
Liu J, Espina P, Sun XH. A study on modeling and optimization of memory systems. JOURNAL OF COMPUTER

SCIENCE AND TECHNOLOGY 36(1): 71–89 Jan. 2021. DOI 10.1007/s11390-021-0771-8

A Study on Modeling and Optimization of Memory Systems

Jason Liu1, Pedro Espina1, and Xian-He Sun2, Fellow, IEEE

1School of Computing and Information Sciences, Florida International University, Miami, FL 33199, U.S.A.
2Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616, U.S.A

E-mail: liux@cis.fiu.edu; pespi004@fiu.edu; sun@iit.edu

Received July 2, 2020; accepted November 19, 2020.

Abstract Accesses Per Cycle (APC), Concurrent Average Memory Access Time (C-AMAT), and Layered Performance

Matching (LPM) are three memory performance models that consider both data locality and memory assess concurrency.

The APC model measures the throughput of a memory architecture and therefore reflects the quality of service (QoS) of

a memory system. The C-AMAT model provides a recursive expression for the memory access delay and therefore can be

used for identifying the potential bottlenecks in a memory hierarchy. The LPM method transforms a global memory system

optimization into localized optimizations at each memory layer by matching the data access demands of the applications with

the underlying memory system design. These three models have been proposed separately through prior efforts. This paper

reexamines the three models under one coherent mathematical framework. More specifically, we present a new memory-

centric view of data accesses. We divide the memory cycles at each memory layer into four distinct categories and use them

to recursively define the memory access latency and concurrency along the memory hierarchy. This new perspective offers

new insights with a clear formulation of the memory performance considering both locality and concurrency. Consequently,

the performance model can be easily understood and applied in engineering practices. As such, the memory-centric approach

helps establish a unified mathematical foundation for model-driven performance analysis and optimization of contemporary

and future memory systems.

Keywords performance modeling, performance optimization, memory architecture, memory hierarchy, concurrent ave-

rage memory access time

1 Introduction

The “memory wall” problem, first coined by Wulf

and McKee in 1994 [1], refers to the growing disparity

between CPU and memory speed that causes memory

accesses to become a severe performance bottleneck in

modern computer architectures. Although we have seen

significant changes in the landscape of computing over

the last two and half decades, e.g., with the introduc-

tion of multi-core and many-core design, deep pipelin-

ing, and multi-port, multi-banked, pipelined cache,

non-blocking cache, as well as the advent of non-volatile

memory technologies—the “memory wall” problem per-

sists, and in fact has become more severe as we are

now faced with a deluge of modern big-data and data-

intensive applications.

There are three outstanding issues with the current

“memory wall” problem. The first is a scale-up issue.

As new memory technologies are introduced into the

market, the memory hierarchy (albeit now somewhat

blurs with the storage hierarchy, as illustrated in Fig.1)

has become even deeper and the disparity between the

CPU speed and memory access latency at both ends

of the spectrum has grown wider. While increasing

memory hardware performance is certainly expected,

the history shows that the pace of advancement for

different technologies is often unbalanced. Every time

when memory hardware performance increases, CPU

computing power grows by an even larger amount.

The second is a scale-out issue. With the increas-
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Fig.1. Memory and storage hierarchy.

ing core count in modern architecture design, the per-

formance of applications running on these systems can

be severely hindered by the data access latency with

the increasing traffic at the threshold of the underlying

memory system.

The third issue is that the memory architecture has

become more heterogeneous, largely due to the short-

ened time-to-market for a variety of emerging mem-

ory/storage devices (the recently introduced 3D-XPoint

memory devices being a case in point 1○ 2○). Such het-

erogeneity inevitably introduces more diverging archi-

tectural designs. Many important applications, in-

cluding various database, big data, data processing,

and machine learning applications, are inherently data-

intensive which come with complex data access pat-

terns, variations in execution timing behaviors, and

memory locality characteristics. Consequently, mem-

ory performance optimization has become increasingly

more complex for modern computing architectures.

In addition to improvements in hardware devices,

memory performance optimization generally falls into

two categories, optimization to improve data locality,

and optimization to improve data concurrency. Local-

ity encompasses both temporal locality (the data pre-

viously accessed are more likely to be reused soon) and

spatial locality (the data close to previously accessed

data are more likely to be accessed). Locality-based op-

timization is a well-studied topic and is the focus of data

access optimization for many years (e.g., [2, 3]). Tech-

niques exploiting data concurrency or memory paral-

lelism, such as out-of-order execution and non-blocking

cache, have also been applied in modern systems to ef-

fectively overlap computation and memory accesses [4].

We posit the overall performance optimization of mod-

ern memory architectures has to combine both locality

and concurrency and encompass all layers of the mem-

ory hierarchy.

Many memory utilization methods have been deve-

loped during the years, from hardware design to soft-

ware configuration. They operate under different as-

sumptions and with different limitations, and as such,

are oftentimes entangled and may conflict with one

another. Toward achieving the joint optimization of

the memory architecture, we focus on the integra-

tion of three earlier proposed performance models: C-

AMAT, APC, and LPM. We revisit these models from

a memory-centric view to make it easier for them to be

understood and used in engineering practices.

1○Intel OptaneTM DC Persistent Memory. https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-
persistent-memory.html, Nov. 2020.

2○Intel OptaneTM Memory. https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html, Nov.
2020.
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Concurrent Average Memory Access Time (C-
AMAT) is a memory performance metric that accounts
for both locality and concurrency [5]. C-AMAT ex-
tends the conventional AMAT (Average Memory Ac-
cess Time) model [1] by including memory concurrency
in the calculation of memory access time. Accesses Per
Cycle (APC) is another performance metric for eval-
uating modern memory architectures, which measures
the number of memory accesses per cycle [6]. APC can
be applied at each level of the memory hierarchy us-
ing existing hardware counters, and consequently can
capture the overall memory performance. Conducting
performance optimization of modern memory systems
is complicated. In a hierarchical memory system, the
performance of a memory layer can influence and be in-
fluenced by other memory layers. It is difficult to trans-
late the contribution from an optimization at one mem-
ory layer in the overall memory system performance.
The Layered Performance Matching (LPM) method [7]

extends the common idea of matching the data request
rate and the data supply rate in memory systems, and
makes a significant contribution in segmenting a com-
plex whole memory system optimization into relatively
simpler optimizations at each memory layer, and then
combining them to achieve an overall performance ob-
jective.

While these three separately proposed models pro-
vide the necessary foundation for improving memory
system performance for architectural design and appli-
cations, they have never been studied under one coher-
ent mathematical framework. Consequently, the un-
derstanding of their practical implications on contem-
porary and future computing systems has been limited.
Furthermore, since C-AMAT is an extension of AMAT,
its original derivation closely follows the AMAT nota-
tions and its logical flow. AMAT is derived from a
CPU-centric view where cache hits and cache misses
are accounted for by individual memory accesses when
instructions are being executed by CPU. This CPU-
centric view makes it difficult to explain the overlap of
memory accesses at different cache levels in the mem-
ory hierarchy. Both C-AMAT and LPM are not nat-
urally supported by existing simulators and measure-
ment tools. The CPU-centric view also makes it diffi-
cult to measure the memory access concurrency at diffe-
rent cache layers.

In this paper, we reexamine the prior work of the
C-AMAT, APC, and LPM models [5–7] and cast them
in the same mathematical framework with a memory-
centric view. We redefine some model parameters

to achieve better consistency across these models and
make it easier to measure and use them in engineering
practices. We focus on their derivations so as to pro-
vide more clarity and better insight of these models.
More specifically, we revisit the three models using a
top-down approach. We start with the run time, define
the memory stall time (MST), and then examine on the
memory performance metrics of AMAT and C-AMAT.
We extend the performance analysis from a first-level
cache to a multi-level memory hierarchy. We present a
new perspective and thereby new proofs of C-AMAT,
APC, and LPM using a memory-centric view. We di-
vide memory cycles into four categories: inactive cycles,
pure hit cycles, pure miss cycles, and mixed hit/miss cy-
cles, and then use these four types to define the memory
access concurrency and the hierarchical memory beha-
vior.

