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Abstract—The use of £, (p = 1,2) norms has largely domi-
nated the measurement of loss in neural networks due to their
simplicity and analytical properties. However, when used to
assess the loss of visual information, these simple norms are
not very consistent with human perception. Here, we describe
a different *“‘proximal” approach to optimize image analysis
networks against quantitative perceptual models. Specifically,
we construct a proxy network, broadly termed ProxIQA, which
mimics the perceptual model while serving as a loss layer of the
network. We experimentally demonstrate how this optimization
framework can be applied to train an end-to-end optimized image
compression network. By building on top of an existing deep
image compression model, we are able to demonstrate a bitrate
reduction of as much as 31% over MSE optimization, given a
specified perceptual quality (VMAF) level.

Index Terms— Perceptual optimization, perceptual image/video
quality, convolutional neural networks, deep compression.

I. INTRODUCTION

ECENTLY deep neural networks have been successfully

and ubiquitously applied on diverse image processing
and computer vision tasks, such as semantic segmentation [1],
object recognition [2], video encoding [3], [4], and optical
flow [5]. Many classic image transformation problems can be
approached using a deep generative network, which learns to
reconstruct high-quality output images from degraded input
image(s). Explicitly, the generative network is trained in a
supervised manner with a loss function, which is used to
measure the fidelity between the output and a ground-truth
image. For instance, the denoising task aims to reconstruct
a noise-free image from a noisy image, and Convolutional
Neural Networks (CNNs) have been shown to provide good
noisy-to-pristine mapping functions [6], [7]. Similar tasks
where retaining image fidelity is important include deep
image compression, super-resolution [8], [9], frame interpo-
lation [10], and so on.
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Fig. 1. General framework of perceptual optimization using a ProxIQA
network: A generative network takes an image x as input and outputs a
reconstructed image y = fp(x;6;). Note that 8, 8p are the parameters of
fe, fp. respectively, while y is the ground-truth image. Given an image quality
measurement M, the ProxIQA network is learned as its proxy, where the
output Hpmxy represents M(y, ¥).

Although a significant amount of research has been applied
on deep learning image transformation problems, most of this
work has focused on investigating network architectures or
improving convergence speed. The selection of an appropriate
loss function, however, has not been studied as much. The
choice of the loss functions used to guide model training
has been largely limited to the £, norm family, in particular
the MSE (squared £ norm), the £1 norm, and variants of
these [11]. The structural similarity quality index (SSIM) [12]
and its multi-scale version (MS-SSIM) [13] have also been
adopted as loss functions for several image reconstruction
tasks [14], [15], owing to their perceptual relevance and good
analytic properties, such as differentiability.

Perceptual image quality assessment has been a
long-standing research problem. Although numerous powerful
perceptual models have been proposed to predict the perceived
quality of a distorted picture, most other image quality indexes
have never been adopted as deep network loss functions,
because they are generally non-differentiable and functionally
complex.

Towards bridging the gap between modern perceptual qual-
ity models and deep generative networks, we explore the
potential of adapting more powerful and sophisticated percep-
tual image quality models as loss functions in deep neural
network for addressing the aforementioned problems, by sim-
ulating the measurements made by a perceptual model by a
proxy network ProxIQA. As shown in Fig. 1, the main idea
is to optimize the hyper parameters of the generative network
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. using a ProxIQA network as a perceptual loss function

L (Gg) =Jp (3’-5’? Gp)
= fp (v, fo (x: 6g) : 6) , (1)

where x, ¥ are the input and output of the generative network
fr and y is the ground-truth image. In the image compression
problem, x is an uncompressed image and we anticipate the
fidelity of the compressed image. Thus, this is a special case
where x = y. The parameters #, of the ProxIQA network
are optimized so that it mimics M(y, ¥). a perceptual image
quality measurement between y and ¥.

The outline of this paper is as follows: Section II reviews
the relevant literature of image quality assessment, percep-
tual optimization, and deep image compression. Section III
describes the ProxIQA framework, while Section IV provides
analysis and experimental results. Finally, Section V concludes
the paper.

II. RELATED WORK

In this section, we provide a literature review of studies
that are closely related to our work. The relevant topics of
objective image quality assessment, perceptual optimization
and deep compression are briefly reviewed.

A. Perceptual Image Quality Metrics

Over the past decade there has been a remarkably
increasing interest in developing objective image quality
assessment (IQA) methods. Objective IQA models are com-
monly classified as full-reference, reduced-reference [16], and
no-reference [17], based on the amount of information they
assess from a reference image of ostensibly pristine quality.
Here we only need to consider the full-reference (FR) scenario,
since it may be assumed that ground-truth data is available,
hence we only review FR IQA models.

Beyond the well-known structural similarity index and
other SSIM-type methods, a wide variety of perception-based
FR models have been designed, including the visual signal-
to-noise ratio index (VSNR) [18], the visual information
fidelity (VIF) index [19], the MAD model [20], the feature
similarity index (FSIM) and its extension FSIM,. [21], and the
Visual Saliency-Induced index (VSI) [22].

With the rapid development of machine learning, impor-
tant data-driven models have also begun to emerge. Mod-
els using “handcrafted” features with different regressors
[23]-[26] can produce accurate quality predictions on existing
datasets. However, they cannot be used for end-to-end training
if any component is not differentiable, motivating us to pursue
a systematic and holistic approach. For example, Random
Forest regression as used by [24] is non-differentiable at the
split nodes. Other DNN-based IQA models [27]-[29] have
also shown promising results. A particularly successful exam-
ple is Netflix’s announcement of an open-source FR video
quality engine called Video Multimethod Assessment Fusion
(VMAF) [30]. VMAF combines multiple quality features to
train a Support Vector Regressor (SVR) to predict subjective
judgments of video quality. When it is applied to still pictures,
VMAF treats the data as a video frame having zero motion.
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Fig. 2. Comparison of different perceptual loss layers for generative neural
networks. Given a target patch x and a reconstructed patch X, (a) determined
function based approaches typically use a differentiable function having a
certain degree of convexity. such as SSIM and MS-SSIM. (b) Perceptual-loss
based approaches define the loss from the features extracted from intermediate
layers of a trained network (such as VGG) (c) Our method uses the output
of a proxy network that approximates an IQA model as the loss function.

