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Abstract

Interpreting molecular dynamics simulations usually involves automated classification of local atomic environments to
identify regions of interest. Existing approaches are generally limited to a small number of reference structures and only
include limited information about the local chemical composition. This work proposes to use a variant of the Gromov–
Wasserstein (GW) distance to quantify the difference between a local atomic environment and a set of arbitrary reference
environments in a way that is sensitive to atomic displacements, missing atoms, and differences in chemical composition.
This involves describing a local atomic environment as a finite metric measure space, which has the additional advantages
of not requiring the local environment to be centered on an atom and of not making any assumptions about the material
class. Numerical examples illustrate the efficacy and versatility of the algorithm.
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1. Introduction

Contemporary molecular dynamics simulations can in-
volve millions of atoms, though the atoms participating in
the phenomenon of interest (e.g., phase nucleation, shear
band nucleation, surface adsorption) are generally many
fewer. Some automated procedure to classify local atomic
environments is therefore indispensable to initially identify
these regions so that the researcher can perform additional
analysis. Given the difficulty of precisely defining what
an exceptional atomic environment would be in the ab-
sence of crystalline order, many of the procedures already
proposed apply almost exclusively to crystalline solids.
More specifically, the assumption is often made that most
atoms are nearly on simple cubic (SC), body-centered cu-
bic (BCC), face-centered cubic (FCC), or hexagonal close-
packed (HCP) lattice sites, and the classification problem
is reduced to assigning atoms to one of these classes (or
to one other class containing all defected atomic environ-
ments).

Existing approaches can roughly be grouped as topo-
logical or geometric. Topological approaches construct ei-
ther the network of bonds connecting neighboring atoms,
or the Voronoi tessellation with the atomic positions as
seeds. Atoms are assigned to a class by considering the
number and arrangement of nearby bonds in the bond
network or nearby faces of the Voronoi polyhedra. This

∗Corresponding author
Email addresses: skawano@ucdavis.edu (Sakura Kawano),

jkmason@ucdavis.edu (Jeremy K. Mason)

intentionally disregards some information about the rela-
tive positions of the atoms to make the classification more
robust to perturbations of the positions at finite temper-
atures (i.e., thermal noise). Topological approaches often
have the advantages of computational efficiency, simplic-
ity of exposition, and well-defined criteria for an atom to
belong to a particular class. Examples in the literature in-
clude common neighbor analysis [1, 2, 3], crystal analysis
[4], neighborhood graph analysis [5], Voronoi analysis [6],
topological fingerprints [7], and Voronoi cell topology [8].

Geometric approaches instead map the relative posi-
tions of atoms in a local atomic environment to a con-
tinuous feature space. Each class is associated with a re-
gion of the feature space, and atoms whose feature vectors
fall within one of these regions are assigned to that class.
The regions are usually not defined a priori, but rather
are constructed after observing the distribution of feature
vectors of atoms in reference environments. Geometric
approaches can provide information about the atomic en-
vironment that is not readily accessible to topological ap-
proaches, e.g., point symmetry groups or elastic strain ten-
sors, but can suffer more from thermal noise and be more
expensive to calculate. Examples in the literature include
the centrosymmetry parameter [9], bond-orientational or-
der parameters [10, 11], the Minkowski structure metric
[12], bond angle analysis [13], neighbor distance analysis
[3], and polyhedral template matching [14].

Of the approaches above, adaptive common neighbor
analysis (ACNA) [3] and polyhedral template matching
(PTM) [14] are perhaps the most frequently used to iden-
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tify atomic environments in crystalline solids. They per-
form particularly well for molecular dynamics simulations
of single-component systems, and the procedure proposed
here is not necessarily intended for such applications. That
said, there are still several respects in which they could be
improved.

First, they are effectively limited to consider only one
or two nearest neighbor shells around a central atom. This
is a consequence of the way the local bond network is con-
structed for ACNA, and of the use of a convex hull as part
of the matching algorithm for PTM. As the accuracy of
interatomic potentials in two and three component sys-
tems continues to improve and simulations of materials
with more complex crystal structures become more com-
mon, methods able to handle extended environments will
likely become more relevant.

Second, the methods are sensitive to atoms entering or
leaving the local environment; this is related but not en-
tirely equivalent to being robust to thermal noise. ACNA
reduces the frequency of such events by varying the radius
of the local environment with the reference environment
and the atomic positions, while PTM uses a topological or-
dering of nearby atoms to make the classification resistant
to perturbations in the atomic positions. Nevertheless, a
shear strain applied to a large atomic environment could
still displace some of the atoms enough to leave the region
being considered and frustrate the analysis.

Third, they can only include limited information about
the chemical composition of the local environment, at least
in the forms currently in the literature. ACNA could be
adapted to include chemical information by appending the
species of the atoms along bond chains [15], though this
would be unwieldy for three or more chemical species.
PTM has been used for binary alloys [14], but appar-
ently requires considerable symmetry in the arrangement
of the chemical species. A more flexible approach would be
valuable, particularly if molecular dynamics simulations of
two- and three-component systems become more common.

The procedure proposed here is based on the Gromov–
Wasserstein (GW) distance recently defined by Memoli
[16, 17, 18], which up to now has mostly been used for
shape matching in the field of computer vision [19, 20, 21].
For example, the GW distance can be used to match an
object represented as an incomplete point cloud to one of a
set of reference objects, perhaps in a difference pose. This
is not dissimilar to matching a local atomic environment
to one of a set of reference environments, possibly with
perturbed atomic positions or some of the atoms missing.
Apart from resolving the three limitations above, our ap-
proach has the additional advantages of not requiring the
local environment to be centered on an atom (e.g., for the
identification of vacancies) and of providing a metric on
the space of all local atomic environments. That said, the
GW distance is more complicated to define and is substan-
tially slower to calculate than ACNA and PTM, and for
that reason is intended to be complementary to them.

Figure 1: A description of a local atomic environment as a finite
metric measure space. Color indicates the distinct points of the finite
space, and circles and squares indicate the two chemical species.
Numbers in the local atomic environment (left) are dimensionless
Euclidean distances. The metric (second from left) indicates the
pairwise distances between atoms, the measure (middle) indicates
the fraction of an atom associated with each point, the distances to
the boundary (second from right) are the distances from each atom
to the closest point on the boundary, and the species labels (right)
indicate the chemical species of the atoms.

