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ABSTRACT

We explore constraints on the equation of state (EOS) of neutron-rich matter based on microscopic
calculations up to nuclear densities and observations of neutron stars. In a previous work we showed
that predictions based on modern nuclear interactions derived within chiral effective field theory and
the observation of two-solar-mass neutron stars result in a robust uncertainty range for neutron star

radii and the EOS over a wide range of densities. In this work we extend this study, employing both
the piecewise polytrope extension from Hebeler et al. as well as the speed of sound model of Greif
et al., and show that moment of inertia measurements of neutron stars can significantly improve the

constraints on the EOS and neutron star radii.

1. INTRODUCTION

Recently, there has been significant progress in our
understanding of the equation of state (EOS) of dense

matter. This was triggered by advances in nuclear
theory, new constraints from precise measurements of
heavy neutron stars, as well as astrophysical observa-
tions from the LIGO/Virgo (Abbott et al. 2018, 2019)

and NICER (Miller et al. 2019; Raaijmakers et al. 2019;
Riley et al. 2019) collaborations. These offer complemen-
tary insights to the EOS. While nuclear theory provides

reliable predictions for neutron-rich matter up to densi-
ties around saturation density (ρ0 = 2.8× 1014 g cm−3),
observations of neutron stars, and neutron star mergers

probe the EOS over a higher range of densities but pro-
vide indirect constraints.

In nuclear physics the development of chiral effective
field theory (EFT) has revolutionized our approach to
nuclear forces. The description of the interactions be-
tween neutrons and protons, both particles with a com-
plex substructure, has been a challenge in nuclear theory
for decades. Pioneered by the seminal works of Weinberg
(1990, 1991), chiral EFT has now become the only known
framework that allows a systematic expansion of nuclear
forces at low energies (Epelbaum et al. 2009; Machleidt

& Entem 2011; Hammer et al. 2013) based on the sym-
metries of quantum chromodynamics (QCD), the fun-
damental theory of the strong interaction. In addition,
chiral EFT allows one to derive systematic estimates of
uncertainties for observables. Incorporating such chi-

ral EFT interactions in microscopic many-body frame-

works makes it possible to compute uncertainty bands
for the pressure and energy density of matter (Hebeler &
Schwenk 2010; Carbone et al. 2013; Holt et al. 2013; Tews

et al. 2013; Wellenhofer et al. 2014; Drischler et al. 2016,
2019, 2020; Lynn et al. 2016). As any effective low-energy
theory, chiral EFT contains an intrinsic breakdown scale.

When approaching this breakdown scale with increasing
energy or density the convergence of the effective expan-
sion becomes slower until eventually it breaks down. This
breakdown scale translates into an upper density limit for

such calculations. The precise value for this upper den-
sity limit is still unknown, and also depends on details of
the interactions. In a previous work (Hebeler et al. 2013),
we chose an upper density limit of 1.1 ρ0 for neutron-rich
matter. This limit represents a rather conservative choice
and it might be possible to push this limit to somewhat
higher densities (Tews et al. 2018), although a full un-
derstanding of the implied uncertainties is still an open
problem. Finally, for very high densities (ρ & 50 ρ0),
there are model-independent constraints from perturba-
tive QCD calculations of quark matter (Kurkela et al.
2010).

Neutron star observations provide powerful constraints

on the EOS beyond the densities accessible by nuclear
theory as well as laboratory experiments (Tsang et al.
2012). In particular, the precise mass measurements
of the pulsars PSR J1614-2230 and PSR J0348+0432
with masses of 1.928 ± 0.017M� (Fonseca et al. 2016)
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and 2.01 ± 0.04M� (Antoniadis et al. 2013) turned out
to be a key discovery, as the existence of such heavy
neutron stars puts tight constraints on the EOS and
the composition of matter, ruling out a large number
of EOSs with simple inclusion of exotic degrees of free-
dom like hyperons or deconfined quarks. Recently, the
mass of the pulsar PSR J0740+6620 was measured to
be 2.14+0.10

−0.09M� (Cromartie et al. 2019), which further
tightens these constraints.