The study in [31] showed that VMAF correlates quite well
against human judgements of still picture quality. Indeed, most
of the VMAF features are those of VIF [19], which is among
the most powerful and effective image quality models. Like
SSIM, VMAF is used to perceptually optimize tremendous
volumes of internet picture and video traffic [30].

Generally, more advanced, high-performance quality predic-
tion models such as these are difficult to adopt as loss functions
for end-to-end optimization networks.

B. Perceptual Optimization

As tractable tools for perceptual optimization, SSIM and
MS-SSIM have been widely adopted because of the simple
analytical form of their gradients and computational ease.
Moreover, their convexity properties [32] makes them feasible
targets for optimization. For example, two recent studies
adopted structural similarity functions as loss layers of image
generation models, obtaining improved results as validated by
conducting a human subjective study [14] and by objective
evaluation against several other perceptual models [15]. The
recent manuscript [33] systematically evaluated IQA mod-
els as loss functions for perceptually optimizing different
tasks. It was found that many IQA methods failed due to
non-convexity of the objective function.

Rather than optimizing a mathematical function, another
approach uses a deep neural network to guide the training.
Recent experimental studies suggest that the features extracted
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from a well-trained image classification network have the
capability to capture information useful for other perceptual
tasks [34]. As illustrated in Fig. 2(b), the perceptual loss is

defined as
Eperc = quﬁ'i
i

= >N 40— )

2
s @)

where ¢; denotes the output feature map of the i-th layer with
N; elements of a pre-trained network ¢.

In practice, the loss computed from the high-level features
extracted from a pre-trained VGG classification network [35],
also called VGG loss, has been commonly adopted for diverse
computer vision tasks. The VGG loss has been applied to such
diverse tasks as style transfer [36], [37], superresolution [36],
[38]-[40], and image inpainting [41].

C. End-to-End Optimized Lossy Image Compression

Recently, lossy image compression models have been
realized using deep neural network architectures. Most of
these have deployed deep auto-encoders. For example, Ballé
et al. [42] proposed a general infrastructure for optimizing
image compression in an end-to-end manner. Unlike other
methods, the bitrate is estimated and considered during train-
ing. In [43], this model is improved by incorporating a scale
hyperprior into the compression framework. The authors use
an additional network to estimate the standard deviation of
the quantized coefficients to further improve coding efficiency.
Later, Minnen et al. [44] exploit a PixelCNN layer, which
they combine with an autoregressive hyperprior. Beyond these
early efforts, other recent approaches have adopted more
complex network architectures such as recurrent neural net-
works (RNNs) [45]-[47] and generative adversarial networks
(GANSs) [48], [49]. Some works has also been done to extend
these ideas to the deep video compression problem [50]-[52].

Unsurprisingly, the idea of optimizing a conventional codec
such as H.264/AVC against perceptual models like SSIM, VIF,
and VMAF have been deeply studied [53]-[56] and imple-
mented in widespread practice [30]. We seek to extend this
concept in similar manner to learn an end-to-end perceptually
optimized compression model.

III. PROPOSED PERCEPTUAL OPTIMIZATION FRAMEWORK

Our approach to training an image compression model in a
perceptually optimized way is depicted in Fig. 3. This frame-
work involves optimizing two networks: an image compression
network f,, and a sub-network f,, which is a proxy of an
IQA model, which we will refer to as ProxIQA. A source
image x is input to a compression network, which produces a
reconstructed image:

X = [:i(x)- (3)

Separately, the ProxIQA network maps the image pair (x, X)
into a proxy of an image quality model M:

M= f,(x,%). @)
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In each training iteration, the two networks are alternately
updated as follows:

1) Deep Compression Model Updating: To integrate f, into
the update of f. given a mini-batch x, the model parameters
of f, are fixed during training. In order to minimize distor-
tion, the output of f, becomes part of the objective in the
optimization of f:

;ﬁ'(x,i) = J (&%) = 1 & - () - (5)

By back-propagating through the forward model, the loss
derivative is used to drive f.. As we will see later in
section III-B, the entropy model is also updated at this
stage.

2) ProxIQA Network Updating: Given a mini-batch pair x
and X collected from the most recent update of the compression
network, the quality scores M(x, X) are calculated. The Prox-
IQA network is updated such that its output M optimally fit
M given the input {x, i} Note that the compression network
is not needed in this part of the training.

As may be seen, the auxiliary sub-network ProxIQA is
incorporated into the training of the compression network.
However, it is important to understand that the ProxIQA
network is not present during the testing (image compres-
sion/decompression) phase. In addition, it could be argued
that the training strategy employed by ProxIQA shares some
similarities with that of Generative Adversarial Networks
(GANSs) [57]. However, we have identified an important con-
ceptual difference between the two: the ProxIQA network
learns to fit a quality model and does not include the image
compression network during its update, which is different from
the discriminator in GANs.

A. Network Architecture

1) ProxIQA Network: The goal is to learn a nonlinear
regressor via a CNN. The network takes a reference patch x
and a distorted patch X as input, where both have W x H pixels.
They are then concatenated into a 6-channel signal, where a
W x H x 6 raw input {x, ¥} is fed into the network and reduced
to a predicted quality score. As depicted in Fig. 4, the ProxIQA
network may be as simple as a shallow CNN consisting of
three stages of convolution, ReLU as an activation function,
and maxpooling. The spatial size is reduced by a factor of
2 after each stage via 2 x 2 max pooling layers. Finally,
64 W/8 x H /8 feature maps are flattened and fed to a fully
connected layer which yields the output. The parameterization
of each layer is detailed in the figure.