2. Finite Metric Measure Spaces

A local atomic environment is often described by a set
of vectors from the central atom to the surrounding atoms.
The GW distance instead requires that a local atomic en-
vironment be described as a finite metric measure space.
As the name implies, this involves the construction of a
finite space, a metric describing distances in the space,
and a measure describing the distribution of atoms in the
space. Figure 1 is a concrete example of the construction
for a spherical region. While the region is not required to
be spherical, this simplifies some of the analysis and will
be assumed throughout.

A finite space is a topological space that contains only
a finite number of points. The natural choice for a local
atomic environment is one point for each atomic center, as
indicated by the red, orange, yellow and green points in
Figure 1. For our purposes, a metric is a symmetric ma-
trix of pairwise Euclidean distances between points, and a
measure is a function that assigns values to points. The
GW distance uses these as weights to indicate the rela-
tive importance of points in the space, but otherwise does
not specify their interpretation. Here, the measure will be
used to indicate the number of atoms associated with a
point. Since atoms are indivisible and the position of each
atom is unique, all of the entries will be 1.0.

While not part of the definition of a finite metric mea-
sure space, our description of a local atomic environment
includes a vector of distances to the boundary for each
atom and a vector of species labels that indicates the chem-
ical species of the atoms associated with each point. Dis-
tances to the boundary are used to penalize the departure
of atoms from the environment. This is envisioned as in-
volving the motion of an atom to the boundary, and hence
is proportional to the distance to the boundary. The chem-
ical species is well-defined since each point is associated
with a single atom. By convention, the chemical species
are labeled with increasing integers starting with zero.
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Describing a local atomic environment as a finite met-
ric measure space instead of as a set of bond vectors has
several advantages. First, Figure 1 shows that the local
atomic environment does not need to be centered on an
atom. This allows the GW distance to be used to find,
e.g., the precise locations of vacancies or interstitial sites
in a finite temperature system. Second, the distance ma-
trix is invariant to translations, rotations, and reflections
of the local atomic environment; these symmetries do not
need to be handled in a separate calculation as with PTM.

3. Gromov–Wasserstein Distance

The GW distance is a metric [17] that allows the com-
parison of finite metric measure spaces. More specifically,
let X be a finite space with metric dX and measure µX ;
the triple X = {X,dX ,µX} is a finite metric measure
space. The GW distance is then a function G(X,Y) with
the following properties for all finite metric measure spaces
X, Y and Z with the same total measures:

1. G(X,Y) ≥ 0,

2. G(X,Y) = 0 if and only if X = Y,
3. G(X,Y) = G(Y,X), and
4. G(X,Z) ≥ G(X,Y) + G(Y,Z).

These conditions are designed to ensure that every met-
ric conform to our usual intuitions about distance in Eu-
clidean space. In particular, the fourth condition is known
as the triangle inequality, and is required for the cluster-
ing of points to be defined in a meaningful way; without
this, even if X is close to Y and Y is close to Z, X and
Z could still be arbitrarily far apart. The definition of
a metric is provided here because our use of the word is
somewhat more restricted than elsewhere in the materials
science literature [22].

The notion of a measure coupling will be useful when
describing the calculation of the GW distance. Given fi-
nite metric measure spaces X and Y with n and m points,
an admissible measure coupling between them is an n×m
matrix µ with non-negative entries. Intuitively, this pro-
vides a correspondence of points inX with points in Y that
allows for partial matching. Denote the row and column
sums as νXi =

∑︁
j µij and νYj =

∑︁
i µij for all i ∈ [1,n]

and j ∈ [1,m]. A measure coupling can be balanced or
unbalanced, where a balanced measure coupling is one for
which the row sums equal µX and the column sums equal
µY , i.e., νXi = µX

i and νYj = µY
j . Let the set of all admis-

sible unbalanced measure couplings for the finite metric
measure spaces X and Y be indicated by M(µX ,µY ).

Given an admissible measure coupling µ, define the
quantity

J(µ|dX ,dY ) =

n∑︂
i′,i=1

m∑︂
j′,j=1

|dXi′i − dYj′j |µi′j′µij

and let λX
i be the distance to the boundary of the ith point

of X. Then the unbalanced GW distance1 between X and
Y is defined here as

G(X,Y) = min
µ∈M

[︃
1

2
J(µ|dX ,dY ) +

n∑︂
i=1

λX
i

⃓⃓
νXi − µX

i

⃓⃓
+

m∑︂
j=1

λY
j

⃓⃓
νYj − µY

j

⃓⃓]︃
, (1)

following the same approach as for the unbalanced Wasser-
stein distance of Chizat et al. [23]. The motivation for the
unbalanced GW distance is that it is not always possible
to find a balanced measure coupling, e.g., when there are
unequal number of atoms between the reference and local
environments.

Figure 2 provides several examples that are intended
to help the reader develop an intuition for this definition.
Let the reference environment X be the leftmost in the
figure. The local atomic environment Y1 second from the
left is identical to X except for a permutation of the atomic
labels, and the µ∗ that achieves the minimum in Eq. 1 is
a permutation matrix that maps one set of atoms to the
other (e.g., the orange atom in X is mapped to the yellow
atom in Y1). Since X and Y1 differ only by a symmetry of
the physical system, the GW distance G(X,Y1) vanishes.
The local atomic environment Y2 second from the right
additionally has a small perturbation applied to the green
atom’s position, visible as changes of distance to the yel-
low and orange atoms. In this case µ∗ remains the same,
but G(X,Y2) is the sum of the magnitudes of the distance
changes between every pair of atoms. Since the distances
in X and Y2 are the same except for those around the per-
turbed atom, G(X,Y2) is the sum of the magnitudes of the
distance changes from the green to the yellow and orange
atoms in Y2. The rightmost local atomic environment Y3

instead has a missing atom, requiring that the correspond-
ing column of µ∗ be removed. The resulting discrepancy
between µX and νX makes G(X,Y3) the distance the miss-
ing atom would have traveled to reach the boundary and
leave the local atomic environment. The minimum in Eq.
1 allows the GW distance to remain continuous as the
magnitude of the perturbation increases and removing the
atom becomes the less expensive option.

