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Abstract—Many algorithms have been developed to evaluate
the perceptual quality of images and videos, based on models of
picture statistics and visual perception. These algorithms attempt
to capture user experience better than simple metrics like the
peak signal-to-noise ratio (PSNR) and are widely utilized on
streaming service platforms and in social networking applications
to improve users’ Quality of Experience. The growing demand
for high-resolution streams and rapid increases in user-generated
content (UGC) sharpens interest in the computation involved in
carrying out perceptual quality measurements. In this direction,
we propose a suite of methods to efficiently predict the structural
similarity index (SSIM) of high-resolution videos distorted by
scaling and compression, from computations performed at lower
resolutions. We show the effectiveness of our algorithms by testing
on a large corpus of videos and on subjective data.

Index Terms—Image/Video Quality Assessment, Structural
Similarity (SSIM), Human Vision System (HVS)

I. INTRODUCTION

The Structural Similarity Index (SSIM) [1] is a globally-
deployed picture quality model that offers significantly higher
correlation with subjective quality assessment relative to the
Peak Signal-to-Noise Ratio (PSNR), albeit at higher compu-
tational cost. SSIM is calculated by first computing a quality
map expressed in terms of perceptually relevant local first and
second order statistics. The average value of this quality map
is usually reported as the SSIM score. SSIM is an O(MN)
algorithm, where M and N are the height and width of the
image/video frame. This quadratic growth, while not a problem
at lower resolutions, is consequential given the emergence of
social media and streaming platforms which deliver immense
volumes of high-resolution picture and video content at global
scales. Monitoring picture and video quality at such large
scales is proving to be expensive.

Since SSIM demonstrated significant gains over PSNR,
several full and reduced-reference metrics have been proposed
which attempt to model subjective visual quality of images
and videos. Notable among these are Visual Information Fi-
delity (VIF) [2], Spatio-Temporal Reduced Reference Entropic
Differences (ST-RRED) [3], SpEED-QA [4] and the fusion
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metric Video Multi-method Assessment Fusion (VMAF) [5].
However, due to their computational requirements, SSIM
continues to be one of the most widely deployed models. As
a result, we choose to optimize the prediction of SSIM. This
work can be naturally extended to other models by computing
similar quality features using different models.

On streaming and social media platforms, videos are com-
monly encoded at lower resolutions for transmission. This is
done either because the source has low-complexity content
and can be downsampled with relatively little additional loss,
or if the available bandwidth requires it, or to decrease the
decoding load at the user’s end. Perceptual distortion models
are becoming more common tools for determining the quality
of encodes for Rate Distortion Optimization (RDO) [6]. With
advances in video hardware enabling accelerated encoding and
decoding of videos, the distortion estimation step has become
bottleneck when carrying out RDO over a set of encoding
“recipes.” Due to the quadratic growth of SSIM’s computation,
this is an increasingly relevant issue given the prevalence of
high-resolution videos.

Within this context, it is of great interest to be able to
accurately predict the quality of high-resolution videos that are
distorted in two steps - scaling followed by compression. For
example, consider High Definition (HD) videos that are first
resized to a lower resolution, which we call the compression
resolution, then encoded and decoded using, for example,
H.264 at this compression resolution. The videos are then
upsampled to the original resolution before they are rendered
for display. We will refer to this higher resolution as the
rendering resolution.

To reduce the computational burden of perceptually-driven
RDO, we aim to bypass the computation of SSIM at the
rendering resolution between the HD source and rendered HD
video. Our invention, which we call Scaled SSIM, predicts
SSIM by only using SSIM values computed at the lower
compression resolution during runtime. The setup of the com-
pression pipeline that includes this SSIM prediction process is
shown in Figure 1.

II. RELATED WORK

SSIM belongs to the family of full-reference (FR) quality
assessment algorithms. While the relative computational loads978-1-7281-9320-5/20/$31.00 ©2020 IEEE
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Fig. 1. Video Compression Pipeline

of these algorithms has not been systematically investigated,
their performance against subjective data has been reported
many times.