2) Compression Network: We build on the deep image
compression model [42]. As shown in Fig. 3, the image
compression network comprises an analysis transform (g,) at
the encoder side, and a synthesis transform (g;) at the decoder
side. Both transforms are composed of three consecutive
layers of convolution-down(up) sampling-activation. Instead of
utilizing ReL.U, a generalized divisive normalization (GDN)
transform is adopted as the activation function [58], similar
to normalization of the visual signal by the human visual
system (HVS).
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Fig. 3.

Detailed framework of the proposed optimization strategy. Perceptually training a deep image compression model involves alternating optimization

of the compression network (left side of the figure) and the ProxIQA network (right side of the figure). Thin arrows indicate the flow of data in the network,
while bold arrows represent the information being delivered to update the complementary network.
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ReLU
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Fig. 4. Architecture of the ProxIQA network. The convolutional parameters
are denoted as: height x width | input channel x output channel | stride
| padding: The max pooling layers are denoted as: vertical pooling size x
horizontal pooling size.

B. Loss Functions

As illustrated in Fig. 3, let x, y, ¥, and X be the source
batch, latent presentation, quantized latent presentation, and
reconstructed batch, respectively. The model parameters in the
analysis and synthesis transforms are collectively denoted by
@ = (0q, 05). The ProxIQA network has model parameters ¢.
Given a perceptual metric M, such as SSIM or VMATF, the goal
is to optimize the full set of parameters @, ¢, such that the
learned image codec can generate a reconstructed image X
that has a high perceptual quality score M(x, X). Furthermore,
the rate should be as small as possible. Therefore, we train
our model using the following losses.

1) Rate Loss: The rate loss representing the bit consumption
of an encode ¥ is defined by

L, (0) = —log, p; (), (6)

where p; (if) is the entropy model. This entropy term is
minimized when the actual marginal distribution and § have
the same distribution.

During training, the latent presentation y is approximately
quantized to y as additive quantization noise Ay (i.i.d uni-
form). Then, ¥ is used to estimate the rate via (6). Unlike the
estimated entropy used when ftraining the network, a variant

of the context-adaptive binary arithmetic coder (CABAC) [59]
is used to encode the discrete-valued data into the bitstream
during testing.

2) Pixel Loss: The pixel loss is the residual between the
source image and the reconstructed image mapped by a
distance function d. Given x and X, the pixel loss is defined

by

Lq4(0)=d(x—%), W)

where d(.) can be mean squared error (i.e., d(x) = |[x|f%) or
mean absolute error (i.e., d(x) = [[x]|{).

The original work in [42] used d(x) = ||x{|% as the pixel
loss to maximize the PSNR of the reconstructed images. When
combined with the rate loss, the image compression network
is optimized by minimizing the objective function defined by

L) = ALy + Ly, ®)

which is a similar form of rate-distortion optimization (RDO)
function as is found in conventional codecs. This equation
indicates that the entropy model is jointly optimized with
the compression network. We make use of a pixel loss to
encourage training stability.

3) Proxy Loss: Instead of just minimizing an £, norm
between x and X, we introduce a novel loss term. The proxy
loss £, is calculated from the output of ProxIQA network,
denoted by M, with fixed parameter ¢:

Ly 0; ) = Mmax — M (x, %). 9)

Here Mpax denotes the upper bound of the model M, which
is a constant to the loss function.

Finally, the total loss function for optimizing the compres-
sion network is the weighted combination of the losses from

Egs. (7), (6), and (9):
Li0:¢)=A[al,+ (1 —a)Ly] +L,, (10)

where A balances bitrate against distortion of the encoded
bitstream, and a weights the proxy loss against the pixel
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(a) Reconstructed patches from deep com-
pression model.

Fig. 5.

(b) Waterloo Exploration database.

(c) BAPPS database.

Comparison of distorted patches from existing databases and three deep compression networks. For (a)(b), The first column shows the pristine

patches while the other three columns are randomly selected distorted patches. In (c), each similar pair includes a reference patch (left), and a distorted patch
(right). The distortions in (a)(b)(c) were generated from (i) patches reconstructed during different training steps of the deep compression network; (ii) synthetic
distortions with different severity levels added to the original patches; (iii) the outputs of various convolutional neural networks, respectively.

loss. We empirically set & = 1.5¢ — 3 for M = VMATF,
and @ = 3e — 3 for both M = SSIM and MS-SSIM.
This was accomplished by selecting four values spaced along
the reals and choosing the best performing value. However,
the performance did not vary much over the range of tested
values. The pixel loss plays a different role as a regularization
term. Since the ProxIQA network is updated at each step,
the loss function £, is also updated. The pixel loss serves to
stabilize the training process.

4) Metric Loss: The ProxIQA network aims to mimic an
image quality model M. Given two images x and X, define a
metric loss L, to attain this objective while updating ProxIQA
network:

Lo (#:%) = |1 (x,%) - M (x,9)[

(11)

Note that X is a constant, since it is obtained from the
reconstructed patches generated during the most recent update
of the compression network. M (x, i) is the ground-truth data
obtained on-the-fly during training. We used the MSE loss,
because it is more sensitive to outliers. We also tried £ loss
to update the ProxIQA parameters ¢, obtaining very similar
results.

C. What’s Wrong With Using a Pre-Trained Network?

Another way of attempting to accomplish the same goal
is to use a pre-trained network as the loss layer. That is,
a proxy network is first learned to predict a metric score given
a pristine patch and a distorted patch from an existing dataset.
Next, the trained proxy network is inserted into the loss layer
of the deep compression network with the goal of maximizing

the proxy score. Unfortunately, severe complications can arise
when applying this simple methodology.

1) New Distortion Types: The success of a CNN model
depends highly on the size of the training set. This is often
an obstacle to learning DNN-based IQA models, due to the
insufficient size, as compared to image recognition databases,
of publicly available IQA databases. Luckily, training a proxy
network on an existing model does not require human-labeled
subjective quality scores such as mean opinion scores (MOS)
or differential mean opinion scores (DMOS). The ground truth
metric score for training the proxy network is easily obtained,
given a pristine patch and a distorted patch. Therefore, we can
make use of large-scale databases that do not include MOS,
such as the Waterloo Exploration database [60].

