Performance Modeling and Evaluation of a Production
Disaggregated Memory System

Ning Zhang
Computer Science Department, Illinois Institute of
Technology, Chicago, USA
nzhang23@hawk.iit.edu

Xian-He Sun
Computer Science Department, Illinois Institute of
Technology, Chicago, USA
sun@iit.edu

ABSTRACT

High performance computers rely on large memories to cache data
and improve performance. However, managing the ever-increasing
number of levels in the memory hierarchy becomes increasingly
difficult. The Disaggregated Memory System (DMS) architecture
was introduced in recent years for better memory utilization. DMS
is a global memory pool between the local memories and storage.
To leverage DMS, we need a better understanding of its perfor-
mance and how to exploit its full potential. In this study, we first
present a DMS performance model for performance evaluation and
analysis. We next conduct a thorough performance evaluation to
identify application-DMS characteristics under different system
configurations. Experimental tests are conducted on the RAM Area
Network (RAN), a DMS implementation available at the Argonne
National Laboratory, for performance evaluation. Then, the results
of performance experiments are presented along with an analysis of
the pros and cons of the RAN-DMS design and implementation. The
counterintuitive performance results for the K-means application
are analyzed at code-level to illustrate DMS performance. Finally,
based on our findings, we present some discussions on future DMS
design and its potential on Al applications.

CCS CONCEPTS

« Computer systems organization; « Architectures; « Parallel
architectures; - Multicore architectures;

KEYWORDS

Performance Modeling, Disaggregated Memory, C-AMAT, Perfor-
mance Evaluation, Utilization, RAN

ACM Reference Format:

Ning Zhang, Brian Toonen, Xian-He Sun, and William Allcock. 2020. Per-
formance Modeling and Evaluation of a Production Disaggregated Memory
System. In The International Symposium on Memory Systems (MEMSYS 2020),

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

MEMSYS 2020, September 28—October 01, 2020, Washington, DC, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8899-3/20/09....$15.00
https://doi.org/10.1145/3422575.3422795

223

Brian Toonen
Argonne Leadership Computing Facility, Argonne
National Laboratory, Chicago, USA
toonen@alcf.anl.gov

William Allcock

Argonne Leadership Computing Facility, Argonne
National Laboratory, Chicago, USA
toonen@alcf.anl.gov

September 28-October 01, 2020, Washington, DC, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3422575.3422795

1 INTRODUCTION

Larger memory is under demand in High Performance Computing
(HPC) due to the sustained development of exascale computing, big
data applications and container techniques [1]. In the meantime,
the influence of memory on the overall performance and power
consumption of HPC systems has also increased significantly [2-4].
Memory performance is application dependent and varies with
workload inputs and data characteristics [5]. On HPC systems, this
variability in applications and workloads can lead to low memory
performance as well as poor memory utilization [6]. Fig. 1 presents
the distributions of the average and maximum memory usage across
all the nodes of the Argonne’s Cooley computer cluster [7, 8] (384GB
memory for each node) in 2018. Here the memory usage of each
running job is monitored every minute. Fig. 1 shows, while the
overall memory utilization is very low (around 25GB on average,
shown by the blue violin), sometimes the memory of several nodes
near full utilization (nearly 384GB, shown by the red violin). There
is a dilemma in memory system design of computer clusters. On
one hand, sometime some nodes do need a large memory capacity.
On the other hand, most of the time most of the nodes do not need
large memory capacity. We need to reconsider memory system
design for better memory utilization, costs, power consumption,
as well as performance [5, 6]. This dilemma motivates the idea of
disaggregated memory [1].

Disaggregated memory system (DMS) decouples memory and
computing to improve memory utilization [6]. DMS adds a (remote)
global memory layer to expand the memory capacity of compute
nodes. The global memory usually consists of a large pool of mem-
ory, a memory controller, and a network interface to communicate
with compute nodes. Transparent memory access can be handled
by operating system or hypervisor extensions to maintain the local
abstraction of the remote memory [1, 7, 9, 10]. Network technol-
ogy advances faster than memory technology. Modern network
technologies such as Fiber-optic, Myrinet and InfiniBand enable
low latency (e.g., a few microseconds) and high bandwidth (e.g.,
800 Gbps) communication, which brings us new opportunities to
design and implement efficient DMS.

DMS separates the upgrade and scaling of processors and mem-
ories and has a potential for better memory utilization. However,

https://doi.org/10.1145/3422575.3422795
https://doi.org/10.1145/3422575.3422795

MEMSYS 2020, September 28—-October 01, 2020, Washington, DC, USA

400

34 times over 382GB

186 times over 380GB
350 in 345318 valid data collections

w
o
o

sy
---------._--__‘

o
12
(]
(@)
(1]
8 200
P
=]
E
[}
=

100 Average value and the third
Quartile are nearly coincided,
which is around 25GB.

[

Avg Max

Figure 1: Memory usage distribution of Cooley in 2018

DMS does not remove the “Memory Wall” [11] problem automati-
cally. DMS needs to be modeled and utilized to mitigate the memory-
wall impact. There are two issues. First, DMS is an additional layer
in the memory hierarchy. What its influence on the overall memory
system is the major concern, rather than its individual performance.
So, we need a hierarchical recursive memory system model such
as the AMAT (Average Memory Access Time) [12] mode. Second,
DMS is designed for sharing. Concurrent data access is a vital con-
cern of DMS. The traditional data access model, the AMAT [12]
model, is designed for sequential data access [13]. So, AMAT needs
to be extended to consider concurrent data access. Fortunately, a
recent work, the C-AMAT (Concurrent-AMAT) [14, 15] model, has
extended the AMAT model to consider the integrated impact of data
locality, data concurrency and data access overlapping. C-AMAT is
a good choice for performance modeling of DMS.

While C-AMAT is designed to measure concurrent data accesses,
it is a relatively new model. How to measure C-AMAT in an actual
multicore environment, where each core has its own individual
private L1 and L2 catch, has never explored. In this study, we first
extend C-AMAT to multicore architectures and introduce mech-
anisms to measure the DMS multicore C-AMAT on the Cooley
computer cluster [7, 8]. Next, we conduct a thorough performance
evaluation on Cooley using different benchmarks with different
memory access patterns. The counterintuitive performance of the
K-means benchmark (see Section 4) is analyzed in-depth for a better
understanding of DMS. This study makes the following contribu-
tions:

1. The C-AMAT model is extended to multicore architectures
and is applied to measure DMS performance on an Argonne
DMS machine.

2. A thorough performance testing is conducted. The Argonne
RAN-DMS system is tested and studied with diverse applica-
tions.

3. Anin-depth, code-level performance analysis and evaluation
are carried out to understand and utilize the performance of
the K-means application.

4. The potential and limitations of RAN are carefully studied.
Results show that DMS, as a shared, global layer of a memory

224

Ning Zhang et al.

hierarchy, has many unique properties which need more
investigation.

The rest of the paper is organized as follows. Section 2 reviews
the background. Section 3 describes the performance modeling of
DMS and its measurement methodology on real hardware. Section
4 provides the conducted performance evaluations and analyses of
the findings. Section 5 shows the related work. Finally, Section 6
concludes the work.

2 BACKGROUND

In this section, we motivate DMS and present the recently proposed
C-AMAT memory model.

