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Abstract—Prefetching techniques have been studied for
decades. However, there are few studies on how concurrent
memory accesses may affect prefetching effectiveness. When
there are multiple concurrent memory requests, we can classify
them into sub-classes by analyzing the overlapping relationship.
In this work, we first propose pure prefetch coverage (PPC), a
novel prefetching metric that can identify an accurate prefetch
coverage under the concurrent memory access model. Then
we propose APAC, an adaptive prefetch framework with PPC
metric that can capture the dynamics of applications and adjust
the prefetching aggressiveness. Our experimental results show
that the PPC metric has a higher IPC correlation compared to
the conventional prefetch coverage (PC) metric. For memory-
intensive single-thread benchmarks, APAC provides an average
performance improvement by 17.3% and 5.9% compared to the
state-of-the-art adaptive prefetch framework FDP and NST. In
a multi-core system, APAC outperforms FDP and NST by 8.5%
and 5.0% IPC on average, respectively.

I. INTRODUCTION

The unbalanced technological advancements in processor

and memory over the past decades have led to the “Memory
Wall” problem. In addition to utilizing memory hierarchy and

data locality to alleviate the performance gap between the

CPU and the memory, intensive research has been conducted

to improve the concurrency of memory systems. Multi-port

cache, multi-banked cache, and pipelined cache are advanced

cache design techniques that enhance cache hit concurrency;

whereas, non-blocking cache can improve cache miss con-

currency. Processor ILP techniques, such as out-of-order exe-

cution, multiple issue pipeline, simultaneous multi-threading,

can dramatically improve both cache hit and miss concurrency

[21]. With these advanced techniques, it is common to observe

concurrent memory accesses.

Memory concurrency reduces memory stall time by over-

lapping multiple outstanding memory accesses. Some misses

occur concurrently with other hits (hit-miss overlapping),

whereas some misses do not (miss-miss overlapping) [14].

Thus, a single cache miss latency is no longer a determinant

factor of the overall memory system performance. The perfor-

mance loss resulting from a cache miss can be reduced when

there is hit-miss overlapping. When a miss has no hit-miss

overlapping, it becomes the critical factor that could hurt the

performance. Such miss is classified as pure miss (§II-A).

Data prefetching has been proved to be effective in reducing

CPU stalled cycles by capturing a program’s memory access

pattern and then proactively fetching needed data blocks from

off-chip memory to the faster on-chip cache ahead of demand

access. While the conventional prefetching mechanisms are

useful in reducing memory accesses delay, they are not fully

utilized in a concurrent data access environment. There is

room for improvement. In this work, we propose pure prefetch
coverage (PPC), a more comprehensive metric that extends

the current prefetch coverage (PC) metric to consider con-

current memory accesses. PPC evaluates the performance of a

prefetcher by observing the ratio of pure misses reduced rather

than misses reduced to quantify its effectiveness. We show the

effectiveness of PPC compared with PC through a correlation

analysis against execution time.

PPC lays a foundation for the APAC, an accurate and adap-

tive prefetch framework that can auto-tune the aggressiveness

of the prefetcher at runtime. The memory access behavior may

change phase by phase during its runtime [5]. Therefore, a

prefetcher needs to be adaptive to catch the change of the

data access pattern. In APAC, we measure and track the pure

prefetch coverage (PPC), prefetch accuracy (PA), as well as

the pure miss rate (pMR) to adjust the aggressiveness of the

prefetcher dynamically. Our experimental results show that

APAC outperforms state-of-the-art adaptive prefetch frame-

works, such as FDP [18] and NST [9]. Also, the PPC metric

can be integrated with other complex prefetchers to enhance

the performance further.

The paper is organized as follows: Section II introduces the

background of a concurrent memory access model and the

missing piece of current prefetch metrics; Section III presents

the related prefetching frameworks; Section IV introduces our

proposed PPC metric and the method to measure and imple-

ment it on a given system; Section V shows our accurate and

adaptive prefetch framework APAC can adjust the prefetching

scheme dynamically; Section VI describes our experimental

settings and Section VII presents experimental results by

comparing and integrating with state-of-the-art prefetching

frameworks; Section VIII concludes this paper.

II. BACKGROUND AND MOTIVATION

A. Concurrent Cache Accesses

Concurrent cache accesses enable requests overlapping.

Cache misses may or may not overlap with hit accesses; thus,

not all misses have an equal impact on performance. When
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Fig. 1: Case 1: a single prefetch hit can save 2 cycles.

