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Abstract— Measuring the quality of digital videos viewed by
human observers has become a common practice in numer-
ous multimedia applications, such as adaptive video streaming,
quality monitoring, and other digital TV applications. Here
we explore a significant, yet relatively unexplored problem:
measuring perceptual quality on videos arising from both luma
and chroma distortions from compression. Toward investigating
this problem, it is important to understand the kinds of chroma
distortions that arise, how they relate to luma compression distor-
tions, and how they can affect perceived quality. We designed and
carried out a subjective experiment to measure subjective video
quality on both luma and chroma distortions, introduced both
in isolation as well as together. Specifically, the new subjective
dataset comprises a total of 210 videos afflicted by distortions
caused by varying levels of luma quantization commingled with
different amounts of chroma quantization. The subjective scores
were evaluated by 34 subjects in a controlled environmental
setting. Using the newly collected subjective data, we were able
to demonstrate important shortcomings of existing video quality
models, especially in regards to chroma distortions. Further,
we designed an objective video quality model which builds on
existing video quality algorithms, by considering the fidelity of
chroma channels in a principled way. We also found that this
quality analysis implies that there is room for reducing bitrate
consumption in modern video codecs by creatively increasing
the compression factor on chroma channels. We believe that
this work will both encourage further research in this direction,
as well as advance progress on the ultimate goal of jointly
optimizing luma and chroma compression in modern video
encoders.

Index Terms— Subjective study, video quality assessment, video
codec optimization.

I. INTRODUCTION
ODELING the human perception of video quality
has become a crucial research problem owing to the
tremendous boom of shared and streaming video content,
accessible mobile video devices, and diverse video services
such as Netflix, Facebook, Youtube, Hulu, and so on. Per-
ceptual optimization of multimedia workflows is important,
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since humans are the direct consumers of visual information.
Videos have become the dominant portion of Internet traffic,
and it is predicted that pictures and videos will comprise
80% of the moving bits in broadband and mobile networks in
the near future [1]. Given this tremendous, growing, network
bandwidth demand, improving the rate-distortion performance
of video compression in perceptual ways has become a critical
issue, with the potential for significant social, ecological, and
economic impact.

Because of significant efforts applied to developing algo-
rithms that can accurately predict perceptual video quality,
many promising models have been demonstrated. One suc-
cessful example is the trained Netflix video quality predic-
tion model called Video Multimethod Assessment Fusion
(VMAF) [2], [3], which is used to optimize a significant
percentage of Internet video traffic at a level only matched by
SSIM [4]. However, most practically deployed video quality
models, including VMAF, only extract visual information
from the video luma channel, disregarding color entirely.
Yet, neglecting color/chroma components may be detrimental
to achieving the most accurate evaluations of video quality.
As a practical example, one may intentionally manipulate the
chroma fidelity of a video: before encoding a pristine source
video, it is common to decimate the chroma components to
reduce bitrate consumption, with little impact on predicted
or perceived quality. Of course, chroma quality features have
been used in some simple ways. For example, averaging the
PSNR values across luma and chroma channels has been used
in multimedia tools such as FFmpeg. Similarly, the Moving
Picture Experts Group (MPEG) community often evaluates
the performance of video codecs using a weighted mean of
Bjgntegaard-Delta bitrates (BD-rate) [5] across per-channel
PSNR values. However, rather than taking human perception
into account, the linear weights were empirically derived as a
proportion of color channels defined by pixel format.

One potentially high-impact application of perceptually
quantifying chroma distortion is the optimization of video
compression. For example, in Fig. 1 we applied several differ-
ent quantization factors settings on noisy chroma channels.
Here, distortions of Cb and Cr caused by maximizing the
chroma_gp_offset parameter to K, thereby increasing quan-
tization of Cb and Cr, are clearly visible. However, while
the visual differences caused by the two settings are sub-
jectively and objectively noticeable when displaying chroma
channels independently, it is important to observe that these
considerable defects in chroma do not alter the visual quality
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YCbCr displayed with UTU-R BT.709 color conversion
2

(b) chroma_gp_offset = K

(a) chroma_gp_offset = 0

Fig. 1. A bitrate-saving example of encoding test sequence dark720p_120f
using HEVC. The two videos were encoded at a fixed QP of 17 with
different chroma_gp_offset settings, resulting in (a) PSNRcy = 47.77 db;
PSNRc; = 49.01 db; bitrate = 20631.65 Kbps, and (b) PSNR¢p = 39.50 db;
PSNR(c; = 41.92 db; bitrate = 13112.41 Kbps.

when YCbCr are displayed together. Yet, in terms of bit
consumption, the encoded video in Fig. 1(b) only occupies
6.5 Mbytes, which is 36% less than the video in Fig. 1(a).
Unfortunately, the potentially significant benefits of trad-
ing off chroma fidelity against bitrate cannot be captured
by the conventional per-channel PSNR, and cannot con-
tribute to improved PSNR-based rate-distortion optimization
schemes.

We summarize the main idea behind this work in Fig. 2.
Most video encoders operate near the region defined by the
black dotted diagonal line, where the amount of compression
between chroma and luma is tightly coupled. Using a similar
working assumption, most previous subjective quality data-
bases and most quality models do not consider the perceptual
effects of decoupling luma and chroma compression. In these
scenarios, as shown in Figs. 2(c), (d) and (e), chroma artifacts
are typically observed only when the luma quantization factor
is high enough (as in Fig. 2(e)). Notably, the upper left region
provides room for further bitrate savings, by exploiting heavier
chroma quantization while fixing the luma quantization level,
without coupling the two. Figure 2(a) shows an example of
severely degrading chroma, while luma quantization is kept to
a much lower level. As a result, it exhibits significant loss
of chroma information (desaturation), but the scene struc-
ture remains intact. Moving across Fig. 2 in the horizontal
direction, luma quantization increases, until significant loss
of detail and texture are observed (as in Fig. 2(b)). Notably,
the bottom-right of Fig. 2 is a region where luma is more
severely quantized than chroma, an approach that should be
less efficient from the rate-distortion point of view, given that
human perception is more sensitive to loss of detail.
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Fig. 2. Conceptual overview of this paper. Each patch shows distortion
from a specific combination of luma and chroma quantization. The black
dotted line denotes the default setting chroma_gp_offset = 0. The area
between the black dotted diagonal and the blue solid diagonal illustrates
where modern codecs are currently allowed to vary quantization in chroma
(0 < chroma_gp_offset < K).

Motivated by the significant potential of perceptual chroma
quality prediction and optimization, we have attempted to
improve the current VMAF model by accounting for the per-
ceptual quality attributes of the chroma components of videos.
To help us advance progress in this direction, we built a new
chroma distortion-specific video quality database, on which
we conducted a subjective quality study to better understand
how different levels of compression distortion in chroma affect
quality perception, and how they relate to luma distortions.
This study seeks to examine ways of exploiting the upper-left
area of Fig. 2, to better understand the perceptual tradeoffs
that should mediate luma and chroma compression. Using
the collected data, we developed and tested new chroma
quality-aware features which can be used to improve existing
learning based video quality predictors. We also studied the
problem of color-sensitized video quality prediction, resulting
in the design of an improved VMAF model, that we introduce
here, and which can be used to improve the perceptual
optimization of compression.