2.1 Disaggregated Memory

As mentioned previously, DMS introduces a new memory layer
to the memory hierarchy by adding external memory appliances
connected over network. In [1] and [9], these appliances are known
as memory blades. For the RAN implementation associated with
Cooley [8], the memory appliances are Kove XPDs [7]. Each mem-
ory appliance is connected to multiple computing servers, and
dynamically allocates data across all computing servers. A comput-
ing server can utilize all remote memory appliances dynamically
to meet its needs, without being swapped to persistent storage,
which can be orders of magnitude slower in data access. In DMS, a
high bandwidth Host Channel Adapter (HCA) links the computing
servers and memory appliances. Remote memory access can be
implemented by swapping local pages to the memory appliance
through explicit RDMA transfers. If the local memory’s capacity
is exhausted, a local page is evicted to remote memory. Users can
utilize local memory locality to improve the overall performance
of a DMS. Most prior evaluations of DMS [1, 3, 9, 16-18] are based
on simulations and emulations, which cannot precisely present the
performance under software and hardware implementation and
interference. It is valuable exploring the performance evaluations
and optimizations of an actual disaggregated memory machines.

2.2 The C-AMAT Model

C-AMAT (Concurrent-AMAT) [14] is an extension of the conven-
tional AMAT [12] model to consider both data locality and con-
current data access. C-AMAT is defined as the ratio of the total
(active) memory access cycles over the total number of memory ac-
cesses. Let Tpemcycle Tepresent the total number of cycles executed
in which there is at least one outstanding memory reference; let
ChMemAce represent the overall number of data accesses to memory:

C — AMAT = [MemCucle)

CMemAce

C-AMAT is simple. The beauty of C-AMAT is: 1) Its cycle is the
memory active cycle for a given memory layer. So, it can be used
at each layer of a memory hierarchy for that layer’s performance
measurement. By default, unless stated differently, C-AMAT is the
L1 cache’s C-AMAT, which is the performance of the memory
system, since L1 is the top level catch of the memory hierarchy
(please notice that for a multicore system, we need to pay special
attention on how to measure the L1 C-AMAT, since each core has
its individual L1 cache.). Active cycle means only the clock cycles

Performance Modeling and Evaluation of a Production Disaggregated Memory System

where data access exist are counted. Active cycle’s performance is
the true performance of a memory system. 2). An overlapping mode
is adopted to count memory access cycles. Multiple data accesses
count multiple times. That is, Tpemcycle increases by one when
there are two memory accesses in the same cycle. Like AMAT [12],
C-AMAT has a parameterized formulation as shown in Eq. (2) [9].

C—amar = 2 4 pyrx PAMP @)
Chy C
H is the hit time, the same as defined in AMAT. The Hit Con-
currency (Cp) in Eq. (2) could be contributed by multi-port cache,
multi-banked cache or pipelined cache structures. The Pure Miss
Concurrency (Cyy) could be contributed by non-blocking cache struc-
ture. The Pure Miss Ratio (pMR) is the number of pure misses over
the total number of accesses. The concept of pure miss is new. Pure
miss is a miss containing at least one miss cycle which does not
overlap with any hit [14, 15, 19]. Pure Average Miss Penalty (pAMP)
is the average number of pure miss cycles per pure miss access.
Like AMAT, C-AMAT is recursive and can be recursively applied
to next level of the memory hierarchy [20, 21].
The C-AMAT model given by Eq. (1) and Eq. (2) needs to be
refined to support multicore and DMS.

3 PERFORMANCE MODELING AND
MEASUREMENT METHODOLOGY

3.1 C-AMAT Model for Multicore

The C-AMAT model can be applied to multicore processors in two
ways, single-core measurement, and multicore (single processor)
measurement. For the former, we are interested in a single core’s,
say core A’s, performance. For the latter, we are interested in the
overall multicore performance as a single multicore processor. By
the definition of C-AMAT, core A’s C-AMAT can be measured by
core A’s number of memory accesses and core A’s memory active
cycles. Likewise, the multicore C-AMAT can be measured by the
multicore processor’s overall number of accesses and the multi-
core’s memory active cycles. Here the multicore memory active
cycle is defined as, a multicore memory is active if and only if any
of its cores actively accessing memory. To fully understand the mea-
surement of a multicore C-AMAT, the multicore C-AMAT equation
is given in Eq. (3) to illustrate the case where private L1 exists.

_Any ({TMemCylel, TMemCuyley,...,

TMemCylen })
C_AMATncore— 2;1:1 CMemAch (3)

where C-AMAT,core is the multicore C-AMAT of n cores and n
private caches. CMemAcc; is the number of memory accesses of
each of the j individual L1 caches. TMemCyle; is the active cycle of
the L1 cache of core j. For example, if there are 6 cores in a multicore
processor, then n is 6. For measuring the multicore L1 C-AMAT, all
L1 from the multicore processor are considered as one integrated
cache. Therefore, the number of memory accesses to this integrated
cache is the summation of the number of memory accesses from
all L1 caches in this multicore processor. Its active cycles are the
cycles where any of the 6 L1cache is active.

225

MEMSYS 2020, September 28-October 01, 2020, Washington, DC, USA

3.2 Recursive C-AMAT Model for Deep
Memory Hierarchies

The C-AMAT model is recursive and can accurately analyze the
performance of a hierarchical memory system. The recursive C-
AMAT is shown in the following Eq. (4) [21].

H.
C — AMAT; = C—l + MR; X ki X C—AMAT;41 (4)
H;
where
PMC;
P — 5
S VTer)

C-AMAT,; is the C-AMAT of its level i cache; For example, when
iis 1, C-AMAT] is the C-AMAT of L1; C-AMAT; is the C-AMAT of
L2 cache. Eq. (4) contains three characteristics of caches such as
locality, concurrency and overlapping. The parameter MR; (Miss
Ratio of level i cache) represents locality impact; the parameter Cp,
(Hit Concurrency of level i cache) represents concurrency impact;
the parameter k; represents the impact of the overlapping between
Pure Miss Cycles (pMC) and Miss Cycles (MC), as given by Eq. (5),
which also means the overlapping between hit and miss accesses
in this level i cache. A smaller x; value means a better overlapping
between hit and miss access. By Eq. (5), k; is a positive value less
than or equal to 1 [20, 21]. Based on the recursive C-AMAT model,
C-AMAT is a memory performance metric integrating the memory
characteristics of the entire memory hierarchy.

3.3 Recursive C-AMAT Model for Deep
Memory Hierarchies

The execution time of a program consists of two parts: the processor
computing time and memory stall time [12]. The processor com-
puting time is the time executing the user program. The memory
stall time is the time where the processor is stalled waiting for ac-
cessing data. This stall time consists of the access delay of memory
media, contention delay of queueing, and, in multi-thread cases,
the latency due to cache coherency and consistency, etc. Eq. (6) is
the classic formulation of processor execution time (CPU-time) in
terms of memory stall time [12].

MSC
CPU - time = IC x (CPIexe + T) X Cycletime 6)

Here, IC is the number of instructions, cycle-time is the time
duration of a clock cycle, and CPl,y, is the ideal processor computa-
tion cycle per instruction without any data access delay. MSC is the
overall memory stall cycles. Eq. (7) presents the relation between
the memory stall cycles and C-AMAT [20, 21].

