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Abstract—Recent years have witnessed an explosion of
user-generated content (UGC) videos shared and streamed
over the Internet, thanks to the evolution of affordable and
reliable consumer capture devices, and the tremendous pop-
ularity of social media platforms. Accordingly, there is a
great need for accurate video quality assessment (VQA) mod-
els for UGC/consumer videos to monitor, control, and opti-
mize this vast content. Blind quality prediction of in-the-
wild videos is quite challenging, since the quality degrada-
tions of UGC videos are unpredictable, complicated, and often
commingled. Here we contribute to advancing the UGC-VQA
problem by conducting a comprehensive evaluation of leading
no-reference/blind VQA (BVQA) features and models on a
fixed evaluation architecture, yielding new empirical insights
on both subjective video quality studies and objective VQA
model design. By employing a feature selection strategy on
top of efficient BVQA models, we are able to extract 60 out
of 763 statistical features used in existing methods to create
a new fusion-based model, which we dub the VIDeo quality
EVALuator (VIDEVAL), that effectively balances the trade-off
between VQA performance and efficiency. Our experimental
results show that VIDEVAL achieves state-of-the-art performance
at considerably lower computational cost than other leading
models. Our study protocol also defines a reliable benchmark for
the UGC-VQA problem, which we believe will facilitate further
research on deep learning-based VQA modeling, as well as
perceptually-optimized efficient UGC video processing, transcod-
ing, and streaming. To promote reproducible research and public
evaluation, an implementation of VIDEVAL has been made
available online: https://github.com/vztu/VIDEVAL.

Index Terms—Video quality assessment, image
assessment, no-reference/blind, user-generated content.
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I. INTRODUCTION

IDEO dominates the Internet. In North America, Netflix

and YouTube alone account for more than fifty percent of
downstream traffic, and there are many other significant video
service providers. Improving the efficiency of video encoding,
storage, and streaming over communication networks is a
principle goal of video sharing and streaming platforms. One
relevant and essential research direction is the perceptual
optimization of rate-distortion tradeoffs in video encoding and
streaming, where distortion (or quality) is usually modeled
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using video quality assessment (VQA) algorithms that can
predict human judgements of video quality. This has motivated
years of research on the topics of perceptual video and image
quality assessment (VQA/IQA).

VQA research can be divided into two closely related
categories: subjective video quality studies and objective
video quality modeling. Subjective video quality research
usually requires substantial resources devoted to time- and
labor-consuming human studies to obtain valuable and reliable
subjective data. The datasets obtained from subjective studies
are invaluable for the development, calibration, and bench-
marking of objective video quality models that are consistent
with subjective mean opinion scores (MOS).

Hence, researchers have devoted considerable efforts on
the development of high-quality VQA datasets that bene-
fit the video quality community. Table I summarizes the
ten-year evolution of popular public VQA databases. The
first successful VQA database was the LIVE Video Quality
Database [1], which was first made publicly available in 2008.
It contains 10 pristine high-quality videos subjected to com-
pression and transmission distortions. Other similar databases
targeting simulated compression and transmission distortions
have been released subsequently, including EPFL-PoliMI [2],
VQEG-HDTV [3], IVP [4], TUM 1080p50 [5], CSIQ [6],
MCL-V [7], and MCL-JCV [8]. All of the above mentioned
datasets are based on a small set of high-quality videos,
dubbed “pristine” or “reference,” then synthetically distorting
them in a controlled manner. We will refer to these kinds of
synthetically-distorted video sets as legacy VQA databases.
Legacy databases are generally characterized by only a small
number of unique contents, each simultaneously degraded
by only one or at most two synthetic distortions. For most
practical scenarios, these are too simple to represent the
great variety of real-world videos, and hence, VQA models
derived on these databases may be insufficiently generalizable
to large-scale realistic commercial VQA applications.

Recently, there has been tremendous growth in social media,
where huge volumes of user-generated content (UGC) is
shared over the media platforms such as YouTube, Face-
book, and TikTok. Advances in powerful and affordable
mobile devices and cloud computing techniques, combined
with significant advances in video streaming have made
it easy for most consumers to create, share, and view
UGC pictures/videos instantaneously across the globe. Indeed,
the prevalence of UGC has started to shift the focus of
video quality research from legacy synthetically-distorted data-
bases to newer, larger-scale authentic UGC datasets, which
are being used to create solutions to what we call the
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TABLE I

EVOLUTION OF POPULAR PUBLIC VIDEO QUALITY ASSESSMENT DATABASES: FROM LEGACY LAB STUDIES OF SYNTHETICALLY DISTORTED VIDEO
SETS TO LARGE-SCALE CROWDSOURCED USER-GENERATED CONTENT (UGC) VIDEO DATASETS WITH AUTHENTIC DISTORTIONS

DATABASE YEAR #CoONT #ToOTAL RESOLUTION FR LEN FORMAT DISTORTION TYPE #SuBJ #RATES DATA Env

LIVE-VQA 2008 10 160 768 x432 25/50 10 YUV+264 Compression, transmission 38 29 DMOS+o In-lab
EPFL-PoliMI 2009 12 156 CIF/4CIF 25/30 10 YUV+264 Compression, transmission 40 34 MOS In-lab
VQEG-HDTV 2010 49 740 1080i/p 25/30 10  AVI Compression, transmission 120 24 RAW In-lab
VP 2011 10 138 1080p 25 10 YUV Compression, transmission 42 35 DMOS+c In-lab
TUM 1080p50 2012 5 25 1080p 50 10 YUV Compression 21 21 MOS In-lab
CSIQ 2014 12 228 832480 24-60 10 YUV Compression, fransmission 35 N/A DMOS+c In-lab
CVD2014 2014 5 234 720p, 480p  9-30 10-25 AVI Camera capture (authentic) 210 30 MOS In-lab
MCL-V 2015 12 108 1080p 24-30 6 YUV Compression, scaling 45 32 MOS In-lab
MCL-ICV 2016 30 1560 1080p 2430 5 MP4 Compression 150 50 RAW-JND In-lab
KoNViD-1k 2017 1200 1200 540p 24-30 8 MP4 Diverse distortions (authentic) 642 114 MOS+e¢  Crowd
LIVE-Qualcomm 2018 54 208 1080p 30 15 YUV Camera capture (authentic) 39 39 MOS In-lab
LIVE-VQC 2018 585 585 1080p-240p  19-30 10 MP4 Diverse distortions (authentic) 4776 240 MOS Crowd
YouTube-UGC 2019 1380 1380 4k-360p 15-60 20 MKV Diverse distortions (authentic) >8k 123 MOS+e  Crowd

#CONT: Total number of unique contents.
RESOLUTION: Video resolution (p: progressive). FR: Framerate.
FORMAT: Video container. ~ #SUBJ: Total number of subjects in the study.

#ToTAL: Total number of test sequences, including reference and distorted videos.
LEN: Video duration/length (in seconds).

#RATES: Average number of subjective ratings per video.

ENV: Subjective testing environment. In-lab: study was conducted in a laboratory. Crowd: study was conducted by crowdsourcing.

UGC-VQA problem. UGC-VQA studies typically follow a
new design paradigm whereby: 1) All the source content is
consumer-generated instead of professional-grade, thus suffers
from unknown and highly diverse impairments; 2) they are
only suitable for testing and comparing no-reference models,
since reference videos are unavailable; 3) the types of distor-
tions are authentic and commonly intermixed, and include but
are not limited to capture impairments, editing and processing
artifacts, compression, transcoding, and transmission distor-
tions. Moreover, compression artifacts are not necessarily the
dominant factors affecting video quality, unlike legacy VQA
datasets and algorithms. These unpredictable perceptual degra-
dations make perceptual quality prediction of UGC consumer
videos very challenging.

Here we seek to address and gain insights into this new
challenge (UGC-VQA) by first, conducting a comprehensive
benchmarking study of leading video quality models on several
recently released large-scale UGC-VQA databases. We also
propose a new fusion-based blind VQA (BVQA) algorithm,
which we call the VIDeo quality EVALuator (VIDEVAL),
which is created by the processes of feature selection from
existing top-performing VQA models. The empirical results
show that a simple aggregation of these known models can
achieve state-of-the-art (SOTA) performance. We believe that
our expansive study will inspire and drive future research on
BVQA modeling for the challenging UGC-VQA problem, and
also pave the way towards deep learning-based solutions.

The outline of this paper is as follows: Section II reviews
and analyzes the three most recent large-scale UGC-VQA
databases, while Section III briefly surveys the development of
BVQA models. We introduce the proposed VIDEVAL model
in Section IV, and provide experimental results in Section V.
Finally, concluding remarks are given in Section VL

II. UGC-VQA DATABASES

The first UGC-relevant VQA dataset containing authentic
distortions was introduced as the Camera Video Database

(CVD2014) [12], which consists of videos with in-the-wild
distortions from 78 different video capture devices, followed
by the similar LIVE-Qualcomm Mobile In-Capture Database
[13]. These two databases, however, only modeled (camera)
capture distortions on small numbers of not very diverse
unique contents. Inspired by the first successful massive online
crowdsourcing study of UGC picture quality [14], the authors
of [10] created the KoNViD-1k video quality database, the first
such resource for UGC videos. It consists of 1,200 public-
domain videos sampled from the YFCC100M dataset [15],
and was annotated by 642 crowd-workers. LIVE-VQC [9]
was another large-scale UGC-VQA database with 585 videos,
crowdsourced on Amazon Mechanical Turk to collect human
opinions from 4,776 unique participants. The most recently
published UGC-VQA database is the YouTube-UGC Dataset
[11] comprising 1,380 20-second video clips sampled from
millions of YouTube videos, which were rated by more than
8,000 human subjects. Table II summarizes the main charac-
teristics of the three large-scale UGC-VQA datasets studied,
while Figure 1 shows some representative snapshots of the
source sequences for each database, respectively.

