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Abstract

Restricted isometry property (RIP) provides a near isometric map for sparse sig-
nals. RIP of structured random matrices has played a key role for dimensionality
reduction and recovery from compressive measurements. In a companion paper, we
have developed a unified theory for RIP of group structured measurement operators
on generalized sparsity models. The implication of the extended result will be further
discussed in this paper in terms of its pros and cons over the conventional theory. We
first show that the extended RIP theory enables the optimization of sample complexity
over various relaxations of the canonical sparsity model. Meanwhile, the generalized
sparsity model is no longer described as a union of subspaces. Thus the sparsity level
is not sub-additive. This incurs that RIP of double the sparsity level does not imply
RIP on the Minkowski difference of the sparsity model with itself, which is crucial for
dimensionality reduction. We show that a group structured measurement operator pro-
vides an RIP-like property with additive distortion for non-sub-additive models. This
weaker result can be useful for applications like locality-sensitive hashing. Moreover,
we also present that the group structured measurements with random sign enables near
isometric sketching on any set similar to the Gaussian measurements. Lastly, an ex-
tension of theory to infinite dimension is derived and illustrated over selected examples

given by Lebesgue measure of support and Sobolev seminorms.
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1 Introduction

A linear operator A : RY — R™ has restricted isometry property (RIP) on T' ¢ RY if
(L= d)l)3 < [|Az|3 < (1 +6)|l]3, VeeTl. (1)

In other words, A preserves the norm of all vectors in I' up to multiplicative distortion
6. A class of random matrices have been shown to provide RIP for sparse vectors with
the number of measurements m scaling near optimally, i.e. proportional to the number of
nonzero entries up to a logarithmic factor. In a companion paper [20], we provided a gen-
eralization of the RIP theory for structured random matrices that unified previous results
[37, 36, 12, 27] and applies to a class of sparsity and measurement models. Specifically we
introduced the notion of generalized sparsity model determined by a pair of Hilbert and
Banach spaces so that I' generalizes beyond existing models such as sparse vectors and
low-rank matrices. Moreover the RIP theory in [20] applies to a group structured measure-
ment operator that generalizes partial Fourier transform to a broader class including the
Gabor and Radon transforms. In this sequel paper, we further discuss the implications of
the results in [20] over a selected set of scenarios. Furthermore we will illustrate how the

results extend to a sparsity model in infinite dimension.

For a self-contained introduction, we recall one specific case of the main results in [20]
below. First, a generalized sparsity model is described as follows: Let K be a convex subset
of the unit ball of £ and let X be the Banach induced by the Minkowski functional of K,
ie.

|z]|x :=inf{A >0 : x € AK}.



In other words, K is the unit ball in X. Then the sparsity model is determined by
Dyi={zeXnt : |lz]lx < Vs|z|2} (2)

where s > 0 is the parameter corresponding to the sparsity level. We say that a vector
x is (K, s)-sparse if it belongs to I's. For example, when X = ¢V the resulting 'y is a
well-studied relaxation of the canonical sparsity model that consists of sparse vectors with
at most s nonzero entries. RIP theory has been extended to the model in (2) for a certain
class of Banach spaces. Particularly, in this paper, we consider Banach spaces of dual type

2, which is defined as follows.

Definition 1.1 (Banach space of type p [28]). A Banach space Y is of type p if

p\ 1/p 1/p
(E ijyj > < C(ZH%’H@) (3)
J Y J

holds for some numerical constant ¢ and every finite sequence (y;) C Y, where (¢;) denotes

a Rademacher sequence. The type p constant of Y, denoted by T,(Y), is the smallest

constant c that satisfies (3).

A generalization of partial Fourier is given by general group actions. Specifically the
measurements are obtained through a fixed measurement functional from randomly selected
samples of the orbit of the input by given group actions. To simplify the expression for
the number of measurements providing RIP, we impose an additional structure to Banach
space X so that the corresponding model is invariant under the group actions. This is

formally stated as follows.

Definition 1.2 (G-invariance). A set K is G-invariant if o(g)K = {o(g9)x : g € G, x €
K} coincides with K for all g € G.

Given the generalized sparsity model in (2) for Banach space X of dual type 2 together
with the G-invariance of K, the following theorem presents the main result of [20] in this

particular case.



