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ABSTRACT

Video and image quality assessment has long been projected
as a regression problem, which requires predicting a contin-
uous quality score given an input stimulus. However, recent
efforts have shown that accurate quality score regression on
real-world user-generated content (UGC) is a very challeng-
ing task. To make the problem more tractable, we propose
two new methods - binary, and ordinal classification - as al-
ternatives to evaluate and compare no-reference quality mod-
els at coarser levels. Moreover, the proposed new tasks con-
vey more practical meaning on perceptually optimized UGC
transcoding, or for preprocessing on media processing plat-
forms. We conduct a comprehensive benchmark experiment
of popular no-reference quality models on recent in-the-wild
picture and video quality datasets, providing reliable base-
lines for both evaluation methods to support further studies.
We hope this work promotes coarse-grained perceptual mod-
eling and its applications to efficient UGC processing.

Index Terms— Video quality assessment, image quality
assessment, user-generated content, classification

1. INTRODUCTION

The success of social media as an industry, coupled with the
expansion of video traffic on the Internet in recent years, is
driving a continuous focus on video/image processing and
streaming. Video compression makes streaming possible,
while video quality models such as PSNR, SSIM [1], and
VMAF [2], which measure perceptual differences between
original and compressed videos, serve to calibrate trade-offs
between rate and quality in compression. These usually op-
erate under the assumption that original videos have pristine
quality. However, this presumption is not true for media shar-
ing platforms like YouTube and Facebook, since the majority
of uploaded videos are user-generated content (UGC), which
often already suffers from unpredictable quality degradations,
commonly incurred during capture. In this case, the original
quality of UGC, which can only be measured by no-reference
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quality models, must also be included as an important factor
when optimizing UGC compression or transcoding.

Many blind video quality assessment (BVQA) mod-
els have been proposed to solve this ‘UGC-VQA’ problem
[3–10], among which a simple but effective strategy is to com-
pute frame-level quality scores, e.g., as generated by blind
image quality assessment (BIQA) models [4, 5, 11–13], fol-
lowed by some form of temporal quality pooling [8, 14–16].
Other recent methods leverage end-to-end training of convo-
lutional neural networks to predict quality scores [8, 17–19].
Either way, the BVQA/BIQA problem has nearly always
been cast as a regression problem, where a continuous quality
score is predicted from a given visual signal. The success of
these models is evaluated by comparing their quality predic-
tions to subjective mean opinion scores (MOSs), which are
usually collected by conducting large-scale human studies.

Here we study the no-reference quality assessment of
UGC (UGC-QA) in a new light, and propose alternative ap-
proaches to the well-established regression approach. The
UGC-QA problem is similar to the image aesthetics assess-
ment (IAA) problem [20–22], as they both seek to predict
subjectivity and then share various intertwined factors. UGC-
QA focuses more on technical quality such as distortion,
rather than what makes a picture aesthetically appealing. In-
spired by the formulation of IAA problems, we quantize the
original subjective labels (MOSs) with different degrees of
granularity, onto 1) binary labels for binary high vs. low
quality classification, and 2) ternary labels for finer-grained
quality categorization. These evaluation methods relax the
use of continuous labels in the original regression task.

There are at least three good reasons to take this ap-
proach. First, recent work has shown that accurate qual-
ity score regression is a very challenging task [3, 23], and
even the state-of-the-art models suffer considerable predic-
tion uncertainty [3]. Like the IAA problem [21], relaxing
regression to (binary) classification could hence make this
problem more tractable. Second, inspired by just-noticeable-
difference (JND) [24] approaches to reference-based video
quality, we suggest that for blind visual quality prediction,
similar JND-like approaches may be taken to exploit the vi-
sual discriminative power and limits of subjects’ quality per-
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Fig. 1: MOS distribution of KoNViD-1k [27] follows a mul-
timodal distribution. Here, an example of a mixture model of
two Gaussians is fit to cluster the samples into high (red) or
low (blue) quality categories for binary classification.

