
A COMPARATIVE EVALUATION OF TEMPORAL POOLING METHODS FOR BLIND
VIDEO QUALITY ASSESSMENT

Zhengzhong Tu1� , Chia-Ju Chen1�, Li-Heng Chen1, Neil Birkbeck2, Balu Adsumilli2, and Alan C. Bovik1

1The University of Texas at Austin, 2YouTube Media Algorithms Team, Google Inc.

ABSTRACT

Many objective video quality assessment (VQA) algorithms
include a key step of temporal pooling of frame-level qual-
ity scores. However, less attention has been paid to studying
the relative efficiencies of different pooling methods on no-
reference (blind) VQA. Here we conduct a large-scale com-
parative evaluation to assess the capabilities and limitations
of multiple temporal pooling strategies on blind VQA of user-
generated videos. The study yields insights and general guid-
ance regarding the application and selection of temporal pool-
ing models. In addition, we also propose an ensemble pool-
ing model built on top of high-performing temporal pooling
models. Our experimental results demonstrate the relative ef-
ficacies of the evaluated temporal pooling models, using sev-
eral popular VQA algorithms evaluated on two recent large-
scale natural video quality databases. Conclusively, we also
provide an empirical recipe for applying temporal pooling of
frame-based quality predictions.

Index Terms— Video quality assessment, temporal pool-
ing, memory effect, visual attention, temporal visual masking

1. INTRODUCTION

Video quality assessment (VQA) models have been widely
studied [1] as an increasingly important toolset used by the
streaming and social media industries. While full-reference
(FR) VQA research is gradually maturing and several algo-
rithms [2, 3] are quite widely deployed, recent attention has
shifted more towards creating better no-reference (NR) VQA
models that can be used to predict and monitor the quality of
authentically distorted user-generated content (UGC) videos.
UGC videos, which are typically created by amateur videog-
raphers, often suffer from unsatisfactory perceptual quality,
arising from imperfect capture devices, uncertain shooting
skills, a variety of possible content processes, as well as com-
pression and streaming distortions. In this regard, predicting
UGC video quality is much more challenging than assess-
ing the quality of synthetically distorted videos in traditional
video databases. UGC distortions are more diverse, compli-
cated, commingled, and no “pristine” reference is available.

�Equal contribution

Many researchers have proposed possible solutions to the
blind VQA (BVQA) problem [4–10], among which a simple
but reasonably effective strategy is to compute frame-level
quality scores, e.g., as generated by image quality assess-
ment (IQA) models, then to express the evolution or relative
importance over time by applying temporal pooling on the
frame-level quality scores. Simple temporal average pooling
is a widely used scheme to augment BVQA models [5,7,10].
Other kinds of pooling that are used include harmonic mean
[11], Minkowski mean [12, 13], percentile pooling [14, 15],
and adaptively weighted sums [16, 17]. More sophisticated
pooling strategies have considered memory effects, such as
primacy, recency [12,13,18], and hysteresis [6,9,19,20]. The
general applicability of these pooling models, however, has
not so far been deeply validated in the context of BVQA mod-
els for real-world UGC videos, though a few more directed
studies have been conducted [12,13,21]. To date, no compre-
hensive studies have been conducted to establish the added
values of the spectrum of available VQA pooling schemes.

Here we seek to help fill this gap by conducting a sys-
tematic evaluation of popular temporal pooling algorithms,
as applied to leading NR IQA models on recently developed
large scale UGC video quality databases. We assessed the
benefits, generalizability, and stability of these pooling mech-
anisms. Our aim is to identify statistically verifiable pooling
approaches that can be applied on top of future state-of-the-art
IQA models to further produce consistently better predictions
of video quality. We also propose an ensemble approach,
wherein multiple pooling models are aggregated to deliver
better retrospective quality prediction. Our experimental re-
sults demonstrate that the proposed ensemble pooling method
reveals robustness among the top-performing models.