Moving forward, section II reviews related literature and
motivates the need for a new dataset. Section III details
the new database’s source contents, the creation of chroma
distortions, and the perceptual study design and outcomes.
Section IV discusses data analysis of the subjective study
results. Section V explores different chromatic features and
appropriate design methodologies for constructing quality pre-
diction models, while section VI offers an analysis of the
performance of a variety of objective VQA algorithms on the
new database. Finally, section VII concludes with a discussion
of future directions of research.

II. BACKGROUND

We begin with a background review of studies related
to subjective video quality. Following that, currently avail-
able objective video quality assessment algorithms also
discussed.
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A. Subjective Video/Picture Quality Databases

Numerous Video Quality Assessment (VQA) datasets have
been designed over the past decade. The early LIVE VQA
Database [6] and the LIVE Mobile Video Quality Database [7]
remain among the most widely used public-domain video
quality databases. These databases model post-acquisition
distortions, such as H.264 compression and transmission
errors, to match real world scenarios. Other similar data-
bases, of videos having larger resolutions, deeper bit-depths,
or encoded by more advanced codecs have been proposed,
including the CSIQ-VQA Database [8], the SHVC Data-
base [9], and the VQEG Database [10]. We refer the reader
to [11], [12] for a comprehensive analysis and collection of
publicly available databases through 2012. In recent years,
more video quality databases [13]-[19] have been proposed
to address different scenarios. Although these databases have
undoubtedly accelerated the development of VQA algorithms,
generally distortions of the chroma channels were not specif-
ically designed. In most cases, chroma distortion are hightly
coupled with luma distortion.

To the best of our knowledge, we are aware of only a few
studies of chromatic distortions. Shang et al. [20] introduced
different levels of chromatic distortions than conventional
codecs. Source videos were divided into three planes, then
independently encoded at different quantization levels. The
independently encoded channels were then combined into a
single distorted video. Although this methodology produces
combinations of Y/Cb/Cr components having different levels
of distortions, it is not naturally produced by a video codec.
Here, we instead propose a different framework whereby
distorted videos are generated directly from an encoder, as we
will discuss.

There are also two databases that studied image qual-
ity, including certain distortions of chroma components:
TID2013 [21] comprises various color distortions in addition
to 17 other distortion types. However, the four synthesized
color distortions are peculiar and not likely to be present in
practical situations. In [22], Sinno et al. studied the quality
of billboard and thumbnail images displayed by streaming
services. This database contains JPEG-distorted still pictures
in 444/420 formats, representative of modern internet appli-
cations. They found that chromatic distortions, such as color
bleeding or jaggies, were induced by chroma subsampling.
However, these artifacts are often negligible, and are generally
only noticeable when viewed in side-by-side pairwise compar-
isons. They tend to be even more subtle when appearing on
video, where temporal masking effects often suppress faint
distortions.

B. Objective Video Quality Assessment Algorithms

Another closely related topic, objective video quality assess-
ment, has been a long-standing and fundamental research prob-
lem. Generally, video quality prediction models are classified
as full-reference (FR), reduced-reference (RR), or no-reference
(NR), based on the availability of the high-quality reference
data. Here we only focus on the FR scenario, since it
may be assumed that ground-truth data is available in our
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target applications. Beyond the popular SSIM [4], [23] and
MS-SSIM [24] models, which are computationally simple,
numerous other powerful perceptual models have also been
proposed. These include the VIF index [25] which supplies
most of the features in VMAF, the MOVIE index [26],
ST-MAD [27], the VQM-VFD models [28]-[30], and many
others [31]—-[38]. A few still picture (IQA) models [39]-[41]
have been designed to tackle chroma distortions, yield-
ing improvements on the color-distorted images in the
TID2013 database.

Despite the commercial success of many perceptual quality
predictors, the pixel-wise PSNR is still a mainstream model,
especially in the testing of video codecs. Indeed, variants
of PSNR have been used in the context of codec compar-
ison. During the coding process three PSNR values PSNRy,
PSNRcp and PSNRc; are obtained. They are usually combined
to produce PSNRg1; [42] or PSNRy;;! as the final quality
score:

k - PSNRy + PSNRcyp, + PSNR(; 1

k+2 ' W
PSNR-HVS-M [43], perceptually-oriented extension of PSNR,
has been integrated into the Daala codec [44] for performance
evaluation. A recently proposed color-sensitivity-based com-
bined PSNR (CS-PSNR) [20], uses perceptually optimized
weights on Y/Cb/Cr based on a subjective analysis of color
sensitivity. The MSE weight for each channel is inversely
proportional to just-noticeable unit area of a checkerboard
pattern. However, this model might be limited by its straight-
forward linear fusion of per-channel MSE’s. Again, chromatic
information is often neglected, or naively exploited, both in
the design of databases and in quality prediction algorithms.

PSNRg;1 =

III. SUBJECTIVE EXPERIMENT DESIGN

Next we describe the key characteristics of the subjective
study that we conducted to capture human judgments of
compression distortion on both luma and chroma channels.

A. Generating Chroma Compression Distortions

In most modern video coding standards, the quantization
parameters (QP) for chroma components are not explicitly
designated. Instead, it is derived from the QP value of the luma
channel with a parameter chroma_gp_offset (the syntax name
may vary across different codec standards) that gives a certain
degree of flexibility. For example, syntaxes cb_qp_offset
and cr_qp_offset are defined in the High Efficiency Video
Coding (HEVC) standard. The offsets are first clipped to the
range [—12, 12], then added to the luma QP (denoted by QPy):

QP;,cb = QPy + clip[—12,12)(cb_qgp_offset),
QP;.cr = QPy + clipj_12,12)(cr_qp_offset).

Then, QP; cp and QP; cr are mapped to the QP values for Cb
and Cr:

2

QPch = f (QPico)

3
QPe: = f (QPicy) . ©)

Lused in libavfilter of ffmpeg
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(c) (QPy, QP;) = (35,33) (d) (QPy, QP.) = (35,51)

Fig. 3. Exemplar frames encoded using different QP values on luma and
chroma. (a) and (c) are encoded without increasing chroma QP values; (b) and
(d) are encoded with extreme chroma QP’s.

TABLE I

SPECIFICATION OF QP FOR CHROMA (QP¢) AS A FUNCTION
OF THE TRANSITIONAL VALUE QP; INHEVC

QP; <30 | 30 | 31 | 32 | 33 | 34 | 35 | 36
QP QP; 29 | 30 | 31 | 32 | 33 | 33 | 34
QP; >43 | 43 | 42 | 41 | 40 | 39 | 38 | 37
QP. | QPi-6 | 37 | 37 | 36 | 36 | 35 | 35 | 34

where f(.) is a nonlinear mapping function normally imple-
mented as a look-up table. Table I describes this function in
the HEVC standard. Consequently, a tremendous challenge
in generating realistic chroma compression distortions is that
the chroma_gqp_offset parameter in all of the video com-
pression standards are limited to the range [—12, 12], hence
one cannot directly produce compressed videos with arbitrary
chroma quantization levels distinct from the luma quantization
parameter.