MSC = ICpem X C — AMAT X (1 — Overlapcm) (7)

Here, ICper, is the number of the memory access instructions
(Load and Store instructions); Overlap.-p, is the ratio of the overlap-
ping time between computing time and memory access time over
the total memory access time (If the CPU is in-order, the Overlap;.,
should be 0. But if the CPU is out-of-order, the Overlap,_, should
be more than 0.). From Eq. (6) and Eq. (7), we get Eq. (8) which gives
the relation between C-AMAT and the execution time.

CPU-time=ICxCycle—timexX(CPlexe+ fmemXC—AMATX(1-Overlapcm))

®)

MEMSYS 2020, September 28—-October 01, 2020, Washington, DC, USA

Here, fmem is the ratio of the memory access instructions ICpem
(Load and Store instructions) over the number of instructions IC.
From Eq. (8), we can see that C-AMAT is the main factor of memory
stall. By Eq. (8), the task of reducing memory stall time becomes
the task of reducing the value of C-AMAT.

3.4 Impact of Pure Miss Cycles on C-AMAT

Pure Miss Cycles (pMC) is a measurable performance parameter
and the L1’s pure miss cycles are the memory stall cycles of the
underlying CPU [20, 21]. We need the following two relations to
measure and understand the C-AMAT value on the Argonne DMS
machine, Cooley.

Theorem 1. The relation between C-AMAT and pMC is given
by Eq. (9).

C—amaT = 1L, _PMC)

CH CMemAce

Proof. Based on the Pure Miss Concurrency’s definition [9], we
have Eq. (10) for the relation between pMC and Accumulated Pure
Miss Cycles (pMCqaccum)-

pMCaccum

Cm
where Cyy is the Pure Miss Concurrency. The pMCgccumis shown
as Eq. (11).

pMC = (10)

(11)
where Cppr4 is the number of pure miss accesses and pAMP is the
Average Pure Miss Penalty. Substituting Eq. (11) into Eq. (10), we
have Eq. (12):

pMCaccum = CpMA XpAMP

CPMA X pAMP

MC = 12
p Cor (12)
By definition, pMR can be shown as Eq. (13).
C
pMR = P—MA (13)
CMemAce
Combining Eq. (12) and Eq. (13), we get the Eq. (14).
MC AMP
_PPE _ oMmrx P (14)
CMemAce Cm

Finally, submitting Eq. (14) into Eq. (2), we get C-AMAT versus
pMC equation Eq. (9).

Theorem 1 gives the relation between pMC and C-AMAT. The-
orem 2 presents the relation between pMC and the next level C-
AMAT.

Theorem 2. The relation between pMC, Miss Ratio, k and the
next level cache’s C-AMAT is indicated by Eq. (15).

PMC1 = CMemace; X MRy X k1 x° C — AMAT, (15)

Proof. The recursive C-AMAT formulation is given by Eq. (4).
From Eq. (4) and Eq. (9), following some mathematic deduction,
we can get Eq. (15), with the fact that L1’s pMC is equal to the
multiplication of the number of data accesses in L1 (Cpmemace,)»
the Miss Ratio of L1 (MR1), the overlapping metric (k1) and the
C-AMAT of L2 cache.

By Eq. (6), the impacts of a memory system on computing is
its memory stall time. Memory stall time is the focus of our DMS
study. In summary, results given in this section show, to reduce
memory stall time in a concurrent data access environment we

226

Ning Zhang et al.

need to reduce the C-AMAT (Eq. (8)) value, and reducing the C-
AMAT value is equivalent to reduce the pure miss cycles (Eq. (15)).
That paves the way for our measurement and optimization on the
Argonne Cooley machine.

3.5 Measurement Methodology in Real
Hardware

To measure multicore C-AMAT, we need to measure the number of
active cycles and the number of data accesses in each core’s cache
(see Eq. (3)). Intel provides several performance counters which can
be used to calculate L1 and L2 cache’s C-AMAT, and other parame-
ters in the recursive C-AMAT model such as k1. These performance
counters [22] are provided by Intel Performance Monitoring Units
(PMUs). The PMU is a component built inside a processor to monitor
its performance events. These performance events provide facilities
to characterize the interaction between programmed sequences of
instructions and micro-architectural sub-systems. Table 1 lists the
metrics we used in this work and their corresponding events from
PMUs.

To collect these events, the perf profiler [23] is used to monitor
these events for each core. Perf profiler tracks the performance
of each core including the cache systems. By using it, the events
needed for calculating multicore C-AMAT can be measured and
the multicore C-AMAT of a specific caches level can be obtained.

4 PERFORMANCE EVALUATION

In this section, we evaluate a special case of DMS, the RAN system
available at the Argonne National Laboratory. We firstly conduct a
performance comparison between RAN and HDD disk to evaluate
the benefit of RAN in terms of adding an additional memory layer.
Then, we conducted a detailed performance evaluation by running
different applications with different access patterns on RAN and
local memory. Finally, we analyzed some interesting performance
phenomenon identified by the models introduced in Section 3.

4.1 Setup

All the evaluations are conducted on Cooley [8], a computer cluster
at the Argonne National Laboratory which is equipped with the
RAN architecture. RAN is a practical implementation of DMS and
is deployed on Cooley. As shown in Fig. 2, each node in Cooley has
two Intel Haswell E5-2620 v3 processors. The hyperthreading of
these processors is disabled in these processors in our performance

Table 1: List of Metrics And Their Relevant Events

Event Name

CYCLE_ACTIVITY.CYCLES_LDM_PENDING
MEM_UOPS_RETIRED.ALL_LOADS

+ MEM_UOPS_RETIRED.ALL STORES
CYCLE_ACTIVITY.STALLS L1D_PENDING

Metric Name

L1 Active Cycles
L1 Data Accesses

L1 Pure Miss

Cycles
L1 Miss Cycles CYCLE_ACTIVITY.CYCLES_L1D_PENDING
L2 Active Cycles CYCLE_ACTIVITY.CYCLES_L1D_PENDING

L2 Data Accesses L2_RQSTS.REFERENCES

Performance Modeling and Evaluation of a Production Disaggregated Memory System

Po Nodeg-Node;ss
C.rLl—Lz\ 4links | XPI{1.5TB)
H HY 7 \ Local Memory 95 GB/s
CeLa-]
— o
- oFt Switches XPIXS1B)
Local Memory
CrLala
N 4 links
c Lm/ 12GBis
S HCA XPIX1.5TB)

Figure 2: The architecture of RAN in Cooley

evaluation. Each processor has six cores with six hardware thread.

In each processor, there are three levels of cache. L1 and L2 caches
are private to each core. The L3 cache is shared by all the cores in
the same processor. All the processors in one node share the local
384 GB DDR4 memory. RAN includes three Kove XPD memory
targets connected by InfiniBand switches with different number
of links [7]. Their overall bandwidth is about 95GB/s [7]. RDMA
over InfiniBand is used to access the XPD box, which can be simply
regarded as a memory pool with InfiniBand interconnects. The
total capacity of this Cooley RAN is a 6TB DRAM (one XPD with
3TB and two with 1.5TB capacity). When one node in Cooley needs
to access remote memory, a buffer in the local memory of the
node will be allocated to exchange the data with the XPDs. RAN
allows applications to transparently access the remote memory
pool without code modifications. A C API developed by Kove can
also be used to explicitly move data to and from remote memory

[7]. All our experiments are conducted with the transparent mode.

The performance results presented are averaged over 10 runs.