A. Content Diversity and MOS Distribution

As a way of characterizing the content diversity of the
videos in each database, Winkler [16] suggested three quanti-
tative attributes related to spatial activity, temporal activity, and
colorfulness. Here we expand the set of attributes to include
six low-level features including brightness, contrast, colorful-
ness [17], sharpness, spatial information (SI), and temporal
information (TI), thereby providing a larger visual space in
which to plot and analyze content diversities of the three
UGC-VQA databases. To reasonably limit the computational
cost, each of these features was calculated on every 10th frame,
then was averaged over frames to obtain an overall feature
representation of each content. For simplicity, we denote the
features as {C;},i = 1,2,...,6. Figure 2 shows the fitted
kemnel distribution of each selected feature. We also plotted the
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a) IV'E—VQC
Fig. 1.

(b) KoNViD-1k
Sample frames of the video contents contained in the three large scale UGC-VQA databases: (a) LIVE-VQC [9], (b) KoNViD-1k [10], and
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(c) YouTube-UGC

(c) YouTube-UGC [11]. LIVE-VQC includes only natural contents captured by mobile devices, while KoNViD-1k and YouTube-UGC comprise of both
natural videos, animations, and gaming sources. Note that YouTube-UGC video set is categorized whereas the others are not.

TABLE IT

PUBLIC LARGE-SCALE USER-GENERATED CONTENT VIDEO QUALITY

ASSESSMENT (UGC-VQA) DATABASES COMPARED: KONVID-1Kk [10],

LIVE-VQC[9], AND YOUTUBE-UGC[11]

DATABASE ATTRIBUTE KoNViD-1k LIVE-VQC YouTube-UGC
Number of contents 1200 585 1380

Video sources YFCC100m (Flickr) Captured (mobile devices) YouTube

Video resolutions 540p 1080p,720p,480p,etc. 4k,1080p,720p,480p,360p
Video layouts Landscape Landscape,portrait Landscape,portrait
Video framerates 24,25,30 fr/sec 20,24,25,30 frfsec 15,20,24,25,30,50,60 frfsec
Video lengths 8 seconds 10 seconds 20 seconds

Audio track included Yes (97%) Yes No

Testing methodology Crowdsourcing (CrowdFlower) Crowdsourcing (AMT) Crowdsourcing (AMT)
Number of subjects 642 4,776 >8,000

136,800 (114 votes/video)}
Absolute Category Rating 1-5
Videos sampled from YFCC100m via a

feature space of blur, colorfulness,
contrast, SI, TI, and NIQE; Some
contents irrelevant to quality research;
Content was clipped from the original
and resized to 540p.

Study did not account for or remove
videos on which stalling events
occurred when viewed; test
methodology prone to unreliable
individual scores.

Number of ratings
Rating scale
Content remarks

Study remarks

Videos manually captured by certain
people; Content including many camera
motions; Content including some night
scenes that are prone to be outliers;
Resolutions not uniformly distributed.

Distribution of MOS values slightly
skewed towards higher scores; standard
deviation statistics of MOS were not
provided.

205,000 (240 votes/video)
Continuous Rating 0-100

170,159 (123 votes/video)

Continuous Rating 1-5
Videos sampled from YouTube via a
feature space of spatial, color,
temporal, and chunk variation;
Contents categorized into 15 classes,
including HDR, screen content,
animations, and gaming videos.

Distribution of MOS values slightly
skewed towards higher values; three
additional chunk MOS scores with
standard deviation were provided.

convex hulls of paired features, to show the feature coverage
of each database, in Figure 3. To quantify the coverage and
uniformity of these databases over each defined feature space,
we computed the relative range and uniformity of coverage
[16], where the relative range is given by:

k_ max Cf.‘) — min(Cf)
: max (CF)

; (1)

where Cf.‘ denotes the feature distribution of database k for
a given feature dimension i, and max;c(C'f’) specifies the
maximum value for that given dimension across all databases.
Uniformity of coverage measures how uniformly distributed
the videos are in each feature dimension. We computed this
as the entropy of the B-bin histogram of C{‘ over all sources
for each database indexed k:

B
Ui =—  pslogg ps,

b=1
where pp, is the normalized number of sources in bin b at
feature i for database k. The higher the uniformity the more

(€3

uniform the database is. Relative range and uniformity of
coverage are plotted in Figure 4 and Figure 5, respectively,
quantifying the intra- and inter-database differences in source
content characteristics.

We also extracted 4,096-dimensional VGG-19 [18] deep
features and embedded these features into 2D subspace using
t-SNE [19] to further compare content diversity, as shown
in Figure 7. Apart from content diversity expressed in terms
of visual features, the statistics of the subjective ratings are
another important attribute of each video quality database. The
main aspect considered in the analysis here is the distributions
of mean opinion scores (MOS), as these are indicative of the
quality range of the subjective judgements. The analysis of
standard deviation of MOS is not presented here since it is
not provided in LIVE-VQC. Figure 6 displays the histogram
of MOS distributions for the three UGC-VQA databases.

B. Observations

We make some observations from the above plots. As may
be seen in Figures 2a and 2b, and the corresponding convex
hulls in Figure 3, KoNViD-1k and YouTube-UGC exhibit
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Fig. 2.

(a) KoNViD-1k

(b) LIVE-VQC

(c) YouTube-UGC

Fig. 3.  Source content (blue ‘x’) distribution in paired feature space
with corresponding convex hulls (orange boundaries). Left column: BRxCT,
middle column: CFxSR, right column: SIxTL

similar coverage in terms of brightness and contrast, while
LIVE-VQC adheres closer to middle values. Regarding col-
orfulness, KoNViD-1k shows a skew towards higher scores
than the other two datasets, which is consistent with the
observations that Flickr users self-characterize as either profes-
sional video/photographers or as dedicated amateurs. On the
sharpness and SI histograms, YouTube-UGC is spread most
widely, while KoNViD-1k is concentrated on lower values.
Another interesting finding from the TI statistics: LIVE-VQC
is distributed more towards higher values than YouTube-UGC
and KoNViD-1k, consistent with our observation that videos in
LIVE-VQC were captured in the presence of larger and more
frequent camera motions. We will revisit this interesting aspect
of TI when evaluating the BVQA models in Section V. The
visual comparison in Figure 7 shows that YouTube-UGC and
KoNViD-1k span a wider range of VGG-19 feature space than
does LIVE-VQC, indicating significant content diversity dif-
ferences. Figure 6 shows the MOS distributions: all three data-
bases have right-skewed MOS distributions, with KoNViD-1k
less so, and LIVE-VQC and YouTube-UGC more so. The
overall ranges and uniformity comparisons in Figures 4, 5,
and 7 suggest that constructing a database by crawling and
sampling from a large content repository is likely to yield a
more content-diverse, uniformly-distributed dataset than one

Feature distribution comparisons among the three considered UGC-VQA databases: KoNViD-1k, LIVE-VQC, and YouTube-UGC.
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Fig. 4. Relative range Rl'.c comparisons of the selected six features calculated
on the three UGC-VQA databases: KoNViD-1k, LIVE-VQC, and YouTube-
UGC.

e

2
EBE ICT ICF ISR 1 T

-

= e
= o
T T

Coverage uniformity

=
(%)

0

KoNViD-1k LIVEVQC YouTube-UGC

Fig. 5. Comparison of coverage uniformity Uf of the selected six features
computed on the three UGC-VQA databases: KoNViD-1k, LIVE-VQC, and
YouTube-UGC.

created from pictures or videos captured directly from a set
of user cameras. Both cases may be argued to be realistic in
some scenario.

ITII. UGC-VQA MODELS

The goal of subjective video quality studies is to moti-
vate the development of automatic objective video quality
models. Conventionally, objective video quality assessment
can be classified into three main categories: full-reference
(FR), reduced-reference (RR), and no-reference (NR) models.
FR-VQA models require the availability of an entire pris-
tine source video to measure visual differences between a
target signal and a corresponding reference [20]-[23], while
RR-VQA models only make use of a limited amount of
reference information [24], [25]. Some popular FR-VQA
models, including PSNR, SSIM [26], and VMAF [21] have
already been successfully and massively deployed to optimize
streaming and shared/uploaded video encoding protocols by
leading video service providers. NR-VQA or BVQA models,
however, rely solely on analyzing the test stimuli without the
benefit of any corresponding “ground truth” pristine signal.
It is obvious that only BVQA models are appropriate for the
UGC-VQA problem. Here we briefly review the evolution of
BVQA models, from conventional handcrafted feature-based
approaches, on to convolutional neural network-based models.
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Fig. 6. MOS histograms and the fitted kernel distributions of the three UGC-VQA databases: KoNViD-1k, LIVE-VQC, and YouTube-UGC.
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Fig. 7. VGG-19 deep feature embedding via t-SNE [19] on KoNViD-1k,
LIVE-VQC, and YouTube-UGC, respectively.