As a preliminary step, we experimented with a “stitching"
method that generates two videos encoded at different QP
values. These are decoded, then the luma of the first is
combined with the chroma from the second. For example,
one can combine a luma component encoded with QP = 15,
with chroma components encoded with QP = 51 to create
extreme chroma distortion. While this approach is intuitive and
easy, it comes with a number of disadvantages. First, it does
not produce bitstreams for every distorted video, hence RD
performance is difficult or impossible to analyze. Moreover,
we noticed that distortions created by this approach can appear
very different from a real encoding result. Despite having the
same quantization in chroma channels, their predictor/residual
are considerably different. To address these shortcomings,
we decided to create true encoding results by removing
the clipping function (2) defined in the HEVC standard.
An example of distortion generated in this way can be found
in Fig. 3. As may be observed, both Figs. 3(b) and 3(d) show
severe color shiftings on the runners. They are not exactly
the same because of the different encoding outcomes from
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Fig. 4. Sample video frames extracted from the 21 video contents in the
new database.

using different QPy values. These unpleasant artifacts cannot
be created without modifying the video codec standards.

B. Source Sequences

We selected 21 pristine Full High Definition (FHD) video
sources from amongst the Netflix movies and TV shows in
the Netflix catalog. These video frames were stored using
visually lossless JPEG2000 compression. When needed, they
were decoded to YUV420 format (YCbCr color space with
4:2:0 sampling). None of the videos contain audio compo-
nents. Fig. 4 shows examples of some of the selected content.
The source videos have a variety of characteristics, such as
dark/bright scenes, static/action scenes, close ups of human
faces, and so on. All videos are about 8-10 second long and
all of them have a frame rate of 24 frames per second.

As a way of quantifying the low-level content of the videos,
we adopted the popular Spatial Information (SI), Temporal
Information (TI), and Colorfulness (CF) indices [11], [15],
[45], [46]. To obtain SI, the luma channel is processed by
horizontal and vertical Sobel filters to obtain responses s; and

sp. Lets, =, /s}zl + si denote the edge magnitude at each pixel
location. The SI value is then simply the maximum standard
deviation of s,

Sl = max (Gs,) , 4)

where o, are calculated on a per-frame basis, and ¢ denotes
frame index. The TI value is computed as the standard
deviation of the differences between adjacent frame pairs

TI = max (aMt) , (5)
t

where Al, = I, — I, is the pixel-wise difference between the
1™ frame and the (r — 1) frame. Finally, color information is
captured using CF index in [47], which is formulated as

CF=max (\Jo, + 02, +03 /i, +12,),  (©

where rg = R— G and yb = 0.5(R + G) — B represent oppo-
nent color spaces, while u, and g, are the mean and standard
deviation of a plane x. Before calculating CF, we transformed
YUV420 to RGB444. As shown in Fig. 5, the reference videos
of our database widely span the SI-TI-CF space.
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Fig. 5. Scatter plots and corresponding convex hulls of Spatial Information
(SI), Temporal Information (TI), and Colorfulness (CF) of the video contents
in our database.
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Fig. 6. Encoding complexity of each video content in the new database,
expressed as the bitrate derived by encoding them using libx264 with a fixed
CRF of 23.

In addition to the typical SI-TI-CF plots, we used another
strong indicator of video complexity. Specifically, we encoded
all video contents using libx2642 at a fixed Constant Rate
Factor (CRF) setting of 23. Then, the bitrate of each encoded
video was measured as an empirical indication of encoding
complexity [48] (intuitively, complex contents consume more
bits than simple contents at the same quantization level).
Figure 6 demonstrates that our video contents span a large
range of the bitrate spectrum at constant CRF, ranging from
less than 1.0 Mbps up to around 11.8 Mbps. Due to content
licensing restrictions, the video contents of the database cannot
be made available.

C. Encoding Space and Experimental Design

In subjective experiments of video quality, it is important
to carefully design the distortion space, such that the video
artifacts are perceptually well-separated and the number of
video distortions is not too large. A large number of video
distortions will either increase the average viewing time for
participants or the number of required participants, both of
which are undesirable in subjective lab tests.

We carefully selected three luma QP values such that their
VMAF distributions were separated, as demonstrated in Fig. 7.
In fact, the QP values give visually separated distortion levels
on most of contents. The quantization parameters we used
are summarized in Table II, where QPy represents luma QP,
and QP represents chroma QP. For each QPy employed on
a content, three cb_qp_offset/cr_qp_offset settings, ranging
from O to 51, were assigned resulting in three different QP,
s. Aside from the two extreme values, we uniformly covered
the range of QP for each content. For example, a content
encoded with QPy = 15 can bracket one set of QP. from the
sets {15,21,51}, {15,27,51}, or {15,39,51}. After the QP

2https J//trac.ffmpeg.org/wiki/Encode/H.264
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Fig. 7. VMAF scores of distorted videos against their luma QP. Each point

represents a distorted video in the dataset.

TABLE I

DESIGN OF QUANTIZATION DISTORTION LEVELS IN THE NEW DATABASE.
FOR EACH CONTENT, ONE OF THE THREE VALUES IN THE BRACKETS
‘WAS SELECTED FOR THE STUDY

QPy | cb_qp_offset/cr_qp_offset QP.

15 0, {6, 12, 30}, 51 15, {21, 27, 39}, 51
29 0, {6, 12, 20}, 51 29, {33, 36, 43}, 51
35 0, {6, 12, 17}, 51 33, {36, 41, 46}, 51

selection process, the resulting distorted videos were stored
for later display to the human participants.

Following standard practice, the subjective study sessions
were divided into several separate 30-minute viewing ses-
sions, to avoid users’ and/or visual fatigue. In addition, every
subject’s sessions were separated by at least 24 hours, for
the same reason [49]. Hence, we designed a two-session
study as follows. The videos were assumed to have durations
of 10 seconds each (actually 8-10s), and both sessions pre-
sented the same 21 contents.

In the first session for each content, five distorted versions
of it and one pristine video were included for each content.
Therefore, the corresponding viewing time of the first session
was about

# of videos
G+1) . (7)
——

distorted + pristine

21.0 min = 10 sec x 21 x

Similarly, the viewing time of the second session was about
17.5 min = 10 sec x 21 x (4 + 1). ®)

To allow for variations, 30 minutes were allocated to each
session, including the instructions given each subject in the
first session.

D. Viewing Conditions

During the study, all the videos and graphical user inter-
face (GUI) were displayed using a 15 inch MacBook Pro
having a 0.391 m diagonal length and a 2880 x 1800 native
resolution retina display. During the subjective test, we set the
display resolution to 1920 x 1200. The display was positioned
at a viewing distance of about 0.610 m, which is approximately
equivalent to three times the height of the display monitor.
Also, the subjects were told not to modify their viewing
positions very much, while still remaining comfortable.

The laboratory environment for the subjective study fol-
lowed the recommended viewing conditions in section 2.1.1 of
BT.500-11 [49]. The ambient illumination was fixed at a low
light level, the display brightness was held constant at 50% of
maximum throughout the study, and the automatic brightness
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adjustment feature was disabled to guarantee consistency of
brightness.

E. Study Instructions, Training, and Subjects

Each participant was asked to take a Snellen visual acuity
test and an Ishihara color test, to understand their state of
vision. If a subject normally used corrective lenses when
watching videos, they were asked to wear them to achieve
normal vision when participating in the study. Moreover, a set
of instructions were given to each subject explaining the
subjective testing process. They were asked to report opinion
scores expressive of their viewing experience on every video.
The detailed written instructions were given, followed by a
brief verbal exchange to ensure that the subjects understood
their tasks. In order to remove any possible rating biases,
the participants were requested not to base their judgments
on whether or not any video content was interesting. Finally,
the subjects were informed that there were no right or wrong
answers in the experiment.

