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Abstract— Measuring Quality of Experience (QoE) and

integrating these measurements into video streaming algorithms
is a multi-faceted problem that fundamentally requires the
design of comprehensive subjective QoE databases and objective
QoE prediction models. To achieve this goal, we have recently
designed the LIVE-NFLX-II database, a highly-realistic database
which contains subjective QoE responses to various design
dimensions, such as bitrate adaptation algorithms, network
conditions and video content. Our database builds on recent
advancements in content-adaptive encoding and incorporates
actual network traces to capture realistic network variations on
the client device. The new database focuses on low bandwidth
conditions which are more challenging for bitrate adaptation
algorithms, which often must navigate tradeoffs between
rebuffering and video quality. Using our database, we study
the effects of multiple streaming dimensions on user experience
and evaluate video quality and quality of experience models
and analyze their strengths and weaknesses. We believe that
the tools introduced here will help inspire further progress on
the development of perceptually-optimized client adaptation and
video streaming strategies. The database is publicly available
at http://live.ece.utexas.edu/research/LIVE_NFLX_II/live_nflx_
plus.html.

Index Terms— Adaptive video streaming, subjective testing,
perceptual video quality, QoE prediction.

I. INTRODUCTION

HTTP-BASED adaptive video streaming (HAS) is becom-
ing the de facto standard for modern video streaming

services, such as Netflix and YouTube. The main idea behind
HAS is to encode video content into multiple streams of
various bitrate and quality levels, and to allow for client-driven
stream selection to meet the time-varying network bandwidth.
Under this setting, the client device is responsible for deciding
on the bitrate/quality level of the video chunk to be played
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next. These client decisions are usually based on past net-
work throughput values, future throughput estimates and other
client-related information, e.g., the buffer level [2].

In HAS, TCP is used as the transfer protocol; hence packet
loss is not an issue [3]. Nevertheless, depending on the avail-
able bandwidth, client devices may adapt to different quality
levels and hence users may suffer from compression/scaling
artifacts and rebuffering. When the available bandwidth drops,
a client may use a higher compression ratio and/or a lower
encoding resolution to reduce the video bitrate, leading to
compression and/or scaling artifacts [3], which do not interrupt
video playback. Compression artifacts are usually visible as
blocky artifacts leading to loss of details and texture informa-
tion, whereas scaling artifacts are typically visible as blurry
edges and reduced sharpness. If the throughput reaches a very
low value and the buffer is emptied, a client must pause its
video playback (video rebuffering), wait for the network to
recover, and fill the buffer with video data before resuming
play. There are alternatives to reduce video bitrate, when
bandwidth drops, e.g., using a lower frame rate. We focus on
changes in video quality, such as compression, scaling artifacts
[3] and rebuffering. Nevertheless, there are other important
aspects relevant to video streaming, such as start-up delays.

Here we will define video quality to be the instantaneous or
overall quality of a video sequence in reference to an encoder’s
source. Changes in video quality, along with rebuffering, can
adversely affect user Quality of Experience (QoE), i.e., the
overall level of user satisfaction [4] while viewing streaming
content. Being able to predict QoE, and act upon those
predictions, is important for improving the overall quality
of experience. Towards this goal, we can design algorithms
to optimize the QoE while effectively utilizing the available
bandwidth and, subsequently, reducing operational costs. Mod-
eling QoE is a difficult task, since it is affected by many
complex and sometimes inaccessible factors, while obtaining
ground truth QoE data that reflects these many factors is
difficult. In the rest of this work, we use the term QoE to
refer to the opinion collected from subjects when asked about
the quality of experience they had during viewing.

Understanding and predicting QoE is an emerging research
area [5]–[13]. Recently, there is raised interest in building
more sophisticated QoE prediction models. For example,
an LSTM approach was used to predict QoE in [14] and a
knowledge-driven QoE model was proposed in [15]. A survey
on the topic of QoE modeling and its challenges can be found
in [16]. On a similar note, the recent work in [17] studied
multiple facets of video streaming QoE, such as start-up delay,
video quality changes, rebuffering and resolution switching.

Regarding the design of subjective studies, a number of
existing QoE studies do not fully capture important aspects of
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practical systems, e.g., they do not incorporate actual network
measurements or client adaptive bitrate adaptation (ABR)
algorithms. To this end, we built the LIVE-NFLX-II database,
a large subjective QoE database that integrates perceptual
video coding and quality assessment, using real measurements
of network and buffer conditions, and client-based adapta-
tion. To better understand QoE, we collected scores during
viewing of video playback (continuous-time scores) as well
as overall (endpoint) scores at the end of each playback.
Compared to overall or evenly spaced QoE scores (e.g. every
10s.), continuous scores contain valuable granular temporal
information that better reflects time-varying QoE. Further,
continuous scores can also be used to train continuous QoE
predictors that can guide bitrate adaptation algorithms.

We now describe the roadmap of our work (see also
supplementary material for a detailed figure). We first generate
a large set of end-user experiences on top of a comprehensive
collection of video contents, network conditions and ABR
algorithms. Then, we conduct a subjective study to build
enhanced QoE metrics. Ultimately, these metrics can be used
to inform better ABR algorithms or encoding strategies.

A unique characteristic of the new subjective database is that
we exploit recent developments in large-scale video encoding
and ABR algorithms. To generate compressed videos, we make
use of an encoding optimization framework [18] that selects
encoding parameters on a per-shot basis, guided by a state-of-
the-art video quality assessment algorithm (VMAF) [3].

To model video streaming, we use actual network measure-
ments and a pragmatic client buffer simulator, rather than just
simplistic network and buffer occupancy models. Given the
plethora of network traces and ABR algorithms, the database
captures multiple streaming adaptation aspects, such as video
quality fluctuations, rebuffering events of varying durations,
and content types. The subjective data consists of both overall
and continuous-time scores, making it ideal for training var-
ious QoE models. The video database is considerably larger
than other public-domain video QoE databases [10], [19], [20].

The main observations from the collected data can be
summarized as follows. A better bandwidth prediction model
can improve most objective streaming metrics, such as the
playout bitrate and the number and duration of rebuffers.
Start-up is the most challenging part of a session for all
ABR algorithms, since ABR algorithms have not built up the
video buffer and hence network variations can easily reduce
QoE. While this is in line with previous studies [2], we go a
step further. The collected data shows that humans perceive
these differences during start-up, even if they are forgiving
and/or forgetful when an overall QoE score is recorded. These
observations highlight the importance of temporal studies of
QoE, especially during start-up, for practical applications.

From a QoE model development perspective, we trained an
overall QoE predictor on the dataset and determined that QoE
predictions were mostly influenced by average video quality,
followed by rebuffering duration. We also trained G-NARX
and G-RNN [21], two state-of-the-art continuous-time QoE
prediction models, and evaluated them on the continuous-time
subjective data collected in this database. We found that the
prediction performance of these algorithms is promising, but
that they still fall short in their ability to capture trends in
human responses. This finding suggests the need for better
models of human responses to these temporal phenomena.

The rest of this paper is organized into two main parts. The
first part (Sections II, III and IV) describes the design and

construction of the QoE database and the subjective test that
we carried out. The second part (Sections V, VI and VII)
focuses on our analysis of the database and the collected
human subject data, along with an evaluation of existing QoE
prediction models against the ground truth scores. Specifically,
Section II gives an overview of previous QoE studies and
Section III discusses the streaming database and streaming
pipeline model. In Section IV, the subjective testing procedure
is discussed and an objective analysis of the database is
presented in Section V. Following that, Section VI studies the
collected human opinion scores. Section VII evaluates video
quality assessment (VQA) and QoE prediction models on the
new dataset while Section VIII concludes with future work.

II. RELATED WORK

Many databases have been designed towards advancing
progress on the general problem of video quality [5], [6],
[22]–[27] and streaming QoE [7]–[11], [13], [19], [28]–[32].
We give a brief overview of these previous studies and point
out limitations of past work which we seek to address.