Nevertheless, the distortion types provided by
public-domain databases are generally quite different
from the distortions created by a deep compression model
(see Fig. 5(a)). In fact, most existing databases only provide
synthetic distortions. As shown in Fig. 5(b), we randomly
selected images distorted by JPEG, JPEG2000, Gaussian blur,
and white Gaussian noise, from the Waterloo Exploration
database. As may be easily observed, these distortions are
drastically different from those created by CNNs.

The Berkeley-Adobe PPS (BAPPS) database [34] contains
many distorted patches collected from the outputs of CNN
models. However, these CNN-based distortion types are still
different from the patches reconstructed by deep compression
networks. In the second to fourth columns of Fig. 5(a),
we show several randomly collected reconstructed patches
output by the deep compression model during different train-
ing steps. We have observed that dissimilar distortions can
be generated by the same network architecture by using
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(a) Source image: Kodim01.

(b) Adversarial example.

Fig. 6. An “adversarial” example produced by the compression network. The
VMAF score calculated from (a) the source image and (b) the decoded image
is 5.35 (which indicates a very poor-quality image), while the pre-trained
ProxIQA network predicts a quality score of 97.74.

different training steps or parameters. By comparing these
distortions, we noticed that learning a network from previously
existing databases might not be the optimal solution to our
problem. On the contrary, by applying the proposed alternating
training, this problem is immediately resolved: the patches
reconstructed by the compression network are directly used
to learn the ProxIQA network.

2) Adversarial Examples: We also discovered that the deep
compression network often generates “adversarial” examples
when its loss layer is the output of a pre-trained network
having fixed parameters. Fig. 6 shows such an “adversarial”
example generated by the deep compression network using a
proxy network as its loss function. In this example, the proxy
network was well-trained to mimic the VMAF algorithm.
However, comparing Fig. 6(a) with Fig. 6(b), it is apparent that
the true VMAF score and the proxy VMAF score predicted
by the ProxIQA network are very different. This can be
understood by considering the training of the network to be
an interpolation problem, whereby the neural networks maps
a test image to an accurate quality score. However, when
the input is too different from the training set, the ProxIQA
network may produce a poor interpolation result.

To further illustrate, Fig. 7 compares true VMAF scores
with proxy VMAF scores. All of the scores were calculated on
the reconstructed patches produced during training. Figure 7(a)
shows that the proxy VMAF scores quickly approached 100,
whereas much lower true VMAF scores were assigned to the
patches produced by the compression model. This problem
becomes significant when the previous discussed training strat-
egy is applied. However, a straightforward way of improving
the training stage is to simply feed the adversarial examples
along with their objective quality scores into the ProxIQA
network as additional training data. The ProxIQA network is
then updated, which enables it to predict proxy quality much
more accurately. As shown in Fig. 7(b), the true and proxy
scores become highly coincident early in the training process.
This also indicates that a CNN is able to closely approximate
the responses delivered by VMAFE

D. Implementation and Training Details

The TensorFlow framework (version 1.12) was used to
implement the proposed method. We use the Adam solver [61]
to optimize both the ProxIQA network and the deep compres-
sion network, with 1 = 0.9 and £> = 0.999. We set the initial

Predicted score

20 —true VMAF ||
—— proxy VMAF
| | | |
i 10! 1P 1 1ot 1t
Training step

(a) Pre-trained model.

Predicted score

e e VIAF |

—— proxy VMAF
c;n" uIJ‘ 1|I:2 1;9 'HI:‘ 1¢
Training step
(b) Model learned from the proposed alternating training

process.

Fig. 7. Comparison of true VMAF scores and proxy VMAF scores (quality
scores predicted by ProxIQA) using two different optimization strategies
during the training process. The two scores are plotted in mean values (lines)
and standard deviations (shadows).

learning rates for both networks at fixed values of 1e—4 for the
first 2M steps and le — 5 for an additional 100K iterations.
Thus, the network was trained on 2.1M iterations of back-
propagation. All of the models were trained using NVIDIA
1080-TI GPU cards.

We used a subset of the 6507 processed images from
the ImageNet database [62] as training data. As described
in [42], small amounts of uniform noise were added to the
images. The images were then down-sampled by random
factors to reduce compression artifacts and high-frequency
noise, and randomly cropped to a size of 256 x 256.
In each mini-batch, we randomly sampled 8 image patches
from the subset. We then cropped the images to 128 x
128 patches. The source code is publicly available on
https://github.com/treammm/Compression.

IV. EXPERIMENTS AND ANALYSIS

We compared the proposed perceptual optimization frame-
work against the original MSE optimized image compression
model and also against state-of-the-art image codecs. In order
to experimentally evaluate the trained models, we conducted
and reported the results of a quantitative evaluation, a subjec-
tive comparison, and by a runtime analysis. We first describe
the experimental setups that were used, including the datasets
on which the performance evaluation was conducted using
standard evaluation criteria. We also performed a different
series of experiments to probe the limitations of our design.
In all the experiments conducted, we denote the deep image
compression model [42] as the BLS model (BLS represents
the authors’ first initials), which we use as a baseline for
performance comparison. Also, we denote an optimized proxy
model for a given IQA model M using (10) and (11) is denoted
by M.
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TABLE I
BD-RATE CHANGE (IN PERCENTAGE) OF THE OPTIMIZATION RESULTS OF DEEP IMAGE COMPRESSION MODELS ON THE KODAK DATASET, FOR FOUR
DIFFERENT IQA MODELS. THE CORRESPONDING BASELINE IS THE MSE-OPTIMIZED BLS MODEL [42]. SMALLER OR NEGATIVE
VALUES MEANS BETTER CODING EFFICIENCY