As a practice, four “practice" videos were presented before
the actual study began. These videos were designed to be
broadly representative of the range of distortion types and
levels that the participants might experience during the actual
test. This “training session' facilitated the subject being
familiar with the study, and was only given in the first session.
The contents used for training were the same for all subjects
and were distinct from the actual test contents. The ‘“testing
session'' will be described in the next subsection.

The study was carried out over a three-week period at Net-
flix. In total, 34 subjects were voluntarily recruited. Roughly
half of the subjects were experts in the field of image/video
engineering while the others were average viewers. In terms
of visual acuity, 13 subjects (38.2%) possessed approximately
20/25 vision (slightly worse than ideal) while the others had
20/20 or better vision after correction. Only two participants
did not accurately recognize Ishihara Plates during the color
vision test, but were allowed to continue as being typical of
the populace. Interestingly, the two subjects who failed the
color vision test were able to perceive the chroma distortions,
and were not rejected as outliers.

E. User Interface and Test Methodology

The user interface was designed using PsychoPy3 [50],
which is an open source software often used in experimental
psychology and neuroscience research. We followed the single
stimulus procedure described in [51], whereby the videos were
displayed one after the other. Each video was displayed at
native resolution to prevent additional scaling artifacts. Two
1920 x 60 black bars were rendered at the top and the bottom
of the screen, respectively, to fill the 16:10 aspect ratio of the
MacBook Pro display.

At the end of each displayed video, a continuous Likert
scale of possible video quality scores was displayed on the
screen, as demonstrated in Fig. 8. The cursor was reset to
the center of the rating bar after each rating, to avoid bias.
Five equally spaced labels “Bad," “Poor," “Fair," “Good," and
“Excellent," were marked below the rating bar to help the sub-
ject understand the range and types of ratings they could apply.
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Fig. 8. User interface employed in the subjective test: Likert rating bar for
the subject to submit a quality score for the video they completed viewing.

2| mmm QPy =15
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Fig. 9.  MOS distribution across the NFLX-Color database. A further
breakdown with respect to QPy were shown in each bin.

This Likert scale is similar to the ACR scale documented in
ITU-R [49]. To rate the videos, the subjects moved the red
inverted triangle cursor above the rating bar using the touchpad
on the MacBook Pro. After the subject decided a quality score
that corresponded to his or her perception, the subject was
asked to click on the Accept button to record the score and to
view the next video. After submitting the score, the position
of the sliding bar was converted to an integer quality score in
the range [1, 100]. Then, the next video clip was presented.
It should be noted that once a score was submitted, the name
and score of that video were written to file and could not be
changed. Of course, the video could not be viewed again.

In this way, we collected 6468 scores over 56 sessions from
34 subjects. In the following, we will refer to the videos
and the data collected during the subjective study as the
NFLX-Color (NFLX,) video quality database.

IV. ANALYSIS OF THE SUBJECTIVE EXPERIMENT

The following subsections present an analysis of the sub-
jective experiment results.

A. Data Processing

Given the raw scores collected from the study, subjective
Mean Opinion Scores (MOS) were then computed according
to the procedures detailed in [6]. Let s;;x denote the raw score
assigned by the i-th subject on the video j in session k,
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Fig. 10. Examples of MOS Rate-Distortion curves for different chroma_gp_offset (denoted by AQPc) settings. The error bars indicate the 95% confidence

interval of each RD point.

where k € {1,2}. The raw scores were then converted into
z-scores for each session:
Sijk — Mik

5

©)

Zijk o
where pu;; and oj; are the mean and the standard deviation
of the raw scores over all videos assessed by subject i in the
k™ session. Then, the subject rejection procedure described
in ITU-R BT500.13 [52] was conducted to remove outliers.
After this procedure, we linearly scaled the remaining z-scores
to [0, 100]. The MOS of each video was the mean value of
the rescaled z-scores from the remaining subjects. In our study,
we used the SUREALS3 python package to calculate MOS with
subject rejection following the procedure described above, and
only 6 out of 34 subjects were rejected.

B. Analysis of Subjective Quality Scores

Figure 9 plots the distribution of MOS obtained by the
aforementioned procedures. Clearly, the MOS of the distorted
videos span the entire range of quality. A peak may be
observed at a high MOS region, since slightly increasing
the chroma QP (e.g. AQP. = 6,12) on the videos with
QPy 15 did not affect subjective quality much. We also
computed the standard error of the subjective scores on each
video, obtaining an standard error ranging from 0.822 to
4.414, with an average value of 2.877. This indicates the
difficulty of the quality prediction task on specific contents
or distortions. We found bifurcated opinions from the subjects
occurred on combinations of a “clean” luma plane and severely
distorted chroma channels. This is understandable: the recipe
(QPy,QP.) = (15,51) is an encoding setting that does
not usually appear in daily life; hence they received more
inconsistent scores. On the contrary, consensus emerged on

3https://github.com/Netﬂix/sureal

the other corner, where both luma and chroma were distorted
at the highest quantization level.

C. MOS Rate-Distortion Curves

The Rate-Distortion (or Rate-Quality) curve is a common
tool for comparing different encoders or encoding settings in
lossy compression. In our study, we were able to collect the
bitstream and subjective quality score for each distorted video.
Given these results, we compared different chroma_gp_offset
(AQP.) settings, as shown in Fig. 10, by plotting MOS
against bitrate. A key result in these RD-curves is that,
when increasing AQP. by 6 or 12 at a high bitrate, roughly
2.5%—-17.2% of bits can be reduced without suffering losses
of perceptual quality. Occasionally, it may be observed that
a video with small AQP. was slightly preferred over the
setting AQP. = 0. This could be because both distorted
videos were of very high quality, whereby some subjects
were unable to distinguish differences in subjective quality,
i.e., this may be attributed to statistical noise. On the other
hand, the MOS sometimes dropped drastically even with slight
increments of chroma quantization, at low bitrate settings.
Towards understanding this, we observed more severe color
shifts due to the additional quantization that affects the low
frequency chroma components. It is possible that human
perception is sensitive to this distortion type. Additionally,
the percentage of bitrate reduction was not as significant as at
high bitrates. This observation has important implication for
encoding recipes: there is still room for perceptually optimiz-
ing coding efficiency, by better configuring VQA models to
align with human percepts of chroma distortion.

