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Abstract

Restricted isometry property (RIP) provides a near isometric map for sparse sig-

nals. RIP of structured random matrices has played a key role for dimensionality

reduction and recovery from compressive measurements. In a companion paper, we

have developed a unified theory for RIP of group structured measurement operators

on generalized sparsity models. The implication of the extended result will be further

discussed in this paper in terms of its pros and cons over the conventional theory. We

first show that the extended RIP theory enables the optimization of sample complexity

over various relaxations of the canonical sparsity model. Meanwhile, the generalized

sparsity model is no longer described as a union of subspaces. Thus the sparsity level

is not sub-additive. This incurs that RIP of double the sparsity level does not imply

RIP on the Minkowski difference of the sparsity model with itself, which is crucial for

dimensionality reduction. We show that a group structured measurement operator pro-

vides an RIP-like property with additive distortion for non-sub-additive models. This

weaker result can be useful for applications like locality-sensitive hashing. Moreover,

we also present that the group structured measurements with random sign enables near

isometric sketching on any set similar to the Gaussian measurements. Lastly, an ex-

tension of theory to infinite dimension is derived and illustrated over selected examples

given by Lebesgue measure of support and Sobolev seminorms.
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1 Introduction

A linear operator A : RN → Rm has restricted isometry property (RIP) on Γ ⊂ RN if

(1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22, ∀x ∈ Γ . (1)

In other words, A preserves the norm of all vectors in Γ up to multiplicative distortion

δ. A class of random matrices have been shown to provide RIP for sparse vectors with

the number of measurements m scaling near optimally, i.e. proportional to the number of

nonzero entries up to a logarithmic factor. In a companion paper [20], we provided a gen-

eralization of the RIP theory for structured random matrices that unified previous results

[37, 36, 12, 27] and applies to a class of sparsity and measurement models. Specifically we

introduced the notion of generalized sparsity model determined by a pair of Hilbert and

Banach spaces so that Γ generalizes beyond existing models such as sparse vectors and

low-rank matrices. Moreover the RIP theory in [20] applies to a group structured measure-

ment operator that generalizes partial Fourier transform to a broader class including the

Gabor and Radon transforms. In this sequel paper, we further discuss the implications of

the results in [20] over a selected set of scenarios. Furthermore we will illustrate how the

results extend to a sparsity model in infinite dimension.

For a self-contained introduction, we recall one specific case of the main results in [20]

below. First, a generalized sparsity model is described as follows: Let K be a convex subset

of the unit ball of `N2 and let X be the Banach induced by the Minkowski functional of K,

i.e.

‖x‖X := inf{λ > 0 : x ∈ λK} .
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In other words, K is the unit ball in X. Then the sparsity model is determined by

Γs :=
{
x ∈ X ∩ `N2 : ‖x‖X ≤

√
s‖x‖2

}
, (2)

where s > 0 is the parameter corresponding to the sparsity level. We say that a vector

x is (K, s)-sparse if it belongs to Γs. For example, when X = `N1 , the resulting Γs is a

well-studied relaxation of the canonical sparsity model that consists of sparse vectors with

at most s nonzero entries. RIP theory has been extended to the model in (2) for a certain

class of Banach spaces. Particularly, in this paper, we consider Banach spaces of dual type

2, which is defined as follows.

Definition 1.1 (Banach space of type p [28]). A Banach space Y is of type p if(
E

∥∥∥∥∥∑
j

εjyj

∥∥∥∥∥
p

Y

)1/p

≤ c

(∑
j

‖yj‖pY

)1/p

(3)

holds for some numerical constant c and every finite sequence (yj) ⊂ Y , where (εj) denotes

a Rademacher sequence. The type p constant of Y , denoted by Tp(Y ), is the smallest

constant c that satisfies (3).

A generalization of partial Fourier is given by general group actions. Specifically the

measurements are obtained through a fixed measurement functional from randomly selected

samples of the orbit of the input by given group actions. To simplify the expression for

the number of measurements providing RIP, we impose an additional structure to Banach

space X so that the corresponding model is invariant under the group actions. This is

formally stated as follows.

Definition 1.2 (G-invariance). A set K is G-invariant if σ(g)K := {σ(g)x : g ∈ G, x ∈

K} coincides with K for all g ∈ G.

Given the generalized sparsity model in (2) for Banach space X of dual type 2 together

with the G-invariance of K, the following theorem presents the main result of [20] in this

particular case.
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Theorem 1.3 (A paraphrased version of [20, Theorem 5.3]). Let K ⊂ BN
2 be a convex body

and X be the Banach space induced by the Minkowski functional of K. Let σ : G → ON

be a continuous group homomorphism of a finite group G to the orthogonal group ON . Let

g1, . . . , gm ∈ G be independent copies of a uniform random variables on G. Let η ∈ X∗ be

fixed. Suppose that the following conditions hold: i) X∗ has type 2; ii) K is G-invariant;

iii) σ(g)∗η is isotropic. Then there exists a numerical constant c such that for δ ∈ (0, 1)

sup
‖x‖X≤

√
s

‖x‖2=1

∣∣∣∣∣ 1

m

m∑
j=1

|〈η, (σ(gj)x〉|2 − ‖x‖22

∣∣∣∣∣ ≤ δ
holds with probability 1− ζ provided

m ≥ cδ−2smax
{
T2(X

∗)2(1 + lnm)5, ln(ζ−1)
}
‖η‖2X∗ . (4)

The result of Theorem 1.3 generalizes existing RIP theory [37, 36, 12, 27] in terms of

both the restriction model and measurement operator, which applies to a broader context

of applications and also helps improve the RIP analysis of certain type of measurement

operators. However, the generalized models lose the useful sub-additive structures in the

conventional models. This ends up with a penalty in applying the result to dimensionality

reduction. This paper will discuss the pros and cons of Theorem 1.3 in the above perspec-

tives. It will also present an extension of Theorem 1.3 to infinite dimension. The contents

are summarized in a simplified form below and further elaborated in the following sections.

1.1 RIP of partial discrete short-time Fourier transform:

The first vignette shows how Theorem 1.3 can be utilized to improve the number of mea-

surements for RIP. Recall that the group structured measurement model in Theorem 1.3

generalizes the Fourier transform. We will focus on the action of a partial discrete short-

time Fourier transform (DSTFT) on the canonical sparsity model. Let η ∈ RN denote the

window of length L. We assume that the nonzero entries of η decays exponentially with
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parameter α, i.e. the jth largest magnitude is proportional to j−α. This decay model de-

scribes the behavior of the Poisson window. We consider partial DSTFT with η as above.

Moreover, we consider relaxations of the canonical sparsity model consisting of all r-sparse

vectors with at most r nonzero entries. Let 1 < q ≤ 2 and q′ satisfy 1/q + 1/q′ = 1. Since

an r-sparse x ∈ `N2 satisfies ‖x‖q′ ≤ r1/2−1/q
′ ‖x‖2, it follows that Γs in (2) with s = r1−2/q

′

includes the set of r-sparse vectors. In other words, Γs relaxes the canonical sparsity model.

The following result is a direct consequence of Theorem 1.3 on this particular scenario while

the number of measurements is optimized over the choice of X = `Nq for 1 < q ≤ 2.

Corollary 1.4. Suppose that η ∈ RN is supported on the first L coordinates and the

magnitudes of η decay exponentially with α ≤ 1/ ln(N/r). Then the random partial DSTFT

with η satisfies RIP on r-sparse vectors with high probability if the number of measurements

m scales proportional to r up to a logarithmic factor.

Indeed the optimization over X is crucial to derive the result with a less demanding

requirement on α. With fixed X = `Nq for q′ = lnN , which approximates the case of

X = `N1 , RIP by the same number of measurements is obtained when the decay parameter

satisfies α ≤ 1/ lnN . Therefore it allows a significantly slower decay of the magnitudes of

η than Corollary 1.4. The gain is obtained from the flexibility of Theorem 1.3 that allows

various relaxations of the canonical sparsity model given by choice of Banach space X.

1.2 RIP on non-sub-additive sparsity models

Conventional sparsity models such as sparse vectors, low-rank matrices, and their gener-

alization to atomic models [9] are described as a union of subspaces. These models are

sub-additive in the sense that the difference of two s-sparse vectors is 2s-sparse, i.e. the

sparsity level is sub-additive. Unfortunately, this property does not hold for the general-

ized sparsity model in (2), which is given by a nonconvex cone. Particularly, compared

to the conventional sparsity models, a central drawback in the generalization is that the
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difference x−y of two (K, s)-sparse vectors x and y is no longer (K, 2s)-sparse. In fact, the

adversarial instance of x−y can attain the maximum (trivial) sparsity level. Consequently,

RIP on Γ2s does not necessarily imply RIP on Γs − Γs, which denotes the Minkowski sum

of Γs and −Γs. In fact, the latter property plays a crucial role for dimensionality reduction

that preserves the distance of any pair from Γs and recovery of signal in Γs by convex

programming [42].

The second vignette shows that despite the lack of sub-additivity one can still obtain an

RIP-like result for the generalized sparsity model if the measurement operator A satisfies

“multiresolution” RIP, that is A satisfies RIP on (K, 2ls)-sparse vectors with distortion

max(2l/2δ, 2lδ2) for all b− log2 sc ≤ l ≤ dlog2(
∥∥Id : `N2 → X

∥∥2 /s)e.
Theorem 1.5. Suppose that A satisfies multiresolution RIP. Let x and y be (K, s)-sparse

vectors. If ‖Ax−Ay‖2 ≥ 4
√

2δ, then(
1− 1√

2

)
‖Ax−Ay‖22 ≤ ‖x− y‖

2
2 ≤

(
1 +

1√
2

)
‖Ax−Ay‖22 .

Otherwise ‖x− y‖2 ≤ 8δ.

The consequence of Theorem 1.5 is obviously weaker than the analogous result by RIP

on Γs − Γs. The former implies that A preserves the distance only when the images of

x − y via A is larger than certain threshold. Otherwise it can only say that two (K, s)-

sparse vectors are close by being within certain distance. Particularly the map A restricted

on Γs − Γs may not be injective. Alternatively the result of Theorem 1.5 implies that A

provides a near isometric map with additive distortion instead of multiplicative distortion.

A similar phenomenon occurs in embedding with 1-bit quantization [18].

On a positive side, the group structured measurement operator in Theorem 1.3 provides

the multiresolution RIP while the number of measurements scales in the same order. The

weaker RIP result on Γs−Γs with additive distortion can still be useful in some applications

such as locality-sensitive hashing.
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1.3 RIP of group structured measurement operator with random sign

In a companion paper [20], it has been shown that Theorem 1.3 provides near optimal RIP

results on several examples of the generalized sparsity models, for which the number of

measurements scales proportional to the sparsity level up to a logarithmic factor. However,

for certain other instances, RIP holds with significantly more measurements. This is not

the case for the Gaussian measurement operator. It provides RIP on any set Γ with the

number of measurements scaling optimally with respect to the complexity of Γ [14]. This

weakness of Theorem 1.3 compared to the Gaussian case can be mitigated by incorporating

random sign into the measurement operator. Oymak et al. [34] showed that a measurement

operator with multiresolution RIP on the canonical sparsity model following random sign

provides RIP on an arbitrary set. By applying their result, we obtain RIP of the group

structured measurements with random sign similar to the Gaussian measurement case.