Optimization SSIM,, MS-SSIM,, VMAF,
BD-rate Metric  PSNR SSIMMS-SSIM VMAF ~ PSNR SSIMMS-SSIM VMAF ~ PSNR  SSIM MS.SSIM VMAF
Kodim01 144 -174 -163 21 126 -14 -39 24 49 29 43 253
Kodim(02 110 -216 -179 154 65 -13.1 2215 30 86 -22 26 -26.7
Kodim03 135 -195 -166 58 43 -146 241 -106 78 52 72 -332
Kodim04 156 -235 214 93 100 -156 -266 00 63 -64 74 -269
Kodim05 138 -168 -148 14 140 -39 -112 -2l 31 -61 63 -181
Kodim06 170 -220 200 05 122 -101  -192 -23 45 60 74 -236
Kodim07 116 -145 -109 83 71 99 211 -06 70 -100 97 -247
Kodim08 130 -149 -151 -54 164 -06 66 ~-1.3 25 -39 52 -203
Kodim(9 16.1 -17.6 -145 123 76 -129 -23.8 -1.2 64 -31 44 249
Kodim10 154 -253 224 122 104 -173 328 33 50 96 -107 -232
Kodim11 166 266 253 128 141 -161 -259 69 51 71 -85 -200
Kodim12 104 308 288 128 25 -197 313 83 66 -34 59 24
Kodim13 199 253 245 71 168 9.1  -166 -3 12 81 92 -196
Kodim14 175 -226 203 82 130 -105 -183 00 40 -85 92 -20.1
Kodim15 174 271 260 60 98 -156 -30.7 0.1 67 -57  -16 -318
Kodim16 144 -204 -159 2.5 63 -139 -213 32 65 46 -6.1 -249
Kodim17 180 207 -193 73 105 -150 297 0.1 53 96 -109 -236
Kodim18 197 207 -183 121 179 92 -179 24 27 91 98 -220
Kodim19 176 -182 -160 139 177 87 218 68 87 47 61 -178
Kodim20 19.7 -21.3 =224 153 12.8 -10.3 <253 0.3 5.1 -5.4 82 -242
Kodim21 181 -166 -150 19 164 -75 -169 -4.1 41 53 68 -216
Kodim22 150 230 212 118 103 -155 243 35 34 -109  -124 251
Kodim23 147 -216 -17.5 155 105 -16.6 -29.6 4.1 78 -5 8.7 -16.7
Kodim24 213 234 217 20 206 -113 219 -17 22 -114  -122 -240
TABLE IT

A. Experimental Sefup

1) Evaluation Datasefs: To evaluate the various image
codecs, we utilized the well-known Kodak dataset [63] of
24 very high quality uncompressed 768 x 512 images. This
publicly available image set is commonly used to evaluate
image compression algorithms and IQA models. We also used
a subset of the Tecnick dataset [64] containing 100 images of
resolution 1200 x 1200, and 223 billboard images collected
from the Netflix library having acronym NFLX, yielding
images having more diverse resolutions and contents. None
of the test images were included in the training sets, to avoid
bias and overfitting problems.

2) Evaluation Criteria: We measured the objective coding
efficiency of each image codec using the Bjontegaard-Delta
bitrate (BD-rate) [65], which quantifies differences in bitrate
at a fixed distortion level relative to another reference encoder.
To calculate BD-rate, we encoded the images at eight different
fixed bitrates, ranging from 0.05 bpp (bit per pixel) to 2
bpp. The performances of all of the codecs were compared to
the same baseline - the MSE-optimized BLS model. A neg-
ative number of BD-rate means the bitrate was reduced as
compared with the baseline. To fairly compare deep com-
pression models having different loss layers, we used 192
filters at every layer, and trained all of the models using the
same number of steps. To ensure reproducibility, we report
the version of each software codec used in Table II. The input

VERSION OF SOFTWARE IMAGE CODECS USED IN THE EXPERIMENTS

Codec Software Version

JPEG JPEG XT Release 1.53!
JPEG2000  Kakadu Version 7.10.22
HEVC HM 16.9°

Ballé [42]  Tensorflow Compression  Release 1.0%
Ballé [43]  Tensorflow Compression Release 1.2%

image formats used were YUV444 for JPEG and JPEG2000,
and both YUV420/444 for intra-coded HEVC, respectively.
Lastly, the IQA algorithms that were used to evaluate the
codecs were calculated using FFmpeg 4.0 with libavfilter (for
PSNR) and libvmaf 0.6.1° (for SSIM, MS-SSIM, VIF, and
VMAF). Specifically, the PSNR calculation in libavfilter is
defined by

PSNR.¢ = (4 x PSNRy + PSNRy + PSNRy) /6, (12)

which is commonly used for combining per-channel PSNRs.

Uhttps://jpeg.org/downloads/jpegxt/reference 136 7abcd89.zip
2https://kakadusoftware.com/downloads/

3 hitps://heve.hhi.fraunhofer.de/svi/svn_HEVCSoftware/tags/HM-16.9/
4https://github.com/tensorflow/compression/releases/tag/v1.0

3 https://github.com/tensorflow/compression/releases/tag/v1.2

6 hitps://github.com/Netflix/vmaf
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367

OVERALL COMPARISON OF DIFFERENT CODECS AND RESULTS OF OPTIMIZED DEEP IMAGE COMPRESSION: AVERAGE CHANGE OF BD-RATE AND
STANDARD DEVIATION (INDICATED BY UNDERLINE) EXPRESSED AS PERCENTAGE, USING THREE DIFFERENT IQA MODELS TO TRAIN PROXIQA.