There are several other conditions that should be sat-
isfied by the finite metric measure spaces before the GW
distance is applied. First, the measures should be strictly
positive. Any points for which the measures are zero (i.e.,
that are not occupied by atoms) should be removed from
the spaces, the corresponding rows and columns removed
from the distance matrices, and the corresponding entries
removed from the measures, distances to the boundary,
and species labels. Second, the algorithm is more stable

1This is actually the unbalanced 1-Gromov–Wasserstein distance.
p-Gromov–Wasserstein distances can be defined for any p ∈ [1,∞).
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Figure 2: Examples of local atomic environments intended to clarify the meaning of Eq. 1. The leftmost environment X is the reference
environment, with the numbers indicating the distances between pairs of atoms. The second from the left environment Y1 differs only by
a permutation of the atomic labels, the second from the right environment Y2 additionally has a perturbation applied to the green atom’s
position, and the rightmost environment Y3 instead has a missing atom. The second row gives the measure couplings µ∗ that realize the
minimum of Eq. 1, with the rows corresponding to atoms of X and the columns to atoms of Yi. The third row gives the GW distance G(X,Yi)
to the same precision as the distances.

when the median off-diagonal entry of the distance ma-
trices is of order one. If κ is the median of these entries,
then the distance matrices and distances to the boundary
should be divided by κ before the calculation, and the GW
distance multiplied by κ after the calculation.

This leaves the problem of finding a measure coupling
µ∗ that realizes the minimum in Eq. 1. Formally, this is
at least as difficult as a nonconvex quadratic optimization
problem with linear constraints, and for which there is
no known polynomial-time algorithm to find the global
minimum [24]. In practice, the approach followed in the
literature [16, 17, 20, 21] is to approximate µ∗ by successive
linear optimization problems, and the same approach is
followed here:

1. Initialize µ with some admissible measure coupling
µ0 and set k = 0.

2. Solve the linear optimization problem

ckij =
1

2

n∑︂
i′=1

m∑︂
j′=1

|dXii′ − dYjj′ |µk
i′j′ ,

µk+1 = argmin
µ∈M

[︃ n∑︂
i=1

m∑︂
j=1

ckijµij +

n∑︂
i=1

λX
i

⃓⃓
νXi − µX

i

⃓⃓
+

m∑︂
j=1

λY
j

⃓⃓
νYj − µY

j

⃓⃓]︃
. (2)

3. If the stopping criterion is satisfied, set µ∗ = µk+1

and exit. If not, set k = k + 1 and return to Step 2.

This is known as the alternate convex search algorithm
[17, 25], and converges to a local minimum of the original
problem. In principle, the quality of the result could be im-
proved by repeatedly running the algorithm with random-
ized initial conditions. In practice, the measure coupling

is initialized to a constant matrix and heuristic perturba-
tions are regularly applied to break any symmetries. The
efficacy of this approach is visible in Section 6.

The linear optimization problem in Eq. 2 is identical
to the one used to calculate an unbalanced Wasserstein
distance [23]. Let ϵ > 0 be a regularization parameter and
replace the linear optimization problem in Eq. 2 with

µ̃k+1 = argmin
µ∈M

[︃ n∑︂
i=1

m∑︂
j=1

(ckij + ϵ logµij)µij

+

n∑︂
i=1

λX
i

⃓⃓
νXi − µX

i

⃓⃓
+

m∑︂
j=1

λY
j

⃓⃓
νYj − µY

j

⃓⃓]︃
.

This can be solved efficiently with a modified Sinkhorn-
Knopp algorithm [23] as follows:

1. Initialize a0i = 1 for all i ∈ [1, n], b0j = 1 for all

j ∈ [1,m], γij = exp(−ckij/ϵ), and set ℓ = 0.

2. Set aℓ+1
i = min[eλ

X
i /ϵ,max(e−λX

i /ϵ, µX
i /

∑︁
j γijb

ℓ
j)].

3. Set bℓ+1
j = min[eλ

Y
j /ϵ,max(e−λY

j /ϵ, µY
j /

∑︁
i a

ℓ+1
i γij)]

4. If the stopping criterion is satisfied, set µk+1
ij =

aℓ+1
i γijb

ℓ+1
j and exit. If not, set ℓ = ℓ+1 and return

to Step 2.

Decreasing ϵ reduces the regularization and drives µ̃k+1

toward the solution of Eq. 2, but can introduce numerical
instabilities.

Our implementation uses the log-domain stabilization
and ϵ-scaling of Schmitzer [26, 23]. These modifications to
the basic Sinkhorn-Knopp algorithm require the introduc-
tion of several additional parameters; τ = 1000 regulates
the frequency of absorption iterations for the log-domain
stabilization, and ϵ is scaled by factors of 4 from an initial
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value of the median of the cij to a final value of 0.001 times
the median distance between distinct points. The various
heuristics used to escape local minima are described in Ap-
pendix A. The algorithm is written as a library in portable
C11 with Python and MATLAB interfaces, is open source,
and is available on request.

4. Classification of Atomic Environments

While the calculation of the unbalanced GW distance
introduced in Section 3 is relevant to general finite metric
measure spaces, this section instead describes the applica-
tion of the unbalanced GW distance to the classification of
local atomic environments. In particular, Section 3 does
not introduce the chemical species of the atoms. The ex-
tension of the unbalanced GW distance to the case of mul-
tiple species is called the composition-restricted Gromov–
Wasserstein (CRGW) distance.

First, the user should specify a region of Euclidean
space to be used for the definition of all local atomic en-
vironments. Since crystal structure and orientation can
vary throughout a simulation cell, a spherical region with
a radius of 1.5 to 2.5 times the average atomic spacing is
a reasonable choice.

Second, the user should provide a reference atomic en-
vironment for each class being considered. The finite met-
ric measure spaces of the reference atomic environments
are then constructed and stored for subsequent use. These
take the form of sets X = {X,dX ,µX ,λX , δX} where λX

and δX contain the distances to the boundary and the
species labels.

Third, the local atomic environment to be classified
is identified, and the corresponding finite metric measure
space Y = {Y,dY ,µY ,λY , δY } is constructed using the
same region as before. The CRGW distance from Y to
each of the reference environments is calculated, and a
user-specified criterion is used to classify the local atomic
environment on the basis of these distances. Part of the ad-
vantage of this approach is that the classification criterion
can be as simple or as complex as the user desires; the lo-
cal atomic environment could be assigned to the class with
the smallest distance, or assigned to the most likely class
using the probability distributions of distances developed
in Section 5.