In this work, we study the EOS constraints that can be
achieved from future moment of inertia measurements, in
addition to the heavy mass constraint discussed above.
The moment of inertia has been suggested to provide
complementary constraints for the EOS (Ravenhall &
Pethick 1994; Lyne et al. 2004; Lattimer & Schutz 2005).
It can be obtained from measurements of the rate of ad-
vance of the periastron, ω̇ (Damour & Schäfer 1988).
This advance is mainly caused by the relativistic spin-
orbit coupling in a binary system (Barker & O’Connell

1975; Wex 1995; Kramer & Wex 2009), and the magni-
tude of the advance depends sensitively on the orbital
period and the compactness of the binary system. In
2003, the double neutron-star system PSR J0737–3039

was discovered (Burgay et al. 2003; Lyne et al. 2004).
This system is particularly promising for such measure-
ments, as it is extremely compact with an orbital period

of only 2.4 hr (Burgay et al. 2003, 2005; Lyne et al. 2004).
In addition, due to the high orbital inclination (Burgay
et al. 2003, 2005), the masses of the two neutron stars
have been determined very precisely to be 1.3381(7)M�
and 1.2489(7)M� (Kramer & Wex 2009). Due to the
compactness of the system, the moment-of-inertia correc-
tion to ω̇ is estimated to be an order of magnitude larger

for PSR J0737-3039A (the heavier of the two pulsars)
than for other systems like PSR B1913+16 (Lyne et al.
2004). Such a moment of inertia measurement has to

be performed over a long period of time and an increase
of timing precision would be beneficial (Kramer & Wex
2009). Based on this, it was argued that a moment of
inertia measurement with a relative uncertainty of about
10% may be achievable (Damour & Schäfer 1988; Lat-
timer & Schutz 2005; Kramer & Wex 2009).

Previous works studied to what extent such measure-
ments are able to provide constraints for different types of
EOS (Morrison et al. 2004; Bejger et al. 2005; Lattimer &
Schutz 2005). In particular, Ravenhall & Pethick (1994)

showed that the moment of inertia can be parameter-
ized efficiently as a function of the compactness param-
eter, and Lattimer & Schutz (2005) demonstrated that
a universal relation between the moment of inertia and
the compactness parameter exists, which can be used to
provide constraints on neutron star radii. More recently,
Steiner et al. (2015), Gorda (2016), and Lim et al. (2019)

studied the moment of inertia based on neutron star ob-

servations and EOS constraints, and Raithel et al. (2016)
investigated the inference of neutron star radii from mo-
ment of inertia measurements.

In this work, we study how microscopic calculations
based on chiral EFT interactions combined with neu-
tron star masses and a future moment of inertia mea-
surement can provide novel predictions for the EOS and
neutron star radii. In Section 2, we briefly review our
approach employing both the piecewise polytrope exten-
sion from Hebeler et al. (2013) as well as the speed of
sound model of Greif et al. (2019) and present uncer-
tainty ranges for neutron star observables such as the
mass, the radius, and the moment of inertia. In Sec-
tion 3, we present our results for neutron star radii, and
how these can improve upon information from the neu-
tron star merger GW170817 (Abbott et al. 2019). More-
over, we discuss the resulting EOS constraints and ex-

plore scaling relations for the dimensionless moment of
inertia. Finally, we conclude in Section 4.

2. CONSTRAINTS FROM NUCLEAR THEORY

AND NEUTRON STAR MASSES

In Hebeler et al. (2010, 2013) we combined constraints
from nuclear physics and neutron star masses to derive

constraints for the EOS for all densities relevant for neu-
tron stars. We briefly review the strategy of this work
and refer to Hebeler et al. (2013) for details:

a) The first constraint results from microscopic calcu-

lations of neutron-rich matter up to density ρ1 = 1.1 ρ0

based on modern nuclear interactions derived from chiral
EFT (Hebeler & Schwenk 2010; Tews et al. 2013). These

calculations resulted in uncertainty bands for the energy
density and pressure. For densities below ρcrust = 0.5 ρ0

the BPS crust EOS of Baym et al. (1971) and Negele
& Vautherin (1973) was used. Remarkably, around the

transition density ρcrust both EOSs overlap smoothly, so
that our final results are insensitive to the particular
choice for ρcrust.

b) Based on the constraints from nuclear physics
at low densities the EOS was extended in a gen-
eral way to higher densities using piecewise polytropes,
P (ρ) = Kiρ