Cycle2 3

Memory 
Access

a) Memory Accesses w/o Prefetch

b) Memory Accesses with Prefetch

4 51 6 7

Memory 
Access

2 3 4 51 6 7

B

D

A

C

F
E

8

Cycle8

B

D

F
E

Hit
Miss

Pref. Hit
C’

A’

Fig. 2: Case 2: two prefetch hits do not save cycle time.

miss cycles are overlapping with one or more hit cycle, the

processor can still work on the hit access(es), and the miss

penalty is less significant. However, if a miss cycle has no

hit to overlap with, it can severely hurt the performance. We

refer a miss cycle without overlapping with any hit cycle the

pure miss cycle and refer a miss access which consists of at

least one pure miss cycle the pure miss access. In other words,

pure miss access is the type of miss access that contains at

least one miss cycle which does not have any hit accesses to

overlap with [21]. We use pure miss rate (pMR) to define the

cache efficiency when considering concurrent misses:

Pure Miss Rate(pMR) =
Num. of Pure Misses

Num. of Total Accesses

To maximize performance, we can reduce pMR by reducing

the number of pure misses via prefetching. On the other hand,

we also want to minimize pure miss cycles by maximizing the

hit-miss overlapping [14].

B. Prefetch Evaluation Metrics

Currently, prefetch accuracy (PA) and prefetch coverage

(PC) are the most used metrics in evaluating prefetching

techniques [5], [11]. PA reflects the percentage of useful

prefetches out of all prefetches. Note that a useful prefetch

is defined as a prefetched cache line that was accessed at least

once while residing in the prefetch destination. The formal

definition of prefetch accuracy is as below:

Prefetch Accuracy =
Num. of Useful Prefetches

Num. of Total Prefetches

PC is the fraction of total misses that can be effectively

reduced by prefetching [6]. Without considering concurrent

memory accesses, an effective prefetcher usually means to

cover as many potential misses as possible. The formal defi-

nition of prefetch coverage is:

Prefetch Coverage =
Num. of Misses Reduced by the Prefetcher

Num. of Overall Misses w/o Prefetcher

Most prefetching techniques are designed to achieve a

balanced high PA and PC. For sequential memory access

activities, PC directly reflects the contribution of prefetcher

to performance improvement. However, we show the limita-

tions of the PC metric when considering concurrent memory

accesses in the next section.

C. Case Studies: The Limitations of PC
PC may provide inaccurate measurements for a prefetcher

when we consider concurrent data access. As discussed in

Section II-A, not all misses equally impact performance, when

concurrency is paramount. As a result, blindly reducing the

number of misses may not be the best for performance. A

high value of PC does not mean that a prefetcher can certainly

cover a lot of pure misses. Likewise, if the number of cache

misses saved by a prefetcher is low, but most are pure misses,

a low value of PC may lead to better performance. We provide

two conceptual cases in Figure 1 and Figure 2 to illustrate why

ignoring concurrency information in PC metric may produce

less accurate evaluations of the prefetcher’s effectiveness. In

both cases, each cache hit access consumes two cycles, and

each cache miss has four miss penalty cycles.
Case 1: Low PC, high performance improvement. Without

the help of prefetching, in Figure 1a), access A and B are

cache hits, access C, D, E are cache misses. When considering

the access concurrency, both access C and D have two pure

miss cycles (cycle 4 and cycle 5), and access E has four pure

miss cycles (cycle 4-7). According to the definition of pure

miss, access C, D, and E are all pure misses. With prefetching,

access E is saved by prefetch and now becomes E’ in Figure

1b). Though access C and D are still misses with four miss

cycles, these cycles are no longer pure miss cycles because

they overlap with the hit cycles of access B and access E’.

In this example, prefetching only reduces one misses, so PC

is just 1/3. However, all concurrent pure misses now have

hit-miss overlap. Even though the PC is relatively low, the

performance gain brought by prefetching is noticeable.
Case 2: High PC, low performance improvement. The

second case study shows the limitation of PC in the opposite

way. In Figure 2 a), without the help of prefetching, accesses

B, D, and E are cache hits, accesses A, C, F are cache misses.

Access F is the only pure miss in this example, which leads

to 3 pure miss cycles (cycle 6-8). All the miss penalty cycles

of accesses A and C are overlapping with hits, so access A

and access C are not pure misses. After prefetching, as shown

in Figure 2 b), accesses A and C are saved by prefetching,

and they become prefetch hits A’ and C’. In this example, two

misses are reduced; we calculate the PC as 2/3, which means

that we saved the majority of misses. However, the total cycles
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spent on memory accesses are not saved. Access F is still a

pure miss, with three pure miss cycles. Even though the PC is

high, the prefetcher might not be able to improve performance

as expected if the pure miss reduction is low.