In [19], the time-varying quality of long HTTP streams
was investigated. A set of three contents were used to create
15 distorted videos having durations of 5 minutes. Using the
collected data, the authors studied the effects of time-varying
video quality on QoE, such as the hysteresis/recency phe-
nomenon. They also designed a QoE prediction model using
a Hammerstein-Wiener model [33]. However, this study did
not consider the interplay between time-varying video quality
and rebuffering events and/or client ABR algorithms. In [29],
an experimental comparison among three HTTP-based clients
was carried out. This was the first crowdsourced QoE study
on Dynamic Adaptive Streaming over HTTP (DASH), which
showed that video bitrate and the number of stalls are the
main influence factors on subject QoE. However, only one
video content was used, and continuous QoE was not studied.

More recently, in [10] and [34], the effects of rebuffering
and quality changes were systematically studied on different
content types, under simulated network conditions and using
ABR algorithms. Given the shorter durations of the videos
in these databases, these works focused more on overall QoE
rather than on continuous QoE effects. In [11], the effects of
compression and rebuffering on continuous QoE were studied
on ≈1 minute videos. Interestingly, the authors found that
on video contents that required more bits to be encoded,
compression artifacts were not preferred over rebuffering
events. A simple design was used to model buffer and network
conditions, using a set of eight pre-defined bandwidth patterns.
Therefore, only eight distortions were generated per content.
The database is not available in its entirety.

A common approach that most previous efforts have taken
is to systematically control and simulate network conditions,
e.g., as suddenly decreasing or gradually increasing bandwidth
patterns. By varying the position and the length of these events,
it is indeed possible to recreate intuitive network patterns.
However, real network conditions are far more complex, and
hence challenge ABR algorithms to a greater extent. In this
work, we have undertaken a more realistic approach, where
real network traces have been used to drive the database
generation. This is arguably a risky choice; choosing a specific
set of network traces in our design may not generalize to
unseen network types. However, we are confident that by
carefully selecting the traces, this approach will generalize
better than a hand-crafted way.
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TABLE I

HIGH-LEVEL COMPARISON WITH OTHER RELEVANT VIDEO STREAMING

SUBJECTIVE STUDIES. FOR LIVE-NFLX-II, EVERY TEST VIDEO IS

WATCHED 23.2 TIMES ON AVERAGE

Further, in previous studies, fixed bitrate ladders were
commonly used, without considering content-aware encoding
strategies which are gaining popularity within the streaming
video industry and the research community [18], [35]. The
main idea of a content-aware ladder is that, due to differences
in the characteristics of each content, not all video contents
need the same amount of bits to be encoded at the same quality
level. Some contents require a larger number of bits to achieve
the same quality level compared to others. For example,
video contents containing rich spatial textures or significant
motion require more bits to encode, as compared to relatively
simpler scenes with little motion or few textures. Therefore,
a content-aware ladder, which takes content characteristics into
account, can achieve bitrate savings for streaming providers
and better video quality for consumers.

We compare the differences between the LIVE-NFLX-II
database and prior, similar resources in Table I. Notably, [34]
has some similarities with this work, in that it is a sizable video
database that studies ABR algorithms and is publicly available.
Nevertheless, [34] does not study continuous QoE, which is an
important aim of our work. As already mentioned, continuous
QoE is an essential part of better understanding streaming
QoE, and designing continuous QoE prediction models. Fur-
thermore, actual network traces nor a content-aware ladder
were used in [34], both of which are characteristics of realistic
video streaming applications. To summarize, we believe that
the new LIVE-NFLX-II database takes a step further towards
more realistic designs of adaptive video streaming scenarios.

III. RECREATING A COMPREHENSIVE

END-USER EXPERIENCE

A. Overview of the Streaming System

We designed a new and unique QoE database, whereby
perceptual video quality principles are injected into various
stages of a modern streaming system: encoding, quality mon-
itoring and client adaptation. To overcome the limitations of
previous QoE studies, we built our database using a highly
realistic adaptive streaming pipeline model, which comprises
four main modules, as shown in Fig. 1. The modules include
an encoding module, a video quality module, a network
transmission module and a client-based video playout module.

The encoding module constructs a content-driven bitrate
ladder which is then fed into the Dynamic Optimizer (DO)
[18]: a state-of-the-art encoding optimization approach, which
determines the encoding parameters (encoding resolution and
Quantization Parameter - QP) to produce compressed videos
of optimized quality. The video quality module performs
VMAF [3] quality measurements that drive the encoding and

Fig. 1. Overview of the adaptive streaming pipeline.

client modules. We used the latest VMAF (version 0.6.1),
which was trained as described in [36]. The VMAF quality
measurements are stored in a chunk map and made available
on the client side for client bitrate adaptation. A chunk map
contains information about every encoded video segment (see
Fig. 1 in the supplementary material). The network module
incorporates the selected network traces and is responsible
for communication between the encoding, video quality and
client modules. The client module is responsible for requesting
the next chunk to be played. In the supplementary material,
we provide more details regarding the encoding and video
quality modules and the streaming pipeline model that we
built.

This streaming model allowed us to recreate a compre-
hensive end-user experience by focusing on three streaming
dimensions: encoding, network throughput and the choice
of ABR algorithm. To study each of these dimensions,
we incorporated 15 video contents, 7 actual network traces
and 4 adaptation algorithms, yielding 420 video streams. Next,
we explore the diverse characteristics of each dimension.

B. Video Contents

To design a diverse encoding space, we considered multiple
video contents and encoded them at multiple bitrate values
(bitrate ladder). We collected 15 video contents, which span a
diverse set of content genres, including action, documentary,
sports, animation and video games. The video sequences also
contain computer-generated content, such as Blender [37] ani-
mation and video games. The videos were shot/rendered under
different lighting conditions ranging from bright scenes (Skate-
boarding) to darker ones (Chimera1102353). There were dif-
ferent types of camera motion, including static (e.g. Asian
Fusion and Meridian Conversation) and complex scenes taken
with a moving camera, with panning and zooming (e.g. Soccer
and Skateboarding). Contents having source resolutions larger
than 1920 × 1080 and/or frame rates larger than 30 fps
were downsampled to 1920 × 1080 and/or 30 fps. For ref-
erence, Table II provides the acronyms for each content in
the database. More details on the content characteristics and
sample frames for each content are included as supplementary
material.

An alternate description of encoding/content diversity is
encoding complexity. One approach to describe content is via
the spatial and temporal activity (SI-TI) plot [27], but we chose
to use a description that more closely relates to the encoding
behavior of each content. Contents with high motion and high
spatial activity (textures) tend to be harder to compress, hence
subjective scores are generally lower for those contents, given
a fixed number of available bits.

To measure content encoding complexity, we used the
bitrate produced by a constant-quality encoding mode [38],
following the process used in [39]. Specifically, we generated
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TABLE II

ACRONYMS OF CONTENTS USED IN THE DATABASE

one-pass, fixed constant rate factor (CRF) compressed videos
using libx264 [38]. CRF is a constant-quality encoding mode
that aims to maintain a certain level of quality by varying
the amount of quantization accordingly. It should be noted
that, while the CRF mode attempts to achieve constant quality,
it may not always be able to produce constant perceptual
quality. The encoding resolution was set to 1920 × 1080
and the CRF parameter was set to 23. After generating
these compressed videos, we then measured the resulting
bitrate (see Fig. 2). It is clear that there is a large variety
of content complexities ranging from low motion contents,
such as MeridianConversation or Chimera1102353, medium
motion and/or richer textures such as in SkateBoarding or
ElFuenteMask, and high motion and spatial activity as in
the Soccer and GTA scenes. We note that we could have
also used the results of the DO optimization to perform
this content encoding complexity analysis, but preferred the
aforementioned CRF approach as a simple and more intuitive
alternative.