D. Limitations of the Current Study

Introducing excessive chroma distortion is relatively new to
the construction of a video quality dataset. Despite our best
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TABLE III

PERFORMANCE COMPARISON OF CANDIDATE CHROMATIC FEATURES: EACH CELL SHOWS THE SROCC VALUES OF A FEATURE APPLIED ON Cb AND Cr
CHANNELS, EXPRESSED AS SROCC ¢ / SROCC (. THE BEST RESULTS AMONG EACH DATASET ARE DENOTED BY BOLDFACE. PLEASE REFER
TO THE DATASET ACRONYMS IN SECTION VI-A.1

Dataset LIVE-VQA LIVE-MBL NFLX NFLX. BVI-HD CSIQ-VQA EPFL VQEG SHVC

PSNR  0.074/0.146 0.559/0.548 0.580/0.669 0.689/0.705 0.408/0.398 0.405/0.401 0.271/0.251 0.557/0.587 0.569/0.519
SSIM 0.109/0.048 0.441/0.435 0.662/0.702 0.367/0.355 0.454/0.406 0.412/0.373 0.206/0.190 0.636/0.636 0.579/0.536
VIF 0.152/0.125 0.379/0.360 0.506/0.564 0.151/0.133 0.326/0.239 0.392/0.393 0.228/0.208 0.451/0.449 0.417/0.453
VIFgo  0.105/0.109 0.367/0.348 0.484/0.539 0.118/0.102 0.307/0.216 0.380/0.381 0.228/0.182 0.432/0.427 0.362/0.418
VIFs1  0.234/0.269 0.466/0.398 0.776/0.788 0.458/0.381 0.547/0.473 0.457/0.432 0.444/0.391 0.618/0.588 0.753/0.717
VIFg2  0.298/0.301 0.489/0.414 0.807/0.811 0.546/0.462 0.611/0.533 0.443/0.415 0.573/0.517 0.675/0.647 0.790/0.746
VIFs3  0.381/0.362 0.531/0.457 0.818/0.819 0.609/0.525 0.649/0.581 0.439/0.407 0.640/0.606 0.716/0.701 0.807/0.756
ADM 0.212/0.176  0.628/0.709 0.858/0.906 0.758/0.782 0.690/0.659 0.446/0.432 0.380/0.356 0.668/0.668 0.752/0.668
ADMgo 0.184/0.092 0.304/0.352 0.569/0.616 0.155/0.199 0.238/0.170 0.187/0.165 0.143/0.134 0.301/0.269 0.496/0.452
ADMg; 0.161/0.161 0.458/0.501 0.782/0.823 0.432/0.462 0.538/0.488 0.377/0.373 0.224/0.218 0.508/0.496 0.781/0.662
ADMg2 0.211/0.183 0.646/0.705 0.883/0.918 0.772/0.807 0.717/0.684 0.469/0.441 0.387/0.257 0.646/0.643 0.702/0.617
ADMg3 0.277/0.196 0.757/0.723 0.841/0.869 0.877/0.901 0.692/0.668 0.482/0.450 0.465/0.368 0.706/0.731 0.682/0.605

1415

efforts, there are several limitations of this database. As with
most the lab-controlled subjective studies, the experiment was
hardly exhaustive. Although we designed a database having
reasonably comprehensive content and distortion types, it is
still circumscribed by several factors, such as the number of
subjects and the quantity of subjective quality labels. As a
result, constraints had to be made on the combinations of
contents and distortions.

In our experiment design, we only included distortion types
from luma and chroma compression. However, in real world
applications, such as adaptive streaming, resolution changes
are often used to optimize RD performance and can also
cause distortions (scaling artifacts). Also, studying videos
having distorted luma channels with pristine chroma channels
may be of interest. Due to the lack of capacity, we did
not include this distortion scenario in our dataset. Further-
more, recalling the preceding RD-curve examples in Fig. 10,
it was observed that bitrate reductions from heavier quan-
tization of chroma only occurred in high bitrate regions.
Yet, the granularity of luma distortion levels was limited,
making it difficult to find a precise sweet spot to optimize a
codec.

V. OBJECTIVE VIDEO QUALITY MODEL DESIGN

VMAF is a data driven video quality prediction frame-
work that extracts a number elementary VQA features then
nonlinearly fuses these features by training a Support Vector
Regressor (SVR). The current version of VMAF extracts
the Additive Distortion Metric (ADM) [53] feature and
four Visual Information Fidelity (VIF) [25] features com-
puted on different oriented frequency bands. The Tempo-
ral Information (TI) feature of VMAF is simply the aver-
age difference between consecutive frames. This is used
to capture temporal distortions associated with, or possi-
bly causing motion or change. These six features are all
derived on the luminance component only. Of course, this
current limitation hinders VMAF from capturing chromatic
distortions.

A. Chromatic Features

Clearly, our goal is to find features that are expressive
of chromatic distortions and that can be used to benefit
the training of VQA models. To this end, we selected the
VMAF features, along with the well-known PSNR and SSIM
algorithms as candidates for the experiments on chroma
distortion. We then conducted a systematic evaluation to
understand the performances of these existing luma features
and algorithms when applied on chroma channels. It should
be noted that the chroma channels only have halved hori-
zontal and vertical resulutions compared to luma, since we
used videos with YUV420 format for all the experiments.
Table III tabulates the obtained Spearman Rank Order Cor-
relation Coefficients (SROCC) obtained on nine databases,
including NFLX.. The first thing to notice is that the two
most widely-used perceptual quality models (SSIM and VIF)
performed far below desired levels. This was possibly due
to the fact that they have been designed and extensively
tested only on luminance signals. However, it must also
be recognized that chromatic components possess different
statistical and scaling properties than luma components. Inter-
estingly, the third scale of the ADM features (ADMgb)
and ADMgr) ) achieved standout performance across most of
the databases. In particular, on NFLX., it achieved close
to 0.9 of SROCC. This suggests that this feature is
highly consistent with the human perception context of
chromatic distortion. We also illustrate the multiscale
framework of the ADM feature in Fig. 11 for better
understanding.

The second observation that can be made is with regards to
the multiscale behavior of VIF and ADM: performance was
improved as the scale index was increased (lower frequency
subband). This is not surprising, since the human chromatic
contrast sensitivity functions (CSF) (red-green and blue-yellow
color opponents) [54]-[56] pass much lower ranges of fre-
quencies than the luminance CSF. The human visual system
neglects higher frequencies when processing chromatic infor-
mation.
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Wavelet transform in each scale are the input of the next, which produces
different scales of ADM score iteratively. Larger scale index represents lower
frequency subband.

B. Learning a Color VMAF Model

We began by empirically including ADM(Cb) and ADM(Cr)
as two additional features for training chroma aware VMAF
models, given its exceptional performance on NFLX.. How-
ever, while the trained model significantly boosted correlation
on NFLX,, we discerned considerable performance degrada-
tion on other databases, especially LIVE-VQA. In fact, when
tested on LIVE-VQA, all of the chromatic features yielded
unsatisfactory SROCC, as may be seen in Table III. This may
have been because nearly half of the LIVE-VQA database
videos contain transient distortions produced by simulated
network losses, which may not be effectively captured by chro-
matic features. It is important to note that these distinct distor-
tions are different from our training data (see Section VI-A),
posing additional challenges. In any case, without careful
training, the additional chroma features can lower perfor-
mance.