Takeaways: The two case studies demonstrate the limitation

of PC metric. When we consider memory concurrency, the

correlation between the saved misses by prefetching and the

memory stall cycles is loss. In some extreme cases, the

correlation may even be negative. An alternative metric that

considers memory concurrency is needed. Note that we do not

show the performance gain of concurrent hits in Figure 1 and

Figure 2 above, as they do increase hit bandwidth. Overlapping

masks the data access delay of the lower layer of the memory

hierarchy, which is in general significantly slower than the

current memory hierarchy. The two examples show that hit-

miss overlapping can directly reduce the memory stall cycles

and enhance performance.

III. RELATED WORK

In addition to studying prefetching at the algorithm level,

adaptive prefetching frameworks are designed to control

prefetcher aggressiveness based on runtime estimation of

system performance for performance improvement.

Hur and Lin [10] introduces a probabilistic prefetching tech-

nique that utilizes stream length histograms to capture spatial

locality in program execution to adjust the prefetch decision.

The limitation of their framework is the lack of versatility.

It cannot be adapted to other hardware prefetchers except

stream prefetcher. Srinath et al. [18] design a feedback directed

prefetching framework (FDP), which tracks the prefetch accu-

racy, prefetch lateness, and prefetcher generated cache pollu-

tion to adjust the prefetch configuration dynamically. Ebrahimi

et al. [7] focus on controlling the aggressiveness of multiple

prefetchers in multi-core systems based on the prefetcher-

caused inter-core interference in shared memory systems.

Alameldeen and Wood [3] propose an adaptive prefetching

mechanism that uses cache compression’s extra address tags to

detect the number of useless and harmful prefetches. Near-side

prefetch throttling (NST) [9] only adjusts the aggressiveness

of prefetching based on the fraction of late prefetchers, which

has a relatively small hardware overhead and minimizes cache

pollution and memory bandwidth wastage. Although the above

adjustment frameworks use different metrics as the basis for

adjusting the prefetch aggressiveness, none of these metrics

can properly consider access concurrency and reflect the effect

of prefetch on memory performance accurately. In particular,

concurrency has become the most commonly used technique

in modern memory systems. As a result, these frameworks

sometimes make erroneous decisions that cause the prefetcher

to be too conservative or too aggressive, thereby misleading

performance.

IV. PURE PREFETCH COVERAGE

In this section, we introduce pure prefetch coverage (PPC),
which extends the conventional PC metric with concurrency

factors. Unlike PC, PPC can examine concurrent accesses and

TABLE I: PC and PPC of two study cases

Reduced pure
misses

with prefetch

Overall pure
misses

w/o prefetch
PPC PC Stall cycles

reduced

Case 1 3 3 1 1/3 2
Case 2 0 1 0 2/3 0

distinguish between different types of concurrent misses. It is a

comprehensive metric that evaluates a prefetcher’s contribution

to pure misses reduction during concurrent memory accesses.

We first describe the definition and the formulas of PPC. Next,

the rationality of PPC is illustrated by revisiting the two case

studies. Finally, we show the algorithm and implementation

details about how to track the number of pure misses and

PPC during the execution time.

A. Definition

The PPC is introduced to quantify how effective a

prefetcher works in concurrent access activities. Different from

the definition of PC, which relies on the ratio of total misses

reduced to evaluate the effectiveness of a prefetcher, PPC

focuses on quantifying the ratio of pure misses (§II-A) that

are reduced by prefetching. PPC is defined as the fraction of

the number of pure misses reduced due to prefetching over

the overall number of pure misses that will occur without

prefetching:

Pure Prefetch Coverage =
Num. of Pure Misses Reduced by the Prefetcher

Num. of Total Pure Misses w/o Prefetcher

B. Revisit Case Studies with PPC Analysis

Recalling the two case studies in §II-C, we re-evaluated the

effectiveness of prefetching using the PPC definition. Table I

shows the value of PC and PPC for these two study cases,

respectively. In the first case, one of the three cache misses

is successfully reduced by prefetching, the value of PC is

1/3. When considering the access concurrency, all three pure

misses are now able to overlap with hits. Therefore, the value

of PPC is 3/3 = 1. A high value of PPC accurately reflects the

considerable contribution of prefetching to performance gain

in this case. In the second case, prefetching removes two of

the three misses, so the value of PC is 2/3. Nevertheless, pure

miss is not reduced. After prefetching, access F is still a pure

miss with three pure miss cycles. So the PPC is calculated

as 0/1 = 0. Compared to PC, PPC captures the ratio of pure

misses reduced by prefetcher, which contributes directly to

performance. PPC can accurately evaluate the effectiveness

of prefetching than PC when there are concurrent memory

accesses.