C. Video Encoding

A comprehensive encoding space design requires a wide
range of encoding bitrates and video quality levels. To this end,
we derived a target bitrate ladder, i.e., a set of possible bitrate
values, one for each content, using VMAF [3] to generate
equally spaced (in terms of VMAF) bitrate points, then fed
these bitrate points to DO [18]. The per-content bitrate ladders
we produced covered various encoding rates ranging from
about 150 kbps up to almost 6 Mbps. It should be noted that
the construction of the encoding bitrate ladder does not depend
on the selection of the network traces. The encoding bitrate
ladder design is orthogonal to the actual network conditions
which are not known a priori. We provide additional details
of the encoding ladder in the supplementary material.

The DO framework selects the encoding resolution and QP
for each shot, such that the overall quality (as measured by
VMAF) is maximized for a given target bitrate. We used
6 encoding resolutions: 384 × 216, 480 × 270, 640 × 360,
960 × 540, 1280 × 720, 1920 × 1080 and 10 QP values:
starting from 43 (worst quality) to 16 (best quality), in steps
of 3. However, for display purposes, all compressed videos
were upsampled to 1920 × 1080 to match the display device
resolution.

It should be noted that the video sequences are approx-
imately 25 seconds long and typically contain multiple
shots. This design choice is different from commonly used
single-shot 10 second test videos, which are widely used
in video quality testing. For video streaming applications,
we found it more appropriate to use longer video contents
with multiple shots, for a number of reasons. Video streaming
viewers tend to watch video content that is many minutes long,
while the network conditions may vary considerably through-
out a streaming session. Having multiple shots also aligns well

Fig. 2. Content (encoding) complexity for all 15 contents.

Fig. 3. Video bitrate ladders across different video contents in the LIVE-
NFLX-II database.

with the DO encoding approach [18], which leverages different
shot complexities to achieve better encoding efficiency.

Figure 3 shows the encoding ladders that were generated
by the DO optimization framework. It can be observed that
there are various encoding rates ranging from about 150 kbps
up to almost 6 Mbps. The low bitrate range, i.e., 150 kbps to
1 Mbps is sampled more heavily, which aligns well with our
deep interest in challenging network conditions.

D. Network Simulation

Until now, we have only considered the encoding dimension
in the video streaming design space. Importantly, the number
of available bits is not constant in a streaming session and
network resources can vary significantly. To capture network
variability effects, we manually selected 7 network traces from
the HSDPA dataset [40], [41], which contains actual 3G traces
collected from multiple travel routes in Norway, using various
means of transportation, e.g., car, tram and train, together with
different network conditions. This dataset has been widely
used to compare ABR algorithms [42] and is suitable for
modeling challenging, low-bandwidth network conditions.

Table III provides some details on the network traces we
used. There are multiple types of transportation and multiple
routes included in the selected traces, which cover the range
of 9 kbps up to almost 3900 kbps.

As shown in Fig. 4, the selected traces are approximately
40 seconds long and have varying network behaviors. For
example, the TLJ trace has the lowest average bandwidth but
does not vary much over time, while the MKJ trace has a much
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TABLE III

SUMMARY OF THE NETWORK TRACES USED IN LIVE-NFLX-II. THE
AVAILABLE BANDWIDTH B IS REPORTED IN KBPS. WE DENOTE BY

MIN B , MAX B , μB AND σB THE MINIMUM, MAXIMUM, AVERAGE

AND STANDARD DEVIATION OF THE AVAILABLE BANDWIDTH

Fig. 4. Network traces used in our streaming pipeline model. We refer the
reader to Table III for more details on the acronyms.

more volatile behavior than TLJ. The network traces densely
cover bandwidths up to 1Mbps, and there are also samples in
the 1Mbps-3Mbps range.

To model challenging network conditions and train QoE
models that can reliably measure QoE under such network
conditions, we chose traces that are likely to cause sud-
den bitrate/quality changes and rebuffers even if the average
bandwidth is relatively high. Figure 5 shows all 7 pairs of
(μB, σB/μB), where μB and σB denote the average and stan-
dard deviation of the available bandwidth over time. The ratio
σB/μB is the coefficient of variation, which we use to describe
network volatility. This design may not necessarily cover all
possible combinations (e.g. low μB and high σB or high μB
and low σB ), but is challenging in that both low bandwidth
conditions and highly varying network conditions are captured.
Even for a higher (on average) bandwidth condition, e.g.,
FNO, the network variations can potentially lead to quality
changes and rebuffers.

At this point, we take a step back to recognize that 3G
networks are being migrated to 4G, which could mean that
the network traces in our dataset become outdated. However,
our work here is focused on collecting a set of networks
traces which challenge the behavior of ABR algorithms, and
that emphasize actual tradeoffs between video quality and
rebuffering at low bitrates and/or variable networks. Impor-
tantly, there are many growing markets for mobile streaming,
e.g., in developing countries, where bandwidth resources are
limited and/or unpredictable, and where the selected network
traces remain highly relevant. There are no publicly-available
4G network traces, due to proprietary and competitiveness
reasons. Also, we believe that 4G networks still carry some of
the constraints of 3G networks due to mobile carrier networks.
In practice, in dashboard monitoring, WiFi would be treated

Fig. 5. Plot of (μB , σB/μB ) pairs for the 7 network traces. We refer the
reader to Table III for more details on the acronyms.

separately from cellular, but cellular traffic would not generally
be broken further down into 3G and 4G. This is related
to the fact that latencies for 3G and 4G are significantly
higher compared to WiFi traces. A similar observation can
be made with video client applications, which typically do
not provide a different rate limit between 3G and 4G. Lastly,
regarding throughput and RTT, we believe that 3G and 4G can
be considered to fall into the same bucket. Generally, while
the technologies underlying 3G and 4G are very different,
the network traffic characteristics are similar. Naturally, as 4G
network data becomes publicly available, and years further on,
5G data, it will be interesting to refine these kinds of studies
taking that data into account.

E. Client ABR Algorithm

In client-based video streaming, the client is responsible
for requesting the next chunk to be played. To decide the
appropriate quality representation, the client module is aware
of its buffer status, and may estimate future bandwidth (based
on past client measurements). The client may also have
information regarding the bitrate/quality levels for each video
segment. In practice, this can be implemented as part of the
manifest exchange between server and client.

Client-based ABR strategies can be broadly classified as:
throughput-based [43]–[45], buffer-based [2], [46]–[48] and
hybrid/control-theoretical approaches [49]–[55]. Throughput-
based approaches rely on TCP throughput estimates to select
subsequent rate chunks, while buffer-based approaches use
measurements of buffer occupancy to drive these decisions.
Hybrid algorithms use both throughput estimates and buffer
occupancy, and deploy control-theoretical or stochastic
optimal control formulations to maximize user QoE [51].
Recently, raw network observations fed to neural networks
were used to achieve adaptive rate selection [42].

The design space of adaptation algorithms is very large, and
hence we selected four representative adaptation algorithms.
Each one of them focuses on different design aspects, such
as preserving buffer status, maximizing download bitrate,
or mediating between chunk quality and buffer level. Table IV
defines some of the acronyms used hereafter.

We implemented the buffer-based (BB) approach from [2],
which decides the rate of the next chunk to be played, as a
function of the current buffer occupancy. We included this
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TABLE IV

ACRONYM DEFINITION TABLE

algorithm because it is simple to implement and is commonly
evaluated or cited in the ABR literature. A reservoir of
r = 5 seconds and a cushion of c = 4.5 seconds was used.
We manually selected these parameters to achieve satisfying
performance on a set of tests that we carried out offline. The
advantage of the BB approach is that it can reduce the amount
of rebuffering by only accessing buffer occupancy.

Viewing adaptation from a different angle, we also imple-
mented a rate-based (RB) approach which selects the max-
imum possible bitrate such that, based on the estimated
throughput, the downloaded chunk will not deplete the buffer.
To estimate future throughput, an average of w = 5 past
chunks is computed. Selecting w can affect adaptation perfor-
mance, if the network varies significantly. A low value of w
could be insufficient to produce a reliable bandwidth estimate,
while a large w might include redundant past samples and have
diminishing impact. One downside of the RB approach is that,
when channel bandwidth varies significantly, it may lead to
excessive rebuffering and aggressive bitrate/quality switching.