A. Conventional Feature-Based BVQA Models

Almost all of the earliest BVQA models have been ‘dis-
tortion specific, meaning they were designed to quantify a
specific type of distortion such as blockiness [27], blur [28],
ringing [29], banding [30]-[32], or noise [33], [34] in distorted
videos, or to assess multiple specific coincident distortion
types caused by compression or transmission impairments
[35], [36]. More recent top-performing BVQA models are
almost exclusively learning-based, leveraging a set of generic
quality-aware features, combined to conduct quality prediction
by machine learning regression [37]-[45]. Learning-based
BVQA models are more versatile and generalizable than
‘distortion specific’ models, in that the selected features are
broadly perceptually relevant, while powerful regression mod-
els can adaptively map the features onto quality scores learned
from the data in the context of a specific application.

The most popular BVQA algorithms deploy perceptu-
ally relevant, low-level features based on simple, yet highly
regular parametric bandpass models of good-quality scene
statistics [46]. These natural scene statistics (NSS) models
predictably deviate in the presence of distortions, thereby
characterizing perceived quality degradations [47]. Successful
blind picture quality assessment (BIQA) models of this type
have been developed in the wavelet (BIQI [48], DIIVINE
[37], C-DIIVINE [49]), discrete cosine transform (BLIINDS
[50], BLIINDS-II [51]), curvelet [52], and spatial intensity
domains (NIQE [53], BRISQUE [38]), and have further been
extended to video signals using natural bandpass space-time
video statistics models [39], [54]-[56], among which the
most well-known model is the Video-BLIINDS [39]. Other
extensions to empirical NSS include the joint statistics of
the gradient magnitude and Laplacian of Gaussian responses
in the spatial domain (GM-LOG [57]), in log-derivative and
log-Gabor spaces (DESIQUE [58]), as well as in the gra-
dient domain of LLAB color transforms (HIGRADE [40]).

The FRIQUEE model [41] has been observed to achieve SOTA
performance both on UGC/consumer video/picture databases
like LIVE-Challenge [14], CVD2014 [12], and KoNViD-1k
[10] by leveraging a bag of NSS features drawn from diverse
color spaces and perceptually motivated transform domains.

Instead of using NSS-inspired feature descriptors, methods
like CORNIA [43] employ unsupervised learning techniques
to learn a dictionary (or codebook) of distortions from raw
image patches, and was further extended to Video CORNIA
[59] by applying an additional temporal hysteresis pooling [60]
of learned frame-level quality scores. Similar to CORNIA,
the authors of [61] proposed another codebook-based general-
purpose BVQA method based on High Order Statistics Aggre-
gation (HOSA), requiring only a small codebook, yet yielding
promising performance.

A very recent handcrafted feature-based BVQA model
is the “two level” video quality model (TLVQM) [42],
wherein a two-level feature extraction mechanism is adopted
to achieve efficient computation of a set of carefully-defined
impairment/distortion-relevant features. Unlike NSS features,
TLVQM selects a comprehensive feature set comprising of
empirical motion statistics, specific artifacts, and aesthetics.
TLVQM does require that a large set of parameters (around
30) be specified, which may affect performance on datasets
or application scenarios it has not been exposed to. The
model currently achieves SOTA performance on three UGC
video quality databases, CVD2014 [12], KoNViD-1k [10],
and LIVE-Qualcomm [13], at a reasonably low complexity,
as reported by the authors.

B. Deep Convolutional Neural Network-Based BVQA Models

Deep convolutional neural networks (CNNs or ConvNets)
have been shown to deliver standout performance on a wide
variety of low-level computer vision applications. Recently,
the release of several “large-scale” (in the context of
IQA/VQA research) subjective quality databases [10], [14]
have sped the application of deep CNNSs to perceptual quality
modeling. For example, several deep learning picture-quality
prediction methods were proposed in [62]-[65]. To conquer
the limits of data scale, they either propose to conduct
patch-wise training [62], [63], [66] using global scores, or by
pretraining deep nets on ImageNet [67], then fine tuning.
Several authors report SOTA performance on legacy synthetic
distortion databases [68], [69] or on naturally distorted data-
bases [14], [70].

Among the applications of deep CNNs to blind video quality
prediction, Kim [71] proposed a deep video quality asses-
sor (DeepVQA) to learn the spatio-temporal visual sensitivity
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TABLE III

SUMMARY OF THE INITIAL FEATURE SET AND THE FINALIZED VIDEVAL
SUBSET AFTER FEATURE SELECTION

FEATURE INDEX #(Fyrr) #(VIDEVAL)

FEATURE NAME

BRISQUEM f 1= f 36 36 3
BRISQUEy for— fra 36 1
GM-LOGayg fra = fi12 40 4
GM-LOG,y fuiz — fis2 40 5
HIGRADE-GRAD;yg fis3 — fiss 36 8
HIGRADE-GRAD4 fisa — faza 36 1
FRIQUEE-LUMA g faa2s — faes 74 4
FRIQUEE-LUMA 4 f299 — far2 74 8
FRIQUEE-CHROMAqyv;  fa7s — fas2 80 10
FRIQUEE-CHROMAyy  fas3 — fssz2 80 1
FRIQUEE-LMS, ¢ fs3a — feos 74 1
FRIQUEE-LMSgy4 feor — feso 74 0
FRIQUEE-HS fes1 — fesa 4 0
FRIQUEE-HS g4 fess — foss 4 0
TLVQM-LCFuyg fess — fri0 22 5
TLVQM-LCFqq fri1 — fras 23 3
TLVQM-HCF fr3a — fre3 30 6
FaLL f1 = fres 763 60

* All the spatial features are calculated every two frames and aggregated into
a single feature vector within 1-sec chunks. The overall feature vector for the
whole video is then obtained by averaging all the chunk-wise feature vectors.
Subscript avg means within-chunk average pooling, whereas subscript std
means within-chunk standard deviation pooling.

maps via a deep ConvNet and a convolutional aggregation
network. The V-MEON model [72] used a multi-task CNN
framework which jointly optimizes a 3D-CNN for feature
extraction and a codec classifier using fully-connected layers
to predict video quality. Zhang [73] leveraged transfer learn-
ing to develop a general-purpose BVQA framework based
on weakly supervised learning and a resampling strategy.
In the VSFA model [74], the authors applied a pre-trained
image classification CNN as a deep feature extractor and
integrated the frame-wise deep features using a gated recurrent
unit and a subjectively-inspired temporal pooling layer, and
reported leading performance on several natural video data-
bases [10], [12], [13]. These SOTA deep CNN-based BVQA
models [71]-[74] produce accurate quality predictions on
legacy (single synthetic distortion) video datasets [1], [6], but
struggle on recent in-the-wild UGC databases [10], [12], [13].

IV. FEATURE FUSED VIDEO QUALITY EVALUATOR
(VIDEVAL)

We have just presented a diverse set of BVQA models
designed from a variety of perspectives, each either based
on scene statistics, or motivated by visual impairment heuris-
tics. As might be expected, and as we shall show later,
the performances of these models differ, and also vary on
different datasets. We assume that the features extracted
from different models may represent statistics of the signal
in different perceptual domains, and henceforce, a selected
fusion of BVQA models may be expected to deliver better
consistency against subjective assessment, and also to achieve
more reliable performance across different databases and use
cases. This inspired our new feature fused VIDeo quality
EVALuator (VIDEVAL), as described next.

We begin by constructing an initial feature set on top
of existing high-performing, compute-efficient BVQA models
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Fig. 8. Feature selection performance (PLCC) of three selected algorithms as
a function of k on the All-Combined; dataset. The shaded error bar denotes
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Fig. 9. Visualization of the second step in feature selection: frequency of
each feature being selected over 100 iterations of train-test splits using SVR
importance selection method with fixed k = 60.

and features, distilled through a feature selection program. The
goal of feature selection is to choose an optimal or sub-optimal
feature subset F; € R¥ from the initial feature set Finr € RN
(where k < N) that achieves nearly top performance but with
many fewer features.

A. Feature Extraction

We construct an initial feature set by selecting features
from existing top-performing BVQA models. For practical
reasons, we ignore features with high computational cost,
e.g., certain features from DIIVINE, BLIINDS, C-DIIVINE,
and V-BLIINDS. We also avoid using duplicate features
in different models, such as the BRISQUE-like features in
HIGRADE, and the C-DIIVINE features in V-BLIINDS.
This filtering process yields the initial feature candidates,
which we denote as BRISQUE, GM-LOG, HIGRADE-GRAD,
FRIQUEE-LUMA, FRIQUEE-CHROMA, FRIQUEE-LMS,
FRIQUEE-HS, TLVQM-LCF, and TLVQM-HCE.