In order to tackle this issue, we regularized the additional
chromatic features using a uniform quantization function.
A uniform quantizer with a parameterized quantization step
size Ay = 1/N that maps a real value x € (0, 1] to N discrete
values is given by

i=0n0) = ANrAiNm (10)

The spirit behind this approach is simple: when a feature is
excessively quantized, say, with N = 1, the feature becomes
a constant to the regression model. In this case, the quantized
variable cannot contribute to the model learning, resulting
in the same feature set as VMAF 0.6.1; conversely, as N
grows, the result becomes closer to the original feature. Thus,
the quantization function allows a flexible trade off in per-
formance on NFLX, and the other databases. We studied the
effect of using different step sizes Ay, and report the results
in Table IV. It may be seen that the SROCC performance on
LIVE-VQA and EPFL decreased as N was increased, whereas
a reversed trend was observed on NFLX.. Some databases,
such as VQEG, were less affected by varying step size. Based
on the results of Table IV, we chose N = 8 to quantize the
chroma ADM features.
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TABLE IV

SROCC PERFORMANCE WITH RESPECT TO DIFFERENT QUANTIZATION
STEP SIZES REPRESENTED BY N. THE LAST ROW (N = oco0) DENOTES
THE FEATURES WITHOUT QUANTIZATION. PLEASE REFER TO THE
DATASET ACRONYMS IN SECTION VI-A.1

N L-VQA NFLX. EPFL VQEG Overall
4 0.744 0772 0.879  0.829 0.829
8 0.740 0.822 0.873 0.834 0.838
16  0.706 0.862 0858  0.829 0.836
32 0.701 0.875 0.845 0.830 0.831
64  0.703 0.877 0.841 0.828 0.831
oo 0.692 0.880 0.841  0.827 0.830

Ultimately, the feature vector used to learn the color VMAF
model, which we refer to as VMAF,, is expressed by

= [VIF, VIFs, VIFg, VIFg3, TI,

ADM, ADMgb) ADMS".

fvMmAE,

Y

b
The terms ADME3 " and ADM " denote the ADMgb) and

ADM(Cr) features quantized by (10). The finalized VMAF,
model was trained on the VMAF+ dataset [48], as we will
describe in section VI-B.

VI1. OBJECTIVE VIDEO QUALITY ASSESSMENT
EXPERIMENTS

A. Experimental Setup

1) Evaluation Datasets: In addition to NFLX., we tested
the models on a variety of subjective VQA databases,
including LIVE VQA [6], LIVE Mobile (LIVE-MBL)* [7],
NFLX [2], CSIQ VQA [8], BVI-HD [14], VQEG-HD3 [10],
EPFLPolimi [58], and SHVC [9]. These publicly available
datasets are commonly used to evaluate VQA models. They
contain a large variety of contents, resolutions, and distortion
types, such as MPEG4/H.264/HEVC compression, resolu-
tion changes, transmission errors, frame rate adaptations, and
SO on.

2) Evaluation Criteria: To evaluate the performance of a
VQA model, we used the SROCC and the Pearson linear
correlation coefficient (PLCC), which are calculated between
the ground truth MOS and the predicted scores. The SROCC
measures the degree of monotonic relationship between two
variables, while the PLCC is computed after a logistic
mapping [59] to measure the degree of linear correlation
against MOS. Larger values of SROCC/PLCC indicate better
performance in terms of correlation with human percep-
tion. To compute the overall correlation, we applied Fisher’s
z-transform [60] to each correlation coefficient value r

11 1+r
= — In N
LET S

(12)
then averaged them over all the test databases [48]. This
average value of transformed correlation coefficients is then

transformed back using the inverse function r = tanh (z).

We only used the mobile subset in LIVE Mobile

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:46:15 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: PERCEPTUAL VIDEO QUALITY PREDICTION EMPHASIZING CHROMA DISTORTIONS

1417

TABLE V

OVERALL PERFORMANCE COMPARISON OF VQA ALGORITHMS: EACH CELL SHOWS THE SROCC AND PLCC VALUES OF AN VQA MODEL EVALUATED
ON A SPECIFIC DATABASE, EXPRESSED AS SROCC/PLCC. BOTH VMAF 0.6.1 AND VMAF: WERE TRAINED ON THE VM AF+ DATASET [48].
THE THREE BEST SROCC RESULTS AMONG EACH DATASET ARE DENOTED BY BOLDFACE

Dataset LIVE-VQA LIVE-MBL NFLX NFLXc BVI-HD  CSIQ-VQA EPFL VQEG SHVC Overall
PSNRy 0.523/0.549 0.687/0.717 0.705/0.706 0.412/0.424 0.588/0.600 0.579/0.565 0.753/0.754 0.770/0.776 0.755/0.761 0.655/0.664
PSNRy41; 0.434/0.465 0.663/0.690 0.703/0.698 0.571/0.585 0.565/0.577 0.545/0.536 0.598/0.613 0.734/0.728 0.738/0.746 0.626/0.635
PSNRg; 0.459/0.494 0.672/0.698 0.704/0.702 0.529/0.546 0.573/0.585 0.555/0.544 0.644/0.653 0.745/0.743 0.749/0.755 0.635/0.644
CSPSNR  0.498/0.530 0.685/0.714 0.704/0.705 0.588/0.605 0.581/0.592 0.572/0.558 0.727/0.724 0.765/0.767 0.750/0.757 0.661/0.670
PSNRpys 0.662/0.689 0.757/0.784 0.819/0.810 0.516/0.534 0.739/0.748 0.599/0.641 0.904/0.909 0.798/0.799 0.831/0.872 0.758/0.776
SSIM 0.694/0.704 0.757/0.767 0.788/0.790 0.555/0.560 0.784/0.786 0.698/0.712 0.712/0.703 0.907/0.909 0.754/0.817 0.754/0.766
MS-SSIM  0.732/0.739 0.748/0.761 0.741/0.745 0.524/0.525 0.747/0.752 0.749/0.746 0.931/0.934 0.898/0.902 0.715/0.787 0.780/0.791
ST-RRED  0.802/0.801 0.881/0.903 0.762/0.761 0.616/0.612 0.781/0.797 0.801/0.786 0.950/0.952 0.921/0.708 0.888/0.899 0.846/0.829
SpEED-QA 0.767/0.763 0.883/0.905 0.780/0.781 0.622/0.626 0.770/0.784 0.746/0.747 0.941/0.869 0.908/0.659 0.880/0.887 0.834/0.798
ST-MAD  0.825/0.830 0.663/0.686 0.768/0.746 0.549/0.550 0.757/0.758 0.735/0.740 0.901/0.908 0.847/0.840 0.611/0.619 0.760/0.761
VQM-VFD 0.804/0.823 0.816/0.847 0.931/0.942 0.597/0.624 0.792/0.802 0.839/0.830 0.850/0.847 0.939/0.943 0.863/0.888 0.847/0.859
iCID 0.552/0.569 0.763/0.773 0.776/0.769 0.890/0.892 0.709/0.714 0.679/0.682 0.778/0.774 0.887/0.893 0.717/0.728 0.766/0.773
VMAFp61 0.752/0.759 0.905/0.924 0.931/0.944 0.612/0.627 0.772/0.785 0.615/0.624 0.844/0.858 0.857/0.866 0.901/0.922 0.826/0.844
VMAF, 0.740/0.751 0.881/0.901 0.932/0.949 0.821/0.832 0.759/0.766 0.597/0.623 0.873/0.883 0.834/0.852 0.912/0.925 0.838/0.855
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Fig. 12.  Scatter plots and logistic regression curves of VMAF 0.6.1/ VMAF./CSPSNR versus MOS on NFLX dataset. The ¢ denotes the standard deviation

of the residuals between MOS values and f(x). We follow the style in [57].

3) Implementation Details: We used the libsvm pack-
age [61] to implement v-SVR [62]. The effectiveness of
SVR depends on the selection of kernel, for which we
chose the radial basis function (RBF) with penalty parameter
C = 23 and kernel parameter y = 27°. The parame-
ters were empirically selected from a 2D grid of values
(C,y) € {275,274, ...,2%) x {273,27%,...,2%). Instead
of maximizing the overall performance, we selected a
sub-optimal parameter set satisfying a monotonicity property
(see Section VI-F), as well as ensuring an appropriate trade-off
between NFLX. and the other datasets. Before training or
inferencing, all of the features were linearly rescaled to [0, 1]
using min-max normalization. For the sake of simplicity and
stability, we used the arithmetic mean [63] to aggregate the
per-frame scores.