Using video bitrate as a proxy for quality may yield
sub-optimal results; a complex shot (rich in spatial textures or
motion) requires more bits to be encoded at the same quality
compared to a static shot having a uniform background and
low motion. Therefore, it is interesting to explore how well a
quality-based (QB) adaptation algorithm will correlate against
subjective scores. We relied on the consistent-quality adapta-
tion algorithm presented in [56]. We use VMAF measurements
(using the video quality module - see also Section B in the
supplementary material) as a utility function to be maximized
within a finite horizon h (in seconds). This was formulated
as a dynamic programming (DP) problem solved at each step,
which determines the chunk to be played next.

In our QB implementation, the network conditions are
estimated similar to our RB implementation. We assume that
future throughput (within the horizon h) will be equal to the
average throughput over the past w = 5 chunks. However,
different from RB, QB maximizes video quality in terms
of VMAF, instead of video bitrate. For the QB client, two
practical limitations on the buffer size are imposed. To reduce
the risk of rebuffering, the QB solution requires that the buffer
is never drained below a lower bound Bl (in seconds). Also,
due to physical memory limitations, QB never fills the buffer
above a threshold Bh . To ensure that the Bl and Bh constraints
are satisfied, the QB solution is set to converge to a target
buffer Bt ∈ (Bl, Bh) by imposing in its DP formulation that
the buffer at the end of the time horizon has to be equal to
Bt . Notably, if the dynamic programming solution fails (when
Bl cannot be achieved or Bh is surpassed), the QB algorithm

Fig. 6. Average bitrate and rebuffer time (in seconds) for all adaptors. We also
recorded the percentage of time that the maximum encoding resolution
(1080p) was achieved by each adaptor: BB: 34%, RB: 18%, OQB: 37% and
QB: 33%.

uses a “fallback” mode: if Bl cannot be achieved, then QB
selects the lowest quality stream, while if Bh is surpassed,
then QB pauses downloading until the buffer frees up and
then downloads the highest available stream.

It is impossible for any adaptation strategy to have perfect
knowledge of future network conditions. In practice, proba-
bilistic network modeling, or other much simpler estimation
techniques can be exploited. For the latter, many adaptation
algorithms assume that network conditions are constant over
short time scales, and apply filtering using previous network
measurements, as in QB. Since accurate knowledge of future
bandwidth places an upper bound on the performance of an
algorithm, we also included a version of QB which uses the
actual network traces, instead of throughput estimates, thereby
acting as an “oracle” (OQB).

To demonstrate the diversity of ABR algorithms, Fig. 6
shows the average bitrate (in kbps) and rebuffering time for
the 4 adaptation algorithms. We observed bitrate values in the
range of 535 to 660 kbps and average rebuffering times from
0.8 to 1.35 seconds (see also Table V). We revisit the ABR
algorithms by studying more QoE indicators in Section V-C.

F. Visualizing Quality for the Generated Video Streams

The combination of 15 different contents, 7 network condi-
tions and 4 bitrate adaptation algorithms produced 420 video
streams of time-varying qualities and various content and
impairment characteristics. We visualize the quality changes
over time for two contents in Fig. 7. It can be seen that
different contents may have very different quality profiles,
depending on the encoding complexity. Meanwhile, there can
be multiple rebuffering events of varying duration, especially
during start-up, since the video buffer may not be adequate to
absorb network variations.

Given the comprehensive nature of the encoding, network
conditions and ABR designs, we are able to create a rich
streaming QoE database by conducting a large subjective test
on human perception. Next, we describe the specifics of this
test, which led to the creation of the LIVE-NFLX-II database.

IV. SUBJECTIVE TEST ON THE RECREATED EXPERIENCE

We conducted a single-stimulus continuous quality evalua-
tion study [57] over a period of four weeks at The University
of Texas at Austin’s LIVE subjective testing lab. We collected
overall and continuous-time QoE scores on an HP 1080p
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Fig. 7. VMAF changes over time for the Soccer (SO) and
ElFuenteMask (EM) contents. There are 28 sequences (4 adaptors and
7 traces) for each content. We represent rebuffering intervals by a dashed
line.

16:9 LCD 24” computer monitor from a total of 65 subjects
(50 male and 15 female, ages 18-30). To simulate average
viewing conditions, the ambient illumination was maintained
at an average level (consistent across sessions and avoiding
any reflections) and no color or backlight calibration was
performed. The brightness of the monitor was set to 50%.
According to the specification of the HP monitor, its typical
brightness setting is 250 cd/m2. To collect continuous scores,
a rating bar was displayed on the bottom of the screen
throughout the video playout, allowing subjects to report their
QoE in real time. Overall QoE scores reflect the final QoE after
viewing each video sequence in its entirety, while continuous
scores capture the time-varying nature of QoE due to quality
changes and rebuffering.

The subjects were comfortably seated at a distance of about
three times the display’s physical height (about 0.762 meters or
2.5 feet) from the computer monitor. Subjects were instructed
to rate their viewing experience using a continuous slider and
to disregard how interesting the video content was. For the
continuous QoE evaluation, subjects were instructed to take
into account their viewing experience “up to and including the
current moment.” It should be noted that we did not ask partic-
ipants whether this part of the instruction affected their scores,

but observed a strong recency phenomenon in the collected
scores, as discussed in Section VI-B. All instructions were
presented both in oral and in written form. To ensure that the
oral presentation of the instructions was not biased, we relied
on verbally communicating the same set of instructions as the
ones included in a written form and presented them consis-
tently and in the same order. The subjects were all students
with limited knowledge in video processing who voluntarily
participated in the study, without receiving compensation.
Before doing the test, all participants signed a consent form
and were informed that their participation was voluntary and
they could discontinue the test at any point during the test.
The collected data was also anonymized. We also include a
picture from the lab where the actual test took place in the
supplementary material.

Given practical constraints on the study duration, we used
a round-robin approach to assign distorted videos to subjects.
Each subject viewed all 15 contents, but only 10 distorted
(2 adaptors and 5 network traces) videos per content. Given
the sequence of adaptors BB, RB, QB and OQB and network
traces 0 to 7, we assigned them to subjects in a circular fashion.
For example, if subject i was assigned to BB and RB and
network traces 0 to 4, then subject i + 1 was assigned to
RB and QB and traces 1 to 5. This led to a slightly uneven
distribution of subjects per distorted video, but we considered
this to have a minor effect. The benefit of a round robin
approach is guaranteed coverage for all traces and adaptors.

To avoid user fatigue, the study was divided into three sepa-
rate 30-minute viewing sessions of 50 videos each (150 videos
per subject). Each session was conducted at least 24 hours
apart to minimize subject fatigue [57]. To reduce memory
effects, we ensured that within each group of 7 displayed
videos, each content was not displayed more than once.
We used the Snellen visual acuity test and ensured that all
participants had normal or corrected-to-normal vision. We did
not carry out an Ishihara color test, but verbally asked partici-
pants about any color blindness. At the start of the first session,
every subject viewed three training videos with representative
qualities and contents that were not used in the actual study.
The purpose of the training stage was to introduce the subjects
to the subjective testing procedure and interface and the types
of distortions present in the test.

To design the experimental interface, we relied on Psychopy
[58], which generates and displays visual stimuli with high
precision, which is very important when collecting continuous,
per-frame subjective data. The interface is available at
https://github.com/christosbampis/Psychopy_Software_Demo_
LIVE_NFLX_II. The test subjects used a computer mouse
to interact with the Psychopy interface. Using this interface,
we collected opinion scores in the range of [1, 100].
To facilitate the evaluation process, the words “Bad” and
“Excellent” were displayed on the two extremes of the rating
bar.