Γi , with the adiabatic indices Γi and con-
stants Ki (see also Read et al. (2009)). The values for Γi

are allowed to vary freely, whereas the values of Ki are
fixed by the constraint that the EOS should be continu-
ous as a function of density. For the extension beyond ρ1,
three polytropes characterized by exponents Γ1, Γ2 (be-
yond ρ12), and Γ3 (beyond ρ23) allow one to control the

softness or stiffness of the EOS in a given density region,
and the transition densities ρ12 and ρ23 between poly-
tropes are allowed to vary as well. Sampling all possible
EOSs using the step size ∆Γi = 0.5 and ∆ρ12,23 = ρ0/2
results in a very large number of possible EOSs (for de-
tails, see Hebeler et al. (2013)), which include construc-
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Figure 1. Results for mass M , radius R, and moment of inertia I of neutron stars based on the EOS constraints (bands)
derived with the piecewise polytrope model based on chiral EFT calculations up to density ρ1 = 1.1 ρ0, the new mass
constraint Mobs > 2.05M�, and causality constraints. The individual panels (a), (b), and (c) show the mass-radius,
moment of inertia-radius, and moment of inertia-mass results, respectively. The green (dashed), yellow (solid), and

red (dotted-dashed) lines correspond to the three representative EOS (soft, intermediate, and stiff, respectively) from
Hebeler et al. (2013). Note that the latter are for the old mass constraint Mobs > 1.97M�, so that the soft EOS leads
to smaller radii.

tions that mimic first-order phase transitions. The val-
ues of Γi, ρ12, and ρ23 are then constrained by the con-
dition that each EOS must be able to support a neu-

tron star of at least Mobs = 2.05M�, which we take
as the 68% lower limit of the mass of the heaviest pre-
cisely known pulsar (Cromartie et al. 2019). This mass

constraint provides an update compared to the 1σ lower
limit (1.97M�) of the mass of PSR J0348+0432 (Anto-
niadis et al. 2013) used in Hebeler et al. (2013).

c) As the final constraint we require that the speed of
sound, cs, remain smaller than the speed of light, c, for all
densities: cs/c =

√
dP/dE 6 1, where P is the pressure

and E is the energy density. Each EOS is followed in den-

sity until causality is violated or the maximum neutron
star mass is reached when dM/dR = 0.

The combination of these three conditions leads to
mass-radius constraints on neutron stars shown in
panel (a) of Fig. 1. In general, the boundaries of the
band are spanned by a large number of different EOSs,

but to distinguish soft and stiff EOSs, we show the
three representative EOSs (soft, intermediate, and stiff)
of Hebeler et al. (2013), which span the radius range
as shown in Fig. 1, while the soft EOS leads to some-
what smaller radii due to the previous mass constraint
Mobs > 1.97M�. For a typical M = 1.4M� star, the
update gives a radius range of R = 10.2–13.6 km (taking
the chiral EFT constraints from renormalization-group-
evolved interactions, which have improved many-body
convergence; Hebeler et al. (2013)).

In order to explore the sensitivity to details of the high-
density extension, we also employ the speed of sound
model of Greif et al. (2019) in addition to the piece-

wise polytrope extension. The speed of sound model is
based on the same crust EOS and chiral EFT band, but
uses a parameterization of the speed of sound to high

densities, which includes a maximum in the speed of
sound c2s/c

2 > 1/3 and an asymptotic convergence to
the conformal limit from below, for very high densities

(ρ & 50 ρ0) suggested by the perturbative QCD calcula-
tions (Kurkela et al. 2010). The two different extensions
lead to small changes in the predicted ranges, e.g., for
the radius of a neutron star. These differences result

from the choice of three polytropes and the particular
functional form chosen for the speed of sound parame-
terization, and would be diminished for arbitrarily fine

discretizations of the high-density part of the EOS.
In this work we build on our past mass-radius re-

sults (Hebeler et al. 2013; Greif et al. 2019) and inves-

tigate how future moment of inertia measurements of
neutron stars will be able to further constrain the EOS
and neutron star radii. To this end, we investigate ro-
tating neutron stars and use the Hartle–Thorne slow-
rotation approximation (Hartle 1967; Hartle & Thorne
1968). Later studies have been more conservative, veri-
fying the applicability of this treatment to frequencies up
to f ≈ 200 Hz (Benhar et al. 2005; Cipolletta et al. 2015).
The heavier neutron star of the system PSR J0737–3039
has a period of about 23 ms (Burgay et al. 2003; Lyne

et al. 2004) and can hence reliably be treated within the
slow-rotation approximation.