Corollary 1.6. Let A denote the composition of the measurement operator in Theorem 1.3

and a diagonal operator with random ±1 entries. Then with high probability A satisfies RIP

on all (K, s)-sparse vectors if m is proportional to the squared Gaussian width of Γs∩SN−1

up to a logarithmic factor, where SN−1 denotes the unit sphere in `N2 .

1.4 Extension to infinite-dimensional models

Lastly we illustrate how Theorem 1.3 extends to infinite dimension. The Hilbert space

`N2 is substituted by a seminormed space given as a subspace of L2[0, 1] equipped with a

seminorm ‖f‖2,w := (
∑

k∈Zwkf̂ [k]2)1/2, where f̂ [k] denotes the kth Fourier series coefficient

and (wk)k∈Z is a nonnegative weight sequence. Then we derive an extension of Theorem 1.3

to the sparsity model given by ‖f‖X ≤
√
s ‖f‖2,w.

Theorem 1.7. Let X ⊂ L2[0, 1] be a Banach space with unit ball K. Let σ : G→ U be a

continuous group homomorphism of a group G to the unitary group U . Let g1, . . . , gm be

independent copies of a Haar-distributed random variable on G. Suppose that the following
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conditions hold: i) X∗ has type 2; ii) X is a Banach lattice1; iii) K is G-invariant; iv)

E
∑m

j=1 |〈η, σ(gjf)〉|22 = m‖f‖22,w for all f ∈ L2[0, 1]; and v) σ(g) commutes with any

point-wise operation on f ∈ L2[0, 1]. Then there exists a numerical constant c such that

for δ ∈ (0, 1)

sup
‖f‖X≤

√
s

‖f‖2,w=1

∣∣∣∣∣ 1

m

m∑
j=1

|〈η, σ(gj)f〉|22 − ‖f‖22,w

∣∣∣∣∣ ≤ δ
holds with probability 1− ζ provided

m ≥ cδ−2s
{
T2(X

∗)2(1 + ln d)5(1 + lnm)5 + ln(ζ−1)
}
‖η‖2X∗ .

The result of Theorem 1.7 will become substantive through concrete examples of spar-

sity models given by a specific choice of Banach space X. Particularly we consider a model

given by the Lebesgue measure of the support of f , which naturally extends the canoni-

cal sparsity in finite dimension. This model is further restricted by a Sobolev seminorm.

We also illustrate the result over another class of continuous-time signals constrained by

the Sobolev (1, q)-seminorm, which has been shown an effective regularizer for denoising

similar to total variation.

The above infinite-dimensional sparsity models are compared to those appearing in

the literature as follows. The spike model refers to a superposition of Dirac’s impulses.

Recovery of the spike model from Fourier coefficients has been extensively studied [40,

7, 19, 5, 6, 4]. There also exist extensions to signals of finite rate of innovations (FRI)

[45, 13, 16, 35, 30–32] and to a sparsity model in a countable representation system [2]. Note

that these models are either restricted to point measures supported on a set of measure

zero or obtained via an approximation by a certain form of discretization. In contrast,

the infinite-dimensional model in Theorem 1.7 does not suffer from these limitations and

provides more flexibility in describing signals in infinite dimension. However, due to the

1A Banach space X is a lattice if |f | ≤ |h| implies ‖f‖X ≤ ‖h‖X . As a consequence, the norm is invariant

under point-wise sign change.
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lack of sub-additivity of sparsity level, Theorem 1.7 does not imply RIP on the Minkowski

difference of the sparsity model, which could have provided recovery guarantee by convex

programming via the result by Traonmilin and Gribonval [42]. From this perspective,

Theorem 1.7 is weaker than previous work on the other infinite-dimensional models.

1.5 Notation

The symbols c, c1, c2, . . . and C,C1, C2, . . . will be reserved to denote positive numerical

constants, which may vary from line to line. We will use notation for various Banach spaces

and norms. The norm of a Banach space X is denoted by ‖ · ‖X . For brevity, we use the

shorthand notation ‖ ·‖q for the norm of `Nq and Lq[0, 1]. The distinction will be clear from

the context. Moreover BN
q and Bq will denote the unit ball of `Nq and Lq[0, 1], respectively.

The identity operator will be denoted by Id. The operator norm will be denoted by ‖ · ‖

without any subscript. We also use the following two big-O notations: First y = O(x)

implies that there is a numerical constant c > 0 independent of two positive numbers x

and y such that y ≤ cx, which is also equivalently written as y . x or x & y. If y ≤ cx

with c depends on a logarithmic function of x and y, then it will be denoted by y = Õ(x).

2 Optimized analysis over relaxations of canonical sparsity

model

The first vignette will demonstrate how Theorem 1.3 can be leveraged to optimize the

number of group structured measurements that provides a near isometric map on sparse

signals. Here we consider the canonical sparsity model that constrains the number of

nonzero entries and its relaxations given by a set of Banach spaces `Nq for q ∈ [1, 2).

The approach will be illustrated over random partial discrete short-time Fourier transform

(DSTFT) with a decaying window. The optimization is carried out over the choice of the
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Banach space `Nq .

We start with showing how DSTFT is described by a set of group actions. Let η ∈ RN

represent a window of length L, i.e. η[l] = 0 for L ≤ l < N , where the time index system

is zero-based and modulo N . The windowed discrete Fourier transform (DFT) of x ∈ RN

with time-shift t ∈ ZN and at frequency k ∈ ZN is given by

c(t, k) =

N−1∑
l=0

x[l]η[l − t]e−i2πkl/N . (5)

The windowed DFT in (5) is indeed described by a set of group actions as follows. Let σ

denote the group homomorphism of ZN ×ZN to the orthogonal group given ON given by

σ : (t, k) 7→ ΛtShk , (6)

where Λ : CN → CN denotes the modulation operator defined by

Λ(el) = ei2πl/Nel , ∀l = 1, . . . , N ,

and Sh : CN → CN acts as the circular shift modulo N , i.e.

Sh(el) =


el+1 1 ≤ l ≤ N − 1 ,

e1 l = N .

Here e1, . . . , eN denote the standard basis vectors in CN . Then the windowed DFT coeffi-

cient in (5) is written as a group structured measurement given by

c(t, k) = 〈η, σ(t, k)x〉 .

Alternatively, the entire set of measurement functionals is described as the orbit of η over

G, that is {σ(t, k)∗η : (t, k) ∈ G}.

The windowed DFT generalizes DFT as the latter is a special case with η = (1, . . . , 1) ∈

RN , where c(t, k) is uniquely determined by k regardless the choice of t. However, we are

more interested in the scenario where L < N , which corresponds to DSTFT. Moreover,
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windows those providing a certain decay property such as Hann window or Gaussian win-

dow are commonly used in practice. In what follows, we consider a Poisson-like window η

with exponentially decaying magnitudes.

From Theorem 1.3 we obtain a sufficient number of random DSTFT measurements

that provides a near isometry on sparse signals. The following corollary is a consequence

of Theorem 1.3 for a Banach space X that approximates `N1 .

Corollary 2.1. Let (t1, k1), . . . , (tm, km) be independent copies of a uniform random vari-

able on ZN ×ZN . For η = (η1, . . . , ηN ) ∈ RN , with (η↓j )1≤j≤N denoting the rearrangement

of (|ηj |)1≤j≤N in the non-increasing order, suppose that there exist α ∈ (0, 1/2), β > 0,

γ ≥ 1, and L < N such that i) βj−α ≤ η↓j ≤ βγj−α for 1 ≤ j ≤ L; ii) η↓j = 0 for

L < j ≤ L; iii) ‖η‖2 =
√
N . Then there exists a numerical constant c > 0 such that

P

 sup
‖x‖0≤r, ‖x‖2=1

∣∣∣∣∣ 1

m

m∑
j=1

∣∣∣〈σ(tj , kj)
∗η, x〉

∣∣∣2 − ‖x‖22
∣∣∣∣∣ ≥ δ

 ≤ ζ (7)

provided

m ≥ cδ−2rmax{(1 + lnL)2(1 + lnm)5, ln(ζ−1)} · γ
2N2α(1− 2α)

1− L−1+2α
·
(
N

L

)1−2α
.

Proof. We apply Theorem 1.3 for X = `Nq with q = 3 lnL/(3 lnL− 1). First we verify that

the assumptions of Theorem 1.3 are satisfied. Note that X∗ = `Nq′ , where q′ = 3 lnL >

2 for any L ≥ 2. Therefore X∗ has type 2 and the type 2 constant T2(X
∗) is upper-

bounded by
√
q′ [8, Lemma 3]. Moreover, the unit ball K = BN

q is G-invariant, where

the group homomorphism σ is from ZN × ZN to ON as in (6). This is deduced from the

following two observations: Since Λ is represented as a diagonal matrix whose diagonal

entries are complex numbers of unit modulus, the `q-norm is invariant under Λ. It is also

straightforward to see that the `q-norm is invariant under Sh. Lastly, as shown in [20,

Section 4.2.1], since σ is irreducible, i.e. the only subspaces invariant under group actions

are {0} and X, it follows that σ(tj , kj)
∗η is an isotropic random vector.
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It remains to derive an upper bound on ‖η‖q′ . By the assumptions on η, we have

N = ‖η‖22 ≥ β2
L∑
j=1

j−2α ≥ β2(L1−2α − 1)

1− 2α
. (8)

For the particular choice of q′ = 3 lnL, since η has only L nonzero entries, it follows that

‖η‖∞ ≤ ‖η‖q′ ≤ L
1/q′ ‖η‖∞ .

Since L1/3 lnL = e1/3, the two norms are equivalent up to a numerical constant. Therefore

we deduce

‖η‖2q′ ≤ β
2γ2 .

γ2N(1− 2α)

L1−2α − 1
.

Recall that the set {x ∈ RN : ‖x‖1 ≤
√
r ‖x‖2} is a well-studied relaxation of the

canonical sparsity model consisting of r-sparse vectors. Therefore, in Corollary 2.1, the

Banach space X was chosen so that it accurately approximates `N1 . However, as shown in

the following corollary, the number of measurements providing a near isometric map can

be significantly reduced over that in Corollary 2.1 by a näıve approach. We optimize it

over relaxations of the canonical sparsity model given by Banach space X.

Corollary 2.2. Suppose the hypothesis of Corollary 2.1 holds. Then there exists a numer-

ical constant c > 0 such that (7) holds if

m ≥ cδ−2rmax{α−2(1+lnm)5, ln(ζ−1)}·γ
2(1− 2α)(1 + lnL)2α

1− L−1+2α
·
(
N

r

)2α

·
(
N

L

)1−2α
. (9)

Proof. Let 1 < q < 2 and X = `Nq . We first verify that the assumptions of Theorem 1.3

hold. It follows that X∗ = `Nq′ with 2 < q′ < ∞ is of type 2 and the type 2 constant

T2(X
∗) is upper bounded by

√
q′ [8, Lemma 3]. Furthermore, similarly to the proof of

Corollary 2.1, we also have the G-invariance of BN
q and the isotropy of σ(tj , kj)

∗η. Indeed,

the arguments there remain valid for any q ≥ 1.
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Since any r-sparse x satisfies ‖x‖q′ ≤ r1/2−1/q
′ ‖x‖2, it follows that the set of (BN

q , s)-

sparse vectors where s = r1−2/q
′

provides a relaxation of the canonical sparsity model

consisting of r-sparse vectors. Therefore, by Theorem 1.3, the assertion in (7) holds if

m ≥ c δ−2r1−2/q′ max
{

(q′)2(1 + lnm)5, ln(ζ−1)
}
‖η‖2X∗ . (10)

It remains to derive an upper bound on ‖η‖X∗ . We recall that the normalization of η

implies (8). Next we choose q′ = 1/α and compute r1−2/q
′‖η‖2q′ as follows:

r1−2/q
′‖η‖2q′ ≤ r1−2/q

′
γ2β2

 L∑
j=1

j−q
′α

2/q′

≤ γ2(1− 2α)r1−2αN(1 + lnL)2α

L1−2α − 1
= r

(
L

r

)2α γ2(1− 2α)N(1 + lnL)2α

L(1− L−1+2α)
.