Inspired by the efficacy of standard deviation pooling as first
introduced in GMSD [75] and later also used in TLVQM [42],
we calculate these spatial features every second frame within
each sequentially cut non-overlapping one-second chunk, then
we enrich the feature set by applying average and standard
deviation pooling of frame-level features within each chunk,
based on the hypothesis that the variation of spatial NSS
features also correlates with the temporal properties of the
video. Finally, all the chunk-wise feature vectors are average
pooled [76] across all the chunks to derive the final set of
features for the entire video. Table III indexes and summarizes

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 19,2021 at 00:51:58 UTC from IEEE Xplore. Restrictions apply.



TU et al.: UGC-VQA: BENCHMARKING BLIND VIDEO QUALITY ASSESSMENT FOR USER GENERATED CONTENT

NIQE
(a)

Fig. 10. Scatter plots of MOS versus NIQE scores (a) before, and (b) after
INLSA calibration [77] using YouTube-UGC as the reference set.

the selected features in the initial feature set, yielding an
overall 763-dimensional feature vector, Finit € R763.

B. Feature Selection

We deploy two types of feature selection algorithms to distill
the initial feature set. The first method is a model-based feature
selector that utilizes a machine learning model to suggest
features that are important. We employed the popular random
forest (RF) to fit a regression model and eliminate the least
significant features sorted by permutation importance. We also
trained a support vector machine (SVM) with the linear kernel
to rank the features, as a second model selector. Another
sub-optimal solution is to apply a greedy search approach
to find a good feature subset. Here we employed Sequential
Forward Floating Selection (SFFS), and used SVM as the
target regressor with its corresponding mean squared error
between the predictions and MOS as the cost function. The
mean squared error is calculated by cross-validation measures
of predictive accuracy to avoid overfitting.

One problem with feature selection is that we do not
know a priori what k to select, i.e., how many features are
needed. Therefore, we conducted a two-step feature selection
procedure. First, we evaluated the feature selection methods
as a function of k via 10 train-test iterations, to select the
best algorithm with corresponding optimal k. Figure 8 shows
the median PLCC (defined in Section V-A) performance with
respect to k for different feature selection models, based on
which we finally chose the SVM importance method with
k = 60 in our next experiments. In the second step, we applied
the best feature selection algorithm with the fixed best k
over 100 random train-test splits. On each iteration, a subset
is selected from the feature selector, based on which the
frequency of each feature over the iterations is counted, and
the j most frequently occurring features are included into the
final feature set. Figure 9 shows the frequency of each feature
being selected over 100 random splits in the second step.
This selection process is implemented on a combined dataset
constructed from three independent databases, as described in
Section V-A. Table III summarizes the results of the feature
selection procedure (SVR importance with k = 60), yielding
the final proposed VIDEVAL model.

V. EXPERIMENTAL RESULTS

A. Evaluation Protocol

1) UGC Dataset Benchmarks: To conduct BVQA perfor-
mance evaluation, we used the three UGC-VQA databases:
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Fig. 11. Box plots of PLCC, SRCC, and KRCC of evaluated learning-based
BVQA algorithms on the All-Combined; dataset over 100 random splits. For
each box, median is the central box, and the edges of the box represent 25th
and 75th percentiles, while red circles denote outliers.

TABLE IV

PERFORMANCE COMPARISON OF EVALUATED OPINION-UNAWARE “COM-
PLETELY BLIND” BVQA MODELS

DATASET MODEL \ METRIC SRCCt KRCCt PLCCt RMSE|
NIQE (1 fi/sec) 05417 03790 0.5530 0.5336
KoNViD ILNIQE (1 frfsec) 05264 03692 0.5400 0.5406
VIIDEO 02988 02036 03002 0.6101
NIQE (1 fr/sec) 05957 04252 0.6286 13.110
LIVE-C  ILNIQE (I fisec) 0.5037 03555 05437 14.148
VIIDEO 00332 00231 02146 16654
NIQE (1 fr/sec) 02379 0.1600 02776 06174
YT-UGC ILNIQE (1 fr/sec) 02918 0.1980 03302 0.6052
VIIDEO 00580 00389 0.1534 06339
NIQE (1 fr/sec) 04622 03222 04773 06112
All-Comb ILNIQE (1 fifsec) 04592 03213 04741 06119
VIIDEO 0.1039 00688 0.1621 0.6804

KoNViD-1K [10], LIVE-VQC [9], and YouTube-UGC [11].
We found that the YouTube-UGC dataset contains 57 grayscale
videos, which yield numerical errors when computing the
color model FRIQUEE. Therefore, we extracted a subset
of 1,323 color videos from YouTube-UGC, which we denote
here as the YouTube-UGC, set, for the evaluation of color
models. In order to study overall model performances on
all the databases, we created a large composite benchmark,
which is referred to here as All-Combined,, using the iterative
nested least squares algorithm (INLSA) suggested in [77],
wherein YouTube-UGC is selected as the anchor set, and
the objective MOS from the other two sets, KoNViD-1k and
LIVE-VQC, are linearly mapped onto a common scale ([1, 5]).
Figure 10 shows scatter plots of MOS versus NIQE scores
before (Figure 10a) and after (Figure 10b) INLSA linear
mapping, calibrated by NIQE [53] scores. The All-Combined,
(3,108) dataset is simply the union of KoNViD-1k (1,200),
LIVE-VQC (575), and YouTube-UGC. (1,323) after MOS
calibration:

Yadj = 5 —4 % [(5 — Yorg)/4 x 1.1241 — 0.0993] 3)
Yadj = 5 —4 % [(100 — Yorg)/100 x 0.7132 + 0.0253] 4)
where (3) and (4) are for calibrating KoNViD-1k and

LIVE-VQC, respectively. y.4; denotes the adjusted scores,
while yorg is the original MOS.
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TABLE V

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

PERFORMANCE COMPARISON OF EVALUATED BVQA MODELS ON THE FOUR BENCHMARK DATASETS. THE UNDERLINED AND BOLDFACED ENTRIES
INDICATE THE BEST AND TOP THREE PERFORMERS ON EACH DATABASE FOR EACH PERFORMANCE METRIC, RESPECTIVELY

DATASET KoNViD-1k LIVE-VQC

MoDEL \ METRIC  SRCCt (sTD) KRCCt (sTD) PLCC? (STD) RMSEJ (5TD) SRCC{ (STD) KRCCt (STD) PLCCT (5TD) RMSE] (STD)
BRISQUE (1 fifsec)  0.6567 (.035) 0.4761 (.029) 0.6576 (.034) 04813 (022)  0.5925 (068) 0.4162 (.052) 0.6380 (.063) 13.100 (.796)
GM-LOG (1 fr/sec) 0.6578 (.032) 04770 (.026) 0.6636 (.031) 0.4818 (.022) 0.5881 (.068) 0.4180 (.052) 0.6212 (.063) 13.223 (.822)
HIGRADE (1 fr/sec) 0.7206 (.030) 0.5319 (.026) 0.7269 (.028) 04391 (018)  0.6103 (068) 0.4391 (.054) 0.6332 (.065) 13.027 (.904)
FRIQUEE (1 fr/sec) 0.7472 (.026) 0.5509 (.024) 0.7482 (.025) 0.4252 (.017) 0.6579 (.053) 0.4770 (.043) 0.7000 (.058) 12.198 (.914)
CORNIA (1 fr/sec)  0.7169 (.024) 0.5231 (.021) 0.7135 (.023) 04486 (018)  0.6719 (047) 0.4849 (.039) 0.7183 (.042) 11.832 (.700)
HOSA (1 fr/sec) 0.7654 (.022) 0.5690 (.021) 0.7664 (.020) 0.4142 (.016) 0.6873 (.046) 0.5033 (.039) 0.7414 (.041) 11.353 (.747)
VGG-19 (1 fr/sec) 0.7741 (.028) 0.5841 (.027) 0.7845 (.024) 0.3958 (.017)  0.6568 (.053) 0.4722 (.044) 0.7160 (.048) 11.783 (.696)
ResNet-50 (1 fr/sec)  0.8018 (.025) 0.6100 (.024) 0.8104 (.022) 0.3749 (.017) 0.6636 (.051) 0.4786 (.042) 0.7205 (.043) 11.591 (.733)
KonCept512 (1 fr/sec) 0.7349 (.025) 0.5425 (023) 0.7489 (.024) 0.4260 (.016)  0.6645 (052) 0.4793 (.045) 0.7278 (046) 11.626 (.767)
PaQ-2-PiQ (1 fr/sec) 0.6130 (.032) 0.4334 (.026) 0.6014 (.033) 0.5148 (.019) 0.6436 (.045) 0.4568 (.035) 0.6683 (.044) 12.619 (.848)
V-BLIINDS 0.7101 (031) 0.5188 (.026) 0.7037 (.030) 04595 (.023)  0.6939 (.050) 0.5078 (.042) 0.7178 (.050) 11.765 (.828)
TLVQM 0.7729 (.024) 0.5770 (.022) 0.7688 (.023) 0.4102 (.017) 0.7988 (.036) 0.6080 (.037) 0.8025 (.036) 10.145 (.818)
VIDEVAL 0.7832 (.021) 0.5845 (.021) 0.7803 (.022) 0.4026 (.017)  0.7522 (.039) 0.5639 (.036) 0.7514 (.042) 11.100 (.810)
DATASET YouTube-UGC All-Combined,