4.2 RAN vs HDD

To compare the performance of RAN with that of HDD disk, we
conduct a performance evaluation to access RAN and HDD disk
with random access pattern. In this evaluation, we use one node
from Cooley with 12 threads to issue random accesses. Bandwidths
from local memory to RAN and from local memory to the HDD disk
(HP Smart Array P420i Controller, RAID5, qty-7 300GB 15K RPM
SAS drives) are measured with different data sizes. Here we access
the HDD disk as the virtual memory and limit the local memory
used in this evaluation to 75% of the data set by using cgroups. The
buffer size in local memory when accessing RAN is also limited to
75% of the data set. The local memory can be considered as the L4
cache of RAN or the HDD disk. In both cases, when the assigned
local memory is exhausted, local pages will be evicted and swapped
with the next tier.

The access latency of RAN (around 3us) is much smaller than
that of HDD (about 12ms). One of the motivations of DMS is it

will overperforms HDD. Our experiments confirm this assumption.

As shown in Fig. 3, RAN is much faster than the HDD array for
all data sizes, even though RAN is in the remote side connected
with InfiniBand network, while the HDD disks are local with the
nodes. From this result, we can see that if an application data size
is more than the local memory size, it is a better choice to run the
application on RAN than on HDD disks even they are with the
nodes locally.

227

MEMSYS 2020, September 28-October 01, 2020, Washington, DC, USA

Random Access

RAN RAID as swap
30
w 20
=
0 e =YY Y
0 '/ ' 7 /e

o
128MB 256MB 512MB 1GB
Data Size

2GB

Figure 3: Performance of Random Access using RAN and
HDD

Table 2: List of Applications with Different Access Patterns

Application Access Pattern Footprint
MiniFE Sequential 32GB
DGEMM Sequential 23GB
Graph500 Random 17GB
GUPS Random 16GB

4.3 Impact of Memory Access Patterns on
Application Performance

For understanding the performance of different data access patterns
on RAN, the performance evaluations of four applications with dif-
ferent memory access patterns are conducted on a Cooley node. As
shown in Table 2, the four applications are MiniFE and DGEMM
with sequential memory access pattern, Graph500 and GUPS with
random memory access pattern, respectively. Fig. 4 shows the exe-
cution time and performance slowdown of these four applications
[24-27] with different memory configurations and thread scaling.
Lmem means that only local memory is used; Xmem(X%) means
that RAN is used and the buffer size in the local memory is X% of
the total memory used by the application. Xmem(X%) SLD is the
performance slowdown for Xmem(X%) over that of Lmem with the
same number of threads. RAN provides the ability to limit the size
of its local memory buffer, allowing us to measure the influence of
local memory buffer size on DMS performance.

Fig. 4(a) and Fig. 4(b) present the performance of two applications
with sequential memory access patterns (MiniFE and DGEMM).
Binding to local memory (Lmem) provides the best performance
for both. These two applications slowdown 3.3 to 4.9 and 2.6 to 9.1
times with Xmem(25%) on RAN, respectively. Fig. 4(c) and Fig. 4(d)
present the performance of two applications with random memory
access patterns (Graph500 and GUPS). These two applications also
achieve the highest performance by only allocating data to the local
memory (blue bars). But these two applications slowdown 10.7 to
17.5 and 29.5 to 86.8 times with Xmem(25%) on RAN, respectively.
With larger local buffer size Xmem(75%), their execution time and
slowdown are much lower than those with Xmem(25%) because
larger local buffer size can improve locality (reducing its miss ratio)
in local memory, especially for locality-friendly applications such
as MiniFE.

By comparing Fig. 4(a-b) and Fig. 4(c-d), it is evident that the
application memory access pattern is an important factor to achieve

MEMSYS 2020, September 28—-October 01, 2020, Washington, DC, USA

¢ZZilmem ==Xmem(75%) Xmem(25%) -+-Xmem(75%)_SLD —a—Xmem(25%)_SLD
8 5 6 10
Zs A—‘/"_"/‘/‘ 4 c = 8
£ 2 w4 S
T4 3 £ 6 2
E 2z = 4 3
L B R AN 3 §2 - 2
ST RARARAARA T 5 At 2 @
o B A BB 0 o AE AR A
3 3
._% 4 8 12 24 48 9% o 4 8 12 24 48 96
Thread Number Thread Number
(a) MiniFE () DGEMM
12 120

5 c z €
o 8 2 £ 80 E
E s 3 8
£ 2 £ z
§ 4 s E 40 2
= 2§
g0 2 0
% 3
w L)

%

3

4 8 12 24 48 9%
Thread Number
(d GUPS

4 8 12 24 48 96

Thread Number
(c) Graph500

Figure 4: Time & slowdown of different applications

higher RAN performance. If an application has sequential access
pattern, both prefetcher and out-of-order core can perform well to
increase the number of memory requests. In that case, the bottle-
neck becomes the maximum number of concurrent requests that
can be supported by the underlying hardware bandwidth. There-
fore, sequential applications are sensitive to memory bandwidth.
However, applications exhibiting random access patterns are more
sensitive to memory latency. In the case of random-access patterns,
the memory addresses cannot be predetermined, and the number
of requests remains small. Thus, they are penalized by the higher
latency of RAN. Since RAN’s bandwidth is limited by that of In-
finiBand HCA (about 12GB/s) (see Fig.2), which is lower than that
of local memory (about 68GB/s) but has a smaller gap than that
of their latencies (about 11ns vs 3us), applications with sequential
access have lower performance loss when using RAN.

As shown in Fig. 4, the Xmem(75%) RAN performance is better
than the Xmem(25%) performance on these four applications, which
is as expected. Eq. (4) and Eq. (8), explain this since by reducing
the miss ratio of local memory one can increase the performance
of local memory and, therefore, improve the overall performance.
Larger buffer size will reduce conflict misses and reduce remote
DMS data access.

4.4 Case Study on K-means

K-means is a popular benchmark for machine-learning applications.
The OpenMP-based K-means from Rodinia benchmark set [28]
with 23GB memory footprint is tested on one node with different
memory configurations and a variety of thread counts. These per-
formance tests produced some interesting and unexpected results.

4.4.1 Counterintuitive Results. Usually, local memory performs
better than RAN because of the longer latency and lower band-
width of RAN. However, Fig. 5 shows that the execution time of
Xmem(75%) is better than that of Lmem when the thread count
is between 4 and 96. Similarly, the execution time of Xmem(25%)
is better than that of Lmem when the thread count is between 4
and 48. The superior performance of K-means while using RAN is
counterintuitive and unexpected.

Since K-means is a data-intensive benchmark, based on Eq. (8), its
execution time performance is highly related to L1’s performance

228

Ning Zhang et al.

