expect
that the proposed models could be applied in a variety of
applications, such as VR content creation, VR broadcasting,
and VR gaming.
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