MopEL \ METRIC  SRCCt (sTD) KRCC? (STD) PLCCt (STD) RMSE] (STD) SRCCt(sTD) KRCCT (STD) PLCCT (STD) RMSE] (STD)
BRISQUE (1 fr/sec)  0.3820 (.051) 0.2635 (.036) 0.3952 (.048) 0.5919 (.021) 0.5695 (.028) 0.4030 (.022) 0.5861 (.027) 0.5617 (.016)
GM-LOG (1 frfsec)  0.3678 (058) 0.2517 (.041) 0.3920 (.054) 0.5896 (022)  0.5650 (.029) 0.3995 (.022) 0.5942 (.030) 0.5588 (.014)
HIGRADE (1 frfsec) 0.7376 (.033) 0.5478 (.028) 0.7216 (.033) 0.4471 (.024) 0.7398 (.018) 0.5471 (.016) 0.7368 (.019) 0.4674 (.015)
FRIQUEE* (1 fi/sec) 0.7652 (.030) 0.5688 (.026) 0.7571 (.032) 0.4169 (.023)  0.7568 (.023) 0.5651 (.021) 0.7550 (.022) 0.4549 (.018)
CORNIA (1 fr/sec)  0.5972 (.041) 0.4211 (.032) 0.6057 (.039) 0.5136 (.024)  0.6764 (021) 0.4846 (017) 0.6974 (.020) 0.4946 (.013)
HOSA (1 fr/sec) 0.6025 (.034) 04257 (.026) 0.6047 (.034) 0.5132 (.021) 0.6957 (.018) 0.5038 (.015) 0.7082 (.016) 0.4893 (.013)
VGG-19 (1 fr/sec) 0.7025 (.028) 0.5091 (.023) 0.6997 (.028) 0.4562 (020)  0.7321 (.018) 0.5399 (.016) 0.7482 (.017) 0.4610 (.013)
ResNet-50 (1 frfsec)  0.7183 (.028) 0.5229 (.024) 0.7097 (.027) 0.4538 (.021) 0.7557 (.017) 0.5613 (.016) 0.7747 (.016) 0.4385 (.013)
KonCept512 (1 fr/sec) 0.5872 (.039) 0.4101 (030) 0.5940 (.041) 05135 (.022)  0.6608 (022) 0.4759 (.018) 0.6763 (022) 0.5091 (.014)
PaQ-2-PiQ (1 frfsec) 0.2658 (.047) 0.1778 (.032) 0.2935 (.049) 0.6153 (.019) 0.4727 (.029) 0.3242 (.021) 0.4828 (.029) 0.6081 (.015)
V-BLIINDS 0.5590 (.049) 0.3899 (.036) 0.5551 (.046) 0.5356 (022)  0.6545 (.023) 0.4739 (.019) 0.6599 (.023) 0.5200 (.016)
TLVQM 0.6693 (.030) 04816 (.025) 0.6590 (.030) 0.4849 (.022) 0.7271 (.018) 0.5347 (.016) 0.7342 (.018) 0.4705 (.013)
VIDEVAL* 0.7787 (.025) 0.5830 (.023) 0.7733 (.025) 0.4049 (.021)  0.7960 (.015) 0.6032 (.014) 0.7939 (.015) 0.4268 (.015)

*FRIQUEE and VIDEVAL were evaluated on a subset of 1,323 color videos in YouTube-UGC, denoted YouTube-UGC;, since it yields numerical errors
when calculating on the remaining 57 grayscale videos. For the other BVQA models evaluated, no significant difference was observed when evaluated on
YouTube-UGC; versus YouTube-UGC, and hence we still report the results on YouTube-UGC.

tFor a fair comparison, we only combined and calibrated (via INLSA [77]) all the color videos from these three databases to obtain the combined dataset,
i.e., All-Combined. (3,108) = KoNViD-1k (1,200) + LIVE-VQC (585) + YouTube-UGC;. (1,323).

2) BVOQA Model Benchmarks: We include a number of
representative BVQA/BIQA algorithms in our benchmark-
ing evaluation as references to be compared against. These
baseline models include NIQE [53], ILNIQE [78], VIIDEO
[55], BRISQUE [38], GM-LOG [57], HIGRADE [40],
FRIQUEE [41], CORNIA [43], HOSA [61], KonCept512
[70], PaQ-2-PiQ [64], V-BLIINDS [39], and TLVQM [42].
Among these, NIQE, ILNIQE, and VIIDEO are “completely
blind” (opinion-unaware (OU)), since no training is required
to build them. The rest of the models are all training-based
(opinion-aware (OA)) and we re-train the models/features
when evaluating on a given dataset. We also utilized the
well-known deep CNN models VGG-19 [18] and ResNet-
50 [79] as additional CNN-based baseline models, where
each was pretrained on the ImageNet classification task.
The fully-connected layer (4,096-dim) from VGG-19 and
average-pooled layer (2,048-dim) from ResNet-50 served as
deep feature descriptors, by operating on 25 227 x 227 random
crops of each input frame, then average-pooled into a single
feature vector representing the entire frame [63]. Two SOTA
deep BIQA models, KonCept512 [70] and PaQ-2-PiQ [64],
were also included in our evaluations. We implemented the
feature extraction process for each evaluated BVQA model
using its initial released implementation in MATLAB R2018b,

except that VGG-19 and ResNet-50 were implemented in
TensorFlow, while KonCept512! and PaQ-2-PiQ? were imple-
mented in PyTorch. All the feature-based BIQA models extract
features at a uniform sampling rate of one frame per sec-
ond, then temporally average-pooled to obtain the overall
video-level feature.

3) Regression Models: We used a support vector regres-
sor (SVR) as the back-end regression model to learn the
feature-to-score mappings, since it achieves excellent perfor-
mance in most cases [38], [39], [41], [42], [59], [63]. The
effectiveness of SVR, however, largely depends on the selec-
tion of its hyperparameters. As recommended in [80], we opti-
mized the SVR parameter values (C, y) by a grid-search of
10 x 10 exponentially growing sequences (in our experiments,
we used a grid of C =21,22,...,210 y =28 2-7 2l
using cross-validation on the training set. The pair (C,y)
yielding the best cross-validation performance, as measured
by the root mean squared error (RMSE) between the predicted
scores and the MOS, is picked. Afterward, the selected model
parameters are applied to re-train the model on the entire train-
ing set, and we report the evaluation results on the test set. This

Lhttps://github.com/ZhengyuZhao/koniq-PyTorch
2hitps://github.com/baidut/paq2piq
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1) TLVQM
Scatter plots and nonlinear logistic fitted curves of VQA models versus MOS trained with a grid-search SVR using k-fold cross-validation on the

(m) VIDEVAL

All-Combined,. set. (a) BRISQUE (1 fi/sec), (b) GM-LOG (1 fi/sec), (c) HIGRADE (1 fr/sec), (d) FRIQUEE (1 fr/sec), (e) CORNIA (1 fr/sec), (f) HOSA
(1 fr/sec), (g) VGG-19 (1 fr/sec), (h) ResNet-50 (1 fr/sec), (i) KonCept512 (1 frisec), (j) PaQ-2-PiQ (1 fr/sec), (k) V-BLIINDS, (1) TLVQM, and (m) VIDEVAL.

kind of cross-validation procedure can prevent over-fitting,
thus providing fair evaluation of the compared BVQA models.
‘We chose the linear kernel for CORNIA, HOSA, VGG-19, and
ResNet-50, considering their large feature dimension, and the
radial basis function (RBF) kernel for all the other algorithms.
We used Python 3.6.7 with the scikit-learn toolbox to train and
test all the evaluated learning-based BVQA models.

4) Performance Metrics: Following convention, we ran-
domly split the dataset into non-overlapping training and test
sets (80%/20%), where the regression model was trained on
the training set, and the performance was reported on the
test set. This process of random split was iterated 100 times
and the overall median performance was recorded. For each
iteration, we adopted four commonly used performance criteria
to evaluate the models: The Spearman Rank-Order Correla-
tion Coefficient (SRCC) and the Kendall Rank-Order Cor-
relation Coefficient (KRCC) are non-parametric measures of
prediction monotonicity, while the Pearson Linear Correlation
Coefficient (PLCC) with corresponding Root Mean Square
Error (RMSE) are computed to assess prediction accuracy.
Note that PLCC and RMSE are computed after performing
a nonlinear four-parametric logistic regression to linearize the
objective predictions to be on the same scale of MOS [1].

B. Performance on Individual and Combined Datasets

Table IV shows the performance evaluation of the three
“completely blind” BVQA models, NIQE, ILNIQE, and
VIIDEO on the four UGC-VQA benchmarks. None of these
methods performed very well, meaning that we still have
much room for developing OU “completely blind” UGC video
quality models.

Table V shows the performance evaluation of all the
learning-based BVQA models trained with SVR on the four
datasets in our evaluation framework. For better visualization,
we also show box plots of performances as well as scat-
ter plots of predictions versus MOS on the All-Combined,
set, in Figures 11 and 12, respectively. Overall, VIDEVAL
achieves SOTA or near-SOTA performance on all the test
sets. On LIVE-VQC, however, TLVQM outperformed other
BVQA models by a notable margin, while it significantly
underperformed on the more recent YouTube-UGC database.
We observed in Section II-B that LIVE-VQC videos gen-
erally contain more (camera) motions than KoNViD-1k and
YouTube-UGC, and TLVQM computes multiple motion rele-
vant features. Moreover, the only three BVQA models contain-
ing temporal features (V-BLIINDS, TLVQM, and VIDEVAL)
excelled on LIVE-VQC, which suggests that it is potentially
valuable to integrate at least a few, if not many, motion-related
features into quality prediction models, when assessing on
videos with large (camera) motions.