THE BASELINE OF COMPARISON IS THE MSE-OPTIMIZED BLS MODEL [42]. SMALLER OR NEGATIVE VALUES

INDICATE BETTER CODING EFFICIENCY

Image Dataset Kodak Tecnick NFLX
BD-rate Metric PSNR SSIM MS-SSIM VIF VMAF PSNR SSIM MS-SSIM VIF VMAF PSNR SSIM MS-SSIM VIF VMAF
JPEG 113.99 12949 14986 9562 7836 11933 21804 17159 9459 8973 102.28 14399 16820 7934 89.95
1586 21.98 2504 1520 2033 3165 3411 3888 3273 24.01 2859 3494 37.19 25.88 23.53
JPEG2000 -11.51 625 -1.02 -1.76 -33.39 -13.06 -1.55 -841 -891 -3425 -27.81 1.43 -393 -1455 -38.98
10.78 1468 1371 13.19 8.77 2294 2592 2289 2232 1847 2025 26.84 2577 2334 17.03
HEVC -26.35 -632 -6.12 -13.68 -2823  -2832 -897 -11.07 -1487 -27.65 -4943 -17.12 -16.06 -29.93 -35.03
11.06 18.65 1905 14.14 1215 2248 2984 2756 25.07 24.05 16.07 25.63 2659 2122 21.52
HEVCaz0 -27.33 2598 -2497 -3273 -42.18  -19.48 -2897 -3395 -40.15 -46.67 -37.63 -3541 -33.88 -4751 -50.91
8.56 1505 1553 1177 1032 19.25 2274 1993 1805 18.37 18.13 1901 2008 1566 16.34
BLS Ms-SSIM [42] 107.50 -21.89 -27.84 446 11.72 50.31 -15.09 -2417 689 11.25 67.04 -1058 -2428 7.12 2810
7342 793 584 848 11.98 1997 945 9.89 1349 11.68 21.13 2015 1085 15.88 13.91
BLS ssIM,, 15.89 -21.31 -19.25 -4.71 7.19 867 -10.79 -16.11 -572  8.68 16.79 -19.01 -17.73 -6.61 9.75
283 393 422 344 652 659 760 613 498 666 899 682 665 683 672
BLS MS-SSIM,, 11.67 -11.58 -21.77 -3.69 -0.17 447 -1740 -2350 -500 019 12.28 -11.59 -2353 -596 434
450 477 717 351 449 865 855 989 516 478 1040 965 1085 692 644
BLS VMAF, 523 653 778 -190 -23.35 623 -845 -597 -224 -2378 700 -435 -543 -196 -21.97
BMSHJ MSE [43] -21.46 -1094 -10.17 -1652 -2578  -26.03 -2022 -16.71 -22.75 -33.75 -36.64 -21.21 -21.08 -2892 -38.01
602 636 566 622 825 10.88 13.83 10.68 11.74 12.70 10.18 1132 12.18 1226 12.62
BMSHJ Ms-sSIM 9394 -2552 -34.04 5077 -11.50 555 -3253 -3255 3119 -2090 -3.28 -37.82 -4252 2734 -25.74
7719 2198 2504 1520 2033 1277 3411 3883 3273 24.01 1847 1443 1393 3449 16.75
BMSHJ VMAF, -1590 -13.57 -13.17 -17.02 -47.11  -19.64 -23.14 -16.73 -23.63 -53.18 -29.96 -18.87 -19.29 -29.00 -56.06
534 422 370 486 772 1035 1029 1082 9.69 1163 1034 1101 1041 1087 10.66

B. Experimental Results on Kodak Dataset

The results on the images in the Kodak dataset are given
Table 1. The distortion levels that were used for BD-rate
calculation were quantified using PSNR, SSIM, MS-SSIM,
and VMAEFE It may be observed that the RD performances
that were measured using PSNR became worse on models
optimized under other IQA models. This is not surprising
since MSE, which is used by the baseline model, is the
optimal loss function for PSNR. In fact, this phenomenon may
also be related to the distortion-perception tradeoff described
in [66]: given a fixed rate, the improvement of percep-
tual quality must be balanced against the loss in distortion.
The second thing to notice is the performance attained by
the SSIM;, and MS-SSIM,, optimizations. Both the SSIM and
MS-SSIM BD-rates were improved significantly, as expected.
Yet, the VMAF BD-rate performed slightly worse than the
original MSE optimization, indicating there exists disagree-
ments between VMAF and SSIM/MS-SSIM. Similar trends
can also be observed from the MS-SSIM optimization given
in Table III.

It may also be noted that, unlike using other IQA models
as targets of the proposed optimization, VMAF,, optimization
delivers coding gain with respect to all of the BD-rate measure-
ments, except the PSNR BD-rate. Since PSNR is known not
to correlate as well with human subjective quality judgments
as do modern VQA models, the improvements on the PSNR

BD-rate may not always mean subjective improvements. This
suggests that VMAF is a good optimization target.

C. Comparison With State-of-the-Art Codecs

Table III tabulates the percent change in BD-rate relative
to the BLS baseline, with respect to different quality models.
We comprehensively evaluated perceptual deep compression
using different perceptual optimization protocols (highlighted
in boldface), against three conventional image codecs: JPEG,
JPEG2000, and intra-coded HEVC main-RExt (Format Range
Extension) profile. Extensive experiments were carried out
on the three aforementioned datasets, using three perceptual
IQA models as optimization targets. In addition to the BLS
model, we also deployed the proposed VMAF,, optimization
framework on a more sophisticated deep compression model
BMSH] [43], representing the authors’ first initials, to test its
generality. We report the BD-rate changes obtained, averaged
over all the images in each dataset. The reported standard
deviation was also calculated from all the BD-rate changes
within a test dataset. Similar results were obtained on the
Tecnick and NFLX datasets, as shown in Tables I and III.
These results show that our optimization approach is able to
successfully optimize a deep image compression model rela-
tive to different IQA algorithms. Indeed, significant BD-rate
reductions were obtained in many cases. We were able to
demonstrate that the BLS model optimized by M, achieved
similar or better results than HEVC, when the result was
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VMAF RD-curve Source Image Baseline JPEG2000 VMAF,

oz em 03

bpp / VMAF  0250/7256 0250/ 8363 0.307/8426 0.233/82.10
PSNR / SSIM  33.02/0951 33.39/0.953 33.72/0963 34.89/ 0962