C. Measurement and Implementation

To compute the PPC during the execution time, we use two

counters to track the pure misses: 1) RPM, is used to count

the reduced pure misses by the prefetcher; 2) DPM, is used to

record the demand pure misses, which are the pure misses that

cannot be covered by the prefetcher. In this way, we compute

PPC as:

PPC =
RPM

RPM + DPM
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where the sum of RPM and DPM is equal to the number of

total pure misses without the prefetcher.

The algorithm for detecting pure misses and measuring PPC

is shown in Algorithm 1. We declare the bits and counters used

for measurement on the top of Algorithm 1. The information

of all outstanding cache misses is tracked by the MSHR (Miss

Status Holding Register). Each miss is allocated to an MSHR

entry before it is served [12]. The NoHit and OnlyPrefetch
bits are used to identify the current cycle status: NoHit is set

when there is no hit in this cycle; OnlyPrefetch is set when

there are only prefetch hits but no demand hits in this cycle.

The steps to determine whether a miss is a pure miss are

shown from lines 1 to 5. A IsPure bit is used per MSHR entry.

If NoHit is set, we know all misses in MSHR are pure misses,

so their associated IsPure bits are set.

Lines 6 to 14 are used to determine how prefetch hits can

reduce pure misses. If OnlyPrefetch is set in the cycle, these

prefetch hits can be approximately considered as pure misses

saved by prefetch. So we increase the RPM counter to record

this type of pure miss reduction at line 8. Note that we may

have multiple hit cycles, so N is divided by hit cycle to

remove repeated counts. Next, to calculate the pure misses

reduced by overlapping with prefetch hits, we use an Overlap
bit to each MSHR entry. If the OnlyPrefetch bit is set and

a miss in the MSHR is not a pure miss, it means that it

is converted from a pure miss (w/o the prefetch) to a miss

that now can be overlapped with a prefetch hit. So we set its

Overlap bit to 1 at line 11.

Lines 16 to 23 are used for updating of the counters when a

miss from MSHR is serviced and removed. When a miss from

MSHR entry j is serviced at this cycle, if its IsPure is set, the

DMR counter is incremented. Otherwise, if the Overlap is set,

the RPM counter is incremented. Then the IsPure and Overlap
associated with that MSHR entry are reset. All the counters are

updated at every memory cycle, so the number of demand pure

misses and the number of pure misses reduced by prefetching

are updated every cycle. With RPM and DPM counters, we

can calculate PPC periodically based on the definition and use

PPC to guide the adaptive prefetching.

V. ADAPTIVE PREFETCH CONSIDERS ACCESS

CONCURRENCY (APAC)

Typically, a hardware prefetcher works by predicting future

data access based on observed past access behavior. How

aggressive a data prefetcher should be is a problem often

discussed. A good data prefetcher should guarantee a sufficient

aggressiveness to prefetch data ahead appropriately for the best

performance. However, over-aggressive prefetching may bring

adverse effects and lead to useless bandwidth consumption

and cache pollution [23]. Even the memory access pattern

is correctly predicted, an over-aggressive prefetcher still may

create early prefetches issue [19], [22]. When the pattern

prediction is inaccurate, blindly using aggressive prefetching

will provide a lot of unnecessary data that evicts useful data

from the cache, and could drag down the overall system

performance.

Algorithm 1 Detect and Measure PPC (called every cycle)

// Single-bit cycle status identifier
NoHit: set if no hit accesses in this cycle
OnlyPrefetch: set if only has prefetch hits but no demand hits in this
cycle
// Additional MSHR entry bit to record pure miss
IsPure: set if a miss is pure miss
Overlap: set if a pure miss reduced by overlapped with prefetch hits
// Counters used to compute PPC
RPM: counts the pure miss reduced by prefetching
DPM: counts the demand pure miss with prefetching

1: if NoHit is set then
2: for ith outstanding demand miss in MSHR do
3: MSHR[i].IsPure = 1
4: end for
5: end if
6: if OnlyPrefetch is set then
7: N ⇐ Number of prefetch hits in this cycle
8: RPM+= N/hit cycle
9: for ith outstanding demand miss in MSHR do

10: if MSHR[i].IsPure = 0 then
11: MSHR[i].Overlap = 1
12: end if
13: end for
14: end if
15:
16: for jth serviced miss in MSHR do
17: if MSHR[j].IsPure is set then
18: DPM ++
19: end if
20: if MSHR[j].Overlap is set then
21: RPM ++
22: end if
23: end for

Fig. 3: The impact of aggressive prefetching on performance.

Various workloads may have completely different behaviors.

Even for a given workload, it may have completely different

memory access patterns in different phases and show varying

sensitivity to prefetch aggressiveness [13]. Additionally, the

influence of concurrent data access should not be ignored if we

want to evaluate the performance of systems and prefetchers

correctly. To address these issues, we propose an adaptive

prefetching framework APAC that takes into account data

access concurrency.