Using the memory-centric approach, we establish
a concrete mathematical foundation for model-driven
performance analysis and optimization of memory sys-
tems. Such a performance model provides us with a
better understanding of the memory system perfor-
mance and thus paves the way for developing next-
generation memory system simulators and measure-
ment tools. In doing so, it will aid the design and
development of more effective memory architectures for
modern computer systems, potentially featuring deep
and diverse memory system hierarchy, heterogeneous
memory devices, and complex data-intensive applica-
tions, including big data, cloud and data centers, high-
performance computing applications.

Our major contributions can be summarized as fol-
lows.

• We combine the C-AMAT, APC, and LPM mod-
els within a coherent mathematical framework with new
and detailed derivations.

• We apply a memory-centric approach to model-
ing the hierarchical memory system by classifying the
memory cycles into four distinct categories, and use
them to define the memory access concurrency and the
hierarchical memory behavior.

• We provide a much clearer recursive definition of
C-AMAT using the memory-centric approach, and a
formal proof on the correctness of the LPM optimiza-
tion method.

For consistency, Table 1 shows the list of model
parameters and their definitions of the hierarchical
memory performance model described in this paper (in
the order of their first appearances). Detailed explana-
tion of these model parameters is located at the respec-
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Table 1. Model Parameters: Definitions and Locations

Name At Level l Definition Equation

n n Total number of CPU cycles (4)

T T Run time of the program (1)

Tcycle Tcycle CPU cycle time

fmem fmem Average number of memory accesses per instruction

α α(l) Total number of memory accesses (2), (9), (44), (45)

IC IC Instruction count

CPIexe CPIexe Cycles per instruction (without memory stall)

IPCexe IPCexe Instructions per cycle (without memory stall)

MST MST Memory stall time per memory access (18), (35)

∆ ∆ Ratio of memory access time over compute time (5)

MSE MSE Memory system efficiency (6)

αh αh(l) Number of hit memory accesses (7)

αm αm(l) Number of miss memory accesses (8)

ρh ρh(l) Hit ratio (7)

ρm ρm(l) Miss ratio (8)

H H(l) Hit time (20)

AMT AMT (l) Average miss time (10)

AMP AMP (l) Average miss penalty (21)

(l) Set of memory inactive cycles

e e(l) Number of memory inactive cycles

(l) Set of pure hit cycles

h h(l) Number of pure hit cycles

(l) Set of pure miss cycles

m m(l) Number of pure miss cycles

(l) Set of mixed hit/miss cycles

x x(l) Number of mixed hit/miss cycles

Ω Ω(l) Set of memory active cycles (11)

ω ω(l) Number of memory active cycles (12), (49), (50)

φ φ(l) Ratio of hit cycles over memory active cycles (13)

µ µ(l) Ratio of miss cycles over memory active cycles (14)

κ κ(l) Ratio of pure miss cycles over miss cycles (15), (40)

αM αM (l) Number of pure miss memory accesses

ρM ρM (l) Pure miss ratio (17)

ci ci(l) Memory access concurrency at CPU cycle i (19)

c
(h)
i c

(h)
i (l) Hit concurrency at CPU cycle i

c
(m)
i c

(m)
i (l) Miss concurrency at CPU cycle i

C C(l) Average memory access concurrency (22)

CH CH(l) Average hit concurrency (23), (25)

Cm Cm(l) Average miss concurrency (26)

CM CM (l) Average pure miss concurrency (27)

AMAT AMAT (l) Average memory access time (28), (29), (31), (39)

C-AMAT C-AMAT (l) Concurrent average memory access time (30), (31), (33), (41), (42)

APC APC(l) Accesses per cycle (32)

pAMP pAMP (l) Average pure miss penalty (34)

L L Number of cache levels

LPMR LPMR(l) Matching ratio (43), (52), (53), (55)

λ λ(l) Request rate (46)–(48)

ν ν(l) Supply rate (51)

tive part of the text, and we identify in the table the

specific equations in which they are derived. The first

column of the table lists the model parameters used by

the special case developed only for the first-level cache.

These model parameters are defined and used in Sec-

tions 2–5. The second column of the table lists the

corresponding model parameters used in the genera-

lized model to analyze multiple levels of cache. These

model parameters are defined and used in Section 6 and

onwards.
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The rest of this paper is organized as follows. The
first three sections to follow establish the necessary
foundation for the hierarchical memory performance
model. More specifically, in Section 2, we examine the
overall program runtime and the memory system effi-
ciency. In Section 3, we examine the memory accesses
at the granularity of CPU cycles. In Section 4, we for-
mally define the concurrency as the memory accesses
overlap with the execution of the instructions by CPU.
The definitions outlined in these three sections are in-
strumental to the derivation of the time-based and rate-
based analyses described in the subsequent sections.

Section 5 focuses on the average memory access
time, in particular, the concurrent average memory ac-
cess time. For simple exposition, Sections 3–5 deal with
the first-level cache, as its performance represents the
overall memory system performance. In Section 6, we
generalize the performance model to analyze multiple
layers of cache. A recursive definition of the memory
access time is derived, as it serves as the basis for the
rate-based analysis of memory accesses and the concept
of layered performance matching, which we describe in
Section 7. We discuss the potential contributions and
practical implications of the unified analysis in Sec-
tion 8. Finally, we discuss related work in Section 9
and conclude the paper in Section 10.

2 Runtime

Run time is the ultimate concern of the performance
model. We start out our performance analysis with run-
time. A program’s execution consists of n CPU cycles:
1, 2, 3, · · · , n, where n is the total number of CPU cy-
cles. Let T be the run time of the program, which would
be:

T = n× Tcycle, (1)

where Tcycle is the time of each CPU cycle. Since Tcycle

is a constant for a given CPU, for the rest of this paper,
we simply use the number of CPU cycles to represent
the run time.

Let fmem be the average number of memory accesses
per instruction (fmem ! 0). Let α be the total number
of memory accesses:

α = IC × fmem, (2)

where IC is the instruction count (i.e., the total number
of instructions executed by the program).

CPIexe is the number of cycles per instruction, i.e.,
the average number of CPU cycles needed to execute an

instruction (averaged among all types of instructions),

assuming there is no memory stall. The reciprocal of

CPIexe is IPCexe, which is the number of instructions

per cycle, again assuming no memory stall. We have:

CPIexe × IPCexe = 1. (3)

MST is the memory stall time. It is the average

number of CPU cycles that the CPU is stalled wait-

ing for a memory access. The run time of a program

can be decomposed into two parts: the compute time

(IC×CPIexe) and the memory time (α×MST ). Thus,

we have:

n = IC × CPIexe + α×MST

= IC × (CPIexe + fmem ×MST ) . (4)

The above equation reveals that the run time is ul-

timately determined by the CPU computing speed (re-

lated to CPIexe), the program behavior (related to IC

and fmem), and the memory system performance (re-

lated to MST ). One important feature of our study is

the use of MST as the measure of performance of mem-

ory systems. In Section 3, we break down the memory

accesses of a program along the CPU cycles to obtain

a first-hand estimation of the memory stall time. We

then develop a more comprehensive hierarchical mem-

ory performance model over the subsequent sections.