This leaves the calculation of the CRGW distance it-
self. Let X and Y be the finite metric measure spaces of
the reference and local atomic environments, and have n
and m atoms respectively. Let R be an n × m matrix
with Rij equal to one if the ith atom of X and the jth
atom of Y have the same species label, and zero other-
wise. Then the CRGW distance D(X,Y) is still defined by
means of Eq. 1, but with the minimization performed over
the restricted set of measure couplings with the same zero
entries as R (atoms of different chemical species cannot be
coupled). Within the context of Section 3, this restriction
can be realized by replacing the initial measure coupling

Figure 3: The CRGW distance is continuous with respect to atoms
entering and leaving a local atomic environment. The radius of the
environment on the left is increased from (1+

√
3)/2 to (2+

√
3)/2 in

units of the atomic spacing. The distance to the initial condition on
the right is continuous, with a discontinuous first derivative at

√
3.

µ0
ij with Rijµ

0
ij and replacing γij in Step 1 of the modified

Sinkhorn-Knopp algorithm with γij = Rij exp(−cij/ϵ).
Note that the calculation of the CRGW distance ac-

tually increases in efficiency with the number of chemical
species for a fixed number of atoms. The reason for this
is that the sparsity of R increases with the number of
chemical species, dramatically reducing the set of possi-
ble measure couplings in Eq. 1. That said, any efficiency
gains would likely be offset by an increase in the number
of reference atomic environments defined by the user.

With the CRGW distance defined, the rest of this sec-
tion consists of illustrative examples where the procedure
is applied to local atomic environments in two dimensions.
This simplification is used only for clarity of the figures;
since the CRGW distance does not explicitly depend on
the dimension of the ambient space, the calculation is pre-
cisely the same in two and three dimensions.

Figure 3 shows that the CRGW distance is continuous
with respect to atoms entering and leaving the local atomic
environment. The atoms are arranged on a triangular lat-
tice with unit spacing, and the radius of the local atomic
environment on the left is increased from (1 +

√
3)/2 to

(2 +
√
3)/2. The CRGW distance to the environment is a

continuous function of the radius, even though six atoms
enter the region at a radius of

√
3 and cause a discontinu-

ous derivative at the dashed vertical line.
Figure 4 shows that the CRGW distance is continuous

with respect to displacements of the local atomic environ-
ment. The atoms are arranged on a triangular lattice with
unit spacing as before, and the center of a local atomic en-
vironment of radius (1 +

√
3)/2 is moved along a straight

line between neighboring atoms. The CRGW distance to
the initial environment is a continuous function of the dis-
placement, passing through a maximum halfway between
the atoms before returning to zero. The first two dashed
vertical lines indicate discontinuous derivatives caused by
the bottom atom leaving the environment and two of the
uppermost atoms entering the environment, respectively.
The environment briefly contains eight atoms before two
corresponding events occur in reverse order as the distance
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Figure 4: The CRGW distance is continuous with respect to dis-
placements of the local atomic environment. The center of the
environment on the left is moved in the vertical direction by one
atomic spacing. The distance to the initial condition on the right
is continuous, with discontinuous first derivatives at (

√
3− 1)/2 and

(3−
√︁

1 + 2
√
3)/2, and the reflection of these quantities about 0.5.

Figure 5: The CRGW distance is continuous with respect to elastic
deformations of the local atomic environment. The environment on
the left is subjected to a simple shear of 4/(5

√
3). The distance to

the initial condition on the right is continuous.

returns to zero.
Figure 5 shows that the CRGW distance is continuous

with respect to elastic deformations of the local atomic en-
vironment. The atoms are again arranged on a triangular
lattice with unit spacing, and a local atomic environment
of radius (2 +

√
3)/2 is subjected to a simple shear that

increases to a maximum of 4/(5
√
3). The CRGW distance

to the initial environment is a continuous function of the
shear. The shoulder around 0.5 is caused by atoms in the
local environment being displaced to the boundary as the
distance to the boundary decreases and the cost of match-
ing to a reference atom increases.

The remaining figure in this section considers the per-
formance of the CRGW distance for a defected material
with multiple chemical species and phases. The leftmost
image in Figure 6 shows the atomic positions in a simula-
tion cell with periodic boundary conditions. The atomic
shape (circle or square) and color (red or blue) indicate the
chemical species and phase, where the phases can be dis-
tinguished by chemical composition and lattice type. The
blue phase additionally contains two vacancies on distinct
hexagonal unit cell sites. Distances are expressed in units
of the interatomic spacing, which is assumed to be the
same for all chemical species and phases. The radius of all
local atomic environments is set to 1.75.

The six reference atomic environments appear at the
bottom of the figure, and are divided into three groups.
From left to right, these correspond to atomic sites in the
red phase, atomic sites in the blue phase, and vacancies
in the blue phase. Local atomic environments of the same
radius are constructed on a grid throughout the simulation
cell, and the CRGW distances to the six reference atomic
environments are calculated for each one. The right three
images of Figure 6 show the smallest distance to any of
the reference environments in the respective group, with
smaller distances indicating more similarity. The atoms
belonging to the red phase, the blue phase, and the inter-
face can be identified by visual inspection of the middle
images, and the location of the vacancies is clearly indi-
cated in the rightmost image.

5. Thermal Noise

All of the examples in Section 4 positioned the atoms
on lattice sites, whereas molecular dynamics simulations
are generally performed at finite temperatures with per-
turbed atomic positions. While molecular dynamics sim-
ulations can be quenched to return the atoms to their lat-
tice sites, this requires additional computation and can
complicate the observation of temperature-dependent phe-
nomena. Hence, any approach to classify local atomic en-
vironments would ideally be robust to such perturbations.
As described in Section 1, existing geometric approaches
handle this by identifying each class with some region of
a feature space, with the regions defined by observation
and convention rather than more fundamental consider-
ations. This is not entirely necessary though; one could
model atomic displacements as independent random vari-
ables, and derive a probability distribution of feature vec-
tors for a given reference environment. Classification of an
environment would then be reduced to, e.g., comparison
with a set of prediction intervals.