A. Evaluation Metrics

In APAC, we use pure prefetch coverage (PPC), prefetch
accuracy (PA) and pure miss rate (pMR) without prefetching

as the feedback metrics for adjusting the aggressiveness of the

prefetching. The metrics are collected during each execution

phase and will guide the prefetching aggressiveness in the next

phase.

We first identify that using pMR can predict the overall

effectiveness of the prefetcher. If a phase of an application

has a high pMR, that means, in general, an aggressive prefetch

algorithm is needed. In contrast, if a phase has a low pMR,
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TABLE II: Adjuct prefetch aggressiveness with runtime met-

rics (L=Low, H=High)

Case PPC PA
pMR w/o
Prefetch

Aggressiveness Update (reason)

1 H H L No Change (base case)
2 L H L Increment (to increase PPC)
3 H L L Decrement (to reduce pollution)
4 L L L Decrement (to reduce pollution)
5 H H H Increment (to increase PPC)
6 H L H No Change (to keep the high PPC)
7 L H H Increment (to increase PPC)
8 L L H Decrement (to reduce pollution)

PPCth=0.25 PAlow=0.15 PAhigh=0.4 pMRth=0.5

in most cases, we should avoid being too aggressive in

prefetching to save the bandwidth and reduce pollution.

The tradeoff between prefetch aggressiveness and effective-

ness can be evaluated using IPC, PPC, and PA. Figure 3

shows the behavior of the 437.leslie3d benchmark under

different aggressiveness of the IP-based stride prefetcher. The

IPC, PPC, and PA all have been normalized to very conser-

vative prefetch configuration (prefetch degree equals to 1).

As the prefetch degree increases, stride prefetcher becomes

more aggressive, more pure misses may effectively be covered,

resulting in increased PPC. However, with the increment of

the prefetch degree, useless prefetches are increasing, which

is reflected in the continuous drop of PA value. In Figure 3,

when the prefetch degree is 16, severe cache pollution and

bandwidth contention resulted in performance degradation,

yielding to lower IPC.

To achieve the optimal prefetch aggressiveness, we need to

closely monitor all three metrics, PPC, PA, and pMR. We will

discuss the adaptive aggressiveness selection mechanism in the

next section.

B. Adaptive Aggressiveness Selection

In this work, we use the prefetch degree in the IP-based

stride prefetcher to determine the prefetching aggressiveness

[4]. The prefetch degree will determine how many prefetch

accesses per demand miss will be generated. For example, a

prefetch degree of N will bring [A,A + 1, ..., A + N ] when

there is a demand miss at address A, when the stride is 1.

We define five grades of the aggressiveness in this work

(degree = 1, 2, 4, 8, 16), from the very conservative (degree

1) to the very aggressive (degree 16). The initial prefetch

degree is set to 4. During the application execution time,

APAC collects and evaluates the performance of prefetching

at the end of each sampling phase. It dynamically adjusts

the appropriate prefetching aggressiveness for the next phase

based on three feedback metrics: PPC, PA, and pMR without

prefetching.

The measured PPC value needs to be compared with the

threshold PPCth to determine whether the current aggres-

siveness of prefetching can cover enough pure misses. The

currently measured PA value is compared with two thresholds

PAhigh and PAlow to determine the current prefetch accuracy

is high, average or low. The threshold of pMR without

prefetching pMRth is used to reflect whether the current phase

caused a performance issue due to the excessive number of

TABLE III: Hardware cost of APAC
Additional bits Size Used for

IsPure 1 bit per L2 MSHR PPC, pMR
Overlap 1 bit per L2 MSHR PPC, pMR
NoHit 1 bit PPC, pMR
OnlyPrefetch 1 bit PPC, pMR
DPM 32 bit PPC, pMR
RPM 32 bit PPC, pMR
pref-bit 1 bit per L2 block PA, pMR
UPF 32 bit PA, pMR
TPF 32 bit PA

pure misses. We set these thresholds empirically based on the

results of a large number of simulations. Table II shows the

thresholds used to implement APAC and the heuristic policy

for dynamic updating the aggressiveness of the prefetcher.

If the value of pMR without prefetching is smaller than

the pMRth, except for Case 2, APAC tends to degrade the

aggressiveness of the prefetcher, since we do not need to

reduce the pure misses at the cost of accuracy. In Case 2,

when the PA is high, and the PPC is smaller than the threshold,

APAC suggests increasing the aggressiveness for higher gain

from the accurate prediction. If the pMR without prefetch

is larger than the pMRth, the prefetcher tends to increase

aggressiveness for higher PPC, which decreases the pure

misses and improve the performance. Case 8 is an exception.