ception, as exemplified by the popular five-level absolute cat-
egory rating (ACR) scale [25]: {Bad, Poor, Fair, Good,
Excellent}. Discretizing continuous scores onto qual-
ity categories follows this method. Finally, such an approach
may be more useful on UGC media transcoding platforms like
YouTube and Facebook, i.e., classifying quality scores onto
categories, since only discrete quality-guided decisions can
be deployed when (pre-)processing UGC content. One exam-
ple that helps explain this is the quality-guided transcoding
(QGT) framework proposed in [26], which involves encod-
ing videos uploaded to YouTube with parameters optimized
based on its input quality category: {low, medium, high}.
To this end, it is also of interest to determine the capability of
a model to predict quality at coarse levels by evaluating the
accuracy of classification tasks instead of regression.

2. PROBLEM AND TASK FORMULATION

We first revisit the formulation of the classic UGC-QA regres-
sion problem, and then discuss the relaxed classification tasks
we propose. Some evaluation metrics are also presented for
each individual task.

2.1. Task A: Regression

Consider a set of training samples D = {(xi, yi)}mi=1, where
xi ∈ X and yi ∈ Y ∈ [a, b] ∈ R, i.e., x is either in the
picture or video space and y is a continuous quality score in
an interval. The supervised regression task, which is the stan-
dard treatment for UGC-QA problem, is to find a hypothesis
or model h : X → Y that best approximates the true relation-
ship between variables and targets. Classical feature-based
models [3–7, 10] basically involve two steps - first manually
design a feature extractor Φ that maps the raw pixel space to
a much smaller yet informative feature space: Φ : X → Z
(dim(Z) � dim(X )), then learn a shallow regressor, e.g.,
support vector machines (SVM) [28], or random forests (RF)
[29], in the transformed domain {(zi, yi)}mi=1. Recent end-to-
end solutions [8, 18, 19, 30] jointly learn, from the raw pixel

domain, feature representation and regression layers within a
convolutional neural networks by optimizing `p (p = 1, 2)
losses between predicted scores and the ground truth.

The standard performance metrics for UGC-QA regres-
sion are the Spearman rank-order correlation coefficient
(SRCC) calculated between the ground truth MOSs and the
predicted scores to measure the prediction monotonicity, and
the Pearson linear correlation coefficient (PLCC) to measure
the degree of linear correlation against MOS, sometimes in
company with root mean squared error (RMSE).

Regression inherently imposes that the output space is
a metric space, where it penalizes the prediction error uni-
formly over the entire output range. However, we suggest
that there may exist quality thresholds to break up the con-
tinuous quality range into semantic quality categories, which
is conceptually similar to the JND approaches [24] that mea-
sures the quality loss of compression. That being said, it is
somewhat reasonable to deliberately discretize the continu-
ous scores into N discrete bins, based on the assumption that
samples lying within the same bin have very similar percep-
tual qualities. The smaller N , the easier the resulting task, at
the cost of more relaxation of labels.

It has been observed that the empirical distribution
of MOSs on a UGC-QA dataset usually follows a uni-
modal [31–33] or multimodal [16, 27, 34–36] distribution,
and the authors of [33] have also shown that the score distri-
bution at different distortion levels is often roughly normally
distributed. Therefore, we assume that the distributions of
quality scores can be represented by a Gaussian mixture
model (GMM) with N components as:

p(y) =
N∑

n=1

πnN (y|µn, σ
2
n), (1)

where each Gaussian component presents one semantic class
out of N categories. Expectation minimization (EM) is em-
ployed as a maximum likelihood estimator to fit the density
of the GMM, based on which scores are assigned to a sin-
gle cluster using the predicted posterior probabilities. Fig. 1
shows the MOS distribution of the KoNViD-1k [27] dataset,
where the MOS histogram may be modelled as following a
multimodal density function. Applying a mixture model with
two Gaussians, which are fit to the histogram, allows cluster-
ing the data into low and high quality classes.