(11)

Then (9) is obtained as a sufficient condition for (10) by plugging in the upper bound in

(11).

Corollary 2.2 provides a tighter lower bound on the number of measurements than

Corollary 2.1 by a factor of ((1 + lnL)/r)2α. Alternatively, the two corollaries can be

compared in terms of the requirement on the decay parameter α that achieves a near

isometry with Õ(r) measurements. Suppose that the window length L is proportional

to N . According to the result by Corollary 2.1, α needs to be set to at least 1/ lnN ,

whereas Corollary 2.2 relaxes the requirement to α = 1/ ln(N/r). The improvement is

significant when the sparsity level is proportional to N . Therefore the optimized analysis

over relaxations of the canonical sparsity model allows that the near restricted isometry

property of random partial DSTFT applies to a broader class of window functions.
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3 Sketching non-sub-additive sparsity models

Theorem 1.3 extends existing RIP theory to generalized sparsity models. However, this

generalization comes at a cost that the model loses the sub-additivity of sparsity level. In

other words, a near isometric map does not necessarily preserve the distance between two

sparse vectors with the same distortion in preserving the length. The vignette in this section

illustrates how this penalty can be overcome by leveraging the notion of multiresolution

restricted isometry property (MRIP) [34].

In the conventional sparsity models, which are given by a union of subspaces, the

function that measures the sparsity level of a vector is sub-additive. For example, in

the canonical sparsity model, `0-pseudo-norm that counts the number of nonzero entries

measures the sparsity level of a vector and satisfies ‖x+ y‖0 ≤ ‖x‖0 + ‖y‖0 for any x and

y. The sparsity level function has the same sub-additivity for the low-rank matrix model

and more generally for an atomic model [9].

The generalized sparsity model in Theorem 1.3 does not provide the sub-additivity of

sparsity level. Therefore a near isometry on the set of (K, 2s)-sparse vectors does not

necessarily imply the same property on the Minkowski difference of the set of (K, s)-

sparse vectors with itself. For inverse problems with a generalized sparsity model, the

latter property is crucial for deriving a performance guarantee of recovery methods [42].

Theorem 1.3 only provides the former result and the extension to the Minkowski difference

is not straightforward because of significant difference in geometry between conventional

union-of-subspace models and the generalized model given by a nonconvex cone. We show

that it is possible to obtain a weaker result providing a restricted near isometry with

additive distortion instead of multiplicative distortion as in Theorem 1.3. The derivation

will rely on a modified version of MRIP described below.

MRIP was originally proposed for the canonical sparsity model to analyze sketching of

an arbitrary set with random sign [34]. As the name implies, MRIP consists of RIPs at
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various sparsity and distortion levels, where the two parameters vary simultaneously over

a certain range. We consider its extension with respect to a general sparsity model given

by a Banach space. Let X be a Banach space with unit ball K ⊂ BN
2 . Note that if K has

a nonempty interior then there exists a number

smax(K) = ‖Id : `N2 → X‖2 (12)

such that ‖x‖X ≤
√
smax(K)‖x‖2 holds for all x. For example, if H = `N2 and X = `N1 ,

then smax(K) = N . Given a sparsity generalized sparsity model by K with the maximum

sparsity level smax(K), MRIP on this model is defined as follows.

Definition 3.1 (Multi-resolution RIP for (K, s)-sparse vectors). Let X be a Banach space

with unit ball K ⊂ BN
2 and smax(K) be defined in (12). For δ > 0 and s ≥ 1, we say that

A ∈ Cm×N satisfies (K, s)-MRIP with distortion δ if

sup
‖x‖X≤

√
2ls, ‖x‖2=1

∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ max(2l/2δ, 2lδ2)

holds for all l ∈ Z satisfying b− log2 sc ≤ l ≤ dlog2(smax(K)/s)e.

Note that MRIP in Definition 3.1 is a generalization of the original definition by Oymak

et al. [34], which is obtained by substituting the canonical sparsity model by a generalized

model given by Banach space X. The generalized version in Definition 3.1 plays a key role

in analyzing sketching of non-sub-additive sparsity models.

Moreover, by definition, RIP is a special instance within MRIP at the resolution by

l = 0. Therefore one expects that a larger number of measurements are necessary to

provide MRIP compared to that for RIP. For certain measurement maps, MRIP can be

guaranteed by a number of measurements that scales in the same order compared to that

for RIP. This is the case with the group structured measurements in Theorem 1.3, which

will be shown in the end of this section.

The following theorem demonstrates that (K, s)-MRIP provides a restricted near isom-

etry on the Minkowski difference of the set of (K, s)-sparse vectors in a weaker sense.
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Theorem 3.2. Let K ⊂ BN
2 and X be the Banach space whose unit ball is K. For δ > 0,

s ≥ 1, and smax(K) defined in (12), suppose that A ∈ Cm×N satisfies (K, s)-MRIP with

distortion δ. Then we have the following results for any (K, s)-sparse unit vectors x and y

in `N2 : If Ax and Ay are separated enough by satisfying

‖Ax−Ay‖2 ≥ 4
√

2δ , (13)

then we have (
1− 1√

2

)
‖Ax−Ay‖22 ≤ ‖x− y‖22 ≤

(
1 +

1√
2

)
‖Ax−Ay‖22 . (14)

Otherwise, if (13) is violated, then

‖x− y‖2 ≤ 8δ . (15)

Proof of Theorem 3.2. Let h = x − y denote the difference between x and y. We first

show that

∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ max

{√
2δ‖x− y‖X‖x− y‖2√

s
,

2δ2‖x− y‖2X
s

}
. (16)

It follows from the definition of smax that there exists l ∈ Z such that

b− log2 sc ≤ l ≤ dlog2(smax(K)/s)e (17)

and

2ls <
‖h‖2X
‖h‖22

≤ 2l+1s . (18)

This implies that h is (K, 2l+1s)-sparse. Thus the MRIP assumption provides

∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ max{δl+1, δ
2
l+1}‖h‖22 , (19)

where δl+1 := 2(l+1)/2δ. If δl+1 < 1, then by (18) the right-hand side of (19) is upper-

bounded by

δl+1‖h‖22 = 2(l+1)/2δ‖h‖22 ≤
√

2δs−1/2‖h‖X‖h‖2 . (20)

16



Otherwise, if δl+1 ≥ 1, then the right-hand side of (19) is bounded from above by

δ2l+1‖h‖22 = 2l+1δ2‖h‖22 ≤ 2δ2s−1‖h‖2X . (21)

Plugging in (20) and (21) into (19) provides (16).

By the triangle inequality, we obtain

‖x− y‖X ≤ ‖x‖X + ‖y‖X ≤
√
s ‖x‖2 +

√
s ‖y‖2 ≤ 2

√
s .

Therefore from (16) we can continue as∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ max{2
√

2δ‖h‖2, 8δ2} . (22)

Then we proceed with the proof by considering the following two complementary cases.

Case 1: ‖h‖2 ≥ ‖Ah‖2. It follows that 2
√

2δ‖h‖2 ≥ 16δ2 and the maximum in (22) is

attained by the first term. Thus by (13) and (22), we have

‖h‖22 − ‖Ah‖22 ≤ 2
√

2δ‖h‖2 ≤
‖h‖22

2
,

which implies ‖h‖2 ≤
√

2‖Ah‖2. This together with (13) and (22) provides∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ 4δ‖Ah‖2 ≤
‖Ah‖22√

2
. (23)

Note that (23) is equivalent to (14).

Case 2: ‖h‖2 ≤ ‖Ah‖2. It follows from (22) and (13) that∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ 2
√

2δ‖Ah‖2 ≤
‖Ah‖22

2
,

which implies (14). Thus the first assertion is proved.

The second assertion is proved by contradiction. Suppose that ‖Ah‖2 < 4
√

2δ and

‖h‖2 > 8δ hold simultaneously. In this case the first term achieves the maximum in (22).

Therefore (22) provides

‖h‖22 − ‖Ah‖22 ≤ 2
√

2δ‖h‖2 ≤
‖h‖22
2
√

2
.
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Then it follows that

‖h‖22 ≤
2
√

2

2
√

2− 1
‖Ah‖22 < 64δ2 < ‖h‖22 ,

which is a contradiction. Therefore, ‖Ah‖2 < 4
√

2δ implies ‖h‖2 ≤ 8δ. This completes the

proof.

Theorem 3.2 implies that if the distance between Ax and Ay for two unit-norm sparse

vectors x and y is larger than 4
√

2δ, then the distance between x and y in `N2 is equivalent to

‖Ax−Ay‖2 up to a constant factor. In other words, one can distinguish x and y from their

linear measurements. However, if Ax and Ay are close by satisfying ‖Ax− Ay‖2 < 4
√

2δ,

then Theorem 3.2 only confirms that ‖x−y‖2 is less than 8δ, i.e., one cannot distinguish two

similar sparse vectors x and y from their measurements. Obviously, this result is weaker

than sketching any two sparse vectors (regardless of the amount of distance) given by the

restricted isometry on a sub-additive sparsity model. However, this weak result applies to a

broader class of signals and can be useful for certain applications. For example, in locality-

sensitive hashing, if the centroids of clusters are well separated via the dimensionality

reduction via A, then one can compute clustering in the compressed domain.

Remark 3.3. We did not attempt to optimize the constants in Theorem 3.2. The result

can be stated with positive constants α and β that satisfy α > 2
√

2 and α2 < β(β − 2
√

2)

as follows: If ‖Ah‖2 ≥ αδ, then1− 2
√

2√
α(α− 2

√
2)

 ‖Ah‖22 ≤ ‖h‖22 ≤
1 +

2
√

2√
α(α− 2

√
2)

 ‖Ah‖22 .
Otherwise, if ‖Ah‖2 < αδ, then ‖h‖2 ≤ βδ. One may optimize the constants α and β in

order to further tighten the estimates.

Next, in the following corollary, we demonstrate that MRIP preserves the `2-norm of

two (K, s)-sparse unit vectors x and y under a mild condition on the sparsity level of x−y.
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Corollary 3.4. Suppose that the hypothesis of Theorem 3.2 holds. For any ε > 0, we have

∣∣‖Ax−Ay‖22 − ‖x− y‖22∣∣ ≤ min

{
‖x− y‖22

1 + ε
, 2
√

2δ‖x− y‖2
}

(24)

provided that x, y ∈ SN−1 are (K, s)-sparse and satisfy

‖x− y‖X ≤
√
s‖x− y‖2√
2(1 + ε)δ

. (25)

Remark 3.5. Corollary 3.4 preserves the distance of two (K, s)-sparse vectors x, y by (24)

if the sparsity level of the difference x − y is below the threshold s/2(1 + ε)2δ2, which is

higher than the sparsity level s of each of x and y for small δ. The estimate in (24) implies

that the distortion is strictly less than ‖x− y‖22, which implies a local injectivity.