Theorem 1.3 (A paraphrased version of [20, Theorem 5.3]). Let K C BY be a convex body
and X be the Banach space induced by the Minkowski functional of K. Let 0 : G — Opn
be a continuous group homomorphism of a finite group G to the orthogonal group On. Let
Jgis---,9m € G be independent copies of a uniform random variables on G. Let n € X* be
fized. Suppose that the following conditions hold: i) X* has type 2; i) K is G-invariant;

i11) o(g)*n is isotropic. Then there exists a numerical constant ¢ such that for § € (0,1)

Ly 2 2
sup = > [(n, (o(g))2)|* — ||z ]3| < 6
lzllx<v/s | 5=
[[zlla=1

holds with probability 1 —  provided

m > c¢§ ?smax {T2(X*)*(1 +Inm)°, In(¢") } [|In]|%- - (4)

The result of Theorem 1.3 generalizes existing RIP theory [37, 36, 12, 27] in terms of
both the restriction model and measurement operator, which applies to a broader context
of applications and also helps improve the RIP analysis of certain type of measurement
operators. However, the generalized models lose the useful sub-additive structures in the
conventional models. This ends up with a penalty in applying the result to dimensionality
reduction. This paper will discuss the pros and cons of Theorem 1.3 in the above perspec-
tives. It will also present an extension of Theorem 1.3 to infinite dimension. The contents

are summarized in a simplified form below and further elaborated in the following sections.

1.1 RIP of partial discrete short-time Fourier transform:

The first vignette shows how Theorem 1.3 can be utilized to improve the number of mea-
surements for RIP. Recall that the group structured measurement model in Theorem 1.3
generalizes the Fourier transform. We will focus on the action of a partial discrete short-
time Fourier transform (DSTFT) on the canonical sparsity model. Let € RY denote the

window of length L. We assume that the nonzero entries of 1 decays exponentially with



parameter «, i.e. the jth largest magnitude is proportional to j~%. This decay model de-
scribes the behavior of the Poisson window. We consider partial DSTFT with 7 as above.
Moreover, we consider relaxations of the canonical sparsity model consisting of all r-sparse
vectors with at most 7 nonzero entries. Let 1 < ¢ < 2 and ¢’ satisfy 1/¢g 4+ 1/¢’ = 1. Since
an r-sparse x € () satisfies 2]l < r1/2=1/4" |||, it follows that T's in (2) with s = 71=2/¢'
includes the set of r-sparse vectors. In other words, I'; relaxes the canonical sparsity model.
The following result is a direct consequence of Theorem 1.3 on this particular scenario while

the number of measurements is optimized over the choice of X = Eév for 1 < g <2.

Corollary 1.4. Suppose that n € RN is supported on the first L coordinates and the
magnitudes of n decay exponentially with o < 1/1In(N/r). Then the random partial DSTFT
with n satisfies RIP on r-sparse vectors with high probability if the number of measurements

m scales proportional to r up to a logarithmic factor.

Indeed the optimization over X is crucial to derive the result with a less demanding
requirement on «. With fixed X = E(]]V for ¢ = In N, which approximates the case of
X = K{V , RIP by the same number of measurements is obtained when the decay parameter
satisfies & < 1/In N. Therefore it allows a significantly slower decay of the magnitudes of
7 than Corollary 1.4. The gain is obtained from the flexibility of Theorem 1.3 that allows

various relaxations of the canonical sparsity model given by choice of Banach space X.

1.2 RIP on non-sub-additive sparsity models

Conventional sparsity models such as sparse vectors, low-rank matrices, and their gener-
alization to atomic models [9] are described as a union of subspaces. These models are
sub-additive in the sense that the difference of two s-sparse vectors is 2s-sparse, i.e. the
sparsity level is sub-additive. Unfortunately, this property does not hold for the general-
ized sparsity model in (2), which is given by a nonconvex cone. Particularly, compared

to the conventional sparsity models, a central drawback in the generalization is that the



difference z —y of two (K, s)-sparse vectors x and y is no longer (K, 2s)-sparse. In fact, the
adversarial instance of x —y can attain the maximum (trivial) sparsity level. Consequently,
RIP on I'ys does not necessarily imply RIP on I's — I'y, which denotes the Minkowski sum
of I'y and —I's. In fact, the latter property plays a crucial role for dimensionality reduction
that preserves the distance of any pair from I'y and recovery of signal in 'y by convex

programming [42].