Note that memory stalls are different from pipeline

hazards that prevent instructions from being executed

at designated CPU cycles in the pipeline [8]. Pipeline

hazards include structural hazards (caused by conflicts

in the simultaneous use of CPU resources), data haz-

ards (caused by data dependencies), and control haz-

ards (caused by changes in the control flow). We do not

consider pipeline hazards in our study as they are not

related to the memory systems; their overall runtime

effect should have been captured by CPIexe in (4).

To improve performance, we wantMST to be small.

However, its value needs to be considered relative to the

compute time. Let ∆ be the ratio of memory access

time over compute time. That is,

∆ =
memory access time

compute time

=
α×MST

IC × CPIexe
=

MST × fmem

CPIexe
. (5)

The smaller MST is, the smaller ∆ is, and vice versa,

when the CPU computing speed and the program beha-

vior stay unchanged. In fact, we can define memory
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system efficiency (MSE) exactly as the ratio of the
compute time over the entire run time:

MSE =
compute time

run time
=

IC × CPIexe
IC × CPIexe + α×MST

=
CPIexe

CPIexe +MST × fmem

=
1

1 +∆
≈ 1−∆. (6)

The last approximation can be obtained using Taylor
series expansion when |∆| << 1. Especially, when
MST → 0, ∆ → 0 and MSE → 1.

3 Memory Accesses and CPU Cycles

Memory speed is usually given in memory clock cy-
cles. Since memory cycles are always a fixed multiple
of the CPU cycles, for simplicity, we directly use the
CPU cycles to measure and analyze the memory per-
formance in this study. A memory access can be either
a hit memory access or a miss memory access. A hit
or a miss corresponds to whether the specific data of
the memory access is present in the cache or not. For
now, our analysis focuses on the first cache level. We
extend our analysis to multi-level caches in subsequent
sections.

Let αh be the number of hit memory accesses. Let
αm be the number of miss memory accesses. Let ρh
denote the hit ratio, and let ρm denote the miss ratio.
They are simply the proportion of hit memory accesses
and miss memory accesses, respectively:

ρh =
αh

α
, αh = α× ρh, (7)

ρm =
αm

α
, αm = α× ρm. (8)

Certainly,

ρh + ρm = 1, αh + αm = α. (9)

Let H be the hit time, which is the duration of a hit
memory access, in the number of CPU cycles. This hit
time is an architecture-dependent constant. Let AMT
be the average miss time, which is the average duration
of a miss memory access, again in the number of CPU
cycles. AMT is an indication of a program’s memory
performance as a function of the program’s data access
behavior (such as data locality) and the memory archi-
tecture on which the program is run. One can express
AMT in two parts.

1) Hit Portion. It is the same as the hit time,
H. It represents the time a memory access (regard-
less whether it is a hit or a miss) uses to “visit” the
cache.

2) Miss Portion. It is defined as the average miss
penalty, denoted by AMP . AMP is the additional
time in the number of CPU cycles (which can be a
fraction) for handling the cache miss (such as fetching
the data from memory to cache).
H and AMP are two parameters used in AMAT [1]. As-
suming there is no concurrent memory access, we have:

AMT = H +AMP. (10)

The CPU cycles for memory accesses can therefore
be classified into hit-access cycles and miss-access cy-
cles. On average, a hit memory access consists of H
hit-access cycles. A miss memory access consists of H
hit-access cycles and AMP miss-access cycles. Accord-
ingly, a program’s run time in CPU cycles (1, 2, 3, · · ·, n)
on a memory layer can be divided into four types.

1) Memory Inactive Cycles. Here no memory acti-
vities occur at the memory layer during these cycles.

• Let be the set of memory inactive cycles.

• Let e = | | be the number of memory inactive
cycles.

2) Pure Hit Cycles. They contain only the hit-access
cycles, regardless whether they belong to hit memory
accesses or miss memory accesses. Recall that a hit
memory access contains only hit-access cycles, and a
miss memory access contains both hit-access cycles and
miss-access cycles. The hit-access cycles count for the
time the memory access is “visiting” the cache.

• Let be the set of pure hit cycles.

• Let h = | | be the number of pure hit cycles.

3) Pure Miss Cycles. They contain only the miss-
access cycles.

• Let be the set of pure miss cycles.

• Let m = | | be the number of pure miss cycles.

4) Mixed Hit/Miss Cycles. They contain both hit-
access cycles and miss-access cycles. In other words,
a mixed hit/miss cycle contains at least one hit-access
cycle and at least one miss-access cycle.

• Let be the set of mixed hit/miss cycles.

• Let x = | | be the number of mixed hit/miss cy-
cles.

The total number of CPU cycles is the sum of the
cycles of the four types:

n = e+ h+m+ x.

Since pure hit cycles, pure miss cycles, and mixed
hit/miss cycles are the three possible states of mem-
ory activity at the memory layer, they are collectively
called memory active cycles.
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• Let Ω be the set of memory active cycles.

Ω = ∪ ∪ . (11)

• Let ω be the number of memory active cycles.

ω = h+m+ x. (12)

We simply call the pure hit cycles and the mixed
hit/miss cycles collectively as hit cycles. Similarly, we
call the pure miss cycles and the mixed hit/miss cycles
collectively as miss cycles.

Note that we use the terms, hit-access cycles and
miss-access cycles, to refer to the two parts of a particu-
lar memory access. We use the terms, memory inac-
tive cycles, pure hit cycles, pure miss cycles, and mixed
hit/miss cycles, as well as hit cycles, miss cycles, and
memory active cycles, to categorize memory activities
of a program’s execution at each memory layer at the
granularity of CPU cycles. We call them collectively as
memory cycles. The memory cycles are aligned in time
across the memory hierarchy (shown as the slotted time
separated by vertical dash lines in Figs.2 and 3).

Let φ be the ratio of hit cycles over memory active
cycles:

φ =
h+ x

ω
. (13)

The hit cycles are the cycles that contain at least a hit
at the first-level cache. For that, we assume that they
can be serviced without memory stall. Let µ be the
ratio of miss cycles over memory active cycles and let κ
be the ratio of pure miss cycles over miss cycles. That
is,

µ =
m+ x

ω
, (14)

κ =
m

m+ x
. (15)

We can derive the following equality (which we use later
for deriving the memory stall time as a function of the
average memory access time):

1− φ = 1− h+ x

ω
=

m

ω

=
m+ x

ω
× m

m+ x
= µ× κ. (16)

Fig.2 illustrates the memory accesses and CPU cy-
cles. A hit memory access contains only hit-access cy-
cles and therefore can straddle on pure hit cycles and
mixed hit/miss cycles. For example, hit memory access
a1 contains only pure hit cycles (1 and 2); a3 contains
both pure hit cycles and mixed hit/miss cycles (3 and
4); a6 contains only mixed hit/miss cycles (6 and 7).

Hit MissHitHit Mixed Mixed Mixed Mixed Mixed Mixed Miss Mixed Mixed

a
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a
a

a
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Memory Cycles

1 2 3 4 5 6 7 8 9 10 11 12 13

Hit-Access Cycle of a Hit Memory Access

Non-Pure Miss-Access Cycle of a Miss Memory Access 

Hit-Access Cycle of a Miss Memory Access

Pure Miss-Access Cycle of a Miss Memory Access

Fig.2. CPU cycles and memory accesses. In this example, we set the hit time H = 2. It shows as the x-axis the memory active
CPU cycles, which consist of three types: pure hit cycles (1–3), pure miss cycles (10, 11), and mixed hit/miss cycles (4–9 and 12–13).
It shows 10 memory accesses: a1, a2, · · ·, a10, among which a1, a3, a6, a10 are hit memory accesses (colored in dark blue). The rest
of them, a2, a4, a5, a7, a8, a9, are miss memory accesses. The hit-access cycles of the miss memory accesses are colored in light blue.
For easy exposition, the hit-access cycles of a miss memory access are always placed at the beginning of the memory access. The
miss-access cycles of the miss memory accesses are colored either in yellow (for non-pure miss-access cycles, i.e., if they are located in
mixed hit/miss cycles) or in orange (for pure miss-access cycles, if they are located in pure miss cycles).
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Fig.3. Memory accesses traversing two cache layers. In this example, we set the hit time H(1) = H(2) = 2. It shows 10 memory
accesses at cache level 1: a1, a2, · · ·, a10, among which a1, a3, a6, a10 are hit memory accesses (colored in dark blue). The rest of them
are miss memory accesses. The hit-access cycles of the miss memory accesses are colored in light blue. The miss-access cycles of the
miss memory accesses are colored in yellow. Note that only the miss-access cycles at cache level 1 are present at cache level 2, which
are also divided into hit-access cycles (for both hit and miss memory accesses) and miss-access cycles.