This is the approach developed in the current section.
Let X be a given reference environment and Y be the same
environment subject to random thermal displacements of
a given magnitude. The predicted distribution of CRGW
distances G(X,Y) is constructed below, and allows one to
test the hypothesis that a test environment Z is also de-
rived from X by the application of random thermal dis-
placements. This procedure is used to classify local atomic
environments in molecular dynamics simulations in Sec-
tion 6.

Let there be a reference environment where all of the
atoms are on the interior of the region and are not too
close to the boundary. Suppose that the potential energy
ϕ of the ith atom can be approximated in the vicinity of
the minimum by a parabolic function

ϕ(ri) =
1

2
a|ri|2 + b

where ri is the atomic displacement of the ith atom from
the position of minimum potential energy. Assuming that
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Figure 6: Performance of the CRGW distance in a defected material with multiple chemical species and phases. The leftmost image shows
atomic positions, with chemical species indicated by circles or squares and phases indicated by red or blue. The remaining three images show
the smaller of the CRGW distances to the the two local atomic environments below the respective figure, and indicate, from left to right,
atomic sites in the red phase, atomic sites in the blue phase, and vacancies in the blue phase.

atomic displacements are independent, the probability dis-
tribution p(ri) of a displacement of the ith atom in the
canonical ensemble is a product of normal distributions

p(ri) =

(︃
a

2πkBT

)︃3/2

exp

(︃
−a|ri|2

2kBT

)︃
where kB is Boltzmann’s constant and T is the absolute
temperature. Let σ2

r = kBT/a indicate the variance of the
atomic displacements.

Let X be a reference environment, and Y a perturbation
of that environment. Suppose that the atomic perturba-
tions are small enough that all of the n atoms remain in
the environment, and that each atom in X can be unam-
biguously identified with an atom in Y. For any natural
ordering of atoms in X and Y, µij is a diagonal matrix
with ones and zeros on the diagonal. Let ξhi be the ith
entry of the diagonal, with h ∈ H indicating which of the
possible 2n binary vectors is chosen. Each ξh corresponds
to a particular subset of atomic pairs in X and Y being
mapped to the boundary. Equation 1 reduces for this case
to

G(X,Y) = min
h∈H

[︃
1

2

n∑︂
i,j

|dXij − dYij |ξhi ξhj +

n∑︂
i

λX
i (1− ξhi )

+

n∑︂
i

λY
i (1− ξhi )

]︃
= min

h∈H
Dh. (3)

Observe that the Dh are correlated random variables, con-
structed as sums of the random variables |dXij − dYij | and
λY
i . The joint probability distribution of the Dh will be

modeled as a multivariate normal distribution using the
multivariate central limit theorem. The probability dis-
tribution of G(X,Y) can then be constructed by explicitly

sampling from the joint distribution of the Dh and finding
the minimum Dh for each sample. The problem is thereby
reduced to the calculation of the means and covariance
matrix of the Dh that define the multivariate normal dis-
tribution. These are found in Appendix B to be

⟨Dh⟩ =
n∑︂
i,j

σr√
π
ξhi ξ

h
j + 2

n∑︂
i

λX
i (1− ξhi ) (4)

cov(Dh, Dg) =

[︃ n∑︂
i

(1− ξhi )(1− ξgi )

+

(︃
1− 2

π

)︃ n∑︂
i

n∑︂
j ̸=i

ξhi ξ
h
j ξ

g
i ξ

g
j

+

n∑︂
i

n∑︂
j ̸=i

n∑︂
k ̸=i,j

ξhi ξ
h
j ξ

g
i ξ

g
kf(θijk)

]︃
σ2
r (5)

where ⟨·⟩ indicates the mean of a quantity and f(θijk) is
defined by Eq. B.6. The covariance matrix depends on the
geometry of the reference environment via the angles θijk
between triplets of atoms in the reference environment.

To sample from this distribution, define the matrix ele-
ments Σhg = cov(Dh, Dg) and find any real matrix A such
that Σ = AAT . Let zg be a random variable distributed
according to the standard normal distribution. Then

Y = min
h∈H

[︃
⟨Dh⟩+

∑︂
g

Ahgzg

]︃
samples from the distribution of G(X,Y) implicitly defined
by Eq. 3.

Figure 7 provides some numerical evidence that sam-
ples of G(X,Y) can be used to construct the empirical dis-
tribution. The reference environment on the left resembles
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Figure 7: The local atomic environment on the left contains five circle
atoms and four square atoms on a square lattice with unit spacing
in a region of radius (

√
2 + 2)/2. The measured (solid blue) and

predicted (dashed red) distributions of CRGW distances for σr =
0.025, 0.05, and 0.1 are on the right.

one in Figure 6. The plot on the right shows that the pre-
dicted probability distribution (dashed red) is a good ap-
proximation for the measured one (solid blue), even when
the standard deviations of the atomic displacements are as
large as one-tenth the average atomic spacing. The small
offset of the mean is likely the result of three sources of
error; the atomic displacements are assumed to be small
relative to the atomic spacing, Dh is a sum of random vari-
ables that are not identically distributed, and the number
of random variables in some of the Dh is relatively small.

6. Applications to Molecular Dynamics

This section describes the use of the CRGW distance to
classify atomic environments in several molecular dynam-
ics (MD) simulations performed in LAMMPS [27]. The
initial application compares the ability of the CRGW dis-
tance to distinguish simple crystal structures (i.e., BCC,
FCC, and HCP) with that of ACNA and PTM. To that
end, BCC tungsten [28], FCC copper [29], and HCP mag-
nesium [30] single crystals were simulated at temperatures
up to melting in the isothermal-isobaric ensemble (NPT).
The simulated systems respectively contained 4394, 8788,
and 8788 atoms. The BCC and FCC unit cells were cubic,
while the non-standard HCP unit cell was length a in the
x-direction,

√
3a in the y-direction, and

√︁
8/3a in the z-

direction. A single crystal of each material was quenched
to 0K, then heated in increments of 20K up to melting
with an equilibration of 3 ps at each temperature. The ex-
ceptions to this are that tungsten was heated in increments
of 50K and equilibrated for 5 ps ps above 4000K, and alu-
minum and magnesium were heated in increments of 10K
below 300K. The pressure was set to 0 bar throughout.