We found Psychopy to be quite reliable to measure
responses to real-time stimuli. The recorded scores were
aligned with the number of frames displayed. For example,
if the video playback consisted of 850 frames, then 850 mea-
surements (one per frame) would be recorded. This does not
mean that the user reaction time was diminished, but we found
that the reaction times were consistently within 1-2 seconds for
all users. We roughly estimated this average reaction time by
measuring the time difference between a rebuffering event and
a sudden change in the measured QoE scores. This observation
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aligns well with earlier studies in continuous QoE [11]. Even
though we did not account for each user’s response lag,
we were still able to successfully analyze the data and draw
valuable conclusions as part of the study.

The final database consists of 420 distorted videos (15 con-
tents, 7 network traces and 4 adaptation algorithms) with an
average of 23.2 scores (overall and continuous) for every
distorted video. No video was viewed by less than 22 sub-
jects, ensuring a sufficient number of scores per video.
Overall, we gathered 65*150 = 9750 overall scores and
9750 continuous-time waveforms to study subjective QoE.

Following data collection, we applied z-score normalization
per subject and per session [11], [59] to account for sub-
jective differences when using the rating scale. The z-score
normalization for the overall scores was derived as follows.
Let si j k(t) denote the overall score assigned by subject i to
video j during session k and let t denote the frame number.
Note that the set of all j videos viewed by subject i may not
have been exactly the same for another subject i ′. Consider
the following operations:

ŝi j k(t) = si j k (t) − μs,ik

σs,ik
(1)

where μs,ik is the mean overall score assigned to all videos at
session k of subject i and σs,ik is the corresponding standard
deviation.

To reliably calculate the Mean Opinion Score (MOS)
of overall QoE, subject rejection techniques are commonly
applied [60]. Notably, while we applied subject rejection
on the z-scored values, none of the subjects were rejected.
We found that the overall QoE scores were in high agree-
ment, exhibiting a between-group (splitting the scores per
video into two groups) Spearman’s Rank Order Correlation
Coefficient (SROCC) of 0.96.

For the continuous scores, we performed a similar z-score
normalization and then averaged the normalized continuous
scores per subject to compute a continuous MOS score for
each frame. While more advanced subject rejection techniques
could have been used as in [11], we found that the average
(across subjects) continuous-time scores did not significantly
change after continuous-time rejection.

V. OBJECTIVE ANALYSIS OF LIVE-NFLX-II

Before studying the collected subjective data, we analyze
the generated video streams using simple QoE indicators, like
video quality or buffer level across various dimensions. First,
we will present how video quality is affected on each content
and demonstrate the content/encoding diversity in the database
(Section V-A). Then, we analyze the network traces and the
adaptors that were tested (Sections V-B and V-C).

A. Content Analysis

Besides constructing a bitrate ladder, which is typically
carried out on the server side, we can also measure the
end-user quality received on the client device. Given that
bitrate is not sufficient to capture perceptual quality, we use the
VMAF perceptual index [3]. We used VMAF to measure video
quality over all 420 videos and averaged the values for each
content, as shown in Fig. 8. Contents having low complexities,
such as MC, CF and CD, were delivered with better VMAF
values. By contrast, challenging contents, like GTA and Soccer

Fig. 8. Per-content quality distribution averaged over traces, adaptors and
all segments per video stream (rebuffering was not taken into consideration).
We use the boxplot notation defined in [61], and re-use it in Fig. 13. For
clarification, Fig. 7 depicts the VMAF variations over time for the Soccer (SO)
content, whereas this figure shows the distribution of the time-averages across
all network traces and adaptors.

Fig. 9. Playout bitrate over time for different network traces. A value of 0
is used for the video bitrate during rebuffering. The error bars indicate the
95% confidence interval.

(SO), were streamed at significantly lower quality. This reveals
the importance of content-driven encoding on the server and
the potential of content-aware streaming strategies, where
encoding/streaming parameters are customized to the video
content streamed by each client. We provide more details in
Section A of the supplementary material.

B. Network Condition Analysis

To analyze the behavior across network traces, we collected
measurements of the playout bitrate, averaged over each sec-
ond (and across contents and adaptors) and present its behavior
per network trace in Fig. 9. Since video contents are at most
25 seconds long, only sessions that experienced rebuffering
lasted longer than 25 seconds. Thus there are fewer samples
after 25 seconds and the confidence intervals are larger.

As expected, better network conditions (FNO and CSS)
allowed better playout bitrates when compared to low-
bandwidth cases, as in TLJ and BLO. Volatile traces, such
as MKJ and CSS, led to significant differences in bitrate, but
this was not the case for FNO. Since FNO provides better
network throughput on average than MKJ and CSS, the video
buffer was sufficiently filled to account for sudden drops.

C. Adaptation Algorithm Analysis

To study adaptation behavior, we first collected key metrics
(e.g. number of rebuffers) for all distorted videos generated
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TABLE V

OBJECTIVE COMPARISON BETWEEN ABR ALGORITHMS FOR ALL
105 VIDEOS (15 CONTENTS AND 7 TRACES) PER ADAPTOR. THE

BITRATE VALUES ARE IMPUTED WITH A VALUE OF 0 DUR-
ING REBUFFERING INTERVALS, AND VMAF IS CALCULATED

ONLY ON PLAYBACK FRAMES. WE USE BOLDFACE TO
DENOTE THE BEST ADAPTOR IN EACH CASE. THE

AVERAGE VMAF DIFFERENCE BETWEEN CHUNKS

(LAST ROW) WAS CALCULATED BY TAKING AN
AVERAGE OF THE DIFFERENCES BETWEEN

THE AVERAGE VMAF OF CONSECUTIVE

CHUNKS WITHIN THE VIDEO PLAY-
BACK. FOR EXAMPLE, IF THREE

SEGMENTS A, B AND C HAD

AN AVERAGE VMAF OF 60,
65 AND 85, THEN THE
AVERAGE VMAF DIF-

FERENCE BETWEEN

CHUNKS IS 70

by each adaptation algorithm. Table V shows that the OQB
adaptor improved most of the objective streaming metrics,
e.g. the playout bitrate or the rebuffering duration. This
demonstrates that a better bandwidth prediction model can
improve the behavior of an ABR algorithm.

By contrast, RB led to the largest amount of rebuffering,
since it picks the subsequent chunk rate in a greedy fashion,
it is myopic (does not look ahead in time) and does not
consider the buffer status. The more conservative BB reduces
the amount of rebuffering as compared to RB and QB, and has
the least number of quality switches. Nevertheless, given that
it does not explicitly seek to maximize bitrate, it delivers the
lowest bitrate. Between RB and BB, QB offers a better tradeoff
between playout bitrate and rebuffering. These results are not
surprising: maximizing quality/bitrate or avoiding rebuffering
are conflicting goals, hence, designing adaptors should focus
on jointly capturing these factors, as in the case of QB.

At this point, let us take a step back and consider why OQB,
despite knowing the entire trace, also suffers from rebuffering.
In fact, by setting the maximum buffer Bh = 10 seconds, and
h = 10 seconds, the dynamic programming solution may fail
to return an optimal solution. We found that by increasing Bh
and h, both OQB and QB could reduce rebuffering, but we
decided to challenge the behavior of these ABR algorithms by
selecting low/volatile bandwidth traces and a low buffer size.
By doing so, we could collect valuable subjective responses on
video sequences under difficult streaming conditions, includ-
ing significant video quality degradations and rebuffering.

Next, we study how each adaptation algorithm behaves
over time within each session. As before, we measure the
per second playout bitrate and buffer level, and show the per
adaptation evolution in Fig. 10. In terms of bitrate, RB starts
aggressively for the first few seconds, but then tends to have a
lower bitrate compared to quality-based adaptors. By contrast,
BB is the most conservative strategy in terms of bitrate, while
QB and OQB deliver start-up bitrates between RB and BB.
However, after about 15 seconds, QB and OQB consistently
deliver higher bitrates. Note that video can only be longer
than 25 seconds due to rebuffers. Therefore, for time intervals

Fig. 10. Playout bitrate and buffer level (in seconds) over time across adaptors
(with 95% confidence interval). A value of 0 is used for the video bitrate
during rebuffering.

greater than 25 seconds, there are video sequences under more
challenging conditions and hence it is expected that the bitrate
decreases and the buffer level decreases or stays the same.