In this case, APAC decreases the aggressiveness of prefetcher

to reduce cache pollution and save memory bandwidth because

the current phase shows that the prefetcher cannot prefetch

effectively and accurately.

C. Hardware Cost and Complexity of APAC

APAC requires monitoring PPC, PA, and pMR without

prefetching during the execution time. We have presented the

measurement and implementation for tracking PPC in §IV-C.

The hardware cost is shown in Table III. The needed bits

include IsPure, Overlap, NoHit, and OnlyPrefetch. For a 32-

entry MSHR, the IsPure and Overlap need a total of 64 bits.

The NoHit and OnlyPrefetch just need 1 bit each, which is

trivial. In addition, two counters, RPM and DPM are required.

The 32-bit wide registers are sufficient to prevent their data

overflow.

To measure PA value, we use a similar method described by

Feedback Detected Prefetching (FDP) [18]. A bit pref-bit per

L2 block is required to differentiate whether the data block

comes from demand request or prefetch request. For a 256KB

L2 cache with 64B cache block size, the total pref-bit size

is 0.5KB. With the help of pref-bit, the number of useful

prefetches (prefetch hits) and the total number of prefetches

can be recorded by two 32-bit wide counters UPF and TPF.

The value of PA can be calculated as the ratio between the

UPF and TPF.

The pMR value without prefetching is computed as the ratio

of the total number of pure misses that will occur without

prefetching to the number of total accesses that will occur

without prefetching. We use the method mentioned in §IV-C

to count the number of pure misses that will occur without

prefetching. The number of accesses that will occur without

prefetching can be obtained by calculating the sum of demand
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TABLE IV: Simulated system configurations

Processor One to four cores, 4GHz, 8-issue width, 256-entry ROB

L1 Cache
split 32KB I/D-cache/core, 8-way, 4-cycle hit latency,
8-entry MSHR, 64B line-size

L2 Cache
unified 256KB, 8-way, 10-cycle hit latency,
32-entry MSHR, 64B line-size

L3 Cache
shared 2MB/core, 16-way, 20-cycle hit latency,
64×#cores-entry MSHR, 64B line-size

DRAM 4GB 1 channel, 64-bit channel, 1600MT/s

misses, demand hits, and prefetch hits. Therefore, the bits and

counters used for PPC and PA can help to compute pMR

without prefetching as well.

In total, the hardware overhead of APAC is around 0.52 KB,

which is only 0.2% of the capacity of the baseline 256KB L2

cache.

VI. EXPERIMENTAL METHODOLOGY

We implement our adaptive prefetching framework APAC as

described in §V with both a single-core system and a 4-core

system. ChampSim [1] simulator is used to provide an ap-

propriate memory system performance simulation. A detailed

out-of-order CPU model in the ChampSim was adopted to

achieve the most accurate simulation results. The details of

the configuration parameters of our simulation are described

in Table IV. APAC works with an IP-based stride prefetcher

at the L2 cache by default. As we mentioned in §V-B, there

are five different prefetch degrees (1,2,4,8,16) available for

selection by the stride prefetcher.

For APAC dynamic prefetching framework, the value of

PPC, PA, and pMR without prefetching will be updated every

4096 misses (half the number of blocks in the L2 cache) in

L2. Initially, APAC will set the prefetch aggressiveness of

the first phase to degree 4. When a given stride prefetcher

works under the APAC frame, the prefetch degree will be

dynamically adjusted between degree 1 and degree 16, and

the prefetcher will never be disabled.

We select the performance without a prefetcher as the base-

line for performance comparison. We compare APAC against

two state-of-the-art adaptive prefetching frameworks FDP [18]

and NST [9]. We also implement a naive adaptive framework

called NAP with a similar workflow as APAC. However, NAP

makes all decisions without considering concurrency. NAP

dynamically adjusts the aggressiveness of prefetching based on

prefetch coverage (PC), prefetch accuracy (PA), and miss rate

(MR) without prefetching. The importance of comprehensive

memory access analysis can be reflected by comparing APAC

and NAP.

We collect SimPoint [16] traces from SPEC CPU2006 [17]

and SPEC CPU2017 [2]. For SPEC workloads, we use high

intensity workloads with MPKI > 3, as shown in Table V.