The σr values used to construct the predicted CRGW
distance distributions were found by directly measuring
atomic displacements in the MD simulations after account-
ing for translation, rotation, and expansion of the local en-
vironments. This is effectively a measure of the magnitude
of thermal displacements, and is predicted in Section 5 to
increase as

√
T . Figure 8 shows that σr follows this expec-

W Al Mg

Figure 8: Blue circles show σr measured from simulations, and red
curves show a σr ∝

√
T trend line fit. For each figure, the dashed

vertical line to the left indicates the true melting point of the crys-
tal, and the dashed vertical line to the right indicates the apparent
melting point for an average heating rate of 6.66× 1012 K/s.

SC BCC

FCC HCP

Figure 9: The CRGW distances calculated for tungsten local en-
vironments at 1000K (solid blue lines) compared to the distribu-
tions predicted for SC, BCC, FCC, and HCP reference environments
(dashed red lines). 97.2% of tungsten atoms were correctly classified
as BCC at this temperature.

tation reasonably accurately for temperatures below one-
third of the melting point. Lindemann’s criterion [31, 32]
further suggests that melting occurs if σr exceeds a critical
value. The melting points of the potentials were identified
by discontinuities in the potential energy per atom at 5000
K for tungsten, 1200 K for aluminum, and 1200 K for mag-
nesium, and generally occurred when σr ≈ 0.1 in units of
the average atomic spacing.

The classification of atomic environments in this sec-
tion is based on p-values, or the probability of obtaining a
CRGW distance at least as extreme as the one observed
given that the local atomic environment actually derives
from the specified reference environment. If the CRGW
distance falls below the median of a predicted distribu-
tion, the mass of the predicted distribution to the left of
that distance is the p-value. If the CRGW distance falls
above the median reference environment, the mass of the
predicted distribution to the right of that distance is the
p-value. The maximum possible p-value is 0.5 when the
CRGW distance is exactly the median value.

8



Al MgW

P
er

ce
n
t 

C
o
rr

ec
t

Figure 10: Percent of tungsten classified as BCC (left), percent of
aluminum classified as FCC (middle), and percent of magnesium
classified as HCP (right) as a function of temperature. Blue circles
are for the CRGW distance with a p-value criterion of 0.01, green
squares are for ACNA, and red triangles are for PTM. For each figure,
the dashed vertical line to the left indicates the true melting point
of the crystal, and the dashed vertical line to the right indicates the
melting point of the potential.

Consider the classification of atomic environments in
tungsten at 1000K in Figure 9. The p-values for each local
environment were calculated for SC, BCC, FCC, and HCP
reference environments. If a local environment’s p-value
was greater than 0.01 for a particular reference environ-
ment and was lower for all other reference environments,
then the local environment was classified accordingly. This
two-part condition ensures that, e.g., the environment suf-
ficiently resembles a perturbed BCC environment and is
more likely to be a perturbed BCC environment than any
other reference environment. This classification scheme is
much more rigorous than those used in the past, and ef-
fectively provides the user with an uncertainty in addition
to the classification.

Figure 9 more specifically plots the measured CRGW
distance distributions between a local atomic environment
and a given reference environment (solid blue), and the
probability distributions that would be predicted if the lo-
cal atomic environment really were a perturbation of that
reference environment (dashed red). That the probability
distributions coincide for the BCC structure indicates that
the vast majority of atoms should be classified as BCC. For
this particular simulation, 97.2% of atoms were correctly
classified as BCC.

Figure 10 shows the percent of tungsten classified as
BCC, the percent of aluminum classified as FCC, and the
percent of magnesium classified as HCP as functions of
temperature. The classification scheme described in this
section (blue circles) correctly classifies more than 95% of
the atoms up to two-thirds of the melting point for BCC
and FCC. The slight dip at the lower temperatures are
perhaps due to low-frequency phonons being mistaken as
rotations in the measurement of σr, and the earlier decline
for the HCP structure could be caused by the approxi-
mation of spherically-symmetric atomic displacements be-
ing less valid for noncentrosymmetric materials. Never-
theless, the method correctly classifies more than 90% of
the atoms at half the melting point for HCP. This per-
formance is comparable to that of ACNA (green squares)
and PTM (red triangles) as implemented in OVITO [33],

though the CRGW distance is considerably more expen-
sive to calculate. Specifically, informal measurements sug-
gest that ACNA, PTM, and the CRGW distance require
1µs/atom, 5µs/atom, and 0.25 s/atom to classify atomic
environments. That is, the CRGW distance is roughly 105

times slower, making real-time analysis impractical.
The utility of the CRGW distance instead lies in the

ability to classify more complicated atomic environments.
Yu et al. proposed an interatomic potential for zirconia [34]
modeled on the well-known BKS potential for silica [35].
They found the potential to be suitable for simulations of
cubic and monoclinic zirconia, with the monoclinic phase
being slightly preferred by 0.11 eV/ZrO2 (the tetragonal
phase spontaneously transforms to cubic). A simulation
cell containing a single crystal of cubic zirconia with seven
unit cells along each coordinate direction was prepared and
relaxed at 0K and 0 bar. The simulation then proceeded in
the isothermal-isobaric (NPT) ensemble, with the temper-
ature raised in intervals of 28K every 3 ps and the pressure
maintained at 0 bar. Given the lower enthalpy of the mon-
oclinic phase, a phase transformation from cubic to mono-
clinic was expected. CRGW distances were calculated for
zirconium- and oxygen-centered reference environments of
radius 4.04 Å in the cubic and monoclinic phases relaxed
at 0K and 0 bar. While the approximation that the zir-
conium and oxygen atoms experience the same magnitude
thermal vibrations is poor, the same classification criterion
was used as above with p-values in the interval of 10−2 to
10−4 depending on the phase of interest.

The expected transformation occurred in three stages,
shown in Figure 11. The cubic phase in (a-b) remained sta-
ble up to 786K, with distributed disorder developing over
a period of 2.9 ps to give (c-d). This involved [010] columns
of zirconium atoms displacing along [100] directions, as re-
vealed by (c) where only zirconium atoms are shown. The
disordered structure subsequently developed three mono-
clinic nuclei over a period of 1.1 ps, visibly extending along
the [010] direction in (e-f). The positioning of the nuclei
suggests that they are not energetically independent, but
interact mechanically as a consequence of the transforma-
tion strain and the periodic boundary conditions. These
remained stable for several tens of picoseconds, but even-
tually merged and grew to give the monoclinic system in
(g-h) after 62.5 ps. The transformation did not result in
a single crystal though, with two distinct regions differing
by a non-lattice translation in the [010] direction. These
regions can be identified in (g) either by the pattern of
the columns of zirconium atoms or by unclassified oxy-
gen atoms that occur at the interfaces. The existence of
these interfaces is intimately related to the use of periodic
boundary conditions, and should not be construed as a
general feature of the transition.