The rest of this paper is structured as follows. Section
2 summarizes previous related literature, while Section 3 de-
scribes details of the evaluated and proposed pooling algo-
rithms. Experimental results and analysis are presented in
Section 4, and finally, we conclude the paper in Section 5.

2. RELATED WORK

A variety of methods for spatial pooling of “quality-aware”
features have been proposed and studied in [14, 22, 23], yet
less effort has been applied to the study on temporal pooling
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methods for BVQA. The most related works to that reported
here are the comparative evaluations of temporal pooling on
short video clips [12, 21], and on longer adaptive stream-
ing videos [13]. They have collectively included various
pooling methods combined with several objective frame-
level quality predictors, evaluated on different subjective
databases. Among the studied temporal pooling methods are:
simple averaging, percentile pooling [14], Minkowski pool-
ing [12], harmonic mean pooling [11], and the more complex
VQPooling scheme [16], which adaptively emphasizes the
worst scores along the time dimension, wherein frame-level
scores are clustered into two groups (low quality and high
quality), then combined into a single score by upweighting
low-quality scores. Methods like percentile and VQPooling
are predicated by the accepted notion that quality judgments
are heavily influenced by the worst parts of a video.

Another cognitive aspect relevant to temporal visual pool-
ing is the serial-position effect (or memory effect) hypothe-
sis [24]. Primacy and recency are two common effects that
have been investigated in numerous video quality of experi-
ence (QoE) studies [18, 25, 26], but are less studied in regard
to their influence on the blind quality prediction of UGC video
clips. Another popular temporal memory modeling approach
is hysteresis pooling [19], which has been justified in sev-
eral video quality modeling papers [6, 9, 20]. The hysteresis
model assumes that while subjective judgments drop sharply
with event of poor video quality, they only recover slowly
with subsequent improved video quality.

3. TEMPORAL QUALITY POOLING METHODS

We propose a comprehensive evaluation framework to study
the influence of temporal pooling algorithms on the perfor-
mances of objective video quality models. Suppose a video
has N frames {F1, F2, ..., FN} processed by any NR IQA
models that produces frame-level (time-varying) quality pre-
dictions {q1, q2, ...qN}. The per-frame quality scores are tem-
porally combined by a temporal pooling function F(·) to ob-
tain a final quality prediction: QFINAL = F(q1, q2, ..., qN ).

3.1. Frame Quality Prediction

Frame-level quality scores can be predicted by any NR IQA,
such as BRISQUE [4], NIQE [27], FRIQUEE [8] or even
models implemented as deep learning networks [28].

3.2. Temporal Pooling Models

Once frame-level quality scores {q1, q2, ...qN} are obtained,
a variety of ways have been proposed to summarize the time-
varying quality scores into a single overall video quality judg-
ment. A variety of human factors have been explored in this
context, including visual perception [29, 30], memory effects
[18,19,25], and video content [9,25,31]. Here we model and

study a collection of factors that express aspects of tempo-
ral quality perception, as candidates for deriving final quality
predictions on UGC videos. Specifically, we study the fol-
lowing listed in approximate order of increasing complexity
and abstraction:
Arithmetic Mean: The sample mean of frame-level scores is
the most widely used method:

Q =
1

N

N∑
n=1

qn. (1)

Harmonic Mean: The harmonic mean has been observed to
emphasize the impact of low-quality frames [11]:

Q =

(
1

N

N∑
n=1

q−1
n

)−1

. (2)

Geometric Mean: The third Pythagorean mean (geometric)
expresses the central tendency of the quality scores by the
product of their values:

Q =

(
N∏

n=1

qn

)1/N

. (3)

Minkowski Mean: The Lp Minkowski summation [12, 13]
of time-varying quality is defined as:

Q =

(
1

N

N∑
n=1

qpn

)1/p

. (4)

Percentile: The idea of percentile pooling is based on ob-
served phenomenon that perceptual quality is heavily affected
by the “worst” parts of the content. Many prior works have
studied and justified (or challenged) percentile pooling [12–
15, 18]. The k-th percentile pooling is expressed:

Q =
1

|P↓k%|
∑

n∈P↓k%

qn, (5)

where P↓k% denotes the set of lowest k% scores.
VQPooling: VQPooling is an adaptive spatial and temporal
pooling strategy proposed in [16]. Here we only study the
temporal pooling part, wherein the quality scores of all frames
are classified into two groups composed of higher and lower
quality, using k-means clustering. The two groups, dubbed
GL and GH , are then combined to obtain an overall quality
prediction on the entire video sequence:

Q =

∑
n∈GL

qn + w ·∑n∈GH
qn

|GL|+ w · |GH | , (6)

where |GL| and |GH | denote the cardinality of GL and GH ,
while the weight w is defined as the ratio between the scores
in GL and GH :

w =

(
1− ML

MH

)2

, (7)
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where ML and MH are the average value of the quality scores
in set GL and GH , respectively.
Temporal Variation: The approach of [32] considers the
temporal changes of spatial distortions and proposes short-
term and long-term spatiotemporal pooling mechanisms to
account for quality changes. Here we only utilize the tem-
poral variation terms in our study:

Q =
1

|P↑k%|
∑

n∈P↑k%

|qn − qn−1|, (8)

where |qn− qn−1| is the absolute quality difference at time n,
and P↑k% is the set of largest k% absolute quality differences.
Primacy Effect: The primacy effect describes the tendency
of human viewers to recall the earliest portion of a video when
providing overall evaluations [24]. One way of capturing pri-
macy is as an exponentially decreasing weighted sum. Define

Q =

N∑
n=1

wnqn, (9)

where

wn =
exp (−αpn)∑L
k=0 exp (−αpk)

, 0 ≤ n ≤ L, (10)

where αp is used to tune the intensity of primacy effect.
Recency Effect: The recency effect is another well-established
behavioral and memory effect, whereby, in this context, video
quality is very strongly influenced by a viewer’s most recently
percieved visual impression [24]. The recency effect can also
be characterized as an exponential weighted sum (Eq. (9)),
but with a different weighting:

wn =
exp (−αr(L− n))∑L
k=0 exp (−αr(L− k))

, 0 ≤ n ≤ L, (11)

where αr tunes the relative intensity of the recency effect.
Temporal Hysteresis: This approach was inspired by the
hysteresis effect observed in human judgments of time-
varying video quality [19], which is closely related to, but
not the same as the recency effect. The hysteresis measure-
ment can be formulated as follows. Let qn, n = 1, 2, ...N
be the time-varying frame quality scores. The memory of
past quality ln at the n-th frame is expressed as the minimum
quality scores over the previous frames:

ln =

{
qn, n = 1
min

k∈Kprev

{qk}, n > 1, (12)

where Kprev = {max{1, n−τ}, ..., n−2, n−1} indexes the
previous τ frames. The current video quality mn is expressed
as a weighted sum of ordered [33] frame-level qualities:

v = sort({qk}), k ∈ Knext, (13)

mn =
J∑

j=1

vjwj , J = |Knext|, (14)

where Knext = {n, n + 1, ...,min{n + τ,N}} indexes the
next τ frames and {wj} is the descending half of a Gaus-
sian weighting function. Linearly combining the memory and
the current quality components in (12) and (14) yields time-
varying scores that capture the hysteresis effect. The pooled
video quality Q is computed as the global temporal average
of the time-varying hysteresis-transformed predictions:

q′n = αmn + (1− α)ln, (15)

Q =
1

N

N∑
n=1

q′n, (16)

where α adjusts the contributions of these two elements.

3.3. Ensemble Temporal Pooling

We have just described a diverse set of temporal pooling
mechanisms, each either heuristically, statistically defined,
or motivated by psychovisual reasoning. As might be ex-
pected, and as we shall show, the performances of these
methods differ, and also vary on different datasets. Given that
these methods likely capture different aspects of perceptual
pooling, ensemble learning is a direct way to combine them
towards creating a more reliable and generic quality predictor.
We denote this ensemble-based temporal pooling as EPool-
ing. Similar concepts of model fusion/ensemble have been
successfully utilized on the IQA/VQA problems [3, 36, 37].