B. Overall Comparison

We evaluated the optimized VMAF, against a number
of popular FR IQA/VQA models: PSNR, PSNRyji,
PSNRg11, CSPSNR [20], PSNR-HVS-M [43], SSIM [4],
MS-SSIM  [24], ST-RRED [33], SpEED-QA [34],
ST-MAD [27], VQM-VFD [30], iCID [40], and VMAF
0.6.1 [2]. Since separate databases cannot be combined

into one in a simple way, most learning-based IQA/VQA
models are train/test on multiple databases independently
with cross validation. Under this setting, each dataset is
typically split into 80%-20% portions with respect to content
for training-testing, and the model parameters are searched
to maximize individual correlations. Nonetheless, this does
not give a general model that can be practically used and is
prone to database-specific biases. To avoid these problems,
we followed the benchmark criteria of VMAF, where models
are trained on a distinct dataset VMAF+ [48], then evaluated
on the others. VMAF+ is a large VQA dataset designed for
training VMAF, containing 522 distorted videos subjected
to different levels of scaling and compression artifacts.
The performance results are shown in Table V and plots
of model predictions versus MOS are shown in Fig. 12.
With further investigation, we observed that the outliers
in the scatter plot of VMAF 0.6.1 are mostly the videos
with (QPy, QP.) = (15,51), where chroma distortions were
decoupled from luma. These are the instances which VMAF
0.6.1 failed the most.

From these results, we can draw a number of interesting
conclusions. The first thing to notice is the performance
on the NFLX, dataset. The best performer among all the
VQA models, except VMAF, and iCID, only reaches SROCC
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TABLE VI

RESULTS OF SIGNIFICANCE TESTS BETWEEN THE PERFORMANCES OF VQA MODELS ON THE NFLX DATASET. EACH CELL SHOWS THE STATISTICAL
SIGNIFICANCE OF SROCC AND PLCC. A VALUE OF ‘1’ INDICATES THAT THE ROW HAS STATISTICALLY HIGHER CORRELATION COEFFICIENT
THAN THE COLUMN, WHILE ‘0’ SIGNIFIES THAT THE COLUMN HAS STATISTICALLY LOWER CORRELATION COEFFICIENT THAN THE ROW.

A SYMBOL OF ‘-’ INDICATES NO STATISTICAL DIFFERENCE BETWEEN THE CORRELATION COEFFICIENTS OF ROW AND COLUMN

PSNRy PSNR4;; PSNRg; CSPSNR PSNRpyys SSIM  MS-SSIM ST-RRED SpEED-QA ST-MAD VQM-VFD iCID VMAF,s; VMAF.
PSNRy -- 00 -- 00 -- -- -- 00 00 -- 00 00 00 00
PSNRy1; 11 -- -- -- -- -- -- -- -- -- -- 00 -- 00
PSNRg; -- -- -- -- -- -- -- -- -- -- -- 00 -- 00
CSPSNR 11 -- -- -- -- -- -- -- -- -- -- 00 -- 00
PSNRuvs -- -- -- -- -- -- -- -- -- -- -- 00 -- 00
SSIM - - - - -- - - - - - - 00 - 00
MS-SSIM -- -- -- -- -- -- - - - - - 00 - 00
ST-RRED 11 -- -- -- -- -- -- - - - - 00 . 00
SpEED-QA 11 -- -- -- - -- -- -- -- -- -- 00 -- 00
ST-MAD -- -- -- -- -- -- -- -- -- -- -- 00 - 00
VQM-VFD 11 -- -- -- - -- -- -- -- -- -- 00 -- 00
iCID 11 11 11 11 11 11 11 11 11 11 11 -- 11 11
VMAFos.1 11 -- -- -- -- == . -- -- -- -- 00 -- 00

VMAF. 11 11 11 11 11 11 11

11 11 11 11 00 11 --

slightly higher than 0.6, whereas VMAF, outperformed most
of the other methods, achieving 0.82 SROCC. This improve-
ment over VMAF 0.6.1 is understandable, since the chro-
matic features were efficiently integrated. It may also be
found that VMAF, performed marginally worse than VMAF
0.6.1 on some databases. Overall, a gain of about 0.01 in
both SROCC/PLCC was achieved by VMAF.. Regarding
the training set of VMAF., it should be noted that the
VMAF+ dataset does not incorporate any videos with the
setting of AQP,, yet a remarkable performance improvement
is still attained on NFLX.. This is quite significant, since
unlike other databases, NFLX. allows the measurement of
performance on compressed videos with independent chroma
compression, which as we have shown, can result in sig-
nificantly improved perceptual rate-distortion optimization.
Despite being the top-performer on NFLX,, the iCID model
failed on many of the other datasets with an overall SROCC
performance of 0.766, making it hard to justify its use in
practical applications.

When comparing PSNRy, PSNRy4;1, PSNRg;1, and CSP-
SNR, it may be observed that the levels of performance
attained by the PSNR family are quite poor. However, when
tested on NFLX., CSPSNR did better than PSNRy4;; and
PSNRg11, which promotes the result reported in [20].

C. Significance Test

We further analyzed the statistical significance of model
performances as expressed by the SROCC and PLCC values
reported in Table V, following the recommended procedure in
section 7.6.1 of ITU-T Rec. P.1401 [60]. The test uses statistics
derived from Fisher’s-z transformed correlation coefficients in
each comparison, compared with the 95% two-tailed Student’s
t-test critical value. Table VI shows the results of the statistical
significance tests.

From the results shown in the table, it may be observed that
iCID and VMAF, statistically surpassed all the other models,
since most of them only utilize luminance information. Unsur-
prisingly, PSNRy performed significantly worse than most of
the models. It may also be noticed that there was no statistical

TABLE VII
COMPARISON AGAINST DEEP LEARNING BASED VQA MODEL

LIVE-VQA CSIQ-VQA
SROCC PLCC SROCC PLCC
DeepVQA-4ch 0.891  0.881 0.904  0.901
DeepVQA-CNAN 0915  0.895 0912 0914
VMAF 0939 0915 0.635  0.575
VMAF, 0934 0918 0.683  0.632

difference observed when comparing the other models. This
is likely because the test methodology was too conservative,
given the limited sample size used to calculate correlation
coefficients. However, the VMAF, model was still statistically
better than most of the other models under this protocol.