2.2. Task B: Binary Classification

When the number of classes N is chosen as 2, the original re-
gression problem reduces to a binary classification task, i.e.,
to predict whether an input UGC belongs to the High or Low
quality category. The binarizing threshold T is automatically
determined by the GMM clustering described above. This bi-
nary categorization problem is particularly interesting since it
caters to applications involving optimizing transcoding con-
figurations for low and high input quality separately, such as
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Table 1: Summarization of the benchmarked UGC-IQA (top
three rows) and UGC-VQA (bottom three rows) datasets.

Database # Cont. Label Range Thr. (B) Thrs. (Task C)

CLIVE’16 [31] 1,162 MOS+σ [0,100] {49.426} {36.929,61.478}
KonIQ-10k’18 [32] 10,073 MOS+σ [1,5] {2.9631} {2.5902,3.2688}
SPAQ’20 [37] 11,125 MOS [0,100] {51.475} {38.980,59.475}
KoNViD-1k’17 [27] 1,200 MOS+σ [1,5] {2.8549} {2.5988,3.2900}
LIVE-VQC’18 [35] 585 MOS [0,100] {57.948} {48.211,67.265}
YT-UGC’20 [36] 1,380 MOS+σ [1,5] {3.4765} {3.0490,3.9430}

the QGT framework [26]. An alternative way of achieving
binary predictions is to fit a regressor to the MOS labels, then
apply a threshold to obtain binary predictions. Our prelim-
inary experiments on CLIVE [31], however, show that the
regression-thresholding method achieves worse results than
the proposed binary classification training scheme.

Typical evaluation metrics for binary classification in-
clude the overall accuracy metric: Acc. = TP+TN

P+N , where
TP , TN , P , N denote true positive, true negative, to-
tal positive, and total negative, respectively. This metric
alone, however, could be biased towards a dominant class.
To complement this metric when benchmarking on imbal-
anced testing sets, the balanced accuracy score can be used:
Balanced Acc. = 1

2

(
TP

TP+FN + TN
TN+FP

)
, where FN and

FP are false negative and false positive.

2.3. Task C: Ordinal Classification

Binary quality categorization is the coarsest classification
task, which may not accommodate applications where more
than two decisions are preferred. Thus, we also consider
N > 2 to allow for finer-grained single-label multi-class
classification. To quantize the quality interval, e.g., [1, 5],
onto a set of representative discrete labels, we also adopt the
GMM clustering withN Gaussians to fit the MOS histogram.

These class labels are imbued with order information,
e.g., the five-point classes include a natural label ordering:
Bad ≺ Poor ≺ Fair ≺ Good ≺ Excellent, where ≺ is
an order relation. In other words, misclassification costs are
not the same for different errors, e.g., misclassifying Bad as
Excellent should be more penalized than misclassifying as
Fair. Therefore, we formulate the task as an ordinal classi-
fication (or original regression) problem, in which a sample
must be classified into exactly one of the five ordered classes.

Several measures can be considered when evaluating or-
dinal classification models [38], among which we choose
two common methods: mean zero-one error (MZE) and
the mean absolute error (MAE). MZE is the global er-
ror rate of the classifier without considering the order:
MZE = 1

N

∑N
i=1[[ŷi 6= yOC

i ]] = 1 − Acc., where yOC
i is

the true label, ŷi is the predicted label and Acc is the ac-
curacy of the classifier. The MAE is the average absolute
deviation between the predicted rank O(ŷi) and the true rank

O(yOC
i ): MAE = 1

N

∑N
i=1 |O(ŷi)−O(yOC

i )|.

3. EXPERIMENTS

3.1. Experimental Setup

We selected the six UGC picture and video quality datasets
summarized in Table 1 for the benchmarking experiments.
Among these, CLIVE [31], KonIQ-10K [32], and SPAQ [37]
include authentically distorted pictures, whether manually
captured or sampled from the web; and LIVE-VQC [35],
KoNViD-1k [27], and YouTube-UGC [36] are three large
scale video databases containing realistic distortions. All
the datasets provide ground truth MOS as prediction targets,
which we use for the quality regression task (Task A). The
other two tasks, binary classification (Task B) and three-
class ordinal classification (Task C) use the GMM-discretized
scores as labels, based on the original MOS, as discussed in
Sections 2.2 and 2.3. Table 1 also shows the GMM-learned
thresholds used for tasks B & C on each database, respec-
tively. The tasks are summarized as follows.
• Task A - Score Regression: Given a UGC pic-

ture/video, predict a numeric quality score.