(] [ 1 15 a 25

bpp Kodim07 0579;‘8517 0498;‘8801 052218830 0468!8730

3571 /0986 34.74/0979 3474 /0985 35.77 /00983

bpp / VMAF
PSNR / SSIM

0.052/27.82 0.050/3639 0.058/37.06 0.054/39.67
26.12/0.817 26.53/0.806 26.32/0840 2778 /0.843

VMAF

bpp / VMAF 0.052/19.03 0.050 /3227 0.058 /3030 0.061/3582

VMAF

PSNR / S5IM 2620/ 0.808 26.03/0.795 26.43/0.828 27.13/0.821

bpp / VMAF 1361 /9325 1.229/9452 0.892/9420 1.139/93.52

bpp Kodi
19 PSNR / SSIM 3691 /0991 37.52/0986 34.29/0982 37.41/0.986

Visual comparison of decoded images produced by different codecs as well as the corresponding VMAF RD-curve. Image crops from left to right:

ground-truth, baseline model [42], JPEG2000, Ballé ef al. optimized with VMAFp (denoted by VMAFp). and HEVC. Generally, the VMAFp-optimized BLS
model achieved visual quality comparable to intra HEVC and JPEG2000. The source images were cropped to resolution 512 x 512 in the second column for
display purposes.
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measured by the perceptual quality model M. It should be
noted that the quality measurements made by SSIM, MS-
SSIM, VIF, and VMAF only consider distortions of the luma
channel, hence, the remaining scope for improvement by also
accounting for the quality contributions of the chroma chan-
nels. Nevertheless, the VMAFp-optimized BMSHIJ model still
outperformed HEVC4yg, in the sense of BD-rate as measured
by VMAFE

In addition to the quantitative results, we also visually com-
pared the decoded images. Fig. 8 plots VMAF Rate-distortion
(RD) curves for several images. A subset of the images corre-
sponding to the RD points obtained by the various codecs are
also shown. As a basic test, we subjectively compare results
yielding similar bitrates but different objective quality scores.
The images Kodim10 and Kodim17 were subject to extreme
compression at bitrates around 0.05 bpp. In these cases,
the VMAFp-optimized model significantly outperformed the
MSE-optimized baseline model, delivering performance com-
parable to HEVC and JPEG2000 with respect to VMAF
score and subjective quality. At high bitrates, the distinc-
tions between the codecs becomes subtle. Therefore, we iso-
lated these RD points associated with similar VMAF scores
and compared bitrate consumption. Generally, the VMAF,-
optimized model yielded comparable subjective and objec-
tive (VMAF) quality as the baseline MSE-optimized model,
while consuming significantly fewer bits. The encoding results
on Kodiml9 in Fig. 8 using the VMAF,-optimized model
yielded similar VMAF scores as the other codecs, while
consuming only 34.4%, 27.4% and 21.7% fewer bits than the
Baseline, JPEG2000, and HEVC, respectively.

D. Subjective Quality Study

To better understand perceptual preferences on compressed
images and the effects of perceptual optimization using Prox-
1QA, we conducted a human subject study where we compared
deep compression engines using different optimization targets.
Specifically, we randomly selected 10 image contents from
the Kodak dataset. Each content was encoded at four different
bitrates by VMAFp-optimized and MSE-optimized BLS mod-
els, resulting in eight different compression-distorted versions
of that content. Since compressed images obtained using
different algorithms often have subtle perceptual differences
at similar bitrates, it is easier for humans to make compar-
isons between simultaneously displayed images. Therefore,
we adopted the paired comparison method instead of the
Absolute Category Rating (ACR) protocol in our experimental
design. We designed a web-based user interface to carry out
the human study, whereby participants could easily compare
pairs of images and render relative quality decisions. On each
image pair, the subject was asked to select the one they
preferred. We recruited 41 volunteer participants, of whom
about 70% were knowledgeable about image/video process-
ing, while the others were naive. We asked each participant
to compare 280 pairs of images, which required about 30
minutes. To obtain human opinion scores, we deployed the
Bradley-Terry (BT) model [67] to estimate the Mean Opinion
Score (MOS).

2
3 MSE-optimized
—— VMAFpoptimized

MOS (BT score)
MOS (BT score)

4 3 2 -1 0 1T 4 3 2 E o 1
logy bpp logy bpp

(a) Kodim03 (BD-rate = —9.06%) (b) Kodim07 (BD-rate = —32.32%)

Fig. 9. Subjective performance comparison of rate-distortion curves (with
95% confidence intervals) for two different optimization protocols on two
exemplar Kodak images. The y-axis denotes the MOS scores estimated by
the BT model.

Given the collected subjective quality score and bitrate for
each distorted picture, we compared the RD performances of
the two optimization methods. On the 10 selected contents,
the VMAFp-optimized model was able to achieve reduction
of MOS BD-rate ranging from 9% to 32.3% relative to MSE
optimization, with an average reduction of 17.7%. Fig. 9
shows the MOS RD curves of two contents, one of which
was the most improved using VMAF, optimization, while
the other was the least improved. It may be observed that
the RD curves resulting from VMAF, optimization allow
for reduced bitrates at similar levels of subjective quality,
as compared to those produced by MSE optimization. For
example, Fig. 9(b) shows that VMAF, delivers better predicted
visual quality, with statistical significance, while consuming
fewer bits at around 0.5 bpp. These results show that the
proposed VMAF,, optimization yields favorable compression
results as compared to MSE optimization.

E. Limitations

When measuring RD performance using SSIM, optimizing
a model using SSIM should approach the theoretical upper
bound of SSIM-measured RD performance. Accordingly,
we investigated the performance of our proposed framework
by comparing SSIM and SSIM, optimization of the BLS
model. The results of comparison are presented in Table IV,
indicating a 10% SSIM BD-rate performance gap between the
two optimization approaches. A noticeable contributor to this
performance drop is the pixel loss £ in (10). To validate this
assumption, we conducted an ablation study to pinpoint the
cause of this gap. We did this by fixing £, = Lgsm for the
SSIM optimization. The loss function is then

L=Ailalssm+ (1 —a) Lyl + L;, (13)

where

Lssim =1 —SSIM (x, %) , (14)

and o = 3e — 3 is the same as in (10). The SSIM BD-rate
that resulted from optimization of (13) is given in the fourth
column of Table IV. It may be observed that the RD per-
formance becomes very close to that of SSIM;, optimization,
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(a) KodimO1.