D. Comparison With a Deep Learning Based VQA Model

Recently, deep convolutional neural networks have been
shown to deliver standout performance on a wide variety of
applications. In the field of video quality, a full-reference
model called DeepVQA [64] has been proposed, that
achieves state-of-the-art performance on the LIVE-VQA and
CSIQ-VQA datasets. Unfortunately, the authors of DeepVQA
could not provide a trained model that can be tested on
all the VQA datasets. To fairly compare DeepVQA against
VMAF/VMAF,, we followed the train-test split that yielded
the median performance of the DeepVQA-4ch model provided
by the authors in [64]. We re-trained the VMAF models
on each dataset with the same parameters (C,y) as the
original model for simplicity. The results of the performance
comparison are shown in Table VII. We report both the
DeepVQA-4ch model and the best-performing DeepVQA-
CNAN model. The values for the DeepVQA models are taken
from Tables III and IV in the original paper [64]. Overall,
DeepVQA yielded slightly worse SROCC/PLCC performance
than VMAF and VMAF. on LIVE-VQA, while performing
much better on CSIQ-VQA. This is because CSIQ-VQA
mostly contains legacy distortions, such as additive white
noise (AWGN) and simulated wireless transmission loss,
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TABLE VIII

CROSS DATASET COMPARISON OF THE VM AF: MODEL. EACH CELL SHOWS THE SROCC PERFORMANCE OF TRAINING ON THE DATASET IN THE ROow
AND TESTING ON THE DATASET IN THE COLUMN. THE BEST OVERALL PERFORMANCE IS HIGHLIGHTED IN BOLDFACE

Dataset LIVE-VQA LIVE-MBL VMAF+ NFLX NFLX. BVI-HD CSIQ-VQA EPFL VQEG SHVC Overall
LIVE-VQA - 0.814 0.796 0.877 0.572 0.775 0.644 0.828 0.737 0.830 0.778
LIVE-MBL 0.654 - 0.849 0.915 0.859 0.763 0.627 0.853 0.786 0.889 0.832
VMAF+ 0.706 0.891 - 0.932 0.871 0.757 0.626 0.840 0.828 0.923 0.854
NFLX 0.723 0.916 0.903 - 0.814 0.784 0.575 0.870 0.844 0.886 0.851
NFLX. 0.643 0.845 0.899 0.886 - 0.715 0.649 0.749 0.784 0.827 0.818
BVI-HD 0.648 0.841 0.821 0.906 0.797 - 0.642 0.876 0.797 0.863 0.813
CSIQ-VQA 0.527 0.832 0.823 0.799 0.874 0.738 - 0.775 0.799 0.829 0.785
EPFL 0.706 0.763 0.647 0.854 0.629 0.769 0.636 - 0.726 0.860 0.766
VQEG 0.694 0.886 0.880 0.933 0.772 0.779 0.621 0.854 - 0.907 0.832
SHVC 0.608 0.797 0.767 0.886 0.857 0.749 0.632 0.686 0.696 - 0.772
which are of little interest in modern video streaming sce-
narios. The results also indicate that deep neural networks 295 % 50 H\\
have the potential to learn good features, including chroma, 24 : Z \
for assessing video quality. ;;f, - 2L crenbs 2517“ i
3 —+— CRF =35 *§ —+— CRF =35
80 6
E. Cross-Database Comparison 575 Ebu o\.\‘\’\_‘_’—‘
In addition to analyzing model performance on one training : R e : % 1
dataset, we investigated the effects of using different datasets AQP AQP
to train VMAF,, with results reported in Table VIII. Using the (a) VMAF 0.6.1 (b) VMAF,

10 available VQA databases, we trained the SVR model (with
feature fymar, ) on each dataset, then tested on the others. Due
to the differences between the datasets, using the same para-
meters (C,y) = (23,273) yielded unsatisfactory performance
on some training sets. Therefore, for fair comparison, we sep-
arately searched the SVR parameters on a 7 x 7 grid on each
dataset to optimize the overall performance. The experimental
results clearly shows the outstanding performance attained
by using VMAF+ as the training data. Also, the SROCC
attained when testing on NFLX. was generally greater than
0.7, among the different training sets. This strongly suggests
the robustness of the added chromatic features. It should be
noted that the performance results on the VMAF+ training set
differ slightly from the results reported in Table V, due to
different optimization objectives.

FE. Monotonicity Analysis

Lastly, we study the monotonicity property of the trained
models. Ideally, a VQA model should satisfy the following
property: when the chroma_gp_offset parameter is increased,
while fixing the other parameters, the predicted quality score
M should be monotonically non-increasing. That is, given
two chroma_gp_offset values AQP.; < AQP.», then we
desire that My > M,. Similarly, if chroma_gp_offset is fixed,
the predicted quality score should decrease or maintain at the
same level, as the CRF is increased. This would allow the
model to be used for constructing bitrate ladders and for
calculating BD-rate.

We collected 15 test video contents of 1080p resolution
and YUV420 format from Xiph Video Test Media® to con-
duct the experiment. The source videos were encoded at

5https://media.xiph.org/video/derf/
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Fig. 13.  Monotonicity analysis for variants of trained VMAF models.
(a) and (b) are the predictions from VMAF 0.6.1 and VMAF. (averaged
over 15 sequences), resg)ectively. (c) and (d) show failed cases of a model
trained with (C, y) = (23, 22) using the same features as VMAF, but without
quantization.

3 different CRF values: 15, 25, and 35. At each CRF level,
we further assigned 8 equally separated AQP. steps, ranging
from O to 42. As shown in Fig. 13, VMAF 0.6.1 delivered
a flat result with respect to AQP., as should be expected,
since its features only ingest luma information. By contrast,
the perfectly monotonic plot given by VMAF, indicates that
the additional chromatic features were properly integrated.
It may be observed in Fig. 13(b) that the plot for CRF = 35
saturates fast. This is because the quantization parameter in (3)
already reaches its maximum value of 51 at AQP, = 24.
We also demonstrated the merit of this analysis by a fail case
in Figs. 13(c), 13(d): this model achieves 0.730 of SROCC
on the NFLX, dataset, which is a substantial improvement
as compared with the 0.612 of SROCC of VMAF 0.6.1.
Unfortunately, the monotonicity property does not hold indi-
vidually or on average, which suggests the possibility of
overfitting.
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VII. CONCLUSION AND FUTURE WORK

We constructed a subjective video quality study and data-
base to support the design of algorithms that can better
predict the quality of chromatically distorted videos. This
new resource contains HEVC-compressed video contents,
spanning wide ranges of quality levels applied differently
on a per-channel basis. We also improved an existing high-
performing, learning based VQA model (VMAF) by inte-
grating two simple features extracted from chroma channels,
and compared the performance of the new chroma-sensitized
model against several leading objective VQA algorithms. The
new VMAF, model was found to be the top performer on the
new chroma distortion dataset NFLX..

We hope that this work encourages increased awareness of
ways to address chromatic distortions in the design of quality
models, databases, and future compression protocols. The
results from our human study indicate that there is room for
improvement in the perceptual coding efficiency of modern
video codecs, by increasing the compression factor on chroma
channels. With the improved video quality model, it is possible
to jointly optimize luma and chroma compression in video
encoders. For example, the chroma components could be
further subsampled or quantized without suffering perceptual
fidelity.

Next, we plan to seek new chromatic features that can be
used to both effectively capture chroma distortions, as well as
preserve performance on luminance distortions. Investigating
more sophisticated machine learning models is also of interest.
Although compression engines create the most prevalent and
common artifacts in streaming video scenarios, there exist
other important sources of chromatic distortions, such as
subsampling and chroma noise. Creating databases and VQA
algorithms that address different kinds of realistic chromatic
distortions would be quite valuable. New distortion types
emerging from deep video processing problems [65], [66]
are also worthy of study. Looking further ahead, developing
protocols to optimize video encoders by exploiting improved
models of chromatic distortion perception is an intriguing topic
of potentially high practical impact.
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