A miss memory access contains both hit-access cy-

cles and miss-access cycles, and therefore can straddle

on all types of memory active cycles (pure hit cycles,

pure miss cycles, and mixed hit/miss cycles). How-

ever, the miss portion of a miss memory access con-

tains only miss-access cycles and therefore can straddle

only on pure miss cycles and mixed hit/miss cycles.

For clarity, we call the miss-access cycles that fall in

the pure miss cycles “pure miss-access cycles”, and call

the miss-access cycles that fall in the mixed hit/miss

cycles “non-pure miss-access cycles”. In the example,

a2, a5, a9 contain only non-pure miss-access cycles; a8
contains only pure miss-access cycles; a4 and a7 contain

both non-pure and pure miss-access cycles.

We differentiate two types of miss memory accesses.

A “non-pure miss memory access” is a miss memory ac-

cess that does not contain any pure miss cycles. That

is, the miss portion of a non-pure miss memory access

contains only non-pure miss-access cycles. A “pure miss

memory access” is a memory access that contains at

least one pure miss cycle. A pure miss memory access

can have both non-pure and pure miss-access cycles,

but with at least one pure miss-access cycle. We make

such a distinction between a non-pure miss access and

a pure miss memory access because we consider only
the latter contributes to memory stalls.

Accordingly, we use αM to denote the number of
pure miss memory accesses, and use ρM to denote the
pure miss ratio.

ρM =
αM

α
, αM = α× ρM . (17)

Finally, we are ready to express the memory stall
time, MST , with the definitions presented earlier in
this section. MST is the average number of CPU cy-
cles that the CPU is stalled waiting for each memory
access. Since we assume that only pure miss cycles con-
tribute to memory stalls, we can calculate MST as the
average number of pure miss cycles among all memory
accesses:

MST =
m

α
. (18)

While (18) is simple, it can be difficult to account for
the pure miss cycles to calculate MST in practice. In
Section 5, we associate the memory stall time with the
concurrent average memory access time. Before that,
we need to understand how memory accesses are over-
lapped at the cache at the granularity of CPU cycles,
which we elaborate in Section 4.
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4 Memory Access Concurrency

Let ci be the memory access concurrency at CPU

cycle i, where 1 " i " n and n is the total number of

CPU cycles of the program’s execution. ci is the num-

ber of overlapped memory accesses (including both hit

memory accesses and miss memory accesses) during the

CPU cycle i. We have ci = 0 if i ∈ since memory in-

active cycles do not overlap with any memory accesses.

Also, we have ci ! 1 if i ∈ Ω.

Let c(h)i be the hit concurrency, which is the number

of overlapped hit-access cycles at CPU cycle i. Simi-

larly, let c(m)
i be the miss concurrency, which is the

number of overlapped miss-access cycles at CPU cycle

i. We have:

ci = c(h)i + c(m)
i , (1 " i " n). (19)

Note that the hit concurrency contains hit-access

cycles that belong to either hit memory accesses or the

hit portion of miss memory accesses; and the miss con-

currency contains only the miss-access cycles. Thus, we

can calculate the hit time by adding all the hit-access

cycles divided by the total number of memory accesses:

H =
1

α

n∑

i=1

c(h)i . (20)

Similarly, we can calculate the average miss penalty

(i.e., the average length of the miss portion of the miss

memory accesses) by adding all the miss-access cycles

divided by the total number of miss memory accesses:

AMP =
1

αm

n∑

i=1

c(m)
i . (21)

The table in Fig.2 shows the different memory ac-

cess concurrency values corresponding to the CPU cy-

cles. For example, at CPU cycle 7, there are two hit-

access cycles (one from a hit memory access a6 and the

other from a miss memory access a7), and three miss-

access cycles (two from non-pure miss memory accesses

a2 and a5, and one from a pure miss memory access

a4). We have c7 = 5, c(h)7 = 2, and c(m)
7 = 3.

Let C be the average memory access concurrency,

which is the number of memory accesses (including both

hit and miss memory accesses) divided by the total

number of memory active CPU cycles:

C =
1

ω

∑

i∈Ω

ci =
1

ω

n∑

i=1

ci. (22)

Let CH be the average hit concurrency, which is the
average number of overlapped hit-access cycles among
the CPU cycles that contain at least one hit-access cy-
cle. These would include all pure hit cycles and mixed
hit/miss cycles.

CH =
1

h+ x

∑

i∈ ∪
c(h)i =

1

h+ x

n∑

i=1

c(h)i . (23)

Since each memory access (whether it is a hit or a
miss memory access) contains H hit-access cycles, the
total number of hit-access cycles should be:

α×H =
n∑

i=1

c(h)i = (h+ x)× CH . (24)

One can thus calculate the average hit concurrency as:

CH =
α×H

h+ x
. (25)

Let Cm be the average miss concurrency, which is
the average number of overlapped miss memory ac-
cesses during the miss cycles (including pure miss and
mixed hit/miss cycles).

Cm =
1

m+ x

∑

i∈ ∪
c(m)
i =

1

m+ x

n∑

i=1

c(m)
i . (26)

Let CM be the average pure miss concurrency, which
is the average number of overlapped pure miss memory
accesses during the pure miss cycles.

CM =
1

m

∑

i∈
c(m)
i . (27)

5 Memory Access Time

The AMAT model was originally developed based
on a CPU-centric view. The C-AMAT model is an ex-
tension of AMAT with its original derivations closely
following the AMAT notations and logical flow. In the
CPU-centric view, cache hits and cache misses are ac-
counted for by individual memory accesses as instruc-
tions are being executed by the CPU. Although seem-
ingly intuitive, it turns out that it is difficult to explain
the overlap of memory accesses that occur at different
cache levels in the memory hierarchy using the CPU-
centric approach.

Equipped with the definitions in Section 4, in this
section we derive the average memory access time us-
ing the memory-centric approach. We first look at the
traditional AMAT model and then extend it for the C-
AMAT model, which incorporates both memory access
locality and concurrency. The memory-centric view fa-
cilitates an easier understanding of the two models and
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provides the foundation for a recursive definition of the
memory performance model for all layers of a hierar-
chical memory system, which we discuss in Section 6.

Average memory access time contributes to the
memory stall time for estimating the memory system
performance. The relationship is highlighted in Sub-
section 5.2.

5.1 Average Memory Access Time

Let AMAT be the average memory access time,
which is average duration in the number of cycles for
each memory access. Conventionally, this is calculated
by first adding up the number of cycles of each mem-
ory access and then dividing the total by the number
of memory accesses. In Fig.2, AMAT is the average
length of the horizontal bars. We can calculate AMAT
by counting the number of hit-access and miss-access
cycles and then taking the average among memory ac-
cesses:

AMAT =
1

α

∑

i∈Ω

ci =
1

α

n∑

i=1

ci. (28)

Alternatively, one can derive AMAT by proportion-
ally adding the memory access time of the hit memory
accesses and that of the miss memory accesses:

AMAT = ρh ×H + ρm ×AMT

= ρh ×H + ρm × (H +AMP )
(10)

= H + ρm ×AMP. (29)

Here, the box with the number shows the equation used
in the derivation.