For 4-core experiments, we test multi-copy and mixed SPEC

workloads. A multi-copy workload has four identical copies

of a single benchmark. A mixed workload has four different

benchmarks, which are assigned to different cores. CloudSuite

[8] workloads are multi-threaded and are only used for 4-core

experiments. Each trace is warmed up with 50M instructions

TABLE V: Evaluated workloads
Workload LLC MPKI Workload LLC MPKI

436.cactusADM 4.99 437.leslie3d 3.56
459.GemsFDTD 6.40 462.libquantum 26.07

482.sphinx3 11.65 602.gcc 70.06
603.bwaves 23.19 605.mcf 72.69

619.lbm 47.23 620.omnetpp 10.64
621.wrf 19.22 623.xalancbmk 19.10

649.fotonik3d 8.77 654.roms 32.47

MIX1 436,437,462,482 MIX2 436,437,602,603
MIX3 436,437,621,623 MIX4 436,437,649,654
MIX5 462,482,602,603 MIX6 462,482,621,623
MIX7 462,482,649,654 MIX8 602,603,621,623
MIX9 602,603,649,654 MIX10 621,623,649,654

Fig. 4: APKC on L2 in single-core and 4-core configurations.

for all experiments, and simulation results are collected over

the next 200M instructions.

VII. EXPERIMENTAL RESULTS

In this section, we first discuss the concurrency of each

SPEC workloads, then verify the correctness of PPC through

a performance-metric correlation study. Finally, we show the

effectiveness of the APAC.

A. Concurrency Analysis

We use accesses per kilocycles (APKC) [20] to measure

the overall memory concurrency concerning the complexity of

modern memory systems. Figure 4 shows the L2 concurrency

of each SPEC benchmark in single-core and 4-core multi-copy

configurations without prefetching. In the multi-core system,

applications run on different cores and share the LLC and

main memory, which causes bandwidth contention, especially

when all cores are running the same application. This results

in the concurrency gap between the single-core and 4-core

multi-copy configurations shown in Figure 4. The single-core

cases achieve a geometric mean of 1.9 times higher APKC

than 4-core cases.

B. Accuracy of PPC Metric

We show the correlation between PPC and IPC for each

evaluated workload to verify the correctness of the PPC metric.

Also, we show the correlation between the classical metric

PC and IPC for comparison. The higher the correlation is,

the better the metric is, whereas a low correlation means

the metric is wrong. From a statistical point of view, the

correlation coefficient describes the proximity between the

changing trends of the two variables. Therefore for each

application, five static prefetch configurations(from degree 1

to degree 16) are executed independently. Then, we calculate

the r(IPC, PPC) and r(IPC, PC) correlation based on the

five different configurations. The correlation coefficient of r of

two variables X and Y can be calculated using the following

equation:
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TABLE VI: Performance correlation coefficient analysis

Workload
single-core 4-core

r(PPC,IPC) r(PC,IPC) r(PPC,IPC) r(PC,IPC)

436.cactusADM 0.97 -0.65 0.99 0.78
437.leslie3d 0.98 0.89 0.99 0.70
459.GemsFDTD 0.99 0.40 0.78 0.39
462.libquantum 0.96 0.92 0.99 0.95
482.sphinx3 0.99 0.89 0.99 0.89
602.gcc 0.98 0.86 0.70 0.21
603.bwaves 0.91 0.52 0.98 0.89
605.mcf 0.98 0.80 0.99 0.89
619.lbm 0.83 0.56 0.65 0.34
620.omnetpp 0.96 0.87 0.66 0.28
621.wrf 0.99 0.94 0.94 0.84
623.xalancbmk 0.99 -0.55 0.85 0.75
649.fotonik3d 0.99 0.95 0.95 0.91
654.roms 0.99 0.95 0.99 0.91
Average 0.97 0.60 0.89 0.70

r(X,Y )=
n(

∑
XY )−(

∑
X)(

∑
Y )√

[n
∑

X2−(
∑

X)2][n
∑

Y 2−(
∑

Y )2]

where X and Y are the sampling points for two variables.

Table VI shows that, in both single-core and 4-core con-

figurations, compare to PC, PPC shows a stronger positive

correlation with IPC. This result demonstrates the unique

advantage of PPC in capturing the concurrency characteristics

of modern memory systems and accurately evaluating the

efficiency of prefetching. As discussed in multi-core cases,

the concurrency of memory accesses will be reduced by

bandwidth contention. The accuracy of PPC will be affected

by concurrency, which will cause the average gap between

r(IPC, PPC) and r(IPC, PC) in 4-core configurations to

be smaller than the gap in single-core configurations.

C. APAC Performance Evaluation

Single-core Results: Figure 5 shows the single-core pure

prefetch coverage of the various adaptive prefetch frameworks.

APAC achieves the highest PPC of all the adaptive prefetch

frameworks simulated. APAC covers 40.0% of the demand

pure misses at L2, higher than NST’s 35.7%, FDP’s 29.0%,

and NAP’s 22.2%. For 459.GemsFDTD and 620.omnetpp,

which suffer from indirect accesses, APAC does not show

advantages on PPC. The hardware prefetchers do not prove

to be useful to these benchmarks with irregular accesses, and

all frameworks are almost not conducive to the performance

with a less than 0.05 pure miss coverage at the L2.