The second vignette shows that despite the lack of sub-additivity one can still obtain an
RIP-like result for the generalized sparsity model if the measurement operator A satisfies
“multiresolution” RIP, that is A satisfies RIP on (K, 2's)-sparse vectors with distortion

max(2!/25,2!6%) for all |—logy s| <1 < [logy(||Id : £ — XH2 /s)].
Theorem 1.5. Suppose that A satisfies multiresolution RIP. Let x and y be (K, s)-sparse
vectors. If || Az — Ay|, > 4v/26, then

-3

Otherwise ||x — y||, < 89.

) JAz — Ayl2 < Jle - yll2 < (1 L) e a2

)

The consequence of Theorem 1.5 is obviously weaker than the analogous result by RIP
on I'y — I's. The former implies that A preserves the distance only when the images of
x —y via A is larger than certain threshold. Otherwise it can only say that two (K, s)-
sparse vectors are close by being within certain distance. Particularly the map A restricted
on I's — I'y may not be injective. Alternatively the result of Theorem 1.5 implies that A
provides a near isometric map with additive distortion instead of multiplicative distortion.

A similar phenomenon occurs in embedding with 1-bit quantization [18].

On a positive side, the group structured measurement operator in Theorem 1.3 provides
the multiresolution RIP while the number of measurements scales in the same order. The
weaker RIP result on I'y—I'y with additive distortion can still be useful in some applications

such as locality-sensitive hashing.



1.3 RIP of group structured measurement operator with random sign

In a companion paper [20], it has been shown that Theorem 1.3 provides near optimal RIP
results on several examples of the generalized sparsity models, for which the number of
measurements scales proportional to the sparsity level up to a logarithmic factor. However,
for certain other instances, RIP holds with significantly more measurements. This is not
the case for the Gaussian measurement operator. It provides RIP on any set I' with the
number of measurements scaling optimally with respect to the complexity of I' [14]. This
weakness of Theorem 1.3 compared to the Gaussian case can be mitigated by incorporating
random sign into the measurement operator. Oymak et al. [34] showed that a measurement
operator with multiresolution RIP on the canonical sparsity model following random sign
provides RIP on an arbitrary set. By applying their result, we obtain RIP of the group

structured measurements with random sign similar to the Gaussian measurement case.

Corollary 1.6. Let A denote the composition of the measurement operator in Theorem 1.5
and a diagonal operator with random +1 entries. Then with high probability A satisfies RIP
on all (K, s)-sparse vectors if m is proportional to the squared Gaussian width of ToNSN~1

up to a logarithmic factor, where SV~ denotes the unit sphere in £ .

1.4 Extension to infinite-dimensional models

Lastly we illustrate how Theorem 1.3 extends to infinite dimension. The Hilbert space
Eév is substituted by a seminormed space given as a subspace of Ls[0, 1] equipped with a
seminorm | f{|y , == (3_pez W Fk]?)'/2, where f[k] denotes the kth Fourier series coefficient
and (wg)kez is a nonnegative weight sequence. Then we derive an extension of Theorem 1.3

to the sparsity model given by || fllx < v/s | fllg.,-

Theorem 1.7. Let X C Ly[0,1] be a Banach space with unit ball K. Let 0 : G — U be a
continuous group homomorphism of a group G to the unitary group U. Let g1,...,gm be

independent copies of a Haar-distributed random variable on G. Suppose that the following



conditions hold: i) X* has type 2; i) X is a Banach lattice'; iii) K is G-invariant; iv)
ES™ [, o033 = mll B for all f € Lal0, 1); and v) o(g) commutes with any
point-wise operation on f € L3[0,1]. Then there exists a numerical constant ¢ such that

foré € (0,1)

1 - 2 2
sup  |— > [, 0(g) NNz = Ifll20] <0
™ ; w
2,w=

holds with probability 1 —  provided

m > 0 s {To(X*)2(1 + Ind)®(1 + Inm)® +In(¢" Y} 0|5~ -

The result of Theorem 1.7 will become substantive through concrete examples of spar-
sity models given by a specific choice of Banach space X. Particularly we consider a model
given by the Lebesgue measure of the support of f, which naturally extends the canoni-
cal sparsity in finite dimension. This model is further restricted by a Sobolev seminorm.
We also illustrate the result over another class of continuous-time signals constrained by
the Sobolev (1, ¢)-seminorm, which has been shown an effective regularizer for denoising

similar to total variation.