Comprehensive studies have been conducted [7] [8] which
evaluate Full Reference (FR) models on a host of databases
using common performance metrics like the Spearman Rank
Order Correlation Coefficient (SROCC), Kendall Tau Corre-
lation (KCC), Pearson Correlation (PCC) and the Root Mean
Squared Error (RMSE).

There has also been theoretical work comparing SSIM to
other FR models under some statistical assumptions [9]. Such
theoretical results provide better insight into the performance
of SSIM with respect to other picture and video perceptual
quality prediction algorithms.

Since SSIM provides a more meaningful distortion measure-
ment than Mean Squared Error (MSE), or equivalently, PSNR,
it has received a great deal of attention as a distortion predictor
for evaluating and optimizing compression algorithms. In [10],
Richter et. al. proposed an MS-SSIM optimal JPEG 2000
decoder. In [11], Yeo et. al. presented a method for RDO
using SSIM as the distortion metric. SSIM has also been useful
for optimization of inter-frame encoding [12], RDO of video
encodes [13], and perceptual rate control [14].

III. PROPOSED MODELS

We propose two classes of models that efficiently predict
Scaled SSIM, which we refer to as

• Histogram Matching
• Feature-based models

All of the proposed models operate on a per-frame basis.

A. Histogram Matching

SSIM at any scale is computed from a SSIM map, which
expresses information about local quality. We observe that
there is a non-linear relationship (which is to be estimated)
between frame-wise SSIM values at different scales. Since
the overall SSIM value is the mean of the SSIM map for
each frame, we can seek to relate the SSIM values at two
different scales by matching the histograms of the two SSIM
maps obtained on the same frames at the two scales.

Fig. 2. Histogram Matching Solution

However, the goal is to bypass the calculation of the true
SSIM, and hence SSIM map, at the rendering scale. So, we
instead compute the “true” SSIM map at the rendering scale
only once every k frames. Further, we assume that the shape
of the true histogram of each subsequent frame over the short
time period of k − 1 frames is approximately constant.

The true SSIM map is then reused on the next k−1 frames
as a heuristic model against which the shapes of the next k−1
histograms are matched. Thus, each frame’s SSIM map at the
compression scale is transformed so that its histogram matches
that of the reference map. The predicted frame SSIM value is
then taken as the mean of the transformed SSIM map. After
k − 1 frames, the same process is repeated so that the true
SSIM map at the rendered scale is computed once every k
frames.

Later, we will examine the quality prediction performance
of this scheme. However, assuming near-parity in performance
(as we will show), we are mainly interested in the speedup
obtained via this estimation process, compared to calculating
the rendered SSIM on every frame. Let us denote the factor
by which we downsample the source video by α ∈ (0, 1).
Then, the ratio of required computation using our proposed
approach, to SSIM computation directly at the rendered scale
is (approx.)(

1− 1

k

)
α2 (1 + β + γ) +

1

k
(1 + β) (1)

The factors β and γ account for computing and matching the
histograms respectively, which are both O(MN) operations.
This ratio is a decreasing function of k, and approaches α2(1+
β + γ) as k →∞.

By comparison, if the rendered SSIM map were not sam-
pled, the ratio would be (approx.) α2. In practice, we observe
that the time taken to compute and match histograms is
comparable to the time taken to compute the SSIM map at
the compression scale. So, the computational burden of the
matching step is small, albeit not negligible. The Histogram
Matching solution is illustrated as a flowchart in Figure 2.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 01:01:06 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3. Correlation vs Sampling interval for Histogram Matching

As an ablation study, we consider the algorithm obtained
by simply reusing the SSIM value from the reference map,
instead of matching the histograms. Note that this is identical
to “skipping” k−1 frames after calculating the reference SSIM
map. In Figure 4, we compare the SROCC with subjective
scores achieved by the two algorithms on the Netflix Public
Database. We observe from this plot that the Histogram
Matching generally outperforms the baseline, illustrating the
positive effect of the histogram matching step.

A drawback of the Histogram Matching method is that
it requires “guidance” in the form of the true SSIM map
at rendering scale, and it also implicitly assumes that video
quality does not change rapidly. This means that as k increases,
the reduction in computational complexity is accompanied
by a reduction in accuracy, since the variation in quality
increases over larger sampling intervals. This loss in accuracy
is illustrated in Figure 3. As a default, we choose k = 5 unless
otherwise mentioned. Nevertheless, the following two classes
of models alleviate these limitations.