Panels (b) and (c) of Fig. 1 show the results for the mo-
ment of inertia I as a function of neutron star mass and
radius based on our EOS bands from the piecewise poly-
trope extension. The moment of inertia can reach values
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EOS construction using the piecewise polytrope exten-
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√
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ple), 0.65 (blue), 0.75 (orange), and 0.95 (dark gray).
The dashed lines mark the corresponding regions for the
speed of sound model.

up to about 290M� km2 for very heavy neutron stars,

where the maximal values are clearly correlated with the
stiffness of the EOS. In addition, it is manifest that the
three EOSs which are representative with respect to the

radius are also representative with respect to the mo-
ment of inertia and practically span the full moment-of-
inertia range (with only minor modifications for the soft
EOS due to the new mass constraint). For the pulsar

PSR J0737-3039A with M = 1.338M� we find the mo-
ment of inertia to be in the range I = 53.2–85.7M� km2.
Our predicted range is significantly smaller than that

of Raithel et al. (2016), where I = 21.1–113.2M� km2,
and similar to the range obtained by Gorda (2016) with
I = 60.3–90.5M� km2.

In addition, we show the speed of sound cs reached
in our general EOS bands. In Fig. 2 the highlighted
areas represent M–R pairs that reach particular values
for cs/c. Note that cs/c is small at low densities in

the nonrelativistic chiral EFT calculations and reaches
1/
√

3 ≈ 0.577 from below in the perturbative QCD
regime (Kurkela et al. 2010). Figure 2 clearly demon-
strates that cs/c has to reach values of around 0.65 to be
compatible with two-solar-mass neutron stars. In partic-
ular, if one demands that cs/c 6 1/

√
3 for all densities in

neutron-star matter, no EOS exists in our general con-
struction that is compatible with the observed heavy neu-
tron stars. This has also been pointed out by Bedaque

& Steiner (2015) and is consistent with the findings of

Table 1. Radius Constraints Resulting from Mass and
Moment of Inertia Measurements for the Same Star, As-
suming the Mass Uncertainty Is Negligible and Using the
Piecewise Polytrope Extension

M Ic R(±10%) R(±20%) R

Ilow 55 10.2–11.4 10.2–12.0 10.2–13.6

1.338 Iint 70 11.3–12.9 10.6–13.4 10.2–13.6

Ihigh 85 12.5–13.6 11.8–13.6 10.2–13.6

Ilow 95 10.1–11.0 10.1–11.7 10.1–14.2

2.0 Iint 135 11.6–13.5 10.8–14.0 10.1–14.2

Ihigh 165 13.1–14.2 12.3–14.2 10.1–14.2

Ilow – – – 11.6–14.4

2.4 Iint 170 11.6–13.2 11.6–13.8 11.6–14.4

Ihigh 220 13.3–14.4 12.4–14.4 11.6–14.4

Note. The columns give the assumed values for M (in units
of M�) and central value Ic of the moment of inertia (in
units of M� km2), as well as the resulting radius ranges from
Fig. 3 (in units of km), assuming a relative uncertainty of
∆I = ±10% and ±20%, respectively. The last column gives
the radius range in the absence of a moment of inertia mea-
surement. For each assumed mass, we consider three values
of Ic that approximately correspond to the soft, intermediate,
and stiff EOS: Ilow, Iint, and Ihigh, respectively

Table 2. Same As Table 1 but Corresponding to Fig. 4
Using the Speed of Sound Model to Extrapolate to

Higher Densities

M Ic R(±10%) R(±20%) R

Ilow 55 10.4–11.5 10.4–12.0 10.4–13.2

1.338 Iint 70 11.3–12.9 10.7–13.2 10.4–13.2

Ihigh 85 12.6–13.2 11.8–13.2 10.4–13.2

Ilow 95 10.1–11.0 10.1–11.6 10.1–13.6

2.0 Iint 135 11.7–13.4 10.8–13.6 10.1–13.6

Ihigh 165 13.2–13.6 12.3–13.6 10.1–13.6

Ilow – – – 11.1–13.5

2.4 Iint 170 11.3–13.0 11.1–13.5 11.1–13.5

Ihigh 220 13.3–13.5 12.3–13.5 11.1–13.5

Tews et al. (2018) and Greif et al. (2019).