The above infinite-dimensional sparsity models are compared to those appearing in
the literature as follows. The spike model refers to a superposition of Dirac’s impulses.
Recovery of the spike model from Fourier coefficients has been extensively studied [40,
7,19, 5, 6, 4]. There also exist extensions to signals of finite rate of innovations (FRI)
[45, 13, 16, 35, 30-32] and to a sparsity model in a countable representation system [2]. Note
that these models are either restricted to point measures supported on a set of measure
zero or obtained via an approximation by a certain form of discretization. In contrast,
the infinite-dimensional model in Theorem 1.7 does not suffer from these limitations and

provides more flexibility in describing signals in infinite dimension. However, due to the

! A Banach space X is a lattice if | f| < |h| implies |||y < [|h]|x- As a consequence, the norm is invariant

under point-wise sign change.



lack of sub-additivity of sparsity level, Theorem 1.7 does not imply RIP on the Minkowski
difference of the sparsity model, which could have provided recovery guarantee by convex
programming via the result by Traonmilin and Gribonval [42]. From this perspective,

Theorem 1.7 is weaker than previous work on the other infinite-dimensional models.

1.5 Notation

The symbols ¢, c1,c2,... and C,C1,Co, ... will be reserved to denote positive numerical
constants, which may vary from line to line. We will use notation for various Banach spaces
and norms. The norm of a Banach space X is denoted by || - || x. For brevity, we use the
shorthand notation || - ||, for the norm of Eév and L4[0, 1]. The distinction will be clear from
the context. Moreover Bév and B, will denote the unit ball of %\7 and Lg[0, 1], respectively.
The identity operator will be denoted by Id. The operator norm will be denoted by | - ||
without any subscript. We also use the following two big-O notations: First y = O(x)
implies that there is a numerical constant ¢ > 0 independent of two positive numbers x
and y such that y < ¢z, which is also equivalently written as y Sz orx 2 y. Ify < cx

with ¢ depends on a logarithmic function of = and y, then it will be denoted by y = O(z).

2 Optimized analysis over relaxations of canonical sparsity

model

The first vignette will demonstrate how Theorem 1.3 can be leveraged to optimize the
number of group structured measurements that provides a near isometric map on sparse
signals. Here we consider the canonical sparsity model that constrains the number of
nonzero entries and its relaxations given by a set of Banach spaces %V for ¢ € [1,2).
The approach will be illustrated over random partial discrete short-time Fourier transform

(DSTFT) with a decaying window. The optimization is carried out over the choice of the



Banach space Kév .

We start with showing how DSTFT is described by a set of group actions. Let n € RY
represent a window of length L, i.e. n[l] =0 for L <1 < N, where the time index system
is zero-based and modulo N. The windowed discrete Fourier transform (DFT) of x € RY
with time-shift ¢ € Zy and at frequency k € Zy is given by

N-1

c(t, k) =Y allg[l — tle 2N (5)
=0

The windowed DFT in (5) is indeed described by a set of group actions as follows. Let o

denote the group homomorphism of Zy X Zy to the orthogonal group given Oy given by
o (t k) — A'Sh* (6)
where A : CV — C¥ denotes the modulation operator defined by
A(ep) = e?mNe,  Wi=1,...,N,
and Sh : CY — C» acts as the circular shift modulo N, i.e.

ep1 1<I<N-1,
Sh(e;) =

€1 l=N.

Here e, ..., ey denote the standard basis vectors in CV. Then the windowed DFT coeffi-

cient in (5) is written as a group structured measurement given by
(b, k) = (n,o(t, k)z)

Alternatively, the entire set of measurement functionals is described as the orbit of 7 over

G, that is {o(t, k)" n : (t,k) € G}.

The windowed DFT generalizes DFT as the latter is a special case with n = (1,...,1) €
RN, where c(t, k) is uniquely determined by k regardless the choice of t. However, we are

more interested in the scenario where L < N, which corresponds to DSTFT. Moreover,
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windows those providing a certain decay property such as Hann window or Gaussian win-
dow are commonly used in practice. In what follows, we consider a Poisson-like window 7

with exponentially decaying magnitudes.

From Theorem 1.3 we obtain a sufficient number of random DSTFT measurements
that provides a near isometry on sparse signals. The following corollary is a consequence

of Theorem 1.3 for a Banach space X that approximates K{V .