Since the `2-norm is preserved by RIP up to a small multiplicative distortion δ, we can

always compare two spare vectors after normalization. Suppose that ‖x‖2 = ‖y‖2 = 1.

Then (24) also implies that the distortion is no larger than 2
√

2δ‖x − y‖2. Although this

distortion bound is more conservative than δ‖x − y‖22, which is available if the sparsity

level is sub-additive, it can still be useful for certain applications. For example, similar

deviation bounds have been used in the analysis of iterative optimization algorithms for

matrix completion (see [10, Lemma 5] and [47, Lemma 8]).

Proof of Corollary 3.4 . The arguments in that for Theorem 3.2 are used to prove Corol-

lary 3.4 . For the sake of claity, we repeat these arguments. Let h = x−y. By the definition

of smax that there exists l ∈ Z such that b− log2 sc ≤ l ≤ dlog2(smax(K)/s)e and

2ls <
‖h‖2X
‖h‖22

≤ 2l+1s . (26)

The upper bound in (26) implies that h is (K, 2l+1s)-sparse. Thus by MRIP we have

∣∣‖Ah‖22 − ‖h‖22∣∣ ≤ max{δl+1, δ
2
l+1}‖h‖22 , (27)

where δl+1 := 2(l+1)/2δ. From the lower bound in (26) together with the assumption in
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(25) for h = x− y provides

2ls <
‖h‖2X
‖h‖22

≤ s

2(1 + ε)2δ2
,

which implies

δl+1 = 2(l+1)/2δ <
1

1 + ε
< 1 .

Therefore the upper bound in (27) reduces to

δl+1‖h‖22 = 2(l+1)/2δ‖h‖22 ≤
√

2δ‖h‖X‖h‖2√
s

, (28)

where the second step follows from the lower bound in (26). Recall that ‖h‖X is upper-

bounded by (25). Moreover since each of x and y is (K, s)-sparse, by the triangle inequality,

we obtain

‖h‖X ≤ ‖x‖X + ‖y‖X ≤
√
s(‖x‖2 + ‖y‖2) = 2

√
s .

The assertion is obtained by plugging in the minimum of these two upper bounds on ‖h‖X
into (28).

Next we show that Theorem 3.2 provides a recovery guarantee for the following opti-

mization problem:

minimize
x̃

‖x̃‖X

subject to Ax̃ = Ax, ‖x̃‖2 = 1 .
(29)

Suppose that x satisfies ‖x‖2 = 1 and ‖x‖X ≤
√
s. Let x̂ be the solution to (29). Since

x is feasible in (29), we have ‖x̂‖X ≤ ‖x‖X ≤
√
s. Moreover, x̂ also satisfies ‖x̂‖2 = 1.

Therefore, by Theorem 3.2, it follows that ‖x̂− x‖2 ≤ 8δ.

However, the optimization in (29) is a nonconvex program with a spherical constraint.

Furthermore, computing the X-norm may be expensive (e.g. certain tensor norms are

NP-hard to compute. [17]). It will be a fruitful direction to pursue a guaranteed method

and its practical implementation to solve (29).

Finally we conclude this section by showing that MRIP holds with high probability for

the group structured measurements in Theorem 1.3.

20



Proposition 3.6. Suppose that the hypothesis of Theorem 1.3 holds and smax(K) is defined

in (12). Then there exists a numerical constant c such that

A =
1√
m

[
σ(g1)η . . . σ(gm)η

]∗
∈ Cm×N

satisfies (K, s)-MRIP with distortion δ with probability 1− ζ provided

m ≥ cδ−2smax
{
T2(X

∗)2(1 + lnm)5, ln ln(smax(K)) + ln(ζ−1)
}
‖η‖2X∗ . (30)

Proof. Fix l ∈ IN. Since it trivially holds that 2ls/(2l/2δ)2 = s/δ2, it follows from Theo-

rem 1.3 that there exists a numerical constant c such that (30) implies

P

 sup
‖x‖0≤2ls, ‖x‖2=1

∣∣∣∣∣ 1

m

m∑
j=1

|〈η, σ(gj)x〉|2 − ‖x‖22

∣∣∣∣∣ ≥ max(2l/2δ, 2lδ2)

 ≤ ζ

dlog2(smax(K))e
.

Since l was arbitrary, the assertion is obtained by applying the union bound over b− log2 sc ≤

l ≤ dlog2(smax(K)/s)e.

4 Sketching by group structured measurements with ran-

dom sign

The third vignette demonstrates how Theorem 1.3 can be strengthened by introducing

extra randomness to the group structured measurement operator. Specifically we show that

the composition of the group structured measurement operator and the diagonal operator

with random sign achieves a restricted near isometry on any set by the “Gordon-optimal”

number of measurements. For the baseline of comparison, we first recall the result by

Gordon [14] on the number of Gaussian measurements for sketching an arbitrary set.

Theorem 4.1 (Gordon’s escape through the mesh [34, Theorem 1.2]). Let 0 < δ < 1, T

be a subset of the unit sphere SN−1, and ξ1, . . . , ξm be i.i.d. Normal(0, b−2m IN ) for bm =
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√
2Γ(m/2)/Γ((m+ 1)/2), where Γ denotes the Gamma function. Then

P

sup
x∈T

∣∣∣∣∣
m∑
j=1

|〈ξj , x〉|2 − ‖x‖22

∣∣∣∣∣ ≥ δ
 ≤ ζ

holds provided

m ≥ δ−2
(
w(T ) +

√
2 ln(2/ζ)

)2
,

where w(T ) denotes the Gaussian width of T defined by

w(T ) := E sup
x∈T
〈ξ, x〉 . (31)

Remark 4.2. The Gaussian width in (31) satisfies w(T ) = w(absconv(T )), where absconv(T )

denotes the absolute convex hull of D. It also coincides with the Gaussian-summing norm,

also known as the `-norm, of the identity operator from `N2 to Y , where Y is the Banach

space with unit ball as absconv(T ) [11].

Further extensions of Theorem 4.1 showed that random matrices with either i.i.d. sub-

gaussian entries or i.i.d. subgaussian rows also achieve a similar near optimal sample

complexity result in Theorem 4.1 [21, 22, 29, 33]. However these random matrices do not

provide a useful structure for fast computation. In contrast, the group structured mea-

surement operator in Theorem 1.3 can describe Fourier transform and its generalization

to a broader class including Gabor transform, short-time Fourier transform, and Radon

transform. In a companion paper [20], we have shown that the number of group structured

measurements m for RIP in Theorem 1.3 scales near optimally for certain sparsity models

(e.g. sparsity models with respect to Banach spaces X = `N1 for the canonical sparsity or

X = Sn1 for low-rankness). However, in general, one might need a larger number of mea-

surements for the group structured case than the Gaussian case by more than a logarithmic

factor. To strength Theorem 1.3 so that it is comparable to Theorem 4.1, we adopt the

idea of applying random sign before the structured measurement operator.

Oymak et al. [34] showed that the composition of a matrix providing the multiresolution

RIP, which is formally defined below, and a random sign operator provides near isometric
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sketching of an arbitrary set where the number of measurements is slightly larger than that

for Theorem 4.1 only by a logarithmic factor. This result generalizes an earlier work by

Krahmer and Ward [23] that applies to any finite set. Below we provide a summary of the

result by Oymak et al. [34] for the convenience of readers. Multiresolution RIP is formally

defined as follows:

Definition 4.3 (Multiresolution RIP [34]). We say that A : `N2 → `m2 satisfies multires-

olution restricted isometry property (MRIP) with distortion level δ > 0 and sparsity level

s ≥ 1 if

sup
‖x‖0≤2ls

∣∣‖Ax‖22 − ‖x‖22∣∣ ≤ max(2l/2δ, 2lδ2)

for all l = 0, 1, . . . , dlog2(N/s)e.

The following theorem by Oymak et al. [34] shows that a matrix with multiresolution

RIP followed by random sign provides near isometric sketching.

Theorem 4.4 (Oymak et al. [34, Theorem 3.1]). Let T ⊂ SN−1 and Dε ∈ RN×N be a

diagonal matrix with a Rademacher sequence on the diagonal. Then there exists a numerical

constant c such that if H ∈ Rm×N obeys MRIP with sparsity and distortion levels s =

200(1 + ln(ζ−1)) and δ̃ = cδ/w(T ), then for δ ∈ (0, 1)

P
{

sup
x∈T

∣∣∣‖HDεx‖22 − ‖x‖
2
2

∣∣∣ ≥ δ} ≤ ζ .
Combining the multiresolution RIP result for group structured measurements in Propo-

sition 3.6 and Theorem 4.4 provides the following corollary.

Corollary 4.5. Let T ⊂ SN−1 and Dε be as in Theorem 4.4. Suppose that the hypothesis

of Theorem 1.3 holds with X = `Nq for q = ln(N)/ ln(N/e). Then there exists a numerical

constant c such that for δ ∈ (0, 1)

P

sup
x∈T

∣∣∣∣∣ 1

m

m∑
j=1

|〈Dεσ(gj)
∗η, x〉|2 − ‖x‖22

∣∣∣∣∣ ≥ δ
 ≤ ζ
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provided

m ≥ cδ−2w(T )2(1 + ln(ζ−1))2 max
{

(1 + lnN)(1 + lnm)5, 1 + ln(ζ−1)
}
‖η‖2∞ .

Proof. The assertion follows by combining Proposition 3.6 for K = BN
q and Theorem 4.4.

To achieve near isometric sketching at the sample complexity comparable to Gordon’s

result, it is important for matrix A to satisfy RIP at a near optimal rate. Oymak et al. [34]

considered a set of such random matrices including partial Fourier [37] and its generaliza-

tion to a subsampled bounded orthogonal system [36]. Corollary 4.5 demonstrates that a

group structure measurement operator, which is considered as a generalization of partial

Fourier along a different perspective, also provides a Gordon-optimal isometric sketching

by leveraging Theorem 1.3. For example, DSTFT in Section 2 does not belong to a set of

bounded orthogonal systems.

For a special case of Corollary 4.5, we consider T = Ks =
√
sK ∩ SN−1 for a fixed

convex body K ⊂ BN
2 . Then we obtain the following corollary.

Corollary 4.6. Suppose that the hypothesis of Corollary 4.5 holds. Then there exists a

numerical constant c such that for δ ∈ (0, 1)

P

 sup
‖x‖X≤

√
s, ‖x‖2=1

∣∣∣∣∣ 1

m

m∑
j=1

|〈Dεσ(gj)
∗η, x〉|2 − ‖x‖22

∣∣∣∣∣ ≥ δ
 ≤ ζ

holds provided

m ≥ cδ−2sw(K)2(1 + ln(ζ−1))2 max
{

(1 + lnN)2(1 + lnm)5, 1 + ln(ζ−1)
}
‖η‖2∞ . (32)

Proof. Let Ks =
√
sK ∩ SN−1. Then w(Ks) ≤ w(

√
sK) ≤

√
sw(K). The assertion follows

from Corollary 4.5 as a special case where T = Ks.
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Note that two key parameters w(K) and ‖η‖∞ determine the sufficient number of

measurements for RIP in (32) for the generalized sparsity model given by Banach space X.

The Gaussian width of the unit ball K describes the complexity of the model whereas the

second parameter ‖η‖∞ is corresponding to the incoherence of measurement functionals

to the canonical sparsity model, which is totally independent of the model by X. Due to

decoupling of the measurement operator and the sparsity model by random sign operator

Dε, the result holds without the G-invariance of the unit ball K in X. In other words,

the group structured measurement operator with random sign provides a near isometry

universally for any sparsity model.