3. IMPROVED CONSTRAINTS FROM MOMENT
OF INERTIA MEASUREMENTS

Based on the frameworks discussed in Section 2, we
now investigate to what extent moment of inertia mea-
surements can improve these constraints. To this end,
we assume that it is possible to measure simultaneously
the neutron star mass (with negligible uncertainty) and
the moment of inertia with central value Ic and relative
uncertainty of ∆I = ±10% and ±20%, respectively. We
consider three different masses, M = 1.338M�, 2.0M�,

and 2.4M�, and for each mass, three possible central val-
ues Ic, given by Ilow, Iint, and Ihigh, which approximately
correspond to the moment of inertia given by the three
representative EOSs shown in panel (c) of Fig. 1. The



5

9 10 11 12 13 14
R [km]

50

100

150

200

250

I
[M
�

k
m

2
]

(a)

Ilow
1.338M�

2.0M�

2.4M�

soft

intermediate

stiff

±10%

±20%

unconstrained

9 10 11 12 13 14
R [km]

(b)

Iint
1.338M�

2.0M�

2.4M�

9 10 11 12 13 14 15
R [km]

(c)

Ihigh
1.338M�

2.0M�

2.4M�
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areas show the allowed I–R values for the particular neutron star masses indicated, where the dark gray area includes
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in this case.
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Figure 4. Same as Fig. 3 but using the speed of sound model from Greif et al. (2019) to extrapolate to high densities.

values of Ic for these assumed measurements are listed in
Table 1, where we also give the improved radius ranges
resulting from such a simultaneous measurement. In ad-
dition, we show the allowed I–R areas in Fig. 3, where
the three panels correspond to the low, intermediate, and
high Ic cases. For a 2.4M� neutron star, the soft EOS
is ruled out (see Fig. 1), and no low Ic scenario exists in
this case. We also note that the EOS can have a more
intricate behavior in the general EOS band, e.g, going
from soft to stiff and vice versa with higher slopes in the
M–R diagram (see Fig. 10).

Moreover, we show in Table 2 and Fig. 4 how these

radius constraints change if one uses the speed of sound
model instead of the piecewise polytrope extension. The
results show that the radius constraints are remarkably
consistent, with the largest differences due to the under-
lying allowed bands (see the gray regions versus the area
within the representative EOS in Fig. 4), occurring for

heavy mass neutron stars and the high Ic case.
Figures 3 and 4 clearly show that a measurement of Ic

with a relative uncertainty of ∆I = ±10% (±20%) in (al-
most) all cases significantly improves the constraints on
neutron star radii. For a ±10% measurement, if the mea-
sured value of Ic is located close to the center of the EOS
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band, the radius range decreases by about 50%, whereas

the radius becomes even more narrowly predicted when
Ic is close to low or high values. In the latter cases, the
radius spread in Table 1 is only 0.9–1.2 km for the piece-

wise polytrope extension and 0.2–1.1 km for the speed of
sound model.

Next, we focus on the neutron star PSR J0737−3039A
with mass 1.338M�, which is the target of a future mo-

ment of inertia measurement. In Fig. 5 we show the
allowed values for the moment of inertia as a function of
radius resulting from the piecewise polytrope extension

(left panel) and the speed of sound model (right panel),
where the darker gray regions indicate the I − R pairs
that are consistent with a 1.338M� star. The impact

of an accurate I measurement is clear from the repre-
sentative cases in Tables 1 and 2. Figure 5 shows again
that the tightest radius constraints would result from Ic
values toward the extremes of our general EOS bands.

In addition, we explore the constraints from the
gravitational-wave signal of the neutron star merger
GW170817 (Abbott et al. 2018, 2019). In Fig. 5, we

have highlighted the I−R regions in blue (green) for the
general EOS construction based on the piecewise poly-
trope extension (speed of sound model) that are consis-
tent with the LIGO/Virgo results (Abbott et al. 2019)
for the chirp mass M = 1.186 ± 0.001M�, the mass
ratio q = 0.73 − 1.00, and the binary tidal deformabil-
ity Λ̃ = 300+420

−230 (for the 90% highest posterior density
interval). These ranges are compatible with the analy-
sis of De et al. (2018), suggesting that they are robust
with respect to assumptions about the underlying EOS
and deformability priors. The comparison to the general

EOS regions without the GW10817 constraints (darker

gray vs. blue and green regions) in Fig. 5 shows that
the GW170817 observation is consistent with the general
EOS band based on nuclear physics and the observation
of 2M� neutron stars.