• Task B - Binary Classification: Given a UGC pic-
ture/video, predict whether it is of high or low quality.

• Task C - Ordinal Classification: Given a UGC pic-
ture/video, estimate the quality category on a three-
point scale: {Low, Medium, High}.

A set of representative BIQA/BVQA models were se-
lected as performance references to be compared with, which
include: BRISQUE [4], GM-LOG [11], HIGRADE [39],
FRIQUEE [5], CORNIA [12], and HOSA [40], for both IQA
and VQA datasets, and V-BLIINDS [6], TLVQM [7], and
VIDEVAL [3] for VQA evaluations only. When evaluated
on videos, the BIQA models were computed at one frame
per second and the features average pooled across sampled
frames to obtain video-level features to be used for training.
We did not include any deep learning-based methods, since
the model head has to be modified on our proposed tasks.
However, we did utilize VGG-19 and ResNet-50 average-
pooled feature maps as additional ConvNet baselines.

The performance metrics used are SRCC and PLCC for
the regression (Task A), and the accuracy and balanced ac-
curacy for the binary classification (Task B), and the mean
absolute error (MAE) and mean zero-one error (MZE) for the
ordinal classification (Task C). Following prior studies, we
randomly divided the dataset into 80%/20% (stratified splits
for classification tasks) content-disjoint training and test sets
20 times, and report the average performance on the test set.
A support vector machine (SVM) [28] with randomized grid
search cross validation was used for all tasks for a fair com-
parison, although one more advanced learning toolset [38]
could be contemplated for ordinal classification. For prac-
tical reasons we used a LinearSVM for CORNIA and HOSA.
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Table 2: Performance comparison of BIQA models on three UGC-IQA datasets. The underlined and boldfaced entries indicate
the best and top three performers on each database, for each performance metric of each task, respectively.

Database CLIVE [31] KonIQ-10k [27] SPAQ [37]

BIQA task Regression Binary Class. Ordinal Class. Regression Binary Class. Ordinal Class. Regression Binary Class. Ordinal Class.

Model SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓ SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓ SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓
BRISQUE .592 .620 75.7 69.9 .416 .482 .709 .715 82.0 78.0 .346 .372 .807 .814 85.9 85.9 .288 .325
GM-LOG .599 .618 75.8 69.6 .416 .480 .714 .721 82.2 77.3 .351 .373 .820 .825 86.1 86.1 .286 .322
HIGRADE .622 .638 77.1 72.0 .435 .505 .781 .799 85.5 81.0 .317 .336 .855 .860 87.8 87.9 .271 .304
FRIQUEE .677 .704 80.4 74.3 .399 .463 .821 .839 86.9 83.4 .295 .321 .886 .891 89.6 89.7 .234 .252
CORNIA .644 .683 77.3 70.7 .412 .480 .730 .760 84.4 80.1 .362 .389 .796 .804 85.4 85.4 .317 .357
HOSA .657 .689 80.1 73.7 .395 .436 .673 .708 85.1 81.8 .358 .384 .840 .847 84.9 84.9 .314 .343
VGG-19 .587 .640 77.2 69.3 .465 .588 .685 .715 80.7 74.2 .351 .387 .807 .816 83.5 83.6 .299 .342
ResNet-50 .701 .742 79.4 72.7 .457 .572 .805 .838 85.5 80.6 .369 .437 .889 .894 88.9 89.0 .295 .350

Table 3: Performance comparison of BVQA models on the three UGC-VQA datasets. The underlined and boldfaced entries
indicate the best and top three performers on each database, for each performance metric of each task, respectively.

Database LIVE-VQC [35] KoNViD-1k [27] YouTube-UGC [36]

BVQA task Regression Binary Class. Ordinal Class. Regression Binary Class. Ordinal Class. Regression Binary Class. Ordinal Class.