FlLmem
Z 60

Xmem(75%)

4 8 12 24 48 96
Thread Number

Xmem(25%)

N b
[N -)

Execution Time(m
o

Figure 5: Execution time of K-means with different configu-
rations

@Lmem & Xmem(75%) Xmem(25%)
1 o SE+12
.
g S5 4E+12
dos % 3E+12
= .
% i Z o 2E412 2
= 1E+12 7
7= 7= g 7
a = g OE+0 = Zs r=
4 8 12 A 48 % - 4 8 12 24 48 9%

Thread Number
(a) L1 C-AMAT

Thread Number
(b) L1 Pure Miss Cycles

8 3.E+7
& 2
£ § 2647
ES 7 & 7
o ’ s
S, ? = LET
- : 72
0 = = 5 0.E+0 aN Ve
4 8 12 24 48 9% 4 8 12 24 48 9

Thread Number
(©) L2 C-AMAT

Thread Number
(d) Snoop Requests

Figure 6: K-means performance with different metrics

(its C-AMAT). Based on Eq. (4) and the structure of the memory
hierarchy, the L1 C-AMAT reflects the overall performance of the
memory hierarchy under L1, including the impact of local memory
and/or RAN. That is the reason, in a single node or single processor
measurement, we use the term C-AMAT and the term L1’s C-AMAT
interchangeably for the performance measurement. If RAN’s per-
formance is changed, the (L1’s) C-AMAT value also will be changed
accordingly. Here the network impact on RAN is also implicitly
included in C-AMAT. Therefore, we can analyze the variation of
the memory hierarchy and RAN’s performance through the study
of C-AMAT.

Using Eq. (3) and its measurement methodology supported by
Intel PMUs, the obtained C-AMAT value is shown in Fig. 6(a). The
lower C-AMAT means the better L1 performance. In Fig. 6(a), the
L1’s C-AMAT of Xmem(75%) is less than that of Lmem with thread
number from 4 to 96. Similar trend can be observed for Xmem(25%)
case with 4 to 48 threads. From the analysis of Eq. (8), the main rea-
son of these extraordinary results is that the RAN memory system
has a better L1 performance than that of local memory. The L1 C-
AMAT’s trend in Fig. 6(a) is very similar to that in Fig. 5 except with
a smaller performance gap. To calculate the execution time through
Eq. (8), we need to multiply the fiem and Overlapc.m factors to C-
AMAT and then add in CPley,. Both fiem and Overlape.nm are less
than 1. These multiplication and addition make C-AMAT having
larger performance gaps among these three memory configurations,
compared Fig. 5 with those in Fig. 6(a).

To explain Fig. 6(a), we need to utilize Eq. (9) to see how other
metrics affect C-AMAT. H (Hit Time) and Cpemace (the overall

Performance Modeling and Evaluation of a Production Disaggregated Memory System

number of data accesses to cache) for L1 are fixed in our testing
configurations with the same application and input. However, Cy
(the Hit Concurrency of the cache) may increase with the thread
number of applications until it reaches the hardware concurrency
limitation. pMC also changes with different factors, such as the
overlapping k, memory hierarchy configuration, locality and miss
concurrency as shown by Eq. (10) and Eq. (15).

Since the H and Cyemacc are the same in this case study of K-
means due to being tested on the same hardware, the L1 value
is only related to pMC and Cg. From Fig. 6(b), the trend of L1’s
pMC is like that in Fig. 6(a). Using more threads can increase Cy
until reaching the hardware concurrency limitation, which is a
reason why the L1 C-AMAT keeps decreasing with more threads.
This pMC trend and the increase of Cpy of L1 are the main reasons
for the trend of L1’s C-AMAT in Fig. 6(a), based on Eq. (9). The
performance gaps among these three memory configurations in
Fig. 6(a) is much smaller than those in Fig. 6(b). That means pure
miss reduced more than miss on RAN. By Eq. (5), only pure misses
reduce C-AMAT, not misses. Fig. 6(b) confirms our assumption
that the RAN K-means overperformance is due to latency hiding
overlapping.

From Fig. 6(c), the trend of L2 cache’s C-AMAT is like the trend of
Fig. 6(a) except having smaller performance gaps among the three
memory configurations. Here the miss ratio of L1 and x; made the
difference gaps in Fig. 6(c) smaller based on the recursive function
Eq. (4). As shown in Fig. 6(d), the number of snoop requests from
L3 cache using RAN is also reduced compared with that using local
memory in each case with counterintuitive performance. These
show overlapping is a reducer of miss penalty.

4.4.2 Assumption. From the C-AMAT performance analysis, we
can see that the reason of RAN outperforming local memory in
these K-means cases is the performance improvement of L1 and L2
cache and the reduction of the snoop requests from L3 cache, as
shown by Fig. 6. The reduction of snoop requests from L3 cache
gives a clue that using RAN makes less thread communications.
Threads communicate to each other to share data and data areas.
There are two different types of data sharing: true sharing and
false sharing [29]. True sharing communications are impossible
to be removed since they are due to the inherent data sharing of
the codes and the algorithms. False sharing can be removed with
appropriate code/data arrangement. In addition, the L1 cache and
L2 cache’s performances are improved when using RAN. So, we
conclude, RAN has led to a more appropriate data arrangement
which mitigates the false sharing impact via concurrent data access
overlapping. In other words, the K-means code as provided exhibits
false sharing and using RAN can reduce the false sharing impact,
resulting in improved performance.

4.4.3 Code-level Analysis of K-means with the C-AMAT Model. Hav-
ing identified the reason for performance anomaly, we examined
the K-means algorithms and identified the source of the false shar-
ing. Fig. 7 shows the main codes of K-means, which consists of
five parts: find_nearst_point (line 11), update_new_centers (from
line 13 to 14), update_centers_len (line 15), update_membership (line
16 and 17) and others (all lines except its main codes from Fig. 7).
The code-level analysis of these codes is conducted by Vtune [30]
from Intel to get each code area’s performance data, including the

229

MEMSYS 2020, September 28-October 01, 2020, Washington, DC, USA

#pragma omp parallel \
shared(feature, clusters,membership, partial_new_centers,partial_new_centers_len) {
int tid = omp_get_thread_num();
#pragma omp for \
private(i,j,index) \
firstprivate(npoints,nclusters,nfeatures) \
schedule(static) \
reduction(+:delta)
for (i=0; i<npoints; i++) {
/*find_nearest_point only contains line 11x/
index = find_nearest_point(feature[il,nfeatures,clusters,nclusters);
/*update_new_centers contains from line 13 to line 17/

if (membership[i] != index) delta += 1.9;//update_membership(line 13 to 14)

membership[i] = index;

partial_new_centers_len[tid] [index]++;//update_centers_len(line 15)

for (j=0; j<nfeatures; j++)//update_centers(line 16 ta 17)
partial_new_centers(tid] [index] [j] += feature[il[j];

Figure 7: The main codes of K-means

B find_nearest_point @ update_centers & update_centers_len
1 14

update_membership E Others

¢ 4
i

0.6 % ol
s 8

BRI

irseissesses
R 6

0.4 e

I
R 4

02 S
psssssss 2

R
0 SRR 0

8_thread_Lmem 8_thread_Xmem(25%)
(a) Normalized Execution time

8_thread_Lmem 8_thread_Xmem(25%)
(b) L1 _C-AMAT

Figure 8: Normalized execution time and L1_C-AMAT of dif-
ferent code areas of K-means

C-AMAT values. By using Vtune, we get the performance results for
each of these five code areas in Fig. 8 which shows the normalized
execution time and L1 cache’s C-AMAT values of these code areas
on local memory and RAN.