Fig. 10 shows that ABR algorithms mainly differ from each
other during the start-up phase. For example, RB chooses
playout bitrate aggressively by closely following the available
bandwidth, while BB is more conservative and prioritizes on
accumulating video buffer. After the start-up phase, the ABR
algorithms converge and make similar decisions.

During the start-up phase, there is little to no video buffer to
absorb the impact of network variations, hence different ABR
decisions will lead to different buffer levels. For example,
a combination of aggressive quality switching and network
volatility leads RB to produce the worst rebuffering in the
start-up phase (see also Fig. 11) and slows down buffer
build-up (Fig. 10b). Nevertheless, after sufficient time, the RB
buffer level increases and even surpasses the BB buffer level.
In the case of QB and OQB, both adaptors try to reach the
target buffer Bt = 3. While we did not specify a maximum
buffer size for RB and BB, as shown in Fig. 10b, none of
the adaptors achieve Bh = 10 seconds, given the challenging
network traces.

Until now, we have been mostly contrasting ABR algo-
rithms. Nevertheless, we have also found an important sim-
ilarity: rebuffering events tend to occur earlier in the video
playout. To demonstrate this, we calculated the rebuffering
ratio of each adaptor over time, i.e., the average rebuffering
rate incurred by an adaptor. Figure 11 shows that all adaptors

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:57:04 UTC from IEEE Xplore.  Restrictions apply. 



BAMPIS et al.: TOWARDS PERCEPTUALLY OPTIMIZED ADAPTIVE VIDEO STREAMING 5191

Fig. 11. Rebuffering ratio per adaptor, defined as the fraction of videos that
rebuffered within a one second window.

had significantly higher rebuffering ratios early on, since the
buffer is not yet filled. This is also related to the fact that we
only fetch one chunk before playout starts (see supplementary
material, Section C). Between adaptors, there are, of course,
differences as well. RB experiences heavier early rebuffering,
since the buffer level is not taken into account. QB can lead to
rebuffering much later in the video than OQB, which is aware
of the entire network trace, and is able to minimize rebuffering
events from occurring at a later time.

VI. SUBJECTIVE ANALYSIS

So far, we have studied different network traces and adap-
tors with respect to some QoE-related factors. Nevertheless,
in streaming applications, human opinion scores serve as the
ground truth when analyzing streaming video impairments and
when evaluating objective QoE models. Here we analyze the
database by means of the collected subjective scores.

A. Analysis Using Overall Scores

To identify the main QoE factors, Fig. 12 highlights the
relationships between overall scores and average VMAF val-
ues (calculated on non-rebuffered frames), and the number
and duration of rebuffering events respectively. Unsurprisingly,
the presence of rebuffering (red points) negatively impacts
the overall correlation of VMAF with subjective scores, since
VMAF does not account for the effects of rebuffering on user
QoE. Naturally, a larger number of rebuffering events tends to
decrease QoE. In Section VII, we show how QoE prediction
models based on VMAF can deliver improved performance.

As an exception, the points with 3, 4 and 5 rebuffering
events are not in decreasing MOS order. We found that the cor-
responding average rebuffering durations were 4.33, 3.49 and
2.93 seconds respectively, meaning that larger rebuffering
occurrence did not necessarily imply larger rebuffering dura-
tion. Therefore, Fig. 12b demonstrates that subjects are sen-
sitive to a combined effect of rebuffering occurrence and
duration.

In Fig. 12c, we observe that a longer rebuffering time lowers
QoE, but when rebuffering is longer than 4 seconds, duration
neglect effects [62] may reduce this effect. According to the
duration neglect phenomenon, subjects may recall the duration
of an impairment, but they tend to be insensitive to its duration
(after a certain cutoff) when making overall QoE evaluations.

We also compared the overall QoE scores among different
adaptors (Fig. 13). We observed that the opinion scores are

not very different across adaptors. This may be due to the
fact that most of the rebuffering events occurred early in the
video playout (as shown in Fig. 11), and because, just before
the video finishes playing (and the overall score is recorded),
the adaptation algorithms have built-up enough buffer to better
handle bitrate/quality variations, even if the network is varying
significantly. Therefore, it is likely that recency effects [11],
[62] led to biases in overall QoE evaluations, i.e., subjects are
forgiving/forgetful when recording overall QoE.

To validate this recency effect, we averaged the continuous
scores over one second windows and calculated the correlation
with the final scores, as in [11]. For example, we found that
the average continuous scores calculated over the [4, 5] sec-
ond window correlated weakly with the overall QoE scores
(correlation of 0.58). However, by averaging the continuous
scores over the [24, 25] second window (20 seconds later),
the correlation increased to 0.94. Meanwhile, per adaptor
differences in terms of average VMAF were not considerably
different, e.g., between RB and OQB, (see Table V) and hence
the overall scores were also similar across adaptors.

Lastly, we investigated the per-subject variations for all
the distorted videos in the database (see Figure 14). For
simplicity, we looked at the subjective scores prior to z-score
normalization, such that the data is still in the [1, 100] scale.
We found that the confidence intervals ranged from 3 to 10,
with an average value of about 6.

B. Analysis Using Continuous Scores

Following our per-second objective analysis in Section V,
Fig. 15 depicts the continuous-time user experience across
adaptation algorithms. We found that, within the first few
seconds, the RB aggressive rate strategy initially leads to
better QoE, unlike BB, QB and OQB, which opt for buffer
build-up. This also means that subjects preferred increased
early rebuffering, if it meant better start-up quality, as in the
case of RB. Within the first 12 seconds, BB is conservative
and delivers the lowest QoE among all adaptors, while QB
and OQB perform between RB and BB. Nevertheless, after
12 seconds, QB and OQB improve considerably, with OQB
tending to produce higher scores for the rest of the session.
BB is relatively lower than RB and QB, which are statistically
close. After 25 seconds, QoE measurements are decreasing
and have larger confidence intervals, since they correspond to
videos that rebuffered, and their count decreases over time.

Notably, as in Fig. 13, we found that OQB is not statistically
better than QB, even though it has perfect knowledge of
the future bandwidth and performs the best in terms of
objective metrics. As already explained, for the majority of
distorted videos, rebuffering and quality degradations occurred
earlier during video playout and this led to smaller differences
in the subjective opinions per adaptor and over time. This
experimental result does not suggest that better bandwidth
prediction is not an important goal, but it does show that better
bandwidth prediction does not significantly influence overall
QoE scores. Meanwhile, the significant differences in QoE
between adaptation strategies in the start-up phase underlines
that temporal studies of QoE are highly relevant for adaptive
video streaming, given that ABR algorithms are especially
challenged during start-up.

Viewed from the network condition perspective, we found
that continuous-time subjective scores are affected by dynamic
video quality changes and rebuffering. Figure 16 shows that,
for all traces, a few seconds are needed to build up video
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Fig. 12. Left to right: (a) VMAF and MOS. Blue points correspond to videos displayed without rebuffering. Red points correspond to videos impaired
by rebuffering of non-zero duration. Videos that are affected by rebuffering that have similar VMAF scores as videos without any rebuffering, tend to have
noticeably lowered MOS. (b) # rebuffers and MOS (95% conf. intervals) and (c) Rebuffer duration (in seconds) and MOS. Around 40% of the video sequences
have at least one rebuffering event.

Fig. 13. Overall QoE score distribution (with 95% confidence interval) for
different adaptation algorithms.