Figure 6 shows the single-core speedup achieved by NAP,

FDP [18], NST [9] and APAC for the individual memory-

intensive SPEC CPU applications, followed by the geomean

across all the workloads. All results are normalized to

the baseline of no prefetching. In most cases, APAC can

match the best static optimum for each specific workload

based on feedbacked application phase behavior. APAC pro-

vides a 70.0% higher geometric mean IPC over the base-

line, 28.9% over NAP, 17.3% over FDP, and 5.9% over

NST. Benchmarks 603.bwaves, 619.lbm, 621.wrf, and

623.xalancbmk, benefit the most from APAC, the IPC

increased over NST ranging from 8.6% to 49.2%. For these

benchmarks, based on the observation of PPC, APAC provides

Fig. 5: PPC measured in the single-core configuration.

Fig. 6: Normalized IPC compared to baseline (single-core).

higher PPC over NST, ranging from 5.3% to 34.0%, which can

explain why these benchmarks benefit the most from APAC.

APAC fully considers the balance between the reduction

of pure misses and the accuracy of the prefetch requests.

Therefore APAC can prevent severe cache pollution while

ensuring pure miss coverage.

4-core Results: For the evaluation of 4-core systems, we

simulate both multi-copy and mixed workloads then compare

APAC with other adaptive mechanisms. For multi-copy work-

loads, Figure 7 shows that APAC provides superior perfor-

mance improvement with 12.1% higher geometric mean over

the baseline, whereas both FDP and NST only provide 6.6%

speedup. Compared with single-core results, the effectiveness

of all adaptive prefetch frameworks has decreased. The con-

tention at the LLC and DRAM bandwidth is the primary

limiting factor to cause this trend.

For mixed workloads, Figure 8 shows that APAC achieves

an improvement of 62.7% on average, whereas NAP, FDP, and

NST improve performance by 28.6%, 40.3%, and 53.1%. In

the multi-core system, coordinated throttling is independently

applied to the L2 prefetcher of each core, which is essential

for mixed workloads with different access patterns and non-

uniform bandwidth demands.

For most CloudSuite benchmarks, it is challenging for most

hardware prefetchers to capture their complex access patterns.

Since the focus of APAC is not to detect and propose complex

prefetching strategy, we achieve similar performance gains

compared with other frameworks. As shown in Figure 9,

streaming is the only benchmark where all frameworks

work can significantly improve performance. On average,

APAC achieves a 10.6% speedup and outperforms NAP by

3.6%.

Integrate APAC with a complex prefetcher: The major

contribution of this paper is a framework that enables com-

prehensive concurrent access pattern analysis, and we have

shown that with a simple strided prefetcher, we can enhance

the performance for most workloads. It is worth noting that

our approaches can be easily integrated with more complex

prefetching algorithms and extended through multiple memory

hierarchies. By adequately integrating our PPC metrics into

the system, the performance gain coming from the advanced

prefetching algorithms can be further enhanced with our meth-
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Fig. 7: Normalized IPC compared to baseline (4-core, multi-

copy).

Fig. 8: Normalized IPC compared to baseline (4-core, mixed-

copy).

Fig. 9: Normalized IPC compared to baseline (4-core, Cloud-

Suite).

Fig. 10: Speedup of APAC + IPCP in the single-core config-

uration.

Fig. 11: Speedup of APAC + IPCP in the 4-core configuration.

ods. We apply APAC to the open-sourced IPCP [15], which is

the winner of the 3rd Data Prefetching Championship (DPC-

3). IPCP can perform multiple types of prefetching patterns;

therefore, prefetching accuracy is relatively high. We show the

add-on performance gain in Figure 10 and Figure 11. Compare

to utilizing IPCP alone, applying APAC to the IPCP provides

additional performance improvement of 3.2% and 3.4% in the

single-core and 4-core configuration, respectively.

VIII. CONCLUSIONS

In this paper, we identify that concurrency of memory ac-

cesses is an indispensable factor when evaluating the prefetch

effectiveness. We propose pure prefetch coverage (PPC), a

comprehensive metric focusing on the effect of prefetching.

We develop a detailed implementation of detecting pure misses

and the measurement method for PPC. Furthermore, we design

an accurate and lightweight, adaptive prefetch framework,

APAC, based on concurrency aware metrics. APAC outper-

forms state-of-the-art adaptive prefetcher frameworks, and it

can be easily integrated with other advanced prefetchers.
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