One can show that (28) and (29) are actually equiv-
alent.

Proof. AMAT can be calculated using both (28)
and (29).

AMAT = H + ρm ×AMP

=
1

α

n∑

i=1

c(h)i

(24)

+
αm

α
(8)

× 1

αm

n∑

i=1

c(m)
i

(21)

=
1

α

n∑

i=1

(
c(h)i + c(m)

i

)
=

1

α

n∑

i=1

ci. #

5.2 Concurrent Average Memory Access Time

The AMAT model is based on the single data access
viewpoint. At the time of its inception, memory-level
concurrency was uncommon, thereby the sequential la-
tency calculated by AMAT was sufficient. However,

since then, memory concurrency technologies have be-
come a norm for the modern memory architecture de-
sign. AMAT does not consider memory concurrency
upon overlapping memory hits and misses. For exam-
ple, for a processor supporting out-of-order execution,
when a cache miss occurs that fails to provide the data
to an instruction, other instructions can be executed
while the memory system is serving the cache miss.
Multiple outstanding reads and writes can coexist at a
given time in the memory system. With wide instruc-
tion sets and multiple pipelines, multiple data instruc-
tions can be issued at the same time, in addition to
outstanding data accesses. In contrast, the C-AMAT
model [5] considers locality, concurrency, and overlap-
ping, and thus is more accurate in describing the mem-
ory performance of modern computer architectures.

Let C-AMAT be the concurrent average memory
access time, which is the average real time spent for
each memory access in terms of CPU cycles. C-AMAT
can be calculated as the number of memory active cy-
cles divided by the number of memory accesses:

C-AMAT =
ω

α
. (30)

The difference between C-AMAT and AMAT is that in
AMAT , overlapped memory accesses each contribute
to the total memory access time, while in C-AMAT ,
concurrency is discounted—overlapped memory ac-
cesses only contribute to the total memory access time
once. In fact, using the memory-centric approach, one
can easily show that:

C-AMAT = C−1 ×AMAT, (31)

where C is the average memory access concurrency.
Proof. We prove the relationship between C-AMAT

and AMAT as follows:

C-AMAT = C−1 ×AMAT =
AMAT

C

=

1

α

n∑

i=1

ci

(28)

1

ω

n∑

i=1

ci

(22)

=
ω

α
. #

The reciprocal of C-AMAT is called APC, or ac-
cesses per cycle [6], which is the average number of mem-
ory accesses per memory active cycle:

APC =
α

ω
=

1

C-AMAT
. (32)

APC is a measurable quantity on architectures that
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provide hardware performance counters. Thus, empiri-
cally, C-AMAT can be measured by runtime profiling.

Alternatively, C-AMAT can also be expressed using
(33) by extending the AMAT formulation to consider
concurrency [5]:

C-AMAT =
H

CH
+ ρM × pAMP

CM
, (33)

where pAMP represents the average pure miss penalty,
which is the average number of pure miss cycles per
pure miss memory access. That is,

pAMP =

∑
i∈ c(m)

i

αM
. (34)

Proof. One can prove (33) as follows:

H

CH
+ ρM × pAMP

CM

=
H

α×H

h+ x
(25)

+

αM

α
(17)

∑
i∈ c(m)

i

αM
(34)

1

m

∑

i∈
c(m)
i

(27)

=
h+ x

α
+

m

α
=

w

α
= C-AMAT

(30)
. #

The concurrent average memory access time,
C-AMAT , is directly related to the memory stall time,
MST :

MST =
m

α
(18)

=
m

ω
× ω

α

= µ× κ
(16)

× C-AMAT
(30)

, (35)

where µ is the ratio of miss cycles over memory active
cycles and κ is the ratio of pure miss cycles over miss
cycles, as defined in (14) and (15), respectively.

6 Memory Hierarchy and Recursion

The previous sections deal with memory perfor-
mance focusing only on the first cache level. The model
parameters and equations—for example, the hit ratio
ρh, the hit time H, and the average hit concurrency
CH , are all defined with respect to the first-level cache.

The cycle-based performance model can naturally

be extended for multi-level cache analysis. Let L be

the number of cache levels in the memory system, where

level 1 is the first-level cache, and level L is the last-

level cache. If a memory access reaches the last-level

cache and causes a cache miss, the memory access will

visit the main memory.

Both AMAT and C-AMAT can be defined recur-

sively with respect to the cache memory level. The

recursive definitions are by-products of the hierarchical

memory architecture, and the model parameters used

in the recursive definitions are measurable both in sim-

ulation and on many real systems. The recursion allows

us to capture the contribution of memory access at a

cache layer in relation to the adjacent layers for the

overall runtime performance. Such information can be

crucial for hierarchical memory architecture design and

optimization.

6.1 Extensions and Observations

We first extend the model parameters previously

used by the special model for the first-level cache. In

particular, we add a parameter l (1 " l " L) to indi-

cate the specific cache level the model parameters are

related to. For example, ρh(l) is the hit ratio at cache

level l, H(l) is the hit time for accessing cache level l (in

addition to the hit time already spent in the previous

l− 1 cache levels), and CH(l) is the hit concurrency at

cache level l. The second column of Table 1 contains

the model parameters defined for cache level l that cor-

respond to the originally defined model parameters in

the first column for the first-level cache. All equations

described so far will remain true if we replace the model

parameters in the first column of Table 1 with those in

the second column.

In the remainder of this subsection, we provide a

recursive definition for the memory access time, both

AMAT (l) and C-AMAT (l), based on the cache level l.

Before doing so, we make a few observations. Fig.3 is

an example showing the same set of memory accesses

as in Fig.2, but this time for two cache levels.

Observation 1. Only the miss memory accesses at

level l reach level l + 1. In other words, the memory

accesses at the next level are the miss memory accesses
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at the previous level 3○.

α(l + 1) = αm(l) = α(l)× ρm(l), (36)

where 1 " l < L.
Observation 2. Only the miss portion of the miss

memory accesses at level l are the memory accesses at
level l+1. That is, the overlapped hit-access and miss-
access cycles at the next level all come from the miss-
access cycles of the previous level.

ci(l + 1) = c(m)
i (l), (37)

where 1 " i " n and 1 " l < L.
Observation 3. The pure hit cycles at level l are the

memory inactive cycles at level l + 1, because the hit-
access cycles of a memory access at a previous cache
level (regardless of whether it is a hit memory access
or a miss memory access) do not penetrate to the next
level; only the miss-access cycles of a miss memory ac-
cess will traverse to the next cache level.

(l + 1) = (l) ∪ (l),

Ω(l + 1) = Ω(l) \ (l).

Accordingly, we can recursively calculate the number of
memory active cycles for a cache layer:

ω(l + 1) = ω(l)− h(l) = m(l) + x(l)

=

(
m(l) + x(l)

ω(l)

)
× ω(l) = µ(l)× ω(l), (38)

where 1 " l < L. In other words, the number of mem-
ory active cycles at the subsequent level l + 1 shrinks
at the rate of µ(l).