Fig. 14. Distribution of 95% confidence intervals (using the original scale
[1, 100]) for all 420 distorted videos.

buffer and hence continuous scores are relatively low. Under
better network conditions (e.g. FNO), user experience steadily
improves after some time, due to the adaptors switching to
higher resolution and lower compression ratio. By contrast,
challenging cases such as BLO and TLJ recover slowly or do
not recover at all, while very volatile conditions, as in MKJ,
can lead to large drops in QoE much later during playback.
We refer the reader to Table III for a reminder on the acronyms
used for the network traces.

C. Adaptation Algorithm Performance Discussion

Following our earlier between-adaptor analysis, it is natural
to ask which adaptation algorithm performs the best. For

Fig. 15. Continuous-time scores across adaptation algorithms.

Fig. 16. Continuous-time scores across network traces.

overall scores, we could not make statistically significant
comparisons, in part due to recency effects. Similarly, using
continuous-time scores, we found that OQB performed mar-
ginally better for a period of time, but the differences were not
statistically significant even though OQB has perfect knowl-
edge of future bandwidth. By contrast, BB was conservative
during startup and did not select high quality streams.

Comparing RB and QB, we found that they delivered similar
QoE over time, except during the start-up phase, where RB
picked higher quality levels. The similar behavior between QB
and RB can be attributed to their inherent properties: RB leads
to excessive rebuffering, while QB reduces rebuffering (by
taking into account the buffer level in its optimization scheme),
but leads to many quality switches (see also Table V). In fact,
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an important consideration when designing QB is selection of
the minimum buffer Bl and target buffer Bt values. When the
network changes rapidly, the adaptor may not satisfy these and
use its fallback mode, which leads to large quality switches.

At this point, an important question can be raised: if overall
scores were not very different across adaptation algorithms
and since continuous scores tend to get closer and closer for
the second half of the playback, what is the point of design-
ing perceptually-optimized adaptive streaming algorithms? To
answer this, there are two main points to be raised. The first
one relates to the use of overall scores. In practical adaptive
video streaming applications, playback sessions last for tens
of minutes and hence overall scores, which are significantly
biased by recency effects, are not reflective of the continuous
quality of experience. More importantly, if there is a sudden
network change that leads to significant rebuffering or video
quality drop, the viewer may never finish watching the entire
video sequence. This demonstrates that the use of overall
scores is quite limiting and does not capture the time-varying
quality of experience.

With regards to continuous scores, it is important to under-
stand that many adaptive video streaming algorithms will
perform similarly when the network is stable and a steady
state is reached with respect to network variations. This applies
to the second half of the video sessions, where we see that
all four adaptation algorithms have similar behavior. However,
the most challenging aspect of designing these algorithms is
during start-up or when there is a sudden and unpredictable
network change. This is where perceptually-optimized adap-
tive streaming algorithms can shine: they can potentially make
better decisions that improve the quality of experience.

D. Limitations of the LIVE-NFLX-II Database

Despite our efforts in designing a diverse and realistic data-
base that relies on state-of-the-art ideas in video encoding and
streaming, one cannot overlook some remaining limitations.
We recognise that QoE is not only affected by the factors
investigated herein, such as video quality, recency, rebuffering
or quality switching, but also by other factors such as audio
quality, the display device and user expectations regarding
the streaming service and/or the viewing environment. In our
experiment, the audio quality was fixed and the display device
was a computer monitor. Furthermore, start-up delay was not
taken into account in the subjective database design, but it
should be emphasized that it is indeed an important aspect
of QoE. We plan to investigate this aspect as part of future
work. Further, future work could rely on more future-looking
network traces as they become available.

Meanwhile, the adaptation algorithm design space and the
number of possible network conditions are immense, hence our
experiment can only capture the main characteristics of these
dimensions as they pertain to user experience. Furthermore,
the streaming sessions we generated are only between 25 and
36 seconds long (overall duration) and the network simulator
does not consider the underlying TCP behavior, such as its
slow restart property. Nevertheless, given the very large design
space, it is virtually impossible to vary and explore all of the
above streaming conditions simultaneously. Finally, we think
that the design of lab-based subjective studies for adaptive
video streaming applications, such as LIVE-NFLX-II, is natu-
rally limited by the number of subjects. It is very challenging
to have a large number of subjects for every possible video

streaming scenario. In the future, crowdsourcing studies could
be a promising alternative to gather larger amounts of data to
better cover the different aspects of QoE.

VII. PERCEPTUAL VIDEO QUALITY AND QOE

The perceptual optimization of adaptive video streaming
requires accurate QoE prediction models [10], [19], [21],
[63]–[70]. An important goal of our database is to use it
as a development testbed for such QoE prediction models.
In this section, we evaluate a number of representative video
quality assessment (VQA) and QoE prediction models. Given
that the database contains both overall and continuous-time
scores, we studied the performance of these algorithms both
for overall and continuous-time QoE prediction applications.

To calculate video quality, we decoded each distorted video
into YUV420 format and applied each video quality model on
the luminance channel of a distorted video and its reference
counterpart. For videos with non-16:9 aspect ratio and, prior to
VQA calculations, we removed black bars to measure quality
only on active pixels. For videos containing rebuffered frames,
we removed all of those frames and calculated video quality on
the aligned YUV files [11]. In the next sections, we investigate
the predictive performance of leading VQA models and study
their predictive performance when combined with QoE-driven
models for overall and continuous-time QoE prediction.

A. Objective Models for Overall QoE Prediction

Our first experiment was to evaluate several well-known
video quality and QoE metrics, including PSNR, PSNRhvs
[71], SSIM [72], MS-SSIM [73], ST-MAD [74], ViS3 [24],
VQM-VFD [75], V-BLIINDS [76], ST-RRED [77], VMAF [3]
(version 0.6.1), SQI [10] and Video ATLAS [70]. PSNRhvs
is an extension of the traditional PSNR metric which incor-
porates properties of the human visual system. SSIM uses
local image statistics to capture structural image degradations
while MS-SSIM performs similar calculations across multiple
scales. ST-MAD relies on a most apparent-distortion model of
videos, while V-BLIINDS uses DCT-based features to model
distortions of natural video statistics. ViS3 uses spatial and
temporal slices to predict video quality, while VQM-VFD
feeds a number of perceptual features into a neural network.

ST-RRED is a VQA metric that relies on entropic dif-
ferencing of wavelet coefficients of frames and frame dif-
ferences. VMAF combines multiple elementary perceptual
quality measurements as features and feeds them to a support
vector regressor. SQI and Video ATLAS combine video quality
measurements and rebuffering statistics to measure QoE. The
original Video ATLAS model [70], was designed and tested
on the LIVE-NFLX and Waterloo databases, where quality
switching events were much less diverse. Given the flexibility
of Video ATLAS and the diversity of our newly designed
database, we re-trained the model to include changes on
resolution and quality. Note that we did not include complex
VQA metrics like MOVIE [78] in our evaluation, which can
be computationally inefficient for 1080p input videos and
sometimes lead to out-of-memory issues [39].

We used VMAF as the VQA feature, average absolute
difference of encoding resolution and rebuffer duration as
features. The average absolute difference of encoding resolu-
tion can provide valuable insights on the amount/frequency
of resolution changes; more frequent and larger encoding
resolution switches can drastically affect quality of experience.
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Fig. 17. SROCC results using overall scores, with 95% confidence intervals
across multiple train/test splits. For Video ATLAS, we report SROCC twice:
1. when trained on the database in [34] using the reduced feature set (in
blue) and 2. when trained on each training split of LIVE-NFLX-II (in red,
ATLAS*). The same test splits were used across all methods.

As an alternative to this feature, we could have also considered
features such as the average VMAF variation. Future work can
investigate how more sophisticated features can better capture
the effects of quality variations.

We also kept track of the time in seconds (from the end
of the video) since the most recent minimum quality was
observed (TLL feature). For SQI, VMAF was also used as
the VQA model. We excluded the P.1201-3 models [79],
since they are trained for longer video sequences (>1min.).
To evaluate performance, we use SROCC and report the results
in Fig. 17.