It is also worth mentioning that the deep CNN baseline
methods (VGG-19 and ResNet-50), despite being trained as
picture-only models, performed quite well on KoNViD-1k
and All-Combined.. This suggests that transfer learning is a
promising technique for the blind UGC-VQA problem, consis-
tent with conclusions drawn for picture-quality prediction [63].
Deep models will perform even better, no doubt, if trained on
temporal content and distortions.

The two most recent deep learning picture quality models,
PaQ-2-PiQ, and KonCept512, however, did not perform very
well on the three evaluated video datasets. The most probable
reason would be that these models were trained on picture
quality datasets [64], [70], which contain different types of
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TABLE VI

PERFORMANCES ON DIFFERENT RESOLUTION SUBSETS: 1080p (427),
720P (566), AND <480P (448)

SUBSET 1080p 720p <480p

MODEL SRCC PLCC SRCC PLCC SRCC PLCC
BRISQUE  0.4597 0.4637 0.5407 0.5585 0.3812 0.4065
GM-LOG 0.4796 0.4970 0.5098 0.5172 0.3685 0.4200
HIGRADE 0.5142 0.5543 0.5095 0.5324 0.4650 0.4642
FRIQUEE  0.5787 0.5797 0.5369 0.5652 05042 0.5363
CORNIA 0.5951 0.6358 0.6212 0.6551 0.5631 0.6118
HOSA 0.5924 0.6093 0.6651 0.6739 0.6514 0.6652
VGG-19 0.6440 0.6090 0.6158 0.6568 0.5845 0.6267
ResNet-50  0.6615 0.6644 0.6645 0.7076 0.6570 0.6997
KonCept512 0.6332 0.6336 0.6055 0.6514 04271 0.4612
PaQ-2-PiQ  0.5304 0.5176 0.5768 0.5802 03646 0.4748
V-BLIINDS 0.4449 0.4491 0.5546 0.5719 0.4484 0.4752
TLVQM 0.5638 0.6031 0.6300 0.6526 04318 04784
VIDEVAL 05805 0.6111 0.6296 0.6393 0.5014 0.5508

TABLE VII

PERFORMANCES ON DIFFERENT CONTENT SUBSETS: SCREEN CONTENT
(163), ANIMATION (81), AND GAMING (209)

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 30, 2021

TABLE VIII

PERFORMANCES ON DIFFERENT QUALITY SUBSETS: LOW
QUALITY (1558) AND HIGH QUALITY (1550)

SUBSET Low Quality High Quality

MODEL SRCC PLCC SRCC PLCC
BRISQUE  0.4312 0.4593 0.2813 0.2979
GM-LOG 04221 04715 0.2367 0.2621
HIGRADE 0.5057 0.5466 04714 04799
FRIQUEE 0.5460 0.5886 0.5061 0.5152
CORNIA 04931 0.5435 0.3610 0.3748
HOSA 0.5348 0.5789 04208 04323
VGG-19 0.3710 04181 0.3522 03614
ResNet-50  0.3881 0.4250 0.2791 0.3030
KonCept512 0.3428 0.4497 0.2245 0.2597
PaQ-2-PiQ  0.2438 0.2713 0.2013 02252
V-BLIINDS 0.4703 0.5060 0.3207 0.3444
TLVQM 0.4845 0.5386 0.4783 0.4860
VIDEVAL  0.5680 0.6056 0.5546 0.5657

TABLE IX

BEST MODEL IN TERMS OF SRCC FOR CROSS DATASET
GENERALIZATION EVALUATION

SUBSET Screen Content Animation Gaming TRAIN\TEST LIVE-VQC KoNViD-1k YouTube-UGC.

MODEL SRCC PLCC SRCC PLCC  SRCC PLCC LIVE-VQC - ResNet-50 (0.69) ResNet-50 (0.33)

BRISQUE 02573 0.3954 00747 03857 02717 0.3307 KoNViD-1k  ResNet-50 (0.70) - VIDEVAL (0.37)

GM-LOG 03004 04244 02009 04129 03371 0.4185 YouTube-UGC; ~ HOSA (049)  VIDEVAL (0.61) -

HIGRADE 04971 05652  0.1985 04140  0.6228 0.6832

FRIQUEE 05522 0.6160 02377 04574  0.6919 0.7193 TABLE X

CORNIA 05105 05667  0.1936 04627  0.5741 0.6502

HOSA 04667 0.5255 0.1048 0.4489 0.6019 0.6998 BEST MODEL IN TERMS OF PLCC FOR CROSS DATASET

VGG-19 05472 06229 01973 04700 05765 0.6370 GENERALIZATION EVALUATION

ResNet-50  0.6199 0.6676  0.2781 04871  0.6378 0.6779 TRAIN\TEST LIVEVQC KONVID-IK _ YouTube-UGC.

KonCept512 04714 05119 02757 05229  0.4780 0.6240

PaQ-2-PiQ 03231 04312  0.0208 04630 02169 0.3874 LIVE-VQC < ResNet-50 (0.70)  VIDEVAL (0.35)
: - : - - - KoNViD-1k ResNet-50 (0.75) - VIDEVAL (0.39)

V.BLIINDS 03064 0.4155 00379 03917 05473 0.6101 YouTube-UGC.  HOSA (0.50)  VIDEVAL (0.62) .

TLVQM 03843 04524 02708 04598 05749 0.6195

VIDEVAL  0.6033 0.6610 03492 05274  0.6954 0.7323

(strictly spatial) distortions than UGC-VQA databases. Models
trained on picture quality sets do not necessarily transfer very
well to UGC video quality problems. In other words, whatever
model should be either trained or fine-tuned on UGC-VQA
datasets in order to obtain reasonable performance. Indeed,
if temporal distortions (like judder) are present, they may
severely underperform if the frame quality is high [81].

C. Performance Evaluation on Categorical Subsets

We propose three new categorical evaluation methodologies
- resolution, quality, and content-based category breakdown.
These will allow us to study the compared BVQA models from
additional and practical aspects in the context of real-world
UGC scenarios, which have not been, nor can it be accounted
in previous legacy VQA databases or studies.

For resolution-dependent evaluation, we divided the
All-Combined, set into three subsets, based on video resolu-
tion: (1) 427 1080p-videos (110 from LIVE-VQC, 317 from
YouTube-UGC), (2) 566 720p-videos (316 from LIVE-VQC,
250 from YouTube-UGC), and (3) 448 videos with resolution
<480p (29 from LIVE-VQC, 419 from YouTube-UGC), since

we are also interested in performance on videos of different
resolutions. We did not include 540p-videos, since those
videos are almost exclusively from KoNViD-1k. Table VI
shows the resolution-breakdown evaluation results. Gener-
ally speaking, learned features (CORNIA, HOSA, VGG-19,
KonCept512, and ResNet-50) outperformed hand-designed
features, among which ResNet-50 ranked first.

Here we make two arguments to try to explain the obser-
vations above: (1) video quality is intrinsically correlated
with resolution; (2) NSS features are implicitly resolution-
aware, while CNN features are not. The first point is
almost self-explanatory, no matter to what degree one agrees.
To further justify this, we trained an SVR only using
resolution (height, width) as features to predict MOS on
YouTube-UGC, which contains balanced samples across five
different resolutions. This yielded surprisingly high values
0.576/0.571 for SRCC/PLCC, indicating the inherent cor-
relation between video quality and resolution. Secondly,
we selected one 2160p video from YouTube-UGC, namely
‘Vlog2160P-408f.mkv,” and plotted, in Figure 13, the mean-
subtracted contrast-normalized (MSCN) distributions of its
downscaled versions: 2160p, 1440p, 1080p, 720p, 480p, and
360p. It may be observed that resolution can be well sepa-
rated by MSCN statistics, based on which most feature-based
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TABLE XI

PERFORMANCE COMPARISON OF A TOTAL OF ELEVEN TEMPORAL POOLING METHODS USING TLVQM AND VIDEVAL AS TESTBEDS ON KONVID-1K,
LIVE-VQC, AND YOUTUBE-UGC. THE THREE BEST RESULTS ALONG EACH COLUMN ARE BOLDFACED