In Fig. 8, we took one K-means’ performance case from Fig.
5, where only Lmem and Xmem (25%) are measured and only
for the 8 threads performance, to conduct a code-level analysis.
From Fig. 8(a), the major improvement of Xmem (25%) are from
find_nearest_point and update_centers code sections. By analyzing
the code-level L1 C-AMAT values in Fig. 8(b), we get a different
observation with that of Fig. 8(a). We find update_center_len has
the largest performance improvement in C-AMAT. As shown in Fig.
8(b), update centers_len performs poorly on local memory but its
performance is dramatically improved on RAN (Recall, the lower
the C-AMAT value is, the better the memory performance is). So,
update_centers _len is likely the code area causes a major false shar-
ing. On the other hand, the find_nearest_point and update_centers
code sections have much more instructions than update_centers_len.
Also, the feature array in find_nearest_point and update_centers
have much more contents than the partial_new centers_len array
has. That means they likely have more data instructions issued than
that of partial_new_centers_len. By Eq. (8), find_nearest_point and
update_centers can get more performance improvement in terms of
execution time because they have more data instructions and bigger
data sizes than that of update_centers_len (Fig. 8(a)), even they have
a lower L1_C-AMAT improvement than that of update_centers_len
(Fig. 8(b)). Eq. (8) shows that data access improvement is more
important for certain code sections than others in terms of the
overall execution time.

Now, let us zoom in on the update_centers_len code section. Ob-
serving the parameters in the integer partial new_centers_len array,
we find that tid and index with the values (tid=8 and index=>5)

MEMSYS 2020, September 28—-October 01, 2020, Washington, DC, USA

Lmem Xmem{25%)
1
0.5
0 7 %
8thread 8thread_opt

Figure 9: Normalized execution time of K-means with and
without false sharing

in K-means make this array only stay in three cache lines and
8 threads share them with write operations. These write opera-
tions causes false sharing and snoop requests are sent to private L1
and L2 cache. These snoop requests can dramatically affect cache
performance, and, in turn, decrease the overall performance. To
prove our analysis, we optimized the K-means codes to avoid false
sharing by putting each item of partial new_centers_len array on
different cache lines. Fig. 9 show the performance difference, where
8thread is the original K-means implementation with false sharing
and 8thread_opt is the optimized K-means implementation with-
out false sharing. From Fig. 9 local memory performance improves
highly after removing the false sharing. RAN does not have any
performance advantage after the false sharing is removed.

4.4.4 Why using RAN can reduce the penalty of false sharing in
K-means?. Fig. 10 is from the hpctoolkit summary view [31]. The
top one is the map of execution time for different functions of
the original K-means implementation with local memory having
8 thread, the bottom one is that with RAN having 8 threads. The
false sharing is happened in the purple area of the top figure and
in the black area of the bottom figure. From Fig. 10, at first the
memcpy in RAN is slower than in local memory since RAN has
longer latency than local memory. But when running the next code
areas, using RAN is faster than in local memory, where we have
more black bar areas than purple ones. It means that using RAN has
less impact of false sharing than using local memory. The deeper
memory hierarchy and longer latency in the last tier results in a
larger number of threads being stalled, reducing contention and
thus the amount of false sharing.

Using Lmem,

Ning Zhang et al.

4.5 Discussions

The idea of disaggregated memory systems (DMS) is to have a
shared global memory to reduce the aggregated amount of local
memory in an HPC system, for reducing purchase, power, and oper-
ating costs and for a better memory utilization. The DMS approach
is well motivated. From Fig.1, we can see that in general the aver-
age node memory utilization is very low (around 25GB on average)
via the average memory usage distribution. There are some mem-
ory usage bursts here and there through the time, which justify
the need of a global disaggregated memory system. While Fig. 1
confirms the value of disaggregated memory, it is only based on a
one-year collection of one HPC system. We need a more thorough
study to fully utilize the merits of DMS. In addition, the key idea
of DMS is to add a new layer into the existing memory hierarchy.
With the emergence of big data applications and the availability of
NVRAM technologies, multi-layered deep memory hierarchy be-
comes a trend of system design in hardware [32] and software [33].
Intel will make its multi-layered deep memory Optane technologies
available in 2020 [32]. A thorough study of DMS will not only help
to have a better understanding of DMS, but also will help us to have
a better understanding of the design of a general multi-layered deep
memory hierarchy system.

From the analysis of our performance evaluation results in Sec-
tion 4.2, we can see that the RAN’s performance is much better
than that of HDD disks. Therefore, if the application data size is
more than the local memory size, the DMS approach is a great help.
In addition, RAN performance slowdown of sequential data access
is much lower than that of random access. Thus, applications with
sequential data access patterns are more suitable for RAN. Based
on the analysis and performance measurement given in Section 4.3,
the current performance loss of RAN is mainly from the limited
bandwidth and high latency of the network connected to RAN.
However, the network bandwidth is growing faster than that of
local memory, and network latencies will continue to fall, making
memory-speed network transfers feasible in the future [7]. For ex-
ample, using the recent advanced technology, Compute Express
Link (CXL) [34], can improve the access latency of RAN, because
it can allow CPU directly access RAN without accessing the local
memory buffer first. An integrated heterogeneous hardware-based
memory hierarchy, such as Intel Optane [32] or HP “The Machine”
[35], will provide an even better DSM solution.

Mini Map

Figure 10: The summary views from hpctoolkit

230

Performance Modeling and Evaluation of a Production Disaggregated Memory System

Surprisingly, in some situations RAN can have a better perfor-
mance than local memory. We used the newly proposed C-AMAT
memory system performance model to analyze the unexpected but
plausible performance. Based on our performance analysis (Sec-
tion 4.4), the better performance of RAN is due to overlapping,
overlapping computing and data access, and overlapping data ac-
cess hit and data access miss. This overlapping can be measured
by C-AMAT, the performance model which considers both data
locality and concurrency. DMS is designed for supporting memory
sharing. It increases the importance, as well as the opportunity, of
the overlapping with adding an additional layer on the memory
hierarchy. Of course, the need of overlapping data access delay is
due to there exist a major data access delay. C-AMAT has identified
the major data access delay. Through code-level analysis, we have
removed the false-sharing data access delay of the K-means mul-
ticore programming and achieved performance optimization via
performance evaluation. Please notice that the code-level analysis
is conducted to verify the C-AMAT performance analysis. It con-
firms the C-AMAT findings. In a general engineering environment,
code-level analysis is costly and not feasible, unless C-AMAT can
narrow down the troubling code segment.

In summary, through a thorough study of the Cooley DMS imple-
mentation, we have the following observations of DMS: a) network
and latency is the performance bottleneck of current DMS imple-
mentation; b) a good sequential locality may lead to bad parallel
locality in a multicore system; c) this good/bad change is not only
determined by data concurrency but also by data access overlap-
ping; d) C-AMAT can measure the integrated performance of data
locality, concurrency, and overlapping; e) DMS can mitigate data
sharing delay and can get a better data access overlapping.

Observation b) through d) are general to any parallel data access.
They suggest we need to rewrite the parallel code for better data
sharing to fully appreciate concurrent data access. This rewrite
requires the skill of parallel programming, the understanding of
the application, and the knowledge of the underlying computer
architecture. That is a high bar for an engineering practitioner.
Observation e) suggests DMS can improve parallel data access via
overlapping. DMS adds another opportunity to improve data access
delay via system optimization and support. The RAN overperfor-
mance on K-means is due to thread level data sharing. Thread level
data sharing is common in many big data applications. We have
found RAN performs well on other AI applications as well. We
are currently testing and optimizing more Al applications on Coo-
ley and investing the potential of DMS on Al applications. Since
network is already the performance bottleneck of Cooley on one
node testing, we did not conduct multi-node testing on the current
DMS implementation. We plan to continue to investigate the DMS
network issue in our future study when new network and memory
technologies become available.