6.2 AMAT Recursion

From observation 2, only the miss portion of the
miss memory accesses at level l are present in level l+1.
By definition, AMP (l) is the average duration of the
miss portion of the miss memory accesses at level l,
and AMAT (l + 1) is the average memory access time
at level l + 1. We have:

AMP (l) = AMAT (l + 1),

where 1 " l " L and AMAT (L + 1) is the memory
access time of the main memory (in addition to the hit

time already spent in all L cache levels, to be precise).
Given that sequential data access is a special case of
concurrent data access, one can also arrive at the same
conclusion using the memory access concurrency:

AMP (l) =
1

αm(l)

n∑

i=1

c(m)
i (l)

(21)

=
1

α(l + 1)
(36)

n∑

i=1

ci(l + 1)
(37)

= AMAT (l + 1)
(28)

.

Therefore, we can derive the well-known AMAT re-
cursive relation using our notations:

AMAT (l) = H(l) + ρm(l)×AMP (l)
(29)

= H(l) + ρm(l)×AMAT (l + 1). (39)

6.3 C-AMAT Recursion

We can show that κ(l), which is the fraction of pure
miss cycles among the pure miss and mixed hit/miss
cycles at cache level l, can be expressed as follows:

κ(l) =
ρM (l)

ρm(l)
× pAMP (l)

AMP (l)
× Cm(l)

CM (l)
. (40)

Proof.

ρM (l)

ρm(l)
× pAMP (l)

AMP (l)
× Cm(l)

CM (l)

=

αM (l)

α(l)
(17)

αm(l)

α(l)
(8)

×

∑
i∈ ( ) c

(m)
i (l)

αM (l)
(34)

1

αm(l)

n∑

i=1

c(m)
i (l)

(21)

×

1

m(l) + x(l)

n∑

i=1

c(m)
i (l)

(26)

1

m(l)

∑

i∈ ( )

c(m)
i (l)

(27)

=
m(l)

m(l) + x(l)
= κ(l)

(15)
. #

We can define C-AMAT recursively as follows:

3○When applying the formulas given in this study, as same as with other existing performance models, such as AMAT, one needs
to pay special attention to the underlying hardware/software environment. For example, modern memory systems manage the data in
blocks (cache lines) and use the Miss Status Holding Register (MSHR) [9] to handle concurrent cache misses. Advanced MSHR design
differentiates between a primary and a secondary miss depending on whether there exists a pending miss on the same cache line. Only
the primary miss causes a memory access request issued to the next level. A secondary miss does not. In this case, we need to adjust
the cache misses in the calculation (by discounting the secondary misses).
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C-AMAT (l)

=
H(l)

CH(l)
+ ρm(l)× κ(l)× C-AMAT (l + 1). (41)

Proof.

H(l)

CH(l)
+ ρm(l)× κ(l)× C-AMAT (l + 1)

=
H(l)

α(l)×H(l)

h(l) + x(l)
(25)

+

αm(l)

α(l)
(8)

m(l)

m(l) + x(l)
(15)

× ω(l + 1)

α(l + 1)
(30)

=
h(l) + x(l)

α(l)
+

αm(l)×m(l)× (m(l) + x(l))
(38)

α(l)× (m(l) + x(l))× αm(l)
(36)

=
h(l) + x(l)

α(l)
+

m(l)

α(l)

=
w(l)

α(l)
= C-AMAT (l)

(30)
. #

One can obtain several important insights from the
above derivation. We have:

C-AMAT (l)

=
H(l)

CH(l)
hit

+

ρm(l)× κ(l)× C-AMAT (l + 1) pure
miss

=
h(l) + x(l)

α(l)
hit

+
m(l)

α(l) pure
miss

=
ω(l)

α(l)
× h(l) + x(l)

ω(l)
hit

+

ω(l)

α(l)
× m(l)

ω(l) pure
miss

=
ω(l)

α(l)




h(l) + x(l)

ω(l)
hit

+
m(l)

ω(l) pure
miss





= C-AMAT (l)×
(

φ(l)
(13)

hit
+ µ(l)× κ(l)

(16)

pure
miss

)
.

We see that C-AMAT (l) consists of two portions
(as marked in the above derivation): the hit portion,

φ(l) = h(l)+x(l)
ω(l) , which is overlapped with hit cycles,

and the pure miss portion, 1−φ(l) = m(l)
ω(l) = µ(l)×κ(l),

which consists of only the pure miss cycles. Further-
more,

ρm(l)× C-AMAT (l + 1)

= ρµ(l)×
ω(l + 1)

α(l + 1)
(30)

= ρm(l)×
µ(l)× ω(l)

(38)

ρm(l)× α(l)
(36)

= µ(l)× ω(l)

α(l)
= µ(l)× C-AMAT (l)

(30)
.

Therefore,

C-AMAT (l) =
ρm(l)

µ(l)
× C-AMAT (l + 1).

From the above equation, one can derive a recursive
definition of C-AMAT (l) at the cache level l:

C-AMAT (l) = C-AMAT (1)×
l−1∏

i=1

µ(i)

ρm(i)
. (42)

The above equation shows that C-AMAT at layer l of
the memory hierarchy expands or shrinks from that of
the previous layer l − 1 at a rate commensurate with
the ratio between µ, the ratio of miss cycles over mem-
ory active cycles, and ρm, the miss ratio. This is not
surprising as C-AMAT captures the combined effect of
data access locality (from ρm) and concurrency (from
µ).

7 Layered Performance Matching

The average access time described in Section 5 and
Section 6 provides a time-based performance model.
One can also examine memory system performance
based on rates. The Layered Performance Matching
(LPM) [7] is a technique for examining the memory per-
formance at each level of a hierarchical memory system
based on data flow analysis. LPM allows to transfer
a global performance optimization problem for the en-
tire memory system to local optimization problems at
each layer of the memory hierarchy. In this section, we
establish a recursive definition of the matching ratios.
Like in C-AMAT , the recursion allows us to capture the
contribution of memory performance at a cache layer in
relation to the adjacent layers for the overall runtime
performance.

Let LPMR(l) be the matching ratio at cache level l.
Let λ(l) be the request rate at cache level l, and let ν(l)
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be the supply rate at cache level l. The matching ratio

is actually the utilization at the corresponding cache

level, and is defined to be the ratio between the request

rate and the supply rate:

LPMR(l) =
λ(l)

ν(l)
. (43)

Fig.4 shows an example of the request and supply rates

for a three-level cache memory system.

The number of memory accesses at each cache level

can be defined recursively.

α(l) =

{
IC × fmem, if l = 1,

α(l − 1)× ρm(l − 1), if 1 < l " L+ 1,

(44)

where L is the number of cache levels. The base case

l = 1 is from (2); the recursion is from (36). We use

α(L+1) to represent the main memory accesses. More

succinctly, we have:

α(l) = IC × fmem ×
l−1∏

i=1

ρm(i), (45)

where 1 " l " L+ 1.

The request rate is the number of memory accesses

divided by the total number of CPU cycles for running

the program without memory stall (i.e., the ideal run

time of the program assuming MST = 0):

λ(l) =
α(l)

IC × CPIexe
(46)

=

{
IPCexe × fmem, if l = 1,

ρm(l − 1)× λ(l − 1), if 1 < l " L+ 1
(47)

= IPCexe × fmem ×
l−1∏

i=1

ρm(i), (48)

where 1 " l " L+ 1. We use λ(L+ 1) to represent the
request rate at the main memory.

The number of memory active cycles can be derived
from (30):

ω(1) = α(1)× C-AMAT (1)

= IC × fmem × C-AMAT (1).