DATABASE KoNViD-1k LIVE-VQC YouTube-UGC
MODEL TLVQM VIDEVAL TLVQM VIDEVAL TLVQM VIDEVAL
PooLING SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC
Mean 0.7511 0.7475 0.7749 0.7727 0.7917 0.7984 0.7396 0.7432 0.6369 0.6310 0.7447 0.7332
Median 0.7483 0.7437 0.7650 0.7698 0.7708 0.7887 0.7236 0.7308 0.6127 0.6090 0.7452 0.7448
Harmonic  0.7458 0.7392 0.7772 0.7681 0.7845 0.7890 0.7312 0.7250 0.6119 0.6038 0.7449 0.7318
Geometric  0.7449 0.7461 0.7566 0.7592 0.7878 0.7964 0.7412 0.7487 0.6347 0.6236 0.7508 0.7437
Minkowski 0.7498 0.7481 0.7775 0.7727  0.7863 0.7908  0.7371 0.7558  0.6368 0.6311 0.7542 0.7508
Percentile  0.7078 0.7000 0.7161 0.7049 07378 0.7313 0.6596 0.6576 0.4871 0.4996 0.6443 0.6465
VQPooling 0.7240 0.7196 0.7366 0.7296 0.7696 0.7895 0.7240 0.7311 0.5654 0.5618 0.6942 0.6862
Primacy 0.7456 0.7451 0.7711 0.7700 0.7751 0.7851 0.7349 0.7523 0.5734 0.5692 0.7221 0.7156
Recency 0.7528 0.7470 0.7683 0.7677 0.7715 0.7857 0.7405 0.7584 0.5821 0.5695 0.7176 0.7116
Hysteresis  0.7434 0.7430 07612 0.7554 0.7856 0.7901 0.7226 0.7433 0.6092 0.6109 0.7370 0.7306
EPooling  0.7641 0.7573 0.7831 0.7867 0.7925 0.7917 0.7371 0.7372 0.6452 0.6592 0.7517 0.7379
107! KoNViD-1k, and YouTube-UGC_ were included. That is,
we trained the regression model on one full database and
Zan report the performance on another. To retain label consistency,
g R we linearly scaled the MOS values in LIVE-VQC from
w77 :}Eﬁg \ raw [0, 100] to [1, 5], which is Fhe scale for the other two
77 e ) datasets. We used SVR for regression and adopted k-fold cross
—360p validation using the same grid-search as in Section V-A for
25 0 05 hyperparameter selection. The selected parameter pair were
(a) Vlog_2160P-408f.mkv (b) MSCN distributions then applied to re-train the SVR model on the full training
Fig. 13. (a) An examplary 2160p video from YouTube-UGC and (b) the ~S€t, and the performance results on the test set were recorded.

mean-subtracted contrast-normalized (MSCN) distributions of its downscaled
versions: 2160p, 1440p, 1080p, 720p, 480p, and 360p.

methods are built. We may infer, from these two standpoints,
that including various resolutions of videos is favorable to
the training of NSS-based models, since NSS features are
resolution-aware, and resolution is further well correlated with
quality. In other words, the resolution-breakdown evaluation
shown in Table VI, which removes this important implicit
feature (resolution), would possibly reduce the performance
of NSS-based models, such as FRIQUEE and VIDEVAL.

We also divided the All-Combined. into subsets based
on content category: Screen Content (163), Animation (81),
Gaming (209), and Natural (2,667) videos. We only reported
the evaluation results on the first three subsets in Table VII,
since we observed similar results on the Natural subset with
the entire combined set. The proposed VIDEVAL model
outperformed over all categories, followed by ResNet-50 and
FRIQUEE, suggesting that VIDEVAL features are robust
quality indicatives across different content categories.

The third categorical division is based on quality scores:
we partitioned the combined set into Low Quality (1,558) and
High Quality (1,550) halves, using the median quality value
3.5536 as the threshold, to see the model performance only
on high/low quality videos. Performance results are shown
in Table VIII, wherein VIDEVAL still outperformed the other
BVQA models on both low and high quality partitions.

D. Cross Dataset Generalizability

We also performed a cross dataset evaluation to verify
the generalizability of BVQA models, wherein LIVE-VQC,

Table IX and X show the best performing methods with
cross domain performances in terms of SRCC and PLCC,
respectively.

We may see that the cross domain BVQA algorithm
generalization between LIVE-VQC and KoNViD-1k was sur-
prisingly good, and was well characterized by pre-trained
ResNet-50 features. We also observed better algorithm gen-
eralization between KoNViD-1k and YouTube-UGC than
LIVE-VQC, as indicated by the performances of the best
model, VIDEVAL. This might be expected, since as Figure 7
shows, YouTube-UGC and KoNViD-1k share overlapped cov-
erage of content space, much larger than that of LIVE-VQC.
Therefore, we may conclude that VIDEVAL and ResNet-
50 were the most robust BVQA models among those compared
in terms of cross domain generalization capacities.

E. Effects of Temporal Pooling

Temporal pooling is one of the most important, unresolved
problems for video quality prediction [42], [60], [76], [82],
[83]. In our previous work [76], we have studied the efficacy
of various pooling methods using scores predicted by BIQA
models. Here we extend this to evaluate on SOTA BVQA mod-
els. For practical considerations, the high-performing TLVQM
and VIDEVAL were selected as exemplar models. Since these
two models independently extract features on each one-second
block, we applied temporal pooling of chunk-wise quality
predictions. A total of eleven pooling methods were tested:
three Pythagorean means (arithmetic, geometric, and harmonic
mean), median, Minkowski (p = 2) mean, percentile pooling
(20%) [84], VQPooling [82], primacy and recency pooling
[85], hysteresis pooling [60], and our previously proposed
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FEATURE DESCRIPTION, DIMENSIONALITY, COMPUTATIONAL COMPLEXITY, AND AVERAGE RUNTIME COMPARISON (IN SECONDS EVALUATED ON
TWENTY 1080p VIDEOS FROM LIVE-VQC) AMONG MATLAB-IMPLEMENTED BVQA MODELS

CLASS MODEL FEATURE DESCRIPTION DiM COMPUTATIONAL COMPLEXITY TIME (SEC)
NIQE (1 fr/sec) Spatial NSS 1  O(d®NT) d: window size 6.3
ILNIQE (1 fi/sec) Spatial NSS, gradient, log-Gabor, and color 1 O((d? + h+ gh)NT) d: window size; h: filter 23.3
statistics size; g: log-Gabor filter size
BRISQUE (1 fr/sec) Spatial NSS 36 O(d?NT) d: window size 1.7
GM-LOG (1 fr/sec)  Joint statistics of gradient magnitude and lapla- 40 O(((h+k)NT) d: window size; k: probability 2.1
cian of gaussian coefficients matrix size
HIGRADE (1 fr/sec) Spatial NSS, and gradient magnitude statistics 216 ©O(3(2d? +k)NT) d: window size; k: gradient 11.6
IQA in LAB color space kernel size
FRIQUEE (1 fr/sec) Complex streerable pyramid wavelet, luminance, 560 O((fd%N +4N(log(N) +m?2))T) d: window 7012
chroma, LMS, HSI, yellow channel, and their size; f: number of color spaces; m: neighbor-
transformed domain statistics hood size in DNT
CORNIA (1 fr/sec)  Spatially normalized image patches and max 10k O(d2KNT) d: window size K: codebook size 14.3
min pooling
HOSA (1 fr/sec) Local normalized image patches based on high 147k O(d2KNT) d: window size K: codebook size 1.2
order statistics aggregation
VIIDEO Frame difference spatial statistics, inter sub-band 1 O(N log(N)T) 6748
statistics
V-BLIINDS Spatial NSS, frame difference DCT coefficient 47  O((d®*N + log(k)N + k*w3)T) d: window  1989.9
statistics, motion coherency, and egomotion size; k: block size; w: motion vector tensor size
TLVQM Captures impairments computed at two compu- 75 O((h2N + k2K)T1 + (log(N) + h2)NT3)) 183.8
vQA tation levels: low complexity and high complex- hy, hg: filter size; k: motion estimation block
ity features size; K': number of key points
VIDEVAL Selected combination of NSS features in multi- 60  O((fh2N + k?K)T1 + hZNT3) hy, ha: filter 305.8

ple perceptual spaces and using visual impair-
ment features from TLVQM

size; f: number of color spaces; k: motion
estimation block size; K': number of key points

N': number of pixels per frame; T: number of frames computed for feature extraction. Note that for VIIDEO and V-BLIINDS, T is the total number of
frames, whereas for IQA models, T equals the total number of frames sampled at 1 fr/sec. For TLVQM and VIDEVAL, T3 is total number of frames

divided by 2, while T3 is the number of frames sampled at 1 fr/sec.

ensemble method, EPooling [76], which aggregates multiply
pooled scores by training a second regressor on top of mean,
Minkowski, percentile, VQPooling, variation, and hysteresis
pooling. We refer the reader to [76] for detailed algorithmic
formulations and parameter settings thereof.

It is worth noting that the results in Table XI are only
self-consistent, meaning that they are not comparable to any
prior experiments - since we employed chunk-wise instead of
previously adopted video-wise quality prediction to be able to
apply temporal quality pooling, which may affect the base per-
formance. Here we observed yet slightly different results using
BVQA testbeds as compared to what we observed on BIQA
[76]. Generally, we found the mean families and ensemble
pooling to be the most reliable pooling methods. Traditional
sample mean prediction may be adequate in many cases, due
to its simplicity. Pooling strategies that more heavily weight
low-quality parts, however, were not observed to perform very
well on the tested BVQA, which might be attributed to the fact
that not enough samples (8 ~ 20) can be extracted from each
video to attain statistically meaningful results.