Since Video ATLAS is a learning-based model, we split
the database into multiple train/test splits. It is common
to split VQA databases into content-independent splits; but
for the streaming QoE scenario we propose a different
approach. Given that video contents are pre-encoded and the
behavior of an adaptation algorithm is deterministic (given a
network trace and a video content), it is realistic to assume
that, during training, we have collected subjective scores on a
subset of the network traces. Using content-independent splits
might have reduced content biases, but would then introduce
more severe distortion biases: the same network conditions
would have been used both for training and testing, leading
to similar distortion patterns and increasing the chances of
overfitting.

Therefore, we perform our splitting based on network traces
by choosing 5 traces for training and 2 for testing each time,
which yields

(7
2

) = 21 unique combinations of 300 (15 con-
tents, 4 adaptors and 5 traces) training and 120 (15 contents,
4 adaptors and 2 traces) testing videos. The total number of
combinations may not be as large; but each train/test subset
contains hundreds of videos. Figure 17 shows boxplots of
performance across all 21 iterations for all compared models.

All of the IQA or VQA-only models, including the
no-reference V-BLIINDS model, lagged in performance,
which is expected since they only capture video quality and
disregard other critical aspects of QoE such as rebuffering.
Nevertheless, VMAF performed significantly better than all
other models. Of course, VMAF was used to generate the
bitrate ladder, to decide on encoding parameters and to per-
form client-based adaptation for QB and OQB. Hence our
system may be better tuned towards VMAF and this choice
has a direct impact on user experience. Using VMAF as part of

Fig. 18. An example where the G-NARX QoE prediction does not capture
trends in subjective QoE.

the SQI and Video ATLAS QoE predictors led to performance
gains in both cases.

To validate the contribution of VMAF in predicting QoE,
and measure the contribution of the other three factors in
Video ATLAS (rebuffering duration, resolution switching and
TLL), we also trained a simple Random Forest (RF) regressor
and measured feature importance over all 21 unique train/test
combinations. The number of estimators in RF was set to
100 and the feature importances were found to be: 79%
for VMAF, 11% for rebuffering duration, 5% for resolution
switching and 5% for TLL. This validates the observation
that VMAF scores contribute strongly to QoE prediction,
while rebuffering duration is less important, in part because
rebuffering events occurred earlier in the streaming session
and hence were less important for overall QoE evaluations.
We tested different values of the number of estimators used in
the random forest implementation (10 to 1000) and got similar
results.

Unlike SQI, Video ATLAS is a trained model, and hence
we also trained it on a different database and then tested it
using the exact same test splits as above. We used the database
in [34] and extracted two basic features: VMAF 0.6.1 and
rebuffering duration (in seconds). We found the SROCC of
Video ATLAS in that case dropped to an average of 0.86
(compare blue and red point for Video ATLAS in Fig. 17)
across all 21 test sets (from 0.88). When testing Video ATLAS
on a different database than the one it was trained on, it was
expected that performance would drop. However, the per-
formance drop was not large and the SROCC performance
was statistically equivalent to that of SQI, as shown by
the overlapping confidence intervals in Fig. 17. This result
reinforces our belief that video quality and rebuffering duration
are indeed good predictors of overall streaming QoE.

B. Objective Models for Continuous-Time QoE Prediction

Predicting continuous-time QoE is a harder task, given
the challenges in collecting reliable ground truth data and
designing models that can integrate perceptually-motivated
properties into a time-series prediction. To evaluate perfor-
mance, we used root mean squared error (RMSE) and outlier
ratio (OR). RMSE measures the prediction’s fidelity to the
ground truth, while OR measures the frequency of outlier
points. To calculate the OR, we relied on the definition
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described in ITU-T Rec. P.1401 [80]. Notably, SROCC may
not be an appropriate choice for comparing time-series [21].

We evaluated two prediction algorithms presented in [21],
one based on autoregressive neural networks (G-NARX)
and the other based on recurrent neural networks (G-RNN).
To train the G-NARX and G-RNN models, we used per-frame
VMAF measurements as the continuous-time VQA feature.
We also included two additional continuous-time features: a
per-frame boolean variable denoting the presence of rebuffer-
ing and another denoting the time since the latest rebuffer.
We used 8 input delays and 8 feedback delays for G-NARX
and 5 layer delays for G-RNN. Both approaches used 8 hidden
nodes and the training process was repeated three times yield-
ing an ensemble of three test predictions per distorted video
that were averaged for more reliable time-series forecasting.
We configured the prediction models to output one value per
0.25 seconds (as in [21]), by averaging the continuous-time
variables accordingly. This subsampling step speeds up the
training process by reducing the amount of training data.

G-NARX and G-RNN delivered comparable performances:
G-NARX had an RMSE of 0.267 and an OR of 7.136% and
G-RNN had an RMSE of 0.276 and an OR of 5.962%. Their
performance is promising: only 5%-7% of the QoE predictions
were significantly different from the average ground truth
score. Nevertheless, we observed cases where predictions
could be further improved, as in Fig. 18, where G-NARX did
not accurately capture subjective QoE trends and its dynamic.

We also experimented with two additional feature sets
for G-NARX to determine whether its performance would
improve further. Together with the existing three continuous
features, we tried two more features: a continuous feature cal-
culated by the per-frame VMAF difference (F1), and another
continuous feature calculated as the time duration (in seconds)
since the lowest VMAF score (for a given session) has been
observed (F2). Feature F1 aims to capture the per-frame
quality variations over time, while F2 focuses on recency
effects triggered by very low qualities within a given session.
We observed that introducing an additional feature (either
F1 or F2) to G-NARX could lead to an improvement in the OR
of about 2%, but the RMSE performance did not improve sig-
nificantly. This could mean that these features did not capture
additional information descriptive of the complex continuous
QoE phenomena. More detailed results are available in the
supplementary material.

In similar test results, we identified that perhaps the main
problem of these trained networks is that they do not always
capture the magnitude of subjective opinion changes over time,
i.e. they tend to over- or under-estimate a drop or an increase
in QoE. In practical applications, more accurate predictions are
needed if these QoE models are to be used for rate adaptation
in actual streaming scenarios. This demonstrates the need
to integrate better human perception models, to accurately
capture continuous QoE responses.

VIII. DISCUSSION AND CONCLUSION

We presented the design of a large, comprehensive sub-
jective video database, which relied on a realistic stream-
ing system. The basic components of that system were: an
encoding module, a network module, a quality module and a
client module. The encoding module determined the encoding
resolution and QP to be used for every shot and was driven by
measurements generated by the quality module. The network

module integrated network traces and orchestrated commu-
nications between the encoding and client modules. Lastly,
the client module integrated encoding, network and quality
information to determine the next chunk to be played out.

After generating a large variety of video streams, we pre-
sented them to a large number of subjects and collected ground
truth continuous and overall QoE scores. The collected data
allowed us to analyze overall and continuous-time user experi-
ences under different network conditions, using different adap-
tation algorithms, and on diverse video contents. We found
that start-up is a challenging phase for ABR algorithms,
since the video buffer is not sufficient to withstand large
network variations. However, human responses were forgetful
of negative QoE events during start-up, which underlines the
need to better understand continuous streaming QoE. Using the
collected human opinion scores, we also trained and evaluated
predictors of video quality and quality of experience. We found
that average video quality and rebuffering duration were the
most important factors contributing to accurate overall QoE
prediction, but that there is significant room for improvement
of continuous-time QoE models.

In the future, we plan to investigate a larger variety of
streaming factors and their effect on viewing experience. For
example, studying start-up delay, which plays an important
role in user engagement, is a promising direction. Another
potential future direction is to study more sophisticated adap-
tive bitrate algorithms, such as Pensieve [42]. Furthermore,
given that this database relied on 3G network traces, future
work could rely on more future-looking network traces,
such as 5G. We also intend to use the data to build better
continuous-time QoE models that integrate additional features,
such as network estimates and buffer status. Our ultimate goal
is to “close the loop,” i.e., inject such QoE models into the
client-adaptation strategy to perceptually optimize streaming.
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