In addition to the radius constraints based on a mo-
ment of inertia measurement, we can also study the
corresponding constraints for the EOS. The different Ic
and mass scenarios for the piecewise polytrope exten-
sion (corresponding to the radius constraints of Fig. 3
and Table 1) are shown in Fig. 6. The gray region is

again the general EOS band of Hebeler et al. (2013) (up-
dated for the maximum mass constraint), whereas the
different panels show the constraints for the assumed si-
multaneous measurements of the mass (different rows)
and the moment of inertia (different columns). Natu-
rally, we find that the constraints on the EOS are the
strongest for those cases that also give the strongest ra-
dius constraints. In addition, small values of I tend to
give stronger constraints on the EOS at higher densities,
whereas large values for I provide stronger constraints at
lower densities. Moreover, measurements of heavy neu-
tron stars provide stronger constraints on the EOS than
the scenarios for typical neutron stars. Further, we give
in Fig. 7 the EOS constraints for the speed of sound

model (corresponding to the radius constraints of Fig. 4
and Table 2). This shows very similar constraints on the
EOS, as for the piecewise polytrope extension.

Several studies based on different phenomenological
EOS have shown that the dimensionless moment of in-
ertia I/MR2 correlates with the compactness M/R to a
good approximation (Lattimer & Prakash 2001; Bejger &
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Figure 6. Pressure P as a function of mass density ρ/ρ0 in units of the saturation density. The gray region is the general

EOS band based on the piecewise polytrope extension. The light and dark blue areas show the allowed EOS range for
assumed simultaneous measurements of the mass (different rows) and the moment of inertia (different columns), as in
Fig. 3 and Table 1, with a relative uncertainty of ∆I = ±10% (±20%).

Haensel 2002; Lattimer & Schutz 2005; Breu & Rezzolla

2016). In Fig. 8 we present our results for the piecewise
polytrope extension (color coded) and the speed of sound
model (black dashed line) for the dimensionless moment

of inertia, which yield a very similar correlation band,
and compare these to the bands from Steiner et al. (2016)
and Breu & Rezzolla (2016). Our results agree reason-
ably well with these for M/R > 0.15M�/km, while we
find a deviation for smaller compactness parameters and
also a somewhat larger band for M/R > 0.2M�/km.
This shows that, e.g., predictions for neutron stars with
small mass and large radii based on the former corre-
lation bands are not compatible with the general EOS
band. This is most likely due to low-density assump-
tions made that are incompatible with modern nuclear
physics.

In addition, we show in the lower panel of Fig. 8 the
three representative EOSs (soft, intermediate, and stiff)

of Hebeler et al. (2013). These are representative with re-
spect to radius and moment of inertia for all masses (see
Fig. 1) but, as is clear from Fig. 8, they do not capture

the extremes of the dimensionless moment of inertia. In

order to investigate the band for the dimensionless mo-
ment of inertia in more detail, we determined the individ-
ual EOSs that represent the limits of the band in Fig. 8
for the piecewise polytrope extension, which provides the
more conservative estimate. To this end, we discretized
M/R for M/R > 0.1M� km−1 and determined the χ2

of each EOS for the deviation of I/MR2 from the lower
(upper) band. The results for the individual EOSs with
the minimal χ2 values are shown as red (blue) lines in
the lower panel of Fig. 8.

The corresponding EOSs for these extreme cases are
shown in Fig. 9. We observe that the EOSs with a min-
imum χ2 with respect to the lower boundary of the di-
mensionless moment of inertia I/MR2 (red lines) tend to

be rather stiff at nuclear densities and soft at high densi-
ties, whereas the EOSs leading to large values of I/MR2

tend to be soft at nuclear densities and stiff at high den-
sities (blue lines). These trends are also reflected in the
results for the mass, radius, and moment of inertia in
Fig. 10, where these individual EOSs are clearly extreme
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Figure 7. Same as Fig. 6 but using the speed of sound model, corresponding to Fig. 4 and Table 2.

but nevertheless very interesting cases. The EOSs with
the low values for the dimensionless moment of inertia

predict large radii at small masses (and moment of in-
ertia) and small radii at larger masses (red lines), while
the ones corresponding to large values for I/MR2 show
the opposite trend.