Indeed, a careful study of the cubic to monoclinic zir-
conia phase transition would require investigating size ef-
fects, homogeneous and heterogeneous nucleation barriers,
the elastic strains in the transformed structure, and the
slight differences between the relaxed monoclinic structure

9



Figure 11: Molecular dynamics simulation of a phase transformation from cubic to monoclinic zirconia. Zirconium and oxygen atoms are
dark blue and light blue in the cubic phase, green and yellow in the monoclinic phase, and red and purple otherwise. The [100] and [010]
directions of the cubic and monoclinic phases are respectively to the left and out of the page in the top row. (a-b) Cubic zirconia at 786K.
(c-d) Intermediate structure at 812K. Only zirconium is shown in (c) to reveal the incipient symmetry breaking. (e-f) The monoclinic phase
is nucleated at 812K, 1.1 ps after the structure in (c-d). (g-h) The transformation is completed at 1400K, 62.5 ps after the structure in (e-f).
Only zirconium in the monoclinic phase and unclassified oxygen is shown in (g) to reveal the interfacial defects.

and that published in the literature [36]. This is not un-
dertaken here since the purpose of this study is instead
to show that the CRGW distance can be used to classify
atomic environments in systems at elevated temperatures
with more species and more complicated crystal structures
than can be handled by standard ACNA and PTM.

7. Conclusion

An automated method to classify local atomic environ-
ments via the composition-restricted Gromov–Wasserstein
(CRGW) distance is proposed. Advantageous properties
of this method include that it is invariant to translations,
rotations, and reflections of the local atomic environment,
and that it does not require the local atomic environment
to be centered on an atom. The method does not make
any assumption about the material class, making it appli-
cable with minimal modification to materials with multiple
chemical species and general crystal structures. Molecular
dynamics results for single crystals verify that the method
is a reliable approach to classifying local atomic environ-
ments in pure metals at temperatures up to half the melt-
ing point, albeit less efficiently than for techniques already
available in the literature. The strength of the method is
instead its applicability to general atomic systems, as is
demonstrated by preliminary analysis of a cubic to mono-
clinic phase transition in zirconia.
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Appendix A. Heuristics

The minimization problem in Eq. 1 is difficult because
of the presence of many local minima, some of them intro-
duced by symmetries in the reference environment. Specif-
ically, the algorithm described in Section 3 can split an
atom’s mass between several reference atoms related by a
symmetry operation. The implementation handles this by
forcefully breaking the symmetry and assigning the first
such atom to precisely one other atom after each step of
alternate convex search. This gradually forces the coupling
matrix to be a (0, 1)-matrix, where the atoms of the refer-
ence and local structures are either matched or sent to the
boundary and partial matching is disallowed. Second, the
algorithm for the unbalanced GW distance often finds a lo-
cal minimum by sending all atoms to the boundary. This
is discouraged by beginning with artificially high values of
λX and λY in Eq. 1, and gradually relaxing them to their
final values. Third, a central atom is sometimes inserted
with a species label that differs from all other atoms in the
environment. Forcing the center atom in the reference en-
vironment to be assigned to that in the local environment
empirically helps the other atoms to be assigned consis-
tently. While the resulting algorithm cannot guarantee a
unique minimum distance coupling, the results in Sections
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Figure B.12: If the lengths of ri and rj are small relative to sij ,
then sij and s′ij are nearly parallel, and the difference in the length

of s′ij and sij is approximately the difference of the projections of
rj and ri onto sij .

5 and 6 strongly suggest that the minimum is achieved in
almost every case.

Appendix B. Mean and Covariance of the Dh

Initially consider ⟨Dh⟩, the mean of Dh for normally-
distributed atomic displacements. From the definition in
Eq. 3, the relevant equation is

⟨Dh⟩ =
1

2

n∑︂
i,j

⟨|dXij − dYij |⟩ξhi ξhj +

n∑︂
i

λX
i (1− ξhi )

+

n∑︂
i

⟨λY
i ⟩(1− ξhi )

where λX
i is the constant distance to the boundary in

the reference environment. As described in Section 5, the
probability distribution p(ri) of a displacement of the ith
atom in the canonical ensemble is assumed to be

p(ri) =

(︃
1

2πσ2
r

)︃3/2

exp

(︃
−|ri|2

2σ2
r

)︃
with σ2

r = kBT/a indicating the variance of the atomic
displacements.

Since p(ri) is spherically symmetric and |λY
i − λX

i | ≪
λX
i is assumed, the distance to the external boundary is

distributed as

p(λY
i ) =

(︃
1

2πσ2
r

)︃1/2

exp

(︃
− (λY

i − λX
i )2

2σ2
r

)︃
,

from which the mean and variance of λY
i are found to be

⟨λY
i ⟩ = λX

i (B.1)

var(λY
i ) = σ2

r . (B.2)

This specifies the terms in the third sum in the equation
for ⟨Dh⟩ above.