B. Feature-based Models

Quality degradation at the rendering scale is a consequence
of two operations - downsampling and compression. There-
fore, estimating the loss in quality arising from these two
operations may supply good features to predict SSIM at the
rendering scale.

Let X be an original video, and denote the video scaled
by a factor of α as Sα(X). Then, the result of upsampling
the downsampled video back to the original resolution may
be denoted by S 1

α
(Sα(X)). The SSIM value between X

and S 1
α
(Sα(X)) is a measure of the loss in quality from

downsampling the video. Since this SSIM is independent of
the choice of codec and compression parameters, this can be
pre-computed.

The second source of quality degradation is compression.
Denote the result of compressing the video X using a Quan-
tization Parameter (QP) q as C(X; q). Then, the SSIM value

Fig. 4. Comparison of Histogram Matching with the ”Skip” Baseline

between Sα(X) and C(Sα(X); q) measures the loss of quality
from compressing the video at the compression scale.

Models that use only the above two features will henceforth
be called Two-feature Models. In addition, the scaling factor
α and Quantization Parameter q can also be used as features.
These models are then called Four-feature models.

Three regressors were each trained to predict the SSIM
value at the rendering scale on each frame. The three regres-
sors considered are

• Linear Support Vector Regressor (Linear SVR)
• Gaussian Radial Basis Function SVR (Gaussian SVR)
• Fully Connected Neural Network (NN)

The Neural Network is a small fully connected network having
a single hidden layer with twice the number of neurons as
input features. These models were compared with a simple
learning-free model, which is used as a baseline. The output
of the baseline model is the product of the two SSIM features.
This is similar to the 2stepQA metric proposed in [15] for two-
stage distorted images. We call this the Product model.

IV. DATASET

In order to develop and test our algorithms, we compiled
a corpus of 60 Full HD pristine videos taken from a wide
range of Video Quality databases - the Netflix Public Database
[16], LIVE NFLX II Data base [17], LIVE Netflix Video QOE
Database [18], CSIQ Video Quality Database [19], IRCCyN
IVC Database [20], IVP Subjective Quality database [21] and
the VQEG HDTV Database [22].

Each reference video was compressed at 6 compression
resolutions - 144p, 240p, 360p, 480p, 540p and 720p, using
FFMPEG’s H.264 (libx264) encoder, and for each resolution
compressed using 11 values of the QP - 1, 5, . . . 51, then
finally scaled back up to 1080p. All scaling operations where
performed using the Lanczos-3 filter. This resulted in a total of
3960 videos, consisting of almost 1.75M frames. This formed
the corpus of videos used to train and test our algorithms. The
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Netflix Public Database also provides distorted videos with
corresponding DMOS scores. These were used to evaluate the
performance of our algorithms against subjective scores.

The AVT-UHD1 database [23] is a large database that in-
vestigates the effect of scaling and compression on the quality
of Ultra HD (UHD) videos. However, since the videos were
not rendered at their source resolution during that subjective
study, it could not be used for our subjective evaluation data.

V. EXPERIMENTS

All of the models were first trained and tested on the 60
reference videos. As mentioned in Section IV, this led to a
total of 26,235 reference frames. To minimize content overlap
between the training and testing set, all corresponding frames
(same contents) of distorted videos, across compression scales
and QPs, were assigned together to either the training or
testing set. 21,000 reference frames were chosen for training
and the remaining 5,235 for testing. This led to a total of
almost 1.4M training data points and almost 350,000 testing
data points.

On the corpus, we report the Pearson Correlation Coefficient
(PCC) and the Spearman Correlation Coefficient (SROCC)
between the predicted SSIM and the true SSIM. We also report
the variation in the best model’s performance against choices
of the compression scale α and q to test the consistency of
the model’s performance across use cases. Since the videos in
the corpus have not been rated by subjects as part of a study,
we can only calculate the correlation between predicted and
true SSIM scores.