One may deduce that it is always desirable to incorporate random sign to measure-

ments. However, in certain scenarios, a group structured measurements without random

sign can performs better due to its coupling to the sparsity model through the G-invariance.

For example, in a high-dimensional case with very large N , sampling-based approximation

of 〈η, σ(g)x〉 for selected group indices can accelerate sketching. Moreover, in an extreme

case, where the model is built on an infinite-dimensional vector space, discretization simi-

lar to the Marcinkiewicz-type problem [41] is inevitable unless an equipment that directly

takes measurements (like Fourier transform by a lens in optical imaging) is available. With

the G-invariance of the model, random sampling can be utilized to apply empirical method

universally to all selected group indices without increasing the approximation error. In

contrast, incorporating random sign may lose the restrictive power of the model and re-

sult in significantly increased approximation error. If the Banach space X is a lattice,

then it is also invariant under random sign and there will be no such penalty. However,

there are models which are not invariant with entry-wise sign changes such as low-rank

matrices/tensors and functions constrained by a Sobolev seminorm. Therefore we deduce

that the group structured measurements tightly coupled with the sparsity model through

G-invariance are still preferred over that with random sign in certain scenarios.
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5 Extension to infinite-dimensional sparsity models

In the last section, we present an extension of Theorem 1.3 that applies to an infinite-

dimensional “sparsity” model. We are interested in preserving (semi-) norms by finitely

many measurements up to certain accuracy. Similar to its counterpart in finite dimension,

this is possible only when the input is restricted appropriately. Particularly we consider

sparsity models those given by coupling various (semi-) norms on the vector space of

functions defined on the unit interval and measurements induced by a translation group.

A focus will be given to explain how the theory for infinite-dimensional models deviates

from the finite-dimensional counterpart. We start with an extension of Theorem 1.3 to an

abstract infinite-dimensional model via the Fourier series, which will be made substantive

with concrete examples that follow.

5.1 RIP on infinite-dimensional sparsity models

In Theorem 1.3, we considered a generalized sparsity model given as the set of vectors those

satisfying ‖x‖X ≤
√
s‖x‖2, where X is a Banach space in `N2 . In fact, the derivation of

Theorem 1.3 does not rely on the fact that `2-norm satisfies the definiteness, i.e. ‖x‖2 = 0

implies x = 0. Moreover, it does not depend on `N2 being finite dimensional. Below we

show that the result in Theorem 1.3 extends to an infinite-dimensional sparsity model

in L2[0, 1], which is obtained by substituting `N2 to a (semi-) normed space Hw and by

choosing a Banach space X in L2[0, 1]. Specifically we consider a class of (semi-) norms on

L2[0, 1] defined by using the Fourier series representation. Let (f̂ [k])k∈Z denote the Fourier

series of the periodization of f ∈ L2[0, 1], i.e.

f̂ [k] = 〈ψk, f〉 =

∫ 1

0
ψk(t)f(t)dt ,

where ψk : R→ C denotes the complex sinusoidal function defined by

ψk(t) = ei2πkt . (33)
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For a nonnegative sequence (wk)k∈Z, we define a weighted (semi-) norm by

‖f‖2,w =

(∑
k∈Z

wk

∣∣∣f̂ [k]
∣∣∣2)1/2

. (34)

For example, if wk = k for all k ∈ Z, then it follows that ‖f‖2,w = ‖f ′‖2 for all f ∈ C1[0, 1],

where f ′ denotes a weak derivative of f . Let Hw denote the (semi-) normed space equipped

with ‖ · ‖2,w. Particularly if wk > 0 for all k ∈ Z, then ‖ · ‖2,w is a valid norm and Hw is a

Hilbert space. Otherwise if (wk)k∈Z is finitely supported, then ‖ · ‖2,w is only a seminorm.

With the (semi-) norm defined in (34), we state the following theorem that extends

Theorem 1.3 to an infinite-dimensional case.

Theorem 5.1. Let X be the Banach space defined by the Minkowski functional of a convex

body K ⊂ B2, where B2 denotes the unit ball in L2[0, 1]. Let σ : G → U be a continuous

group homomorphism of a group G to the unitary group U acting on L2[0, 1]. Let g1, . . . , gm

be independent copies of a Haar-distributed random variable on G. Let u : X → `d2 be fixed.

Suppose the following conditions hold: i) X∗ has type 2; ii) X is a Banach lattice; iii)

K is G-invariant; iv) E
∑m

j=1 ‖u(σ(gj)f)‖22 = m‖f‖22,w for all f ∈ L2[0, 1], where ‖ · ‖2,w

is a (semi-) norm as in (34); and v) σ(g) commutes with any point-wise operation on

f ∈ L2[0, 1]. Then there exists a numerical constant c such that for δ ∈ (0, 1)

sup
‖f‖X≤

√
s

‖f‖2,w=1

∣∣∣∣∣ 1

m

m∑
j=1

‖u(σ(gj)f)‖22 − ‖f‖22,w

∣∣∣∣∣ ≤ δ
holds with probability 1− ζ provided

m ≥ cδ−2s
{
T2(X

∗)2(1 + ln d)5(1 + lnm)5 + ln(ζ−1)
}∥∥∥∥∥
(

d∑
l=1

|u∗(el)|2
)1/2∥∥∥∥∥

2

X∗

, (35)

where e1, . . . , ed denote the standard basis vectors in Rd.

Theorem 5.1 can be thought of as an extension of Theorem 1.3 from the following

perspectives: Most importantly, the sparsity model in Theorem 5.1 is built upon an infinite-

dimensional vector space together with `2-norm substituted by a (semi-) norm ‖·‖2,w, which
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may violate the definiteness. If the set V = {x : ‖x‖2,w = 0} is a subspace, then the result

of Theorem 5.1 implies a near isometry on the quotient space with respect to V . (One such

case will be illustrated in the next section.) Furthermore the measurements in Theorem 5.1

are obtained via u : L2[0, 1]→ `d2 from an orbit of the input. Therefore each measurement

is vector-valued whereas that in Theorem 1.3 is scalar-valued.

Proof of Theorem 5.1. It is straightforward to verify that [20, Theorem 2.1] still applies

when an Hilbert space H in the original statement is substituted by a (semi-) normed space

Hw with slight modifications described below. Specifically, the result of [20, Theorem 2.1]

remains valid when the assumption

sup
‖f‖H≤1

E
1

m

m∑
j=1

∥∥u(τtjf)
∥∥2
2
≤ 1 (36)

is substituted by

E
1

m

m∑
j=1

‖u(σ(gj)f)‖22 = ‖f‖22,w , ∀f . (37)

Indeed, the identity in (37) follows from the assumption that E‖u(σ(gj)f)‖2 = ‖f‖22,w.

Set the parameter p in [20, Theorem 2.1] to 2 and choose the 1-homogeneous function

αd on linear maps from X to `d2 so that

αd : w 7→

∥∥∥∥∥
(

d∑
l=1

|w∗(el)|2
)1/2∥∥∥∥∥

X∗

.

Since X is a Banach lattice, i.e. ‖|f |‖X = ‖f‖X for all f ∈ X, and X∗ has type 2, it follows

from [20, Theorem 3.11] that

M2,αd(K) . T2(X
∗)(1 + ln d)5/2 ,

where M2,αd(K) is defined in [20, eq. (7)]. Therefore the assumptions of [20, Theorem 2.1]

except (36) are satisfied. Recall that we substituted (36) by (37).
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In the above setting, the modification of [20, Theorem 2.1] provides the tail bound in

(42) if m satisfies

m ≥ cδ−2sT2(X∗)2(1 + ln d)5(1 + lnm)5 sup
k∈IN

(
E sup

1≤j≤m
αd(uτtj )

2k

)1/k

(38)

and

m ≥ cδ−2s sup
k∈IN

(
E sup

1≤j≤m

∥∥∥uτtj : X → `d2

∥∥∥2k)1/k

(39)

for some constant c. It remains to show that (35) implies both (38) and (39).

First we show that αd(uτtj ) = αd(u) for all j = 1, . . . ,m. Then the last factor in the

right-hand side of (38) simplifies to αd(u)2. Indeed αd(uτtj ) is written as

αd(uτtj ) = sup
‖f‖X≤1

〈
|f |,

(
d∑
l=1

|σ(gj)
∗u∗(el)|2

)1/2〉
.

Since σ(gj) commutes with both the point-wise square-root and point-wise magnitude

operators, we have〈
|f |,

(
d∑
l=1

|σ(gj)
∗u∗(el)|2

)1/2〉
=

〈
|f |, σ(gj)

∗

(
d∑
l=1

|u∗(el)|2
)1/2〉

=

〈
σ(gj)|f |,

(
d∑
l=1

|u∗(el)|2
)1/2〉

=

〈
|σ(gj)f | ,

(
d∑
l=1

|u∗(el)|2
)1/2〉

.

Therefore, by the assumption that K is G-invariant and X is a Banach lattice, we can

continue as

αd(uτtj ) = sup
‖f‖X≤1

〈
|f |,

(
d∑
l=1

|u∗(el)|2
)1/2〉

= αd(u) .

Similarly we simplify the right-hand side of (39) by dropping the supremum over k ∈ IN.

Since K is G-invariant, we have∥∥∥uσ(gj) : X → `d2

∥∥∥ = sup
‖f‖X≤1

‖u(σ(gj)f)‖2 = sup
‖f‖X≤1

‖u(f)‖2 =
∥∥∥u : X → `d2

∥∥∥
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for all j = 1, . . . ,m. Furthermore, by Jensen’s inequality, we have

‖u(f)‖2 =

(
d∑
l=1

|〈el, u(f)〉|2
)1/2

=

(
d∑
l=1

|〈u∗(el), f〉|2
)1/2

≤

〈(
d∑
l=1

|u∗(el)|2
)1/2

, |f |

〉
,

which, together with the fact that X is a Banach lattice, implies

∥∥∥u : X → `d2

∥∥∥ = sup
‖f‖X≤1

‖u(f)‖2 ≤ sup
‖f‖X≤1

〈(
d∑
l=1

|u∗(el)|2
)1/2

, |f |

〉
= αd(u) .

Finally the assertion follows by plugging in the above estimates to (38) and (39).

The next corollary follows from Theorem 5.1 as a special case where Banach space X is

set to Lq[0, 1] for 1 < q ≤ 2 and group actions represent all circular time shifts as follows:

Let τt denote the linear operator on L2[0, 1] that maps f to its translation to the right by

t ∈ [0, 1) modulo 1. Then t 7→ τt can be considered as a group homomorphism from [0, 1)

modulo 1 to a unitary group {τt : t ∈ [0, 1)} consisting of all time shifts modulo 1.2

Corollary 5.2. Let q ∈ (1, 2] and 0 < δ < 1. Let ‖ · ‖2,w be a (semi-) norm as in (34),

where (wj)j∈Z is determined explicitly by u : Lq[0, 1]→ `d2 as

wk = ‖u(ψk)‖22 . (40)

Suppose that t1, . . . , tm are independent copies of a uniform random variable on [0, 1). Then

E
1

m

m∑
j=1

‖u(τtjf)‖22 = ‖f‖2,w , ∀f ∈ L2[0, 1] . (41)

Moreover there exists a numerical constant c such that

P

 sup
‖f‖q≤

√
s

‖f‖2,w=1

∣∣∣∣∣ 1

m

m∑
j=1

‖u(τtjf)‖22 − ‖f‖22,w

∣∣∣∣∣ ≥ δ
 ≤ ζ (42)

2A unitary group in infinite dimension is defined as an inductive limit.
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holds provided

m ≥ cδ−2s
{
q′(1 + ln d)5(1 + lnm)5 + ln(ζ−1)

}∥∥∥∥∥
(

d∑
l=1

|u∗(el)|2
)1/2∥∥∥∥∥

2

q′

, (43)

where e1, . . . , ed denote the standard basis vectors in Rd.