Combining it with the recursion from (38), we can have
a recursive definition:

ω(l) =

{
IC × fmem × C-AMAT (1), if l = 1,

µ(l − 1)× ω(l − 1), if 1 < l " L+ 1,

(49)
where 1 " l " L+ 1. We use ω(L+ 1) to represent the
number of main memory active cycles. We can also use
the succinct form:

ω(l) = IC × fmem × C-AMAT (1)×
l−1∏

i=1

µ(i). (50)

α(1) = IC 
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L1 Cache

ω(1) = IC fmem C-AMAT(1)

λ(1) = IPCexefmem

L2 Cache

ω(2) = µ(1)ω(1)

ω(3) = µ(2)ω(2)

ω(4) = µ(1)ω(3)
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λ(2) =λ(1)ρm(1) 
α(2) =α(1)ρm(1)   

α(3) =α(2)ρm(2) 

α(4) =α(3)ρm(3) 

ν(1) = APC(1)

ν(2) = APC(2)

ν(3) = APC(3)

ν(4) = APC(4)

λ(3) =λ(2)ρm(2) 

λ(4) =λ(3)ρm(3) 

ω(3) = µ(2)ω(2)

ω(4) = µ(1)ω(3)

Fig.4. Request and supply rates at different cache levels. This example shows three cache levels: L1 (first-level cache), L2, and L3
(last-level cache). At each cache level l, we show the request rate, λ(l), and the supply rate, ν(l), as well as the number of memory
accesses (requests), α(l), and the number of memory active cycles, ω(l). As a special case, λ(4), ν(4), α(4) and ω(4) are the request
rate, the supply rate, the number of memory accesses, and the number of memory active cycles at the main memory, respectively.
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Given that there is a one-to-one correspondence be-
tween request and supply at each memory layer, the
supply rate can be calculated as the number of mem-
ory accesses divided by the number of memory active
cycles:

ν(l) =
α(l)

ω(l)
= APC(l) = C-AMAT (l)−1. (51)

The above equation is derived directly from (30) and
(32). Note that the request rate is calculated over the
ideal run time of the program without memory stall,
and the supply rate is defined over the memory active
cycles at a specific memory layer.

Finally, the matching ratio follows:

LPMR(l)

=
λ(l)

ν(l)
=

α(l)/(IC × CPIexe)

α(l)/ω(l)
=

ω(l)

IC × CPIexe

=

{
IPCexe × fmem × C-AMAT (1), if l = 1,

µ(l − 1)× LPMR(l − 1), if l > 1
(52)

= IPCexe × fmem × C-AMAT (1)×
l−1∏

i=1

µ(i). (53)

The following derivation establishes the relationship
between the matching ratio, LPMR(l), and the ratio
of memory access time over compute time, ∆:

LPMR(l)

= IPCexe × fmem × C-AMAT (1)×
l−1∏

i=1

µ(i)

= IPCexe × fmem × MST

µ(1)× κ(1)
(35)

×
l−1∏

i=1

µ(i)

(54)

=
IPCexe × CPIexe ×∆

(5)

µ(1)× κ(1)
×

l−1∏

i=1

µ(i)

=
∆

µ(1)× κ(1)
×

l−1∏

i=1

µ(i). (55)

The last step comes from (3). More specifically, for
l = 1, 2, and 3, we have:

LPMR(1) =
∆

µ(1)× κ(1)
, (56)

LPMR(2) =
∆

κ(1)
, (57)

LPMR(3) =
µ(2)×∆

κ(1)
. (58)

We know that ∆ is related to the memory sys-
tem efficiency (see (6)). A smaller LPMR(l) indicates
higher memory performance at cache level l. In fact,
the LPMR value can be directly related to the memory
stall time (MST). From (54), we have:

MST

=
µ(1)× κ(1)

IPCexe × fmem ×
∏l−1

i=1 µ(i)
× LPMR(l). (59)

The LPM method allows one to optimize mem-
ory performance by tuning the matching ratio at each
memory layer to meet the target requirement [7]. The
equations above provide a formal proof of the LPM
method. In particular, if we want ∆ to be no larger
than a given threshold x% as the memory system op-
timization target, based on (56), we only need to have

LPMR(1) " x%

µ(1)κ(1)
. In general, as it follows from

(55) and (59), if LPMR(l) " x%

µ(1)× κ(1)
×
∏l−1

i=1 µ(i),

we also have MST " x%× CPIexe
fmem

.

Recall from (4), an instruction’s execution time con-
sists of two parts: CPIexe, which is the ideal compute
time in cycles per instruction without memory stall,
and (fmem × MST ), which is the memory stall time
per instruction. (Note that MST is the memory stall
time per memory reference.) Therefore, x% is actually
the relative memory stall time with respect to the ideal
compute time in cycles per instruction.

The performance of the L1 cache is the overall mem-
ory system performance. In theory, we only need to
match LPMR(1) to optimize the overall system per-
formance. However, L1’s performance depends on L2.
The value of LPMR(1) can increase due to LPMR(2)
if L2’s performance does not meet its match. The
same argument can be applied to other memory lay-
ers. Therefore, memory performance optimization can
be viewed as a recursive process in which one can tune
the matching ratio at each memory layer to meet the
target requirement.

For example, if the measurement shows that the
matching ratio at the L1 cache is below the target
value ((56)), it means that the memory system perfor-
mance already meets the efficiency requirement. Oth-
erwise, one needs to check the matching ratio at the L2
cache ((57)). If L2’s matching ratio is below the target
value, it means that L2 has sufficiently supplied data to
L1, but L1 does not meet the requirement. Thus, one
should focus only on the memory optimization at L1.
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On the other hand, if L2’s matching ratio is also above

the target, one should continue to check the matching

ratio at the L3 cache ((58)). If L3’s matching ratio is

below the target, one should focus on L1 and L2, but

not L3. Otherwise, all three cache levels need to be

optimized.

The above method shows a systematic and fast ap-

proach to matching the data access demands of a run-

ning application to the underlying memory architec-

ture. The matching can be achieved by adjusting the

configuration of the underlying memory architecture or

through the scheduling of applications appropriately in

a heterogeneous environment. Using the C-AMAT for-

mulation described above, one can assess the data ac-

cess locality and concurrency of an application in accor-

dance with the underlying memory architecture. Lay-

ered matching leads to the improved measurement and

analysis of data access delays, and as such, results in

more effective and efficient methods for obtaining a bal-

anced memory architecture design and optimization.

8 Discussions

Our unified memory performance model establishes

a coherent and enhanced mathematical foundation for

several recently proposed memory performance models,

including C-AMAT, APC, and LPM. In this section,

we discuss the practical implications of the proposed

model.

Two of the key issues of memory system modeling

are: 1) How can the theoretical results be used in ac-

tual architecture design? 2) How can the results be

used by researchers in the field? That is, how to ben-

efit the general architecture and system research com-

munity? Applying the memory performance models in

practice not only requires an in-depth understanding

of the models, the underlying hardware, and the tar-

get applications, but also in many times needs to tailor

the models for the specific hardware configuration, the

target application, or both.

One example is the Disaggregated Memory System

(DMS). The DMS architecture has been recently in-

troduced to tackle the memory capacity scaling prob-

lem of high-performance computing systems, by adding

a remote global memory layer to expand the mem-

ory capacity of individual compute nodes [10]. DMS

usually consists of a large pool of memory, a mem-

ory controller, and a network interface for the com-

pute nodes to communicate with the disaggregated

memory over a low-latency high-bandwidth intercon-

nection network [11]. Earlier, we performed a prelimi-
nary measurement study using the C-AMAT analysis
for a specific DMS machine, named Cooley, at the Ar-
gonne Leadership Computing Facility (ALCF) [12]. The
memory-centric view of the unified model can be ap-
plied in this case to study the contribution of individ-
ual memory devices in the over-all system performance.
We note that DMS not only adds an additional level
into the existing memory hierarchy, but also compli-
cates the architectural design: data accesses may split
among multiple devices in the system and merge onto a
particular disaggregated memory as it is accessible from
different cores, processors, and machines; data accesses
also need to travel through the interconnection network
with substantial delay variations and interference. The
unified model needs to be extended to handle these sit-
uations. As another example, graphics processing units
(GPUs) have been widely used as accelerators for gene-
ral purpose computing. However, the benefits brought
by GPUs vary substantially among scientific applica-
tions, which mainly can be attributed to the variation
of data access delay. We have previously extended the
C-AMAT model to study the memory performance on
GPUs [13]. In particular, warp-level data accesses are
considered in aggregation for data locality and concur-
rency in C-AMAT. A limitation of the approach is that
the GPU memory is considered as stand-alone and sep-
arate from the host memory. The proposed unified
model can be applied in this situation where we can
study individual contributions of the memory system
components in the overall performance (with consider-
ations of merging, splitting, and off-chip latencies).