5 RELATED WORK

Lim et al. first proposed the concept of hardware disaggregated
memory with two models: using it as a network swap device (swap-
based model) and transparently accessing it through memory in-
structions by the hypervisor (hypervisor-based model) [1]. The
concept was identified to be promising [1, 6, 36] and many re-
searches are followed. The swap-based model has been studied in

231

MEMSYS 2020, September 28-October 01, 2020, Washington, DC, USA

[37-40]. However, studies find that the swap approach introduced
by [1, 6, 36] has additional interruption and computation over-
head toward processors due to controlling network operations on
each memory node. To reduce these overheads, INFINISWAP [17]
utilized a decentralized manner to implement a remote memory
paging-based caching system designed for RDMA networks such as
InfiniBand. In a swap subsystem, its memory reclamation only fo-
cused on the initially used memory, which is rarely reused in some
applications [41]. To aim this issue, K. Koh et al. [42] made the page
access records available to the hypervisor and provided the support
on application-aware elastic block sizes where remote memory
pages with different granularities can be fetched. In this work, RAN
system supports both swap-based model and hypervisor-based
model.

Some prior works [1, 6, 9, 16, 36] have evaluated disaggregated
memory using simulation with statically defined estimates of soft-
ware overheads. Software implementation issues, such as synchro-
nization in key hypervisor functions, system-level interaction with
/O devices, and the role of software memory optimizations were
not considered in [1, 6, 9, 16, 36]. Even though several cluster nodes
were used to emulate the disaggregated memory for its performance
evaluation [6, 17, 18, 42, 43], they cannot truly represent DMS’ per-
formance because emulations have the severe performance costs
and are difficult to consider all the software and hardware features
and their interference.

There also have been a few hardware disaggregation proposals,
including HP “The Machine” [35], dRedBox [44] and RAN [7]. The
Machine’s scale is a rack and it connects SoCs with NVMs with a
specialized coherent network. The lifespan of NVMs is not enough
when it is utilized as the disaggregated memory and the mainte-
nance of the Machine is hard and expensive. dRedBox and RAN
package memory resources in several cases and connect them with
PCle buses. There are not enough evaluation data for dRedBox in
[44]. In [7], there are some evaluation data about RAN while there
is no model-based analysis and no code-level case study as given
in this research.

6 CONCLUSIONS

In this study, an appropriate disaggregated memory performance
model is proposed based on the C-AMAT memory model and a
well-designed performance evaluation is conducted on a production
disaggregated memory system (DMS), the Argonne Cooley machine
with a RAM area network (RAN) DMS implementation. Based on
a thorough analysis and evaluation investigation, we find DMS is
appropriate for many applications. RAN performs better than the
conventional local memory+disk high performance computing ar-
chitecture in handling data access bursts. Its performance in general
is below local memory due to network delay and contention. But,
to our surprise, some applications, such as K-means, have achieved
a better RAN performance than pure local memory performance
under some circumstances. Based on the C-AMAT performance
analysis, this RAN overperformance is due to cache thread-level
data sharing and due to concurrent data access overlapping. The
former makes local memory very slow. The latter makes RAN can
overlap its data access delay and mitigate the data sharing overhead.
This C-AMAT performance analysis is confirmed by our code-level

MEMSYS 2020, September 28—-October 01, 2020, Washington, DC, USA

analysis and code-level optimization. We have revealed the difficulty
of achieving good data locality for big data applications, such as
K-means, and the potential of concurrent data access in a multicore
data sharing environment. RAN, and therefore DMS, adds another
opportunity, also complexity, for data scheduling and optimization.
These findings can help users make decision on whether to use
RAN for their specific applications and help future DMS design and
implementation. This study shows the limitation and potential of
DMS in a practical setting with a solid memory performance model.
It lays a foundation for future DMS and multi-layered deep memory
hierarchy design and optimization. Since thread-level data sharing
is common in Al applications and general big data applications, this
research lights up the need of further study of the potential of deep
memory hierarchy on Al and general big data applications.

ACKNOWLEDGMENTS

This research has been funded in part and used resources of the
Argonne Leadership Computing Facility at Argonne National Lab-
oratory supported by the Office of Science of the U.S. Department
of Energy under contract DEAC02-06CH11357 and by the National
Science Foundation under grant CCF-2008907, CNS-1730488 and
CCF-1536079.

REFERENCES

[1] K.Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F. Wenisch.
Disaggregated memory for expansion and sharing in blade servers. In ISCA ’09:
Proceedings of the 36th annual International Symposium on Computer Architec-
ture, pages 267-278, New York, NY, USA, 2009. ACM.

A. Lebeck, X. Fan, H. Zheng and C. Ellis. Power Aware Page Allocation. In Proc.
of the 9th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-IX), Nov. 2000.

V. Pandey, W. Jiang, Y. Zhou and R. Bianchini. DMA Aware Memory Energy
Conservation. In Proc. of the 12th Int. Sym. on High-Performance Computer
Architecture (HPCA-12), 2006

K. Lim, P. Ranganathan, J. Chang, C. Patel, T. Mudge and S. Reinhardt. Under-
standing and Designing New Server Architectures for Emerging Warehouse-
Computing Environments. In Proc. of the 35th Int. Sym. on Computer Architec-
ture (ISCA-35), June 2008.

P. Ranganathan and N. Jouppi. Enterprise IT Trends and Implications for Archi-
tecture Research. In Proc. of the 11th Int. Sym. on High-Performance Computer
Architecture (HPCA-11), 2005

K. T. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and T. F.
Wenisch. System-level implications of disaggregated memory. In IEEE Sympo-
sium on High Performance Computer Architecture (HPCA), pages 189-200, Feb.
2012.

W. Allcock, B. Bernardoni, C. Bertoni, N. Getty, J. Insley, M. E. Papka, S. Rizzi and
B. Toonen. RAM as a Network Managed Resource. In IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), May 2018.
Argonne Leadership Computing Facility. Introduciton of Cooley. https://www.
alcf.anl.gov/user-guides/cooley.

P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-
nasamy, and S. Shenker, “Network requirements for resource disaggregation,”
in 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI’16), pp. 249-264, 2016.

Y. Shan, Y. Huang, Y. Chen and Y. Zhang. LegoOS: A Disseminated, Distributed
OS for Hardware Resource Disaggregation. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI'18), pp. 69-87, 2018.

W. A. Wulf and S. A. McKee. Hitting the memory wall: Implications of the obvious.
SIGARCH Comput. Archit. News, 23(1):20{24, Mar. 1995.

J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach (sixth edition), The Morgan Kaufmann Publishers, 2019 (ISBN-13:
978-0128119051).

A. Glew, “MLP yes! ILP no!” in Proc. ASPLOS Wild and Crazy Idea a workshop
Session 98, Oct. 1998.

X.-H. Sun and D. Wang. Concurrent Average Memory Access Time. Computer,
vol. 47, no. 5, pp. 74-80, 2014.

X.-H. Sun, “Concurrent-AMAT: A Mathematical Model for Big Data access,” HPC
Magazine, 2014.

~
[

o
&

[10]

[11

[12]

[13]
[14]

[15]

232

Ning Zhang et al.