Proof. Let j ∈ {1, . . . ,m} be arbitrary. Since ψj and ψk are complex sinusoids as in (33),

we have

E〈ψk, (τ∗t u∗uτt)ψj〉 =

∫ 1

0
ei2π(k−j)t〈ψk, (u∗u)(ψj)〉dt = δkj〈ψk, (u∗u)(ψj)〉 ,

where δkj denotes the Kronecker delta. Then (40) implies that Eτ∗t u∗uτt is a Fourier

multiplier with respect to (wk)k∈IN, i.e.

Eτ∗t u∗uτt : f 7→
∑
k∈Z

wkψk〈ψk, f〉 .

Therefore we obtain

E‖u(τtjf)‖22 = ‖f‖2,w, ∀j = 1, . . . ,m , (44)

which implies (41).

The second assertion is obtained as a consequence of Theorem 5.1. It only remains to

verify that the assumptions of Theorem 5.1 are satisfied. Let q′ satisfy 1/q + 1/q′ = 1.

Then Lq′ [0, 1] has type 2 with T2(Lq′ [0, 1]) ≤
√
q′ [8, Lemma 3]. Furthermore, Lq[0, 1]

is a Banach lattice and its unit ball is shift-invariant. The first assertion has already

satisfied E
∑m

j=1 ‖u(τtjf)‖22 = m‖f‖22,w for all f . Finally, it is straightforward to see that

τtj commutes with any point-wise operation.

Unlike the canonical sparsity model, where the sparsity level s counts the number of

nonzero elements, the corresponding parameter in the infinite-dimensional sparsity model

with Banach space Lq[0, 1] does not provide such a physical meaning in general. In the
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remainder of Section 5, we will illustrate the implication of Corollary 5.2 over two concrete

examples of weight sequence (wk)k∈IN with their matching sparsity models in finite dimen-

sions. The assertion will be made substantive in the context of these examples providing

physical interpretation.

5.2 Approximating continuous-time sparse signals

In the first example, we consider the acquisition of a continuous-time signal f that is

sparsely supported within [0, 1) but not necessarily continuous. This model arises, for

example, in imaging applications like seismology or functional magnetic resonance imaging,

where singularities convey information. It is often considered satisfactory to acquire the

signal up to certain frequency resolution, i.e. only the Fourier series coefficients f̂ [k] at

k ∈ [−N,N) for some finite N . Let V denote a subspace of L2[0, 1] given by

V =
{
f ∈ L2[0, 1] : f̂ [k] = 0, ∀k ∈ [−N,N)

}
and W be the quotient space L2[0, 1]/V . Then ‖·‖W is written as a seminorm ‖·‖2,w as in

(34) for (wk)k∈Z given by

wk =


1 −N ≤ k < N ,

0 otherwise .

(45)

Our objective here is to construct a near isometric map from a subset of W into finite

dimension, which will be made specific below. Particularly we show that it is possible to

construct such a near isometric map with m group structured measurements for m much

smaller than 2N . The map will be restricted to a set of continuous-time sparse signals

defined as

Kρ,γ :=
{
f ∈ L2[0, 1] : ‖f ′‖2 ≤ ρ‖f‖2, λ(supp(f)) ≤ γ

}
, (46)

where f ′ denotes a weak derivative of f [1] and λ denotes the normalized Lebesgue measure
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on [0, 1). Note that Kρ,γ is restricted to sparse signals, those with small Sobolev (1, 2)-

seminorm relative to L2-norm.

The next lemma shows that Kρ,γ is indeed a subset of the restricted domain in Corol-

lary 5.2. Therefore, we can utilize Corollary 5.2 to derive a near isometric map with group

structured measurements.

Lemma 5.3. Let (wk)k∈Z and Kρ,γ be as in (45) and (46), respectively. Suppose that ρ ≤

N/2. Then f ∈ Kρ,γ implies ‖f‖q ≤
√
s‖f‖2,w for q ∈ (1, 2] and s = (1 + 4ρ2/N2)γ2/q−1.

Proof. By Parseval’s theorem, we have

∑
|k|≥N

∣∣∣f̂ [k]
∣∣∣2 ≤ N−2

∑
k

∣∣∣kf̂ [k]
∣∣∣2 = N−2‖f ′‖22 .

This together with ‖f ′‖ ≤ ρ ‖f‖2 implies

‖f‖22 ≤ ‖f‖
2
2,w +

∑
|k|≥N

∣∣∣f̂ [k]
∣∣∣2 ≤ ‖f‖22,w +

ρ2 ‖f‖22
N2

.

Therefore, by using the fact that (1−t)−2 ≤ (1+4t) for 0 < t ≤ 1/4 and by the assumption

N ≥ 2ρ, we deduce

‖f‖2 ≤ (1− ρ2/N2)−1‖f‖2,w ≤ (1 + 4ρ2/N2)1/2‖f‖2,w .

Let E be the support of f and 1E(t) denote the indicator function of E. Since |E| ≤ γ, by

Hölder’s inequality, we obtain

‖f‖qq ≤
∫
1E(t)|f(t)|qdt ≤ γ1−q/2

(∫
|f(t)|q(2/q)dt

)q/2
.

This implies

‖f‖q ≤ γ1/q−1/2‖f‖2 ≤ (1 + 4ρ2/N2)1/2γ1/q−1/2‖f‖2,w .

Then the assertion follows by letting s = (1 + 4ρ2/N2)γ2/q−1.
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The following lemma presents a concrete example that belongs to Kρ,γ , which consists

of a superposition of narrow pulses. The parameters ρ and γ are explicitly determined by

the number of pulses and by the common pulse shape.

Lemma 5.4. Let φ be a positive function with φ(0) = 1 and support contained in [−1/2, 1/2).

Let φT (x) = Tφ(Tx) and t1, . . . , tl ∈ (1/2T, 1−1/2T ) be 1/T -separated, i.e., |tj−tj′ | > 1/T

for all j 6= j′. Then

f(t) =

l∑
j=1

αjφT (t− tj)

satisfies

λ(supp(f)) ≤ l

T

and
‖f ′‖2
‖f‖2

=
T‖φ′‖2
‖φ‖2

.

Proof. The first assertion follows since f is the sum of disjointly supported functions.

Moreover

‖f‖pp =
n∑
j=1

|αj |p‖φT ‖pp =
n∑
j=1

|αj |pT p−1‖φ‖pp .

Indeed, we deduce from a change of variable that

‖φT ‖pp = T p−1
∫
|φ(Tx)|p Tdx = T p−1‖φ‖pp .

This yields

‖f‖p = ‖φ‖pT 1/p′

(
l∑

j=1

|αj |p
)1/p

.

Note that φ′T is also disjointly supported, and hence

∥∥f ′∥∥p
p

=

l∑
j=1

|αj |p
∥∥φ′T∥∥pp .
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Then we note that∫ ∣∣φ′T (x)
∣∣p dx = T 2p−1

∫ ∣∣φ′(x)
∣∣p dx = T 2p−1 ∥∥φ′∥∥p

p
.

This implies ∥∥f ′∥∥
p

=

(
n∑
j=1

|αj |p
)1/p

T 2−1/p ∥∥φ′∥∥
p

=
‖φ′‖p T‖f‖p
‖φ‖p

.

The second assertion follows as a special case.

The signal model in Lemma 5.4 consists of a superposition of translations and dilations

of φ with a compact support. This model can be considered as a generalization of cardinal

B-spline [43]. Particularly the translation parameters t1, . . . , tl in Lemma 5.4 are not

necessarily on a uniform grid whereas knots in cardinal B-spline are integer-valued.

Next we proceed with deriving a near isometric map on Kρ.γ by using Corollary 5.2.

Note that there exists more than one linear operator u so that (wk)k∈Z given by (40)

satisfies (45). We will consider two constructions of u. The following proposition employs

u that takes partial sums of the input Fourier series over a partition of [−N,N) ∩ Z.

Proposition 5.5. Let 0 < δ < 1, (wk)k∈Z be as in (45), and u : L2[0, 1] → `d2 be defined

by

u : f 7→

∑
k∈Jl

f̂ [k]

d

l=1

,

where J1, . . . ,Jd partition [−N,N) ∩ Z so that L := max1≤l≤d |Jl| ≤ d2N/de. Suppose

that t1, . . . , tm are independent copies of a uniform random variable on [0, 1) and ρ ≤ N/2.

Then there exists a constant c such that

P

 sup
f∈Kρ,γ
‖f‖2,w=1

∣∣∣∣∣ 1

m

m∑
j=1

‖u(τtjf)‖22 − ‖f‖22,w

∣∣∣∣∣ ≥ δ
 ≤ ζ (47)

holds provided

m ≥ cδ−2γLN

max{1, γL}
ln

(
e

min{1, γL}

){
ln

(
e

min{1, γL}

)
(1 + ln d)5(1 + lnm)5 + ln(ζ−1)

}
.
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Proof of Proposition 5.5. Let q ∈ (1, 2]. Then Lemma 5.3 implies that every f ∈ Kρ,γ

satisfies

‖f‖q ≤
√
s‖f‖2,w

for s = (1 + 4ρ2/N2)γ2/q−1. Note that u(f) is written as

u(f) = (〈hl, f〉)dl=1 ,

where

hl =
∑
k∈Jl

ψk

for l = 1, . . . , d. For q′ satisfying 1/q + 1/q′ = 1 and αd as in Corollary 5.2, we have

αd(u) =

∥∥∥∥∥∥
(

d∑
l=1

|hl|2
)1/2

∥∥∥∥∥∥
q′

≤
√

2E

∥∥∥∥∥
d∑
l=1

εlhl

∥∥∥∥∥
q′

≤
√

2q′d max
1≤l≤d

‖hi‖q′ .
√
q′dL1−1/q′

for a Rademacher sequence (εl)1≤l≤d, where the first and second inequalities respectively

follow from Khintchine’s inequality [15] and T2(Lq′ [0, 1]) ≤
√
q′, and the last step follows

from the fact that the inverse Fourier series operator from `q(IN) to Lq′ [0, 1] is a contraction

(see e.g. [46, Theorem IV.1]). Furthermore, for any t ∈ [0, 1), we have

‖u(τtf)‖22 =
d∑
l=1

∑
k∈Jl

∣∣∣e−i2πktf̂ [k]
∣∣∣2 =

N−1∑
k=−N

∣∣∣f̂ [k]
∣∣∣2 = ‖f‖22,w .

Therefore, by Corollary 5.2, it suffices to satisfy

m ≥ cδ−2
(

1 +
4ρ2

N2

)
γL2q′d(γL)−2/q

′ {
q′(1 + ln d)5(1 + lnm)5 + ln(ζ−1)

}
.

We choose q′ = 2 if γL > 1 and q′ = −2 ln(γL) otherwise. Then the assertion follows since

Ld ≤ 4N .