Corollary 2.1. Let (t1,k1), ..., (tm, km) be independent copies of a uniform random vari-
able on Zn x Zy. Forn = (n1,...,nn) € RN, with (nj)lngN denoting the rearrangement
of (Injl)i<j<n in the non-increasing order, suppose that there exist o € (0,1/2), f > 0,
v > 1, andL<Nsuchthatz)ﬁ]_o‘<n] Byi~® for1 < j < L; zz)n 0 for
L <j < L;iii) |nll2 = V'N. Then there exists a numerical constant ¢ > 0 such that

P >5% < (7)

1 & 2
- (tj, kj)* ‘ — ||z||?
— > (ot k) n.a)| = el

J=1

HII|0<T ||w||2 1

provided

2 20 1-2a
_ L 2N2(1-2a) (N
m > 6 2rmax{(1 +1nL)2(1 +1Inm)>, In(¢ 1)}1_[/——1+2a T )

Proof. We apply Theorem 1.3 for X = EN with ¢ =3InL/(3In L —1). First we verify that
the assumptions of Theorem 1.3 are satisfied. Note that X* = ¢% g+ Where ¢ =3InL >
2 for any L > 2. Therefore X* has type 2 and the type 2 constant Th(X*) is upper-
bounded by v/¢' [8, Lemma 3]. Moreover, the unit ball K = Bév is G-invariant, where
the group homomorphism o is from Zy x Zy to Oy as in (6). This is deduced from the
following two observations: Since A is represented as a diagonal matrix whose diagonal
entries are complex numbers of unit modulus, the /,-norm is invariant under A. It is also
straightforward to see that the ¢;-norm is invariant under Sh. Lastly, as shown in [20,
Section 4.2.1], since o is irreducible, i.e. the only subspaces invariant under group actions

are {0} and X, it follows that o(t;, k;)*n is an isotropic random vector.
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It remains to derive an upper bound on |[|n[|,,. By the assumptions on 7, we have

52(L1—2a _ 1)

L
e I I

j=1

(8)
For the particular choice of ¢' = 31In L, since i has only L nonzero entries, it follows that

oo < llnlly < LY 0]l -

[1/3InL _ 61/3

Since , the two norms are equivalent up to a numerical constant. Therefore

we deduce

2
2 7" N(1 - 2a)
Inlly <57 S a1~

O]

Recall that the set {x € RY : ||z||; < 7|z} is a well-studied relaxation of the
canonical sparsity model consisting of r-sparse vectors. Therefore, in Corollary 2.1, the
Banach space X was chosen so that it accurately approximates Ejlv . However, as shown in
the following corollary, the number of measurements providing a near isometric map can
be significantly reduced over that in Corollary 2.1 by a naive approach. We optimize it

over relaxations of the canonical sparsity model given by Banach space X.

Corollary 2.2. Suppose the hypothesis of Corollary 2.1 holds. Then there exists a numer-
ical constant ¢ > 0 such that (7) holds if

m > cd %rmax{a?(14+Inm)° In(¢"1)}

1 — [—1+2a r T

A2(1—20)(1 +lnL)2°‘.<N>2a'<JZ>12a )

Proof. Let 1 < g < 2and X = Eév . We first verify that the assumptions of Theorem 1.3
hold. It follows that X* = 551\,[ with 2 < ¢ < oo is of type 2 and the type 2 constant
T»(X*) is upper bounded by /¢’ [8, Lemma 3|. Furthermore, similarly to the proof of
Corollary 2.1, we also have the G-invariance of Bév and the isotropy of o(t;, k;)*n. Indeed,

the arguments there remain valid for any ¢ > 1.
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Since any r-sparse x satisfies [|z||, < /2714 || 2|, it follows that the set of (BY . s)-
sparse vectors where s = 7172/ ¢ provides a relaxation of the canonical sparsity model

consisting of r-sparse vectors. Therefore, by Theorem 1.3, the assertion in (7) holds if
m > ¢ max {(¢)2(1 + mnm)®, In(¢ ™)} k- - (10)

It remains to derive an upper bound on ||7||x+. We recall that the normalization of 7

implies (8). Next we choose ¢’ = 1/« and compute r'~2/ q/Han, as follows:

L 2/q
P12 )2 < 2R (e
j=1
(-2 PN A In L) (L 2% 22(1 = 20)N(1 + In L)%
— [1-2a _q - r L(l _ L—l+2a)

(11)
Then (9) is obtained as a sufficient condition for (10) by plugging in the upper bound in
(11). 0

Corollary 2.2 provides a tighter lower bound on the number of