Suppose the quality scores delivered by a set of pooling
methods are denoted Qi, i = 1, ..., I , where I is the number
of input model predictions. Then train an ensemble regressor
to fuse the multiple predicted labels into a single final score:

QEPooling = F(Q), Q = {Qi}, i = 1, 2, ..., I, (17)

where Q is the quality vector stacked from multiple singly
pooled scores, and F is the learned regression function that
maps the proxy quality vector to a final quality prediction
QEPooling. Here we empirically chose Mean, VQPooling, and
Hysteresis, as the three input prediction models after coarse
preliminary feature analysis. Further improvements may be
achieved by applying finer feature selection techniques.

4. EXPERIMENTS

4.1. Experimental Setup

We selected five popular NR IQA models: NIQE [27],
BRISQUE [4], GM-LOG [38], HIGRADE [39], and COR-
NIA [40], as frame-level quality predictors, and evaluated
the temporal pooling methods on two recent large scale UGC
VQA databases: KoNViD-1k [34] and LIVE-VQC [35].
KoNViD-1k consists of 1,200 8-second 540p public-domain
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Table 1: Performance comparison of temporal pooling methods as evaluated on KoNViD-1k [34] and LIVE-VQC [35]. Each
cell shows the median evaluation results formatted as SRCC/PLCC. The three best results along each column are boldfaced.

Database KoNViD-1k LIVE-VQC
Pool/Model NIQE BRISQUE GMLOG HIGRADE CORNIA NIQE BRISQUE GMLOG HIGRADE CORNIA
Mean 0.552/0.560 0.673/0.676 0.662/0.671 0.690/0.696 0.749/0.764 0.600/0.631 0.597/0.632 0.575/0.618 0.532/0.570 0.694/0.743
Median 0.543/0.554 0.667/0.670 0.657/0.666 0.680/0.689 0.750/0.760 0.584/0.618 0.577/0.619 0.558/0.602 0.521/0.559 0.687/0.744
Harmonic 0.550/0.560 0.674 /0.676 0.667/0.674 0.693/0.699 0.696/0.696 0.607/0.637 0.605/0.636 0.585/0.620 0.537/0.575 0.709/0.737
Geometric 0.551/0.560 0.676 /0.679 0.666/0.673 0.692/0.698 0.747/0.760 0.604/0.634 0.600/0.631 0.578/0.617 0.537/0.573 0.698/0.746
Minkowski 0.552/0.559 0.672/0.676 0.661/0.670 0.689/0.695 0.736/0.746 0.597/0.628 0.596/0.630 0.574/0.615 0.538/0.569 0.688/0.739
Percentile 0.545/0.547 0.655/0.647 0.674/0.678 0.685/0.687 0.696/0.700 0.630/0.634 0.629/0.647 0.606 /0.627 0.586 /0.610 0.712 /0.744
VQPooling 0.549/0.554 0.670/0.665 0.672/0.674 0.698/0.701 0.743/0.758 0.628/0.644 0.617/0.658 0.605 /0.633 0.563/0.597 0.700/0.753
Variation 0.347/0.328 0.348/0.338 0.509/0.511 0.434/0.444 0.240/0.303 0.507/0.476 0.470/0.463 0.495/0.488 0.474/0.482 0.567/0.609
Primacy 0.541/0.552 0.668/0.671 0.647/0.653 0.684/0.690 0.726/0.741 0.601/0.631 0.573/0.627 0.575/0.613 0.535/0.561 0.684/0.737
Recency 0.553/0.558 0.670/0.667 0.660/0.667 0.690/0.694 0.745/0.754 0.584/0.615 0.586/0.626 0.561/0.599 0.518/0.555 0.670/0.729
Hysteresis 0.563/0.569 0.684 /0.681 0.681 /0.684 0.703 /0.707 0.732/0.735 0.621/0.638 0.621 /0.650 0.600 /0.629 0.570 /0.595 0.711 /0.756
EPooling 0.572/0.579 0.670/0.679 0.670/0.676 0.698 /0.704 0.749/0.762 0.623/0.645 0.617 /0.646 0.605/0.623 0.582/0.601 0.705/0.743