Since f ∈ V implies both ‖f‖2,w = 0 and u(τtf) = 0 for all t ∈ [0, 1), the tail bound

in (47) indeed implies that the measurement operator provides a near isometric map on

Kρ,γ in the quotient space W = L2[0, 1]/V with high probability. One may choose d large
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enough so that γL = O(1). Then the number of translations m for this result can be as

small as γNL up to a logarithmic factor. Therefore the total number of measurements md

satisfies Õ(γN2). Furthermore, if γN = O(1), then the number of measurements scales

sublinearly in the dimension 2N of the reconstruction space `2N2 . Such small γ = O(1/N)

can be interesting in certain infinite-dimensional scenarios like the one presented below.

In general, one cannot recover a sparse signal in an infinite-dimensional space from

finitely many measurements. For example, when unknown sparse signal f ∈ L2[0, 1] is

supported on a set of nonzero measure, at least a subsequence of the Fourier series at

the Landau rate is necessary [24]. Known exceptions include the case where the unknown

f corresponds to a point measure, that is a superposition of finitely many Dirac’s delta

functions (e.g. see [45, 7, 40]). We compare Proposition 5.5 to these results as follows: In

one hand, we have a slightly different goal to sketch continuous-time sparse signals up to

finite frequency resolution instead of exact recovery. This approximation is well accepted

in imaging applications. Meanwhile our model still avoid unnecessary discretization in the

time domain. On the other hand, Proposition 5.5 applies to a much wider class of signals,

which can be useful particularly in the context of imaging. Note that the previous results

apply only to point measures supported on a null set. In contrast, Proposition 5.5 applies

to continuous-time sparse signals whose support sets have nonzero measure. Modeling For

example, curves in 2D signals or surfaces in 3D signals correspond to a set of measure

zero (hence one can choose N arbitrarily large in Proposition 5.5). However they are not

described as a finite superposition of Dirac’s delta functions.

Recall that the construction of u in Proposition 5.5 is purely deterministic. The fol-

lowing result shows that the total number of measurements md for a near isometric map

can be significantly reduced to Õ(γNd) when the deterministic u in Proposition 5.5 is

substituted by a random linear operator.

Proposition 5.6. Suppose that the hypothesis of Proposition 5.5 holds except that u :
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L2[0, 1]→ `d2 is defined by

u : f 7→

∑
k∈Jl

εkf̂ [k]

d

l=1

,

where (εk)−N≤k<N is a Rademacher sequence independent of everything else. Then there

exists a numerical constant c such that (47) holds provided

m ≥ cδ−2γN
{

ln(ζ−1) + ln(γ−1)
}2

(1 + ln d)5(1 + lnm)5 .

Proof of Proposition 5.6. Note that u(f) is written as

u(f) = (〈hl, f〉)dl=1 ,

where

hl =
∑
k∈Jl

εkψk

for l = 1, . . . , d. By construction, the corresponding sequence (wk)k∈Z by (40) satisfies

(45).

Let αd be as in Corollary 5.2, that is

αd(u) =

∥∥∥∥∥∥
(

d∑
l=1

|hl|2
)1/2

∥∥∥∥∥∥
q′

.

Then αd(u) is a random variable due to the randomness in u. We compute a tail bound

on αd as follows. Let (ε′l)1≤l≤d be a Rademacher sequence independent of everything else.

Then

Eε,ε′

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
q′

q′

= Eε,ε′

∥∥∥∥∥
d∑
l=1

ε′l
∑
k∈Jl

εkψk

∥∥∥∥∥
q′

q′

. Eε

∥∥∥∥∥
N−1∑
k=−N

εkψk

∥∥∥∥∥
q′

q′

, (48)

where (ε′′k)−N≤k<N is a Rademacher sequences independent of everything else. By applying

Khintchine’s inequality to the right-hand side of (48), we obtainEε,ε′

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
q′

q′

1/q′

.
√
q′N . (49)
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Since q′ was arbitrary, this upper bound indeed holds for any q′ ≥ 2. From (49), we derive

an upper bound on the moments of αd(u). For r > q′ ≥ 2, by Khintchine’s inequality, we

obtain

(Eαd(u)r)1/r =

E

∥∥∥∥∥∥
(

d∑
l=1

|hl|2
)1/2

∥∥∥∥∥∥
r

q′

1/r

≤
√

2

E

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
r

q′

1/r

≤
√

2

(
E

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
r

r

)1/r

.
√
rN .

For r ≤ q′, by Kahane’s inequality [25], we obtain

(Eαd(u)r)1/r =

E

∥∥∥∥∥∥
(

d∑
l=1

|hl|2
)1/2

∥∥∥∥∥∥
r

q′

1/r

≤
√

2

E

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
r

q′

1/r

≤
√

2

E

∥∥∥∥∥
d∑
l=1

ε′lhl

∥∥∥∥∥
q′

q′

1/q′

.
√
q′N .

Therefore (Eαd(u)r)1/r . max
{√

r,
√
q′
}
N1/2 for all r ≥ 1, from which together with a

consequence of Markov’s inequality [12, Lemma A.1], we obtain that

αd(u) .
√
N (ln(ζ−1) + q′) (50)

holds with probability 1 − ζ/2. Conditioned on the event in (50), Corollary 5.2 provides

that (47) holds with probability 1 − ζ/2 if

m ≥ cδ−2
(

1 +
4ρ2

N2

)
γNγ−2/q

′ (
ln(ζ−1) + q′

)
max

{
q′(1 + ln d)5(1 + lnm)5, ln(ζ−1)

}
.

Finally the assertion follows by letting q′ = −2 ln γ.

5.3 Approximating Sobolev seminorm constrained signals

A total variation seminorm has been employed as an effective regularizer for denoising [38].

Particularly it is shown superior to other regularizers in terms of preserving edges with-

out incurring severe blurring. Another well-known regularizer for denoising that provides
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similar strength is the qth power of the Sobolev (1, q)-seminorm for q > 1 [3], which is

defined as the Lq norm of weak derivative [1]. Motivated by these regularized denoising,

we propose two near isometric maps for signals g ∈ L2[0, 1] ∩W 1,q[0, 1] that satisfy∥∥g′∥∥
q
≤
√
s ‖g‖2 , (51)

where g′ denotes a weak derivative of g, and

ĝ[0] = 0 , (52)

where W 1,q[0, 1] denotes the Sobolev space equipped with the Sobolev (1, q)-seminorm.

The first condition in (51) is crucial for providing another infinite-dimensional sparsity

model, whereas the latter condition in (52) is for the sake of simple presentation and can

be dropped with slight modifications of linear maps. In fact, the Sobolev (1, q)-seminorm

becomes a valid norm in the subspace given by (52).

We first present a near isometric map given by time-domain measurements. The fol-

lowing theorem shows that one can approximate the L2-norm of g ∈ L2[0, 1] ∩W 1,q[0, 1]

satisfying (51) and (52) by finitely many random time samples.

Theorem 5.7. Let 1 < q ≤ 2 and 0 < δ < 1. Suppose that t1, . . . , tm are independent

copies of a uniform random variable on [0, 1). Then there exists a constant Cq depending

only on q such that

P

 sup
‖g′‖q≤

√
s, ‖g‖2=1

ĝ[0]=0

∣∣∣∣∣ 1

m

m∑
j=1

|g(tj)|2 − ‖g‖22

∣∣∣∣∣ ≥ δ
 ≤ ζ

holds provided

m ≥ Cqδ−2s
{
q′(1 + lnm)5 + ln(ζ−1)

}
. (53)

Moreover, (53) also implies

P

 sup
‖g′‖q≤

√
s,

‖g‖22−|ĝ[0]|2=1

∣∣∣∣∣ 1

m

m∑
j=1

|g(tj)− ĝ[0]|2 −
(
‖g‖22 − |ĝ[0]|2

) ∣∣∣∣∣ ≥ δ
 ≤ ζ .
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The result of Theorem 5.7 is similar to the Monte-Carlo method for Lipschitz continuous

functions (e.g. see [44, Section 8.2]). Both results show that an empirical process approxi-

mates its expectation. Note that the signal model in Theorem 5.7 is based on the Sobolev

(1, q)-seminorm, which is defined through weak derivatives, and include signals with singu-

larities. This flexible signal model can accurately describe signals in imaging applications

like neural activation in functional imaging or anomalies in anatomical imaging.

Proof of Theorem 5.7. For g satisfying ‖g′‖q ≤
√
s, ‖g‖2 = 1, and ĝ[0] = 0, let f = g′

denote a weak derivative of g. Furthermore, let ‖·‖2,w be a seminorm in (34) determined

by (wk)k∈Z that satisfies

wk =
1

4π2 max(1, k2)
.

Then since f̂ [k] = i2πkĝ[k] for all k ∈ Z we have

‖f‖22,w =
∑

k∈Z\{0}

|f̂ [k]|2

4π2k2
=

∑
k∈Z\{0}

|ĝ[k]|2 = ‖g‖22 = 1 .

We also have ‖f‖q ≤
√
s‖f‖2,w. Moreover, the map u : f 7→ 〈h, f〉 with

h =
∑

k∈Z\{0}

ψk
i2πk

satisfies

u(f) =
∑

k∈Z\{0}

〈ψk, f〉
i2πk

=
∑

k∈Z\{0}

f̂ [k]

i2πk
=

∑
k∈Z\{0}

ĝ[k] = g(0) ,

where the last step used the fact ĝ[0] = 0. Since the weak derivative and shift operators

commute, we also have

u(τ−tjf) = g(tj) .

Let αd be as in Corollary 5.2. Note that d = 1, i.e. u is a linear functional. Therefore,

αd(u) simplifies and is upper-bounded by the Hausdorff-Young inequality as

αd(u) = ‖h‖q′ ≤
1

2π

∥∥∥∥∥(1

j

)
j∈Z\{0}

∥∥∥∥∥
`q(Z\{0})

≤ Cq
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for some constant Cq determined by q. Then Corollary 5.2 with the above estimates

provides that

P

 sup
‖f‖q≤

√
s, ‖f‖2,w = 1

∣∣∣∣∣ 1

m

m∑
j=1

|u(τ−tjf)|2 − ‖f‖22,w

∣∣∣∣∣ ≥ δ
 ≤ ζ

holds if (53) is satisfied. This indeed implies the first assertion. In general, without ĝ[0] = 0,

we have

‖g′‖22,w + |ĝ[0]|2 = ‖g‖22

and

u(τtjg
′) + ĝ[0] = g(tj) .

Therefore the second assertion is obtained by plugging in these identities to the first asser-

tion.

Next we present another near isometric map, which is given by Fourier-domain mea-

surements. In certain modalities like magnetic resonance imaging (MRI), measurements

are acquired sequentially in the Fourier domain. Therefore one can evaluate time samples

only after acquiring the full Fourier series. In such scenarios, it is preferable to design

the measurement operator in the Fourier domain and the following theorem presents the

analogous result.