The memory-centric view offered by the unified
performance model provided in this study is essen-
tial in memory system simulator design. Modeling
and simulation has been proven valuable for study-
ing complex system behaviors, especially when the
system under study involves a large number of vari-
ables in the design space, as in the case of mem-
ory systems. The task of memory architecture opti-
mization must be evaluated with diverse system con-
figurations and algorithmic choices that impact host
systems, memory/storage devices, interconnection net-
works, and applications/workloads. Our cycle-level
analyses in the unified memory model (regarding data
locality, concurrency, latency, as well as their recur-
sive relationships) can be used to reveal potential per-
formance issues of complex memory architectures, in-
cluding diverse system configurations and memory hi-
erarchy, various memory devices (including both tra-
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ditional and new technologies, including non-volatile
memory), cache management policies (such as multi-
banked, pipelined, and non-blocking caches), and inter-
connection networks (such as disaggregated memory).
The model can enable the design of accurate memory
system simulation, and in doing so will be instrumen-
tal to generating insight to architecture design, guiding
design decisions, and evaluating performance optimiza-
tions. Further study on this issue is warranted.

9 Related Work

In 1990, Sun and Ni [14] proposed a memory-
bounded parallel speedup model, also known as the
Sun-Ni’s Law. The memory-bounded parallel speedup
model identifies that data access is the key factor influ-
encing performance, and scalable computing is bounded
by the memory capacity. In 1994, the term “mem-
ory wall” was formally introduced by Wulf and McKee,
based on the Average Memory Access Time (AMAT)
model [1]. For two and half decades, intensive research
has been conducted to improve memory system per-
formance. However, the “memory wall” problem per-
sisted. Today, modern microprocessors spend a vast
majority of their transistors for on-chip caches, rather
than devote them for computing.

There are three types of memory performance mod-
els. The first type of models deals with data access
locality. The study of locality started from Denning’s
working set theory in 1968 [2, 3]. Mattson et al. pro-
posed the stack algorithm to calculate reuse distance
in 1970 [15]. Several metrics have been developed based
on the concept of working set and reuse distance. For
example, Weinberg et al. [16] presented weighted stride
for HPC applications. Berg and Hagersten [17] and Gu
et al. [18] proposed to quantify locality based on measur-
ing the change of miss rates or reuse distances. Anghel
et al. [19] proposed to use a probability distribution of
reuse distance to quantify the locality. These met-
rics are based on heuristics and lack formal mathe-
matical definition. Ding et al. formally established
the relationship among the five locality metrics: foot-
print, inter-miss time, volume fill time, miss ratio, and
reuse distance [20, 21]. Jiang et al. [22] proposed “con-
current reuse distance” for multi-threaded programs.
Gupta et al. [23] quantified the data access locality as
a conditional probability. Liu and Sun [24] proposed a
concurrency-aware data access locality metric, which
can accurately reflect the combined impact of data ac-
cess locality and concurrency in modern memory archi-
tectures.

The second type of models deals with cache per-
formance based on hit/miss rate and timing. Miss
rate (MR), miss per kilo instructions (MPKI), average
miss penalty (AMP), and average memory access time
(AMAT) are commonly used performance metrics [8].
MR is defined by the number of misses over the total
number of memory accesses. Similarly, MPKI is de-
fined as the number of misses in thousands divided by
the number of total committed instructions. Both MR
and MPKI reflect the proportion of the data in or out
of the cache, but they do not reflect the penalty of the
misses. AMP is the average latency for the cache miss;
it is the sum of all single miss latency divided by the
total number of misses. AMP catches the penalty of the
cache miss access, but does not tie it up with the as-
sociated performance degradation of the program exe-
cution. The AMAT model considers the layered perfor-
mance; it is recursive as it can be used in each memory
layer to reflect the portion of latency consumed at each
memory layer. AMAT is thus a more comprehensive
memory metric, but it is based on the single data ac-
cess viewpoint. In particular, AMAT does not consider
memory concurrency upon overlapping memory hits
and misses. In contrast, the C-AMAT model [5] con-
siders locality, concurrency, and overlapping and can
be recursively applied across the memory hierarchy for
performance optimization.

The third type of models deals with cache per-
formance based on data flows across the memory hi-
erarchy. Memory Level Parallelism (MLP) has been
proposed in recent years as a common memory met-
ric [4, 25,26]. MLP is the average number of outstand-
ing long-latency main-memory accesses for each active
memory access cycle. However, it only focuses on data
concurrency, but not locality and overlapping. Am-
dahl’s Balanced System Law [27], as a rule of thumb
for the system design, says that a system would need
one bit per second for I/O for each instruction per sec-
ond, which basically matches the ratio of memory ac-
cess speed to the computing speed. The roofline model
by Williams et al. [28] is a more attainable system per-
formance model that compares peak computing speed
with the product of peak memory bandwidth and op-
erational intensity. Although the specific values can be
obtained through measurements, the roofline model is
not intended to be accurate, but to provide insight to
system performance limitations and bottlenecks. Zhu
et al. [29] proposed a balanced design for supercom-
puters. The main idea of the balanced design is to
provide the maximum bandwidth with the maximum



88 J. Comput. Sci. & Technol., Jan. 2021, Vol.36, No.1

number of compute nodes that can concurrently access
I/O systems. The Layer Performance Matching (LPM)
method [7] essentially follows the data flow analysis. It
is developed based on C-AMAT for memory system op-
timization.

Our study reexamines the APC, C-AMAT, and
LPMmodels under a coherent mathematical framework
using a new memory-centric view, where we classify
the memory cycles at each memory layer into four dis-
tinct types and use them to define memory access con-
currency and access time. Using the memory-centric
approach, we are able to provide new insights on the
performance of modern hierarchical memory systems.
With the new proofs we build a memory system model-
ing framework for us to develop a cycle-accurate mem-
ory system simulation model.

10 Conclusions

This paper describes a CPU memory performance
model and establishes a mathematical foundation com-
bining three existing models (C-AMAT, APC, and
LPM) in a coherent mathematical framework. In
particular, new derivations were provided using a
memory-centric approach, which can help achieve bet-
ter understanding and gain new insights to the perfor-
mance of memory systems. The resulting hierarchical
memory performance model provides us with a better
understanding of the memory system performance and
paves the way for developing next-generation memory
system simulators and measurement tools, and thereby
aides the design and development of more efficient
memory architectures for modern computer systems.

For future work, we plan to extend the concurrency-
based hierarchical memory performance framework to
analyze more complex scenarios in modern computer
architectures using the memory-centric approach. For
example, data access merging may occur in shared-
memory scenarios such as those in a multi-processor
multi-core environment. Split data access may occur in
a memory system where multiple heterogeneous mem-
ory devices (such as DRAM, NVM, and disaggregated
memory) coexist at the same memory layer. The mem-
ory performance model must be able to handle situ-
ations where both merging and splitting memory ac-
cesses may occur. We also plan to develop a cycle-
based memory simulator based on this memory model-
ing study.
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