videos sampled from Flickr, while LIVE-VQC contains 585
10-second multiple-resolution videos captured by mobile
devices. When defining the parametric temporal pooling
models, we used p = 2 (L2) for Minkowski, k = 10% for
percentile, (L, αp, αr) = (180, 0.01, 0.01) for primacy and
recency, and (τ, α) = (60, 0.8) for Temporal Hysteresis, as
recommended in the originating works. We randomly split
the evaluation dataset into 80%-20% portions for training and
testing, respectively, over 100 trials and report the overall
median performance on the testing set. We only conducted
20 iterations for CORNIA due to its high training complexity.
Within each split iteration, EPooling requires two phases of
training – first, to train the mapping from the IQA feature
vector to frame-level quality predictions, then, to learn the
aggregation function that fuses the several pooled predictions
to obtain a single quality score. We used a support vector
regression (SVR) as the learning model for both training
stages, employing cross-validation with 3× 3 grid-search for
the SVR parameter selection. As performance metrics, we
used the Spearman rank-order correlation coefficient (SRCC)
calculated between the ground truth MOS and the predicted
scores to measure the prediction monotonicity of the models,
and the Pearson linear correlation coefficient (PLCC) (com-
puted after logistic mapping) to measure the degree of linear
correlation against MOS.

4.2. Results and Recipe

The performance results are shown in Table 1 on the KoNViD-
1k [34] and LIVE-VQC [35], respectively. On KoNViD-1k,
none of the sophisticated pooling algorithms were observed
to significantly outperform the sample mean of temporal
video quality scores. While an average gain of ∼ 0.01 in
SRCC/PLCC was achieved using Hysteresis pooling, the
three classical Pythagorean means performed quite well de-
spite their simplicity and computational efficiency. When
tested on LIVE-VQC [35], however, we have observed a ∼
0.03 average performance gain when employing perceptual

importance pooling like percentile [14], VQPooling [16], and
Hysteresis [19], regardless of which IQA model was used.
It is likely that the memory-related effects, primacy and re-
cency, would play a more important role on longer videos
(usually minutes long), as shown in [18, 25], but they did not
contribute much on the short duration videos (8-10 seconds)
in these datasets. Our proposed ensemble method of pooling
achieved consistently competitive outcomes on both datasets.

These performance results yet reveal different trends on
the two databases: KoNViD-1k yielded similar results among
most of the competing pooling approaches, whereas on LIVE-
VQC, Percentile, VQPooling, Hysteresis, and the ensemble
enhancement, EPooling, generated the best scores. Towards
understanding this, we observe that LIVE-VQC contains
videos with more camera motion, hence more temporal varia-
tion than those in KoNViD-1k. It is possible that LIVE-VQC
contains a larger range of perceived time-varying qualities
scores, while temporal quality variations in KoNViD-1k ad-
here more closely to the mean quality level. Recalling the
aforementioned hypothesis that perceptual quality is heavily
affected by the worst portions of a video, our experimental
results promote this assumption. In conclusion, our suggested
recipe for incorporating temporal pooling into the design of
NR VQA models strongly depends on video content – for
videos containing more motion or temporal quality varia-
tions, pooling strategies that more heavily weight low quality
events are recommended. In situations where the quality vari-
ations are low, or contain less motion, traditional statistical
mean predictions may be adequate.

5. CONCLUSION

We conducted a benchmark study on the added value of inte-
grating temporal pooling into blind video quality assessment
for user-generated video content. We found that the efficacy
of temporal pooling is content-dependent, but an ensemble
approach can further improve quality prediction performance
on a difficult problem that is only incompletely understood.
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