The end goal, however, is still to predict subjective scores,
so we tested our models on the Netflix Public Database. We
compared the correlation values obtained by our predicted
SSIM scores with DMOS against the correlation of the true
SSIM with DMOS calculated at the rendering resolution.
Since the videos in these subjective quality databases were
compressed using a variety of methods, we restricted our tests
to the Histogram Matching and two-feature models. To obtain
the two SSIM features, we downsampled the reference videos
to the appropriate compression resolution.

VI. RESULTS

The testing performance of the various models on the corpus
is listed in Table I. As mentioned in Section V, the PCC
and SROCC values reported are SSIM - SSIM correlations.
The “2” and “4” in the model names denote the number of
features used. Note that the goal of all our proposed methods is
to match SSIM’s performance, so we evaluate our algorithms
against the performance of the true SSIM scores.

From the table, we see that among the feature-based mod-
els, the 4 feature Neural Network was the best performing
model. This is expected, given the great learning capacity of
neural networks. Interestingly, the Product model (baseline)
outperformed almost every other model on the corpus, with
the added advantage of having negligible inference time in
comparison.

TABLE I
CORRELATION WITH TRUE SSIM ON CORPUS TEST DATA

Model PCC SROCC
NN 2 0.9461 0.9834
NN 4 0.9845 0.9869

Linear SVR 2 0.9529 0.9759
Linear SVR 4 0.9215 0.9201

Gaussian SVR 2 0.8571 0.9591
Gaussian SVR 4 0.9598 0.9628

Product (Baseline) 0.9662 0.9829
Histogram Matching 0.9933 0.9956

TABLE II
CORRELATION WITH DMOS ON NETFLIX PUBLIC DATABASE

Model PCC SROCC
True SSIM 0.6962 0.6567

NN 2 0.6759 0.6425
Linear SVR 2 0.6746 0.6196

Gaussian SVR 2 0.6756 0.6373
Product (Baseline) 0.6715 0.6215

Histogram Matching 0.6848 0.6616

Finally, we see that Histogram Matching led to almost
perfect predictions, outperforming all feature-based models.
However, unlike the product baseline, this model presents
a tradeoff. The cost of this near-perfect estimation is the
presence of guiding information in the form of true SSIM maps
at regular intervals, which demands additional computation.

The variation in performance of the Product Model, His-
togram Matching and the best learning-based model (4-feature
Neural Network) with choice of compression scale on the
vertical axis and QP on the horizontal axis, is depicted in
Figure 5.

From the figures, it may be seen that Histogram Matching
performed well under almost all conditions. We observed
a slight dip in performance at lower QPs. At low QPs,
compression is performed at high quality. As a result, the
SSIM map at the compression scales yields mostly values
close to 1. So, the histogram is a narrow distribution close
to 1. As a result, it is more difficult to match the reference
histogram.

Table II compares the correlation of true and predicted
SSIM scores against subjective opinion scores (DMOS). All
SSIM scores were transformed to quality predictions by fitting
to subjective scores using the five-parameter logistic function

Q(x) = β1

(
1

2
− 1

1 + exp(β2(x− β3))

)
+ β4x+ β5 (2)

The SROCC was calculated using the predicted SSIM
scores, while PCC was calculated after applying this transfor-
mation. From the table, it may be seen that the performance
of SSIM estimated by Histogram Matching matched the per-
formance of true SSIM. We also observe that the feature-
based models approach true SSIM’s performance, with the
Product Model offering a good low complexity alternative to
the learning-based models.
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Fig. 5. Variation in performance with choice of Encoding Scale and QP

VII. CONCLUSION

In this work, we have motivated and proposed the problem
of efficiently estimating Scaled SSIM. We propose two main
approaches to solving this problem, one using Histogram
Matching, and the other using features which can either be pre-
computed, or are computed at lower resolutions. We demon-
strate the effectiveness of these approaches by quantifying the
accuracy with which they predict the true SSIM, and their
correlation against subjective data. In this way, we achieved
the goal of reliably predicting the SSIM score between a pair
of reference and test videos at a fraction of the computational
cost.

In the future, we see merit in exploring better temporal
aggregation strategies of frame-wise SSIM models. This work
would potentially also pave the way to calculate SSIM at lower
frame rates. This approach may also be improved by consid-
ering richer, potentially codec-dependent features, leading to
better predictive performance of feature-based models.
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