4. SUMMARY AND OUTLOOK

We have explored new and improved constraints for the
EOS of neutron-rich matter and neutron star radii. Our
work is based on four inputs: (a) microscopic calculations
of the EOS up to 1.1 ρ0 based on state-of-the-art nuclear
interactions derived from chiral EFT combined with the
piecewise polytrope or speed of sound extension to high

densities following Hebeler et al. (2013) and Greif et al.
(2019), respectively, (b) the precise measurement of the
mass of PSR J0740+6620 with 2.14+0.10

−0.09M� (Cromartie
et al. 2019), (c) causality constraints at all densities and
an asymptotic behavior of the speed of sound consistent
with perturbative QCD calculations at very high den-

sities for the c2s model, and (d) constraints from future
measurements of the mass and moment of inertia of the
same star. Note that this analysis does not rely on any
assumptions regarding the composition and properties of

matter beyond the density 1.1 ρ0, and within the space
of the piecewise polytrope and speed of sound extension
includes EOS that mimic regions with a first-order phase

transition.
For the moment of inertia measurements we considered

different scenarios by assuming various values and uncer-

tainties for the moment of inertia. We find that measure-
ments with an uncertainty of 10% lead to a reduction of
the radius range by about 50% compared to the general
EOS band from Hebeler et al. (2013) and Greif et al.
(2019) when the moment of inertia corresponds to an in-
termediate EOS. If the moment of inertia corresponds to
values predicted by a soft or stiff EOS the radius range is

reduced by a factor of 3 or more. For all ±10% measure-
ments, the resulting radius range is smaller than 1.9 km
for all considered masses M = 1.338, 2.0, and 2.4M�.
Specifically, for a 1.338M� star, we find radius ranges
of R = 10.2–11.5 km for low values of the moment of
intertia (Ilow = 55M� km2 with ∆I = ±10%; combin-
ing the ranges from the piecewise polytropic and speed
of sound extensions), R = 11.3–12.9 km for intermediate
values (Iint = 70M� km2), and R = 12.5–13.6 km for
high values (Ihigh = 85M� km2). These ranges need to
be compared with R = 10.2–13.6 km based on the com-
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cording to the neutron star mass in the upper panel.
In addition, we also show the results for the speed of
sound model as the region enclosed by the black dashed
lines. In the upper panel, this is compared to correlation
bands from Steiner et al. (2016) in orange as well as Breu
& Rezzolla (2016) in gray. In the lower panel, we also
show the three representative EOS (soft, intermediate,

and stiff) of Hebeler et al. (2013). The red (blue) lines
with down (up) triangle points are the individual EOS
within the piecewise polytrope extension with minimal
χ2 of I/MR2 with respect to the lower (upper) bound-
ary (from fits for M/R > 0.1).

bined general EOS bands for this mass, when no informa-
tion about the moment of inertia is used. We have also
investigated the corresponding constraints for the EOS.
We found that large values for the moment of inertia
provide stronger constraints at lower densities, whereas
small values tend to constrain the EOS at higher den-
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Figure 9. Pressure P as a function of mass density ρ/ρ0

in units of the saturation density. The gray region is

the general EOS band based on the piecewise polytrope
extension. The lines correspond to the individual EOS
shown in the lower panel of Fig. 8, where the red and blue

lines extremize the I/MR2–compactness correlation.

sities. Moreover, measurements of heavy neutron stars
provide overall stronger constraints. In addition, we have
studied the dimensionless moment of inertia I/MR2 and

established the full uncertainty ranges based on our gen-
eral piecewise polytrope and speed of sound extension.
We find very interesting extreme EOSs at the boundaries

of the correlation with the compactness, which have not
been considered before.

Finally, we showed that the gravitational-wave con-
straints from the neutron star merger GW170817 (Ab-

bott et al. 2018, 2019) are consistent with the general
EOS bands explored here (see also Raaijmakers et al.
(2020)). We found that the latest analysis of GW170817

(Abbott et al. 2019) only slightly reduces the radius
range predicted by the general EOS bands from the piece-
wise polytrope and speed of sound extension, and only
weakly narrows the range for the predicted moment of
inertia for a 1.338M� star. Therefore, additional fu-
ture detections from LIGO/Virgo, as well as NICER and
other X-ray timing observations (Watts et al. 2016), com-

bined with measurements of neutron star masses and in
particular the moment of inertia, are a powerful avenue
to further constrain the EOS of dense matter in a model-
independent way.
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