Theorem 5.8. Let 1 < q ≤ 2, 0 < δ < 1, and Il = {k : 2l−2 < |k| ≤ 2l−1} for l ∈ IN. Let

t1, . . . , tm be independent copies of a uniform random variable on [0, 1). Then there exist

a numerical constants c and a constant Cq that only depends on q such that

P

 sup
‖g′‖q≤

√
s, ‖g‖2=1

ĝ[0]=0

∣∣∣∣∣∣ 1

m

m∑
j=1

∑
1≤l<l0

∣∣∣∣∣∑
k∈Il

τ̂tjg[k]

∣∣∣∣∣
2

− ‖g‖22

∣∣∣∣∣∣ ≥ δ
 ≤ ζ

provided

l0 ≥ max
{

1, c ln
(
δ−1s

)}
(54)
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and

m ≥ Cqδ−2s
(
q′(1 + lnm)5 + ln(ζ−1)

}
. (55)

The constant Cq in Theorem 5.8 is proportional to f(q) = (q − 1)−1/q. Recall that as

q decreases toward 1, the sparsity model converges to the total-variation-sparsity model.

However, since f(q) increases in q, one cannot set q arbitrarily close to 1. For example, for

q ≥ 1.1, we have f(q) ≤ 8.12.

Note that each scalar measurement in Theorem 5.8 is computed as the sum of Fourier

series coefficients of a translation of g over a given dyadic interval. For example in MRI,

this superposition can be obtained without access to the individual summands with an

appropriate design of the pulse sequence. The total number of measurements l0m scales

at most Õ(s ln s). Specifically Õ(s) random translations and O(ln s) measurements per

translation suffice to invoke Theorem 5.8.

Proof of Theorem 5.8. By the triangle inequality, it suffices to show

sup
‖g′‖q≤

√
s, ‖g‖2=1

ĝ[0]=0, t∈[0,1)

∑
l≥l0

∣∣∣∣∣∑
k∈Il

τ̂tg[k]

∣∣∣∣∣
2

≤ δ

2
(56)

and

P

 sup
‖g′‖q≤

√
s, ‖g‖2=1

ĝ[0]=0

∣∣∣∣∣∣ 1

m

m∑
j=1

∞∑
l=1

∣∣∣∣∣∑
k∈Il

τ̂tjg[k]

∣∣∣∣∣
2

− ‖g‖22

∣∣∣∣∣∣ ≥ δ

2

 ≤ ζ (57)

hold.

First we show that (54) implies (56). Let f = g′ and t ∈ [0, 1). Since the weak derivative

operator commutes with the shift operator, we have τtf = (τtg)′. Therefore it follows that
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τ̂tf [k] = i2πkτ̂tg[k] for all k ∈ Z. Then we have

∑
l≥l0

∣∣∣∣∣∑
k∈Il

τ̂tg[k]

∣∣∣∣∣
2

=
∑
l ≥ l0

∣∣∣∣∣∣
〈∑
k∈Il

ψk
2πk

, τtf

〉∣∣∣∣∣∣
2

≤
∑
l ≥ l0

‖τtf‖2q

∥∥∥∥∥∑
k∈Il

ψk
2πk

∥∥∥∥∥
2

q′

≤ s

4π2

∑
l ≥ l0

(∑
k∈Il

|k|−q
)2/q

(58)

where the first two inequalities follow from Hölder’s inequality and the Hausdorff-Young

inequality. Furthermore, we have(∑
k∈Il

|k|−q
)2/q

≤

(
2

∫ 2l

2l−1

t−qdt

)2/q

=

(
2l(1−q)+1(2q−1 − 1)

q − 1

)2/q

= 2−2l/q
′

(
2(2q−1 − 1)

q − 1

)2/q

︸ ︷︷ ︸
C′q

.

Note that C ′q is monotone increasing in q ∈ (1,∞) and C ′q ≤ 4 for all q > 1. Therefore (58)

implies that there exists a numerical constant C such that

∑
l≥l0

∣∣∣∣∣∑
k∈Il

τ̂tg[k]

∣∣∣∣∣
2

≤ s

π2

∑
l ≥ l0

2−2l/q
′ ≤ Cs2−2l0/q

′
.

Then (56) follows by choosing l0 so that

2−2l0/q
′ ≤ δ

2Cs
,

which is implied by (54).

Next we show that (55) implies (57) by using the following lemma, the proof of which

is deferred to the end of this section.

Lemma 5.9. Let 1 < q ≤ 2, 0 < δ < 1, and ‖ · ‖2,w defined by (34) and (40) from

u : f 7→ (〈hl, f〉)l∈IN. Suppose that t1, . . . , tm are independent copies of a uniform random

variable on [0, 1). Then there exists a numerical constant c such that

P

 sup
‖f‖q≤

√
s, ‖f‖2,w=1

∣∣∣∣∣ 1

m

m∑
j=1

∞∑
l=1

∥∥u(τtjf)
∥∥2
2
− ‖f‖22,w

∣∣∣∣∣ ≥ δ
 ≤ ζ
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holds provided

m ≥ cδ−2s

q′(1 + lnm)5

( ∞∑
l=1

(1 + ln dl)
5/2‖hl‖q′

)2

+ ln(ζ−1)

( ∞∑
l=1

‖hl‖q′
)2
 . (59)

We apply Lemma 5.9 with (hl)l∈IN given by

hl =
∑
k∈Il

ψk
2πk

.

Then (wk)k∈Z determined by u as in (40) satisfies

wk = ‖u(φk)‖22 =

∞∑
l=1

|〈hl, ψk〉|2 =
1

4π2k2

for all k 6= 0 and w0 = 0. Let f = g′ be a weak derivative of g ∈ L2[0, 1]∩W 1,q[0, 1]. Since

f̂ [k] = i2πkĝ[k] for all k ∈ Z, we have f̂ [0] = 0. Thus we have

‖f‖22,w =
∑

j∈Z\{0}

|f̂ [k]|2

4π2k2
=

∑
j∈Z\{0}

|ĝ[k]|2 = ‖g‖22 ,

where the last step follows since ĝ[0] = 0. Furthermore, by the Hausdorff-Young inequality,

we have

‖hl‖q′ =

∥∥∥∥∥∥
∑

2l−2<|k|≤2l−1

ψk
2πk

∥∥∥∥∥∥
q′

≤ 1

π

( ∑
k ≥ 2l

k−q

)1/q

=
(2l − 1)−1/q

′

π(q − 1)1/q
≤ 2−(l−1)/q

′

π(q − 1)1/q
.

Therefore (55) implies (59) and Lemma 5.9 provides (57).

Finally we provide the proof of Lemma 5.9.

Proof of Lemma 5.9. We adapt the proof of [20, Proposition 2.6] to prove Lemma 5.9. As

shown earlier in the proof of Corollary 5.2, the weighted (semi-) norm satisfies

E
∥∥u(τtj (f))

∥∥2
2

= ‖f‖22,w

for all j = 1, . . . ,m. For notational simplicity, let

D := {f : ‖f‖q ≤
√
s, ‖f‖2,w = 1} (60)
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and

Z := sup
f∈D

∣∣∣∣∣ 1

m

m∑
j=1

‖u(τtjf)‖22 − ‖f‖22,w

∣∣∣∣∣ .
For r ∈ N, by the standard symmetrization technique [26, Lemma 6.3] we obtain

(EZr)1/r .

E sup
f∈D

∣∣∣∣∣ 1

m

m∑
j=1

ξj‖u(τtjf)‖22

∣∣∣∣∣
r
1/r

,

where ξ1, . . . , ξm are i.i.d. Normal(0, 1). Conditioned on t1, . . . , tm, by the triangle inequal-

ity, we obtainE sup
f∈D

∣∣∣∣∣ 1

m

m∑
j=1

ξj‖u(τtjf)‖22

∣∣∣∣∣
r
1/r

≤
∞∑
l=1

E sup
f∈D

∣∣∣∣∣ 1

m

m∑
j=1

ξj |〈hl, τtjf〉|2
∣∣∣∣∣
r
1/r

. (61)

For l ∈ IN, let vj : Lq[0, 1]→ `m∞ denote a linear operator defined by vl : f 7→ (〈hl, τtjf〉)1≤j≤m.

Then for all l ∈ IN by applying [20, Lemma 2.4] we obtain3

Eξ1,...,ξm sup
f∈D

∣∣∣∣∣
m∑
j=1

ξj |〈hl, τtjf〉|2
∣∣∣∣∣
r
1/r

.
√
s

(
sup
f∈D

m∑
j=1

|〈hl, τtjf〉|2
)1/2(

E2,1 (vl)+
√
r ‖vl‖

)
,

where E2,1 denotes a weighted sum of dyadic entropy numbers [see 20, Lemma 2.3] that

provides an upper bound of Talagrand’s γ2-functional [39]. Then by Hölder’s inequality we

can continue as follows:

(EZr)1/r .
√
s

m

∞∑
l=1

E

(
sup
f∈D

m∑
j=1

|〈hl, τtjf〉|2
)r

1/2r {
E
(
E2,1 (vl) +

√
r ‖vl‖

)2r}1/2r

.

√
s

m
sup
l∈IN

E

(
sup
f∈D

m∑
j=1

|〈hl, τtjf〉|2
)r

1/2r

·

( ∞∑
l=1

(
EE2,1 (vl)

2r
)1/2r

+
√
r
(
E ‖vl‖2r

)1/2r)
.

3The original version of [20, Lemma 2.4] is stated for a set D of unit vectors in a finite dimensional

Hilbert space. However, since the proof does not rely on this assumption, the result of [20, Lemma 2.4] also

applies to the set D defined in (60) in a semi-normed space.
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Note that the factor after
√
s/m of the right-hand side is bounded from above as

sup
l∈IN

E

(
sup
f∈D

m∑
j=1

|〈hl, τtjf〉|2
)r

1/2r

≤

E

(
sup

f∈D,l∈IN

m∑
j=1

|〈hl, τtjf〉|2
)r

1/2r

≤

E

(
sup
f∈D

m∑
j=1

∞∑
l=1

|〈hl, τtjf〉|2
)r

1/2r

=

E

(
sup
f∈D

m∑
j=1

‖u(τtjf)‖22

)r
1/2r

≤


E

∣∣∣∣∣ sup
f∈D

m∑
j=1

‖u(τtjf)‖22 − ‖f‖22,w

∣∣∣∣∣
r
1/r

+m


1/2

=
√
m
{

(EZr)1/r + 1
}1/2

.

The last factor is also upper-bounded by the following facts: By the shift-invariance of the

unit ball in Lq′ [0, 1] we have

‖vl‖ = max
1≤j≤m

‖τ∗tjhl‖q′ = ‖hl‖q′ .

Moreover, by [20, Lemma 3.7], we also have

E2,1(vl) .
√
q′(1 + lnm)5/2‖hl‖q′ .

Then by collecting the above upper bounds we obtain

(EZr)1/r .
√
s %1√
m

+
s%21
m

+
√
r ·
√
s %2√
m

+ r · s%
2
2

m
, (62)

where

%1 =
∞∑
l=1

‖hq‖q′ , %2 =
∞∑
l=1

√
q′(1 + lnm)5/2‖hl‖q′ .

Since r was arbitrary, by a consequence of Markov’s inequality [12, Lemma A.1], (62) for

all r ≥ 1 implies

Z .

√
s %1√
m

+
s%21
m

+

√
s ln(ζ−1) %2√

m
+
s ln(ζ−1)%22

m
(63)

with probability 1 − ζ. Therefore (59) implies that the upper bound in (63) is at most

δ.

47



Acknowledgement

This work was supported in part by NSF IIS-1447879, DMS-1501103, CCF-1718771, DMS-

1800872, and an NSF CAREER award CCF-1943201. K.L. thanks Yoram Bresler, Sjoerd

Dirksen, Massimo Fornasier, Laurent Jacques, Felix Krahmer, Holger Rauhut, and Dominik
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