F. Complexity Analysis and Runtime Comparison

The efficiency of a video quality model is of vital impor-
tance in practical commercial deployments. Therefore, we also
tabulated the computational complexity and runtime cost of
the compared BVQA models, as shown in Tables XII, XIII.
The experiments were performed in MATLAB R2018b and
Python 3.6.7 under Ubuntu 18.04.3 LTS system on a Dell Opti-
Plex 7080 Desktop with Intel Core i7-8700 CPU@3.2GHz,

32G RAM, and GeForce GTX 1050 Graphics Cards. The
average feature computation time of MATLAB-implemented
BVQA models on 1080p videos are reported in Table XII.
The proposed VIDEVAL method achieves a reasonable com-
plexity among the top-performing algorithms, TLVQM, and
FRIQUEE. We also present theoretical time complexity
in Table XII for potential analytical purposes.

We also provide in Table XIII an additional runtime com-
parison between MATLAB models on CPU and deep learning
models on CPU and GPU, respectively. It may be observed
that top-performing BVQA models such as TLVQM and
VIDEVAL are essentially slower than deep CNN models, but
we expect orders-of-magnitude speedup if re-implemented in
pure C/C++. Simpler NSS-based models such as BRISQUE
and HIGRADE (which only involve several convolution opera-
tions) still show competitive efficiency relative to CNN models
even when implemented in MATLAB. We have also seen a
5 ~ 10 times speedup switching from CPU to GPU for the
CNN models, among which KonCept512 with PyTorch-GPU
was the fastest since it requires just a single pass to the CNN
backbone, while the other three entail multiple passes for each
input frame.

Note that the training/test time of the machine learning
regressor is approximately proportional to the number of
features. Thus, it is not negligible compared to feature com-
putation given a large number of features, regardless of the
regression model employed. The feature dimension of each
model is listed in Table XII. As may be seen, codebook-based
algorithms (CORNIA (10k) and HOSA (14.7k)) require
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TABLE XIII

RUN TIME COMPARISON OF FEATURE-BASED AND DEEP LEARNING
BVQA MODELS (IN SECONDS EVALUATED ON TWENTY 1080p
VIDEOS FROM LIVE-VQC). MODEL LOADING TIME FOR DEEP
MODELS ARE EXCLUDED

MODEL TIME (SEC)
BRISQUE (1 fr/sec) MATLAB-CPU 1.7
HOSA (1 fr/sec) MATLAB-CPU 1.2
TLVQM MATLAB-CPU 183.8
VIDEVAL MATLAB-CPU 305.8
VGG-19 (1 fr/sec) TensorFlow-CPU 278
TensorFlow-GPU 57

ResNet-50 (1 fr/sec) TensorFlow-CPU 9.6
TensorFlow-GPU 19

KonCept512 (1 fr/sec) PyTorch-CPU 2.8
PyTorch-GPU 0.3

PaQ-2-PiQ (1 fr/sec) PyTorch-CPU 6.9
PyTorch-GPU 0.8

significantly larger numbers of features than other hand-crafted
feature based models. Deep ConvNet features ranked second
in dimension (VGG-19 (4,080) and ResNet-50 (2,048)). Our
proposed VIDEVAL only uses 60 features, which is fairly
compact, as compared to other top-performing BVQA models
like FRIQUEE (560) and TLVQM (75).

G. Ensembling VIDEVAL With Deep Features

We also attempted a more sophisticated ensemble fusion of
VIDEVAL and deep learning features to determine whether
this could further boost its performance, which could give
insights on the future direction of this field. Since PaQ-2-PiQ
aimed for local quality prediction, we included the pre-
dicted 3 x 5 local quality scores as well as a single global
score, as additional features. For KonCept512, the feature
vector (256-dim) immediately before the last linear layer in
the fully-connected head was appended. Our own baseline
CNN models, VGG-19 and ResNet-50, were also considered,
because these are commonly used standards for downstream
vision tasks.

The overall results are summarized in Table XIV. We may
observe that ensembling VIDEVAL with certain deep learning
models improved the performance by up to ~ 4% compared to
the vanilla VIDEVAL, which is very promising. Fusion with
either ResNet-50 or KonCept512 yielded top performance.
It should be noted that the number of fused features is also
an essential aspect. For example, blending VIDEVAL (60-
dim) with VGG-19 (4,096-dim) may not be recommended,
since the enormous number of VGG-19 features could possi-
bly dominate the VIDEVAL features, as suggested by some
performance drops in Table XIV.

H. Summarization and Takeaways

Finally, we briefly summarize the experimental results and

make additional observations:

1) Generally, spatial distortions dominated quality predic-
tion on Internet UGC videos like those from YouTube
and Flickr, as revealed by the remarkable performances
of picture-only models (e.g., HIGRADE, FRIQUEE,
HOSA, ResNet-50) on them. Some motion-related

4461

TABLE XIV

PERFORMANCE OF THE ENSEMBLE VIDEVAL MODELS FUSED WITH
ADDITIONAL DEEP LEARNING FEATURES

DATASET  MODEL \ METRIC SRCC KRCC PLCC RMSE
VIDEVAL 0.7832 0.5845 0.7803 0.4024
VIDEVAL+VGG-19 0.7827 0.5928 0.7913 0.3897

KoNViD VIDEVAL-+ResNet-50  0.8129 0.6212 0.8200 0.3659
VIDEVAL+KonCept512 0.8149 0.6251 0.8169 0.3670
VIDEVAL+PaQ-2-PiQ 0.7844 0.5891 0.7793 0.4018
VIDEVAL 0.7522 0.5639 0.7514 11.100
VIDEVAL+VGG-19 0.7274 0.5375 0.7717 10.749

LIVE-VQC VIDEVAL+ResNet-50  0.7456 0.5555 0.7810 10.385
VIDEVAL+KonCept512 0.7849 0.5953 0.8010 10.145
VIDEVAL+PaQ-2-PiQ 0.7677 0.5736 0.7686 10.787
VIDEVAL 0.7787 0.5830 0.7733 0.4049
VIDEVAL+VGG-19 0.7868 0.5930 0.7847 0.3993

YT-UGC VIDEVAL-+ResNet-50  0.8085 0.6128 0.8033 0.3837
VIDEVAL+KonCept512 0.8083 0.6139 0.8028 (.3859
VIDEVAL+PaQ-2-PiQ 0.7981 0.6015 0.7941 0.3959
VIDEVAL 0.7960 0.6032 0.7939 0.4268
VIDEVAL+VGG-19 0.7859 0.5912 0.7962 0.4202

All-Comb  VIDEVAL+ResNet-50  0.8115 0.6207 0.8286 0.3871
VIDEVAL+KonCept512 0.8123 0.6193 0.8168 0.4017
VIDEVAL+PaQ-2-PiQ 0.7962 0.5991 0.7934 04229

features (as in TLVQM) may not apply as well in this
scenario.

2) On videos captured with mobile devices (e.g., those
in LIVE-VQC), which often present larger and
more frequent camera motions, including temporal-
or motion-related features can be advantageous
(e.g., V-BLIINDS, TLVQM, VIDEVAL).

3) Deep CNN feature descriptors (VGG-19, ResNet-50,
etc.) pre-trained for other classical vision tasks
(e.g. image classification) are transferable to UGC video
quality predictions, achieving very good performance,
suggesting that using transfer learning to address the
general UGC-VQA problem is very promising.

4) It is still a very hard problem to predict UGC video
quality on non-natural or computer-generated video con-
tents: screen contents, animations, gaming, etc. More-
over, there are no sufficiently large UGC-VQA datasets
designed for those kinds of contents.

5) A simple feature engineering and selection implemen-
tation built on top of current effective feature-based
BVQA models is able to obtain excellent performance,
as exemplified by the compact new model (VIDEVAL).

6) Simple temporal mean pooling of chunk-wise quality
predictions by BVQA models yields decent and robust
results. Furthermore, an ensemble pooling approach can
noticeably improve the quality prediction performance,
albeit with higher complexity.

7) Ensembling scene statistics-based BVQA models with
additional deep learning features (e.g., VIDEVAL plus
KonCept512) could further raise the performance upper
bound, which may be a promising way of developing
future BVQA models.

VI. CONCLUSION

We have presented a comprehensive analysis and empirical
study of blind video quality assessment for user-generated
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content (the UGC-VQA problem). We also proposed a
new fusion-based BVQA model, called the VIDeo quality
EVALuator (VIDEVAL), which uses a feature ensemble and
selection procedure on top of existing efficient BVQA mod-
els. A systematic evaluation of prior leading video quality
models was conducted within a unified and reproducible
evaluation framework and accordingly, we concluded that a
selected fusion of simple distortion-aware statistical video
features, along with well-defined visual impairment features,
is able to deliver state-of-the-art, robust performance at a
very reasonable computational cost. The promising perfor-
mances of baseline CNN models suggest the great potential
of leveraging transfer learning techniques for the UGC-VQA
problem. We believe that this benchmarking study will help
facilitate UGC-VQA research by clarifying the current sta-
tus of BVQA research and the relative efficacies of mod-
ern BVQA models. To promote reproducible research and
public usage, an implementation of VIDEVAL has been
made available online: https://github.com/vztu/VIDEVAL.
In addition to the software, we are also maintain-
ing an ongoing performance leaderboard on Github:
https://github.com/vztu/BVQA_Benchmark.
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