Now consider |δij | = |dXij − dYij | for i ̸= j. As described
in Section 3, the GW distance between the reference en-
vironment and a perturbed environment is effectively the
sum of the magnitudes of the changes in the distances be-
tween all pairs of atoms. Let sij be the vector from the
ith atom to the jth atom; the central quantity of interest
is the change in the length of this vector with the appli-
cation of perturbations. Figure B.12 suggests that if the
perturbations are small relative to sij , then

δij = (rj − ri) · ŝij

is the approximate change in the length of sij , where ŝij
is the unit vector sij/|sij |. Since p(ri) is spherically sym-
metric, the probability distribution of the projected dis-
placement ri · ŝij is the normal distribution

p(ri · ŝij) =
1√︁
2πσ2

r

exp

(︃
−|ri · ŝij |2

2σ2
r

)︃
. (B.3)

The probability distribution p(δij) can be found from Eq.
B.3 by a change of variables; if ϵij = (rj + ri) · ŝij is
the counterpart to δij , and p(rj · ŝij)p(ri · ŝij) is the joint
distribution of rj · ŝij and ri · ŝij , then

p(δij , ϵij) =
1

2
p

(︃
ϵij + δij

2

)︃
p

(︃
ϵij − δij

2

)︃
=

1

4πσ2
r

exp

(︃
−
ϵ2ij + δ2ij
4σ2

r

)︃
is the joint distribution of ϵij and δij , where the factor of
1/2 is the Jacobian determinant of the transformation. In-
tegrating over ϵij and observing that p(δij) is a symmetric
function gives

p(|δij |) =
1√︁
πσ2

r

exp

(︃
−|δij |2

4σ2
r

)︃
for the probability distribution of the magnitude of the
change in the distance between the ith and jth atoms.
The resulting mean and variance are

⟨|δij |⟩ =
2σr√
π

(B.4)

var(|δij |) =
(︃
2− 4

π

)︃
σ2
r . (B.5)

Using Eqs. B.1 and B.4 allows the equation for ⟨Dh⟩ in-
troduced at the beginning of this section to be reduced to
Eq. 4.

This only leaves the calculation of the covariance ma-
trix. From the definition of the covariance:

cov(Dh, Dg) = ⟨DhDg⟩ − ⟨Dh⟩⟨Dg⟩.

Expanding all the products and cancelling terms gives

cov(Dh, Dg) =
1

4

n∑︂
i,j

n∑︂
i′,j′

ξhi ξ
h
j ξ

g
i′ξ

g
j′cov(|δij |, |δi′j′ |)

+
1

2

n∑︂
i,j

n∑︂
i′

ξhi ξ
h
j (1− ξgi′)cov(|δij |, λ

Y
i′ )

+
1

2

n∑︂
i′,j′

n∑︂
i

ξgi ξ
g
j (1− ξhi′)cov(λ

Y
i , |δi′j′ |)

+
1

2

n∑︂
i,i′

(1− ξhi )(1− ξgi′)cov(λ
Y
i , λ

Y
i′ ).

We start with the last term. λY
i and λY

i′ for i ̸= i′ are in-
dependent by inspection, so this reduces to

∑︁
i(1−ξhi )(1−
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Figure B.13: The changes in the lengths of the vectors sij and sik
with a displacement ri are correlated, with the strength of the cor-
relation depending on the angle θ.

ξgi )σ
2
r by Eq. B.2. Now consider cov(|δij |, |δi′j′ |). If i = i′

and j = j′, then this reduces to var(|δij |) as given in Eq.
B.5. If all the indices are distinct, then cov(|δij |, |δi′j′ |)
vanishes by inspection. The only remaining case is for
cov(|δij |, |δik|) for j ̸= k.

With reference to Figure B.13, a coordinate system
is constructed in the plane of the page with the x-axis
along ŝij and the y-axis in the vertical direction. The
joint distribution of the ζ = ri · ŝij and η = ri · ŝik is
found from that of x and y by the change of variables

x = ζ y = − cot(θ)ζ + csc(θ)η

with the Jacobian determinant csc(θ). The resulting dis-
tribution is

p(ζ, η) =
csc θ

2πσ2
r

exp

[︃
−csc θ2(ζ2 − 2 cos θζη + η2)

2σ2
r

]︃
.

This is multiplied by a normal distribution of rj · ŝij like
the one in Eq. B.3, a change of variables

ri · ŝij = (ϵij − δij)/2 rj · ŝij = (ϵij + δij)/2

with the Jacobian determinant 1/2 is performed, and the
dependence on ϵij is integrated out to find the joint distri-
bution of δij and ri · ŝik. This procedure is repeated with
rk · ŝik to find the joint distribution of δij and δik:

p(δij , δik) =
1

π
√︁
14− 2 cos(2θ)σ2

r

exp

{︃
−
2[δ2ij + δ2ik − δijδik cos(θ)]

[7− cos(2θ)]σ2
r

}︃
.

The joint distribution of |δij | and |δik| is constructed from
p(δij , δik) by adding together the four variants with each
combination of signs for δij and δik. Given p(|δij |, |δik|),
the covariance of |δij | and |δik| is found to be

cov(|δij |, |δik|) =
1

π

{︃
2 arctan

[︃ √
2 cos(θ)√︁

7− cos(2θ)

]︃
cos(θ)

+
√︁
14− 2 cos(2θ)− 4

}︃
σ2
r

= f(θ)σ2
r . (B.6)

The remaining terms in the equation for cov(Dh, Dg)
are those involving cov(|δij |, λY

i′ ). Since this vanishes by

inspection for i′ ̸= {i, j}, only cov(|δij |, λY
i ) need be con-

sidered further. Suppose that the probability of the ith
atom leaving the environment is vanishing small. Then a
procedure analogous to that followed for p(δij , δik) gives

p(δij , λ
Y
i ) =

1

π
√︁

6− 2 cos(2θ)σ2
r

exp

{︃
−
δ2ij + 2ω2

i − 2δijωi cos(θ)

[cos(2θ)− 3]σ2
r

}︃
for the joint distribution of δij and λY

i , where ωi = λY
i −

λX
i . The joint distribution of |δij | and λY

i is constructed
from p(δij , δi) by adding the two variants with each sign
of δij . Remarkably, the covariance of |δij | and λY

i is found
to vanish.

At this point, the covariance ofDh andDg can be given
explicitly as

cov(Dh, Dg) =

n∑︂
i

(1− ξhi )(1− ξgi )σ
2
r

+
1

2

n∑︂
i′,j′

ξhi ξ
h
j ξ

g
i ξ

g
j var(|δij |)

+

n∑︂
i,j

n∑︂
k ̸=j

ξhi ξ
h
j ξ

g
i ξ

g
kcov(|δij |, |δik|).

where the multipliers for the second and third terms arise
from the number of ways to assign the shared indices. Sub-
stituting Eqs. B.5 and B.6 for var(|δij |) and cov(|δij |, |δik|)
then gives Eq. 5.

Data availability

The raw data required to reproduce these findings can-
not be shared at this time due to technical or time limi-
tations. The processed data required to reproduce these
findings cannot be shared at this time due to technical or
time limitations.
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