(b) Kodim21.

Fig. 10. Rate-distortion curves for different SSIM-oriented optimization pro-
tocols on two Kodak images. The baseline curve denotes the MSE-optimized
BLS model [42].

TABLE IV

AVERAGE CHANGE IN BD-RATE (IN PERCENTAGE) OF DIFFERENT
SSIM-DRIVEN OPTIMIZATION RESULTS ON KODAK DATASET

SSIM (14)  SSIMjp, (10)(11)  SSIM+L4 (13)
PSNR BD-Rate 133.79 15.56 15.43
SSIM BD-Rate -29.41 -19.04 22.39
MS-SSIM BD-Rate -11.74 -17.29 -19.69
VMAF BD-Rate 40.09 7.63 12.03

which confirms that the pixel loss is the main contributor to
the performance loss.

Moreover, Fig. 11 shows that similar visual results are
obtained using SSIM, optimization and the optimization
described in (13), even at heavy compression levels. A close
examination shows that true SSIM optimization nicely pre-
serves high-frequency details but loses chromatic fidelity. The
RD-curves in Fig. 10 further confirm the similar behavior of
SSIM,, optimization and the optimization of (13). We present
SSIM in decibels for readability, since small quantitative
differences in SSIM may be associated with large visual
differences.

All the models described in this subsection were trained
using one million steps and a constant learning rate. Thus,
the performance results of SSIM; differ slightly from the
results reported in Tables I and III.

F. Study of Training Steps

The instability introduced by the proxy loss can be further
improved by training longer, and by reducing the learning
rate. Fig. 12 plots the VMAF BD-rate as a function of the
number of training steps. When measuring BD-rate against
the same baseline (MSE optimization trained with 1M steps),
VMAF, achieves significant improvement relative to MSE
optimization, by training longer or by lowering the learning
rate. For fair comparison, we also evaluate VMAF,, using MSE
optimization using the same training process as the baseline
(dotted line). We have observed very relative results using
other perceptual optimizers, like SSIM,.

G. Execution Time

The encoding and decoding times of the various compared
codecs are summarized in Table V. We compiled the source

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

SSIM (14)

SSIM,, (10)(11)

SSIM+L (13)

0.144 / 0.827

bpp / SSIM 0.504 / 0.974 0.563 / 0.974 0.628 / 0.979

of model behavior among different
Kodim01 encoded at 0.12 bpp. Second

Fig. 11. Visual comparison
SSIM-optimized models. First row:
row: Kodim21 encoded at 0.5 bpp.

o b
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51" |-§—MSE (MSEy) ; b
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g 154
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Fig. 12 VMAF BD-rate change (improvement) against the number of

training steps and learning rate, using the Kodak images. The error bars
represent the standard deviations of BD-rates. In the first 2M steps, a constant
learning rate was used. After that, the learning rate was reduced by a factor
of 10. We denote each result by “optimization (baseline)”. For BD-rate
change calculations, the solid lines indicate MSE optimization over 1M steps,
while the dotted line indicates that MSE optimization using the same training
procedure as the optimization is used for baseline comparison.

TABLE V

RUN TIME COMPARISON OF CONVENTIONAL IMAGE CODECS AND DEEP
COMPRESSION MODELS. MODEL LOADING TIME FOR DEEP
COMPRESSION IS EXCLUDED. ALL TIMES ARE
GIVEN IN MILLISECONDS

Codec Encode  Decode
JPEG CPU 43.02 62.88
JPEG2000 CPU 10.80 36.79
HEVC CPU  4578.57 89.88
BLS MSE CPU 251.01 117.93
GPU 231.62 32.56
CPU 246.57 119.02
BLS VMAF,, (ours) ; 2
GPU 229.26 29.22

code of state-of-the-art (standard) codecs, in order to be able
to compare them on the same machine. The results were then
calculated by averaging the runtime over all 24 Kodak images
under different bitrate settings. From Table V, it may be
observed that the time complexity of the MSE-optimized and
VMAFp-optimized BLS model are nearly identical, as they
deploy the same network architecture in application. Fur-
thermore, the encoding processes consume more time than
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Fig. 13. Normalized encoding times for five different bitrate settings.

decoding, since the synthesis transform (g;) is also included.
Of course, the runtime of deep compression models can be
reduced if implemented on a GPU. It should also be noted that
the decoding time of HEVC was estimated from the reference
software HM, which might be slow. This can be improved by
using a third-party decoder such as FFmpeg.

We also compared the encoding times for different bitrate
settings in Fig. 13. For each encoder, all of the runtimes
were normalized by dividing by the value of 2.0 bpp. The
conventional codecs required more time to encode at high
bitrates, whereas the deep compression models have encoding
times that do not vary much with bitrate.

V. CONCLUDING REMARKS

We have presented a learning framework for perceptually
optimizing a learned image compression model. To optimize
the ProxIQA network, we developed an alternating training
method. We experimentally demonstrated that, for a fixed
VMATF value, our proposed proxy approach achieved a 20%
bitrate reduction, on average, relative to the MSE-based frame-
work.

The idea behind the proposed optimization framework is
general. We believe that, with proper modifications of the
architecture of the ProxIQA network, the application scope
should be applicable to a wide variety of image enhance-
ment, restoration, and reconstruction problems, such as super-
resolution, de-banding [68], [69], or de-noising.

Another future topic could be the study of new types
of distortions caused by deep compression models. Like
the examples shown in this paper, distorted images created
by CNNs are very different from images afflicted by more
traditional distortions, such as JPEG compression. Creating
databases for assessing the subjective quality of these new
types of distortions would be quite valuable.
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