Model SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓ SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓ SRCC↑ PLCC↑ Acc.↑ B.Acc.↑ MZE↓ MAE↓
BRISQUE .577 .617 77.3 72.4 .392 .432 .668 .665 78.2 75.3 .387 .433 .367 .380 64.1 62.2 .513 .538
GM-LOG .588 .624 77.0 72.0 .399 .442 .658 .657 76.1 72.7 .403 .445 .350 .367 62.5 61.6 .518 .552
HIGRADE .587 .615 75.4 70.3 .432 .520 .701 .708 79.3 76.7 .396 .431 .741 .725 77.3 76.7 .360 .377
FRIQUEE .639 .685 77.3 72.6 .378 .412 .751 .752 79.6 76.8 .358 .386 .756 .755 76.1 75.9 .326 .344
CORNIA .689 .734 81.0 76.9 .362 .394 .749 .741 81.1 78.9 .360 .383 .575 .582 70.5 70.1 .393 .428
HOSA .685 .745 81.4 77.4 .359 .386 .769 .743 81.4 79.3 .360 .387 .600 .603 72.0 71.6 .409 .440
VGG-19 .622 .712 81.7 77.7 .349 .385 .708 .729 80.3 78.1 .383 .413 .539 .553 73.3 72.5 .414 .442
ResNet-50 .679 .747 80.8 76.1 .396 .446 .791 .799 82.4 79.9 .342 .364 .721 .717 74.7 74.3 .347 .364
VBLIINDS .696 .717 80.5 77.6 .379 .421 .700 .693 77.2 74.4 .379 .412 .536 .531 71.3 70.3 .399 .433
TLVQM .793 .793 82.6 79.4 .307 .337 .769 .765 79.3 76.6 .348 .376 .663 .655 73.8 73.0 .386 .404
VIDEVAL .747 .756 78.9 75.0 .354 .397 .785 .779 81.2 78.5 .350 .370 .771 .767 80.0 80.2 .307 .320

All the feature extractions were conducted in MATLAB while
the training and evaluations were implemented with Python.

3.2. Performance and Discussion

Tables 2 and 3 show the performances of the evaluated UGC-
QA models on IQA and VQA datasets for the three proposed
evaluation tasks, respectively. It may be seen from Table
2 that different tasks yield different rankings of the mod-
els on CLIVE - the best model is ResNet-50 for regression,
FRIQUEE for binary classificion, and HOSA for ordinal
classification. Similarly, FRIQUEE and ResNet-50 are the
top performers for the three tasks on SPAQ. On KonIQ-10k,
however, the top performing model was FRIQUEE for each
task. The top three models were different for each individual
task, however. This suggests that the two new tasks provide
different and complementary criteria relative to the regression
task for the selection and ranking of UGC-QA models.

On the video datasets shown in Table 3, we observed more
consistent results among the evaluated BVQA models - the
best algorithm was TLVQM on LIVE-VQC, ResNet-50 on
KoNViD-1k, and VIDEVAL on YouTube-UGC, respectively,

for all the three tasks. Since any VQA dataset is small enough
to contain some bias [3, 41], there may exist models that out-
perform all those tested, on all tasks. But the overall perfor-
mance ranking of the three different tasks still yield different
results on each video set, yielding much more information
than only using regression metrics. Overall, the proposed
evaluation tasks provide a different way to predict quality
compared to the regression objective, with practical advan-
tages, helping to advance studies of UGC-QA algorithms.

4. CONCLUSION

We revisited the problem of no-reference quality assessment
of user-generated content (UGC-QA), and proposed two ad-
ditional tasks beyond the original regression approach - bi-
nary, and ordinal classification - to evaluate UGC-QA mod-
els at coarser levels. Our experimental results present reli-
able benchmarks on several popular UGC picture and video
datasets, paving the way for further studies of UGC-QA mod-
els. We hope this work sheds insights into new views, experi-
ments, and evaluation methods on the trending and challeng-
ing UGC-QA problem.
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