[16] H. Meyer, J. C. Sancho, J. V. Quiroga, F. Zyulkyarov, D. Roca, and M. Nemirovsky.
Disaggregated computing. an evaluation of current trends for datacentres. In
international Conference on Computational Science (ICCS’17), 2017.

J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. Shin. Efficient Memory Disag-
gregation with Infiniswap. In Proceedings of the 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI *17), 2017.

D. Buragohain, A. Ghogare, T. Patel, M. Vutukuru, and P. Kulkarni. DiME: A
Performance Emulator for Disaggregated Memory Architectures. In Proceedings
of the 8th Asia-Pacific Workshop on Systems. ACM, 2017.

N. Zhang, C. Jiang, X.-H. Sun, and S. L. Song. Evaluating GPGPU Memory Perfor-
mance Through the C-AMAT Model. In Proceedings of the Workshop on Memory
Centric Programming for HPC, pp. 35-39. ACM, 2017.

Y.-H. Liu, and X.-H. Sun. LPM: concurrency-driven layered performance matching.
In Parallel Processing (ICPP), 2015 44th International Conference on, pp. 879-888.
IEEE, 2015.

Y. Liu and X. Sun, "LPM: A Systematic Methodology for Concurrent Data Access
Pattern Optimization from a Matching Perspective,’ in IEEE Transactions on
Parallel and Distributed Systems, vol. 30, no. 11, pp. 2478-2493, 1 Nov. 2019
Intel. Intel®64 and IA-32 Architectures Optimization Reference Manual https:
//[www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-
32-architectures-optimization-manual.pdf

Perf profiler, https://perf.wikikernel.org/index.php/Main_Page

The DGEMM Benchmark,” http://www.nersc.gov/research-and-development/
apex/apex-benchmarks/dgemm/, 2018, [Online; accessed 11-May-2018].

“The Graph500 Benchmark,” http://www.graph500.org/, 2018, [Online; accessed
11-May -2018].

“HPC Challenge Benchmark,” http://icl.cs.utk.edu/hpce/index.html, 2018, [Online;
accessed 11-May-2018].

H. Lv, G. Tan, M. Chen, and N. Sun. Understanding parallelism in graph traversal
on multi-core clusters. Computer Science-Research and Development, vol. 28,
no. 2-3, pp. 193-201, 2013.

S. Che, M. Boyer, J. Meng et al., Rodinia: A benchmark suite for heterogeneous
computing. in IEEE International Symposium on Workload Characterization, pp.
44-54, 2009.

M. A. Sasongko, M. Chabbi, P. Akhtar, and D. Unat. “ComDetective: A Light-
weight Communication Detection Tool for Threads”. In Proceedings of ACM
Supercomputing (SC’19), Denver, November 17-22, 2019

Intel Vtune Amplifier, https://software.intel.com/en-us/vtune

L. Adhianto , S. Banerjee , M. Fagan , M. Krentel , G. Marin , J. Mellor-Crummey ,
N. R. Tallent, HPCTOOLKIT: tools for performance analysis of optimized parallel
programs, Concurrency and Computation: Practice & Experience, v.22 1.6, p.685-
701, April 2010

Intel Optane, https://www.intel.com/content/www/us/en/architecture-and-
technology/optane-memory.html

A.Kougkas, H. Devarajan and X.-H. Sun, "Hermes: A Heterogeneous-Aware Multi-
Tiered Distributed I/O Buffering System,” in Proc. of 27th ACM International
Symposium on High-Performance Parallel and Distributed Computing (HPDC),
Tempe, AZ, USA, pp. 219-230, June 2018.

Compute Express Link (CXL) , https://www.computeexpresslink.org/
Hewlett-Packard. The Machine: A New Kind of Computer. http://www.hpLhp.
com/research/systemsresearch/themachine/.

L. A. Barroso. Warehouse-scale computing: Entering the teenage decade. In Pro-
ceeding of the 38th annual International Symposium on Computer Architecture,
ISCA’11, New York, NY, USA, ACM, 2011.

T. Newhall, S. Finney, K. Ganchev, and M. Spiegel, “Nswap: A network swapping
module for linux clusters,” in Proc. Eur. Conf. Parallel Process., 2003, pp. 1160—
1169.

S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets,
“Cashmere-VLM: Remote memory paging for software distributed shared mem-
ory,” in Proc. 13th Int. Parallel Process. Symp. 10th Symp. Parallel Distrib. Process.,
Apr. 1999, pp. 153-159.

G. Bernard and S. Hamma, “Remote memory paging in networks of workstations,”
in Proc. SUUG Int. Conf. Open Syst.: Solutions Open Word, 1994.

E. A. Anderson and J. M. Neefe, “An exploration of network RAM,” EECS Depart-
ment, Univ. California, Berkeley, Tech. Rep. UCB/CSD-98-1000, Dec. 1994.

G. Sims, “All about Linux swap space,” [Online]. Available: https://www.linux.
com/news/all-about-linux-swap-space, 2007.

K. Koh, K. Kim, S. Jeon and J. Huh, "Disaggregated Cloud Memory with Elastic
Block Management," in IEEE Transactions on Computers, vol. 68, no. 1, pp. 39-52,
1 Jan. 2019.

P. S. Rao and G. Porter, “Is memory disaggregation feasible? a case study with
spark sql,” in 2016 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), March 2016, pp. 75-80.

K. Katrinis, D. Syrivelis, D. Pnevmatikatos, G. Zervas, D. Theodoropoulos, I.
Koutsopoulos, K. Hasharoni, D. Raho, C. Pinto, F. Espina, S. Lopez-Buedo, Q.
Chen, M. Nemirovsky, D. Roca, H. Klos, and T. Berends. Rack-scale disaggregated
cloud data centers: The dReDBox project vision. In Design, Automation Test in
Europe Conference Exhibition (DATE ’16), 2016.

[17]

(18]

[19

™
=

[29]

[30]
[31

‘<
)

@
=

[38

(39]

[40

[41

[42]

[44]

https://www.alcf.anl.gov/user-guides/cooley
https://www.alcf.anl.gov/user-guides/cooley
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://perf.wiki.kernel.org/index.php/Main_Page
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
http://www.nersc.gov/research-and-development/apex/apex-benchmarks/dgemm/
http://www.graph500.org/
http://icl.cs.utk.edu/hpcc/index.html
https://software.intel.com/en-us/vtune
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-memory.html
https://www.computeexpresslink.org/
http://www.hpl.hp.com/research/systemsresearch/themachine/
http://www.hpl.hp.com/research/systemsresearch/themachine/
https://www.linux.com/news/all-about-linux-swap-space
https://www.linux.com/news/all-about-linux-swap-space

	Abstract
	1 Introduction
	2 Background
	2.1 Disaggregated Memory
	2.2 The C-AMAT Model

	3 Performance Modeling and Measurement Methodology
	3.1 C-AMAT Model for Multicore
	3.2 Recursive C-AMAT Model for Deep Memory Hierarchies
	3.3 Recursive C-AMAT Model for Deep Memory Hierarchies
	3.4 Impact of Pure Miss Cycles on C-AMAT
	3.5 Measurement Methodology in Real Hardware

	4 Performance Evaluation
	4.1 Setup
	4.2 RAN vs HDD
	4.3 Impact of Memory Access Patterns on Application Performance
	4.4 Case Study on K-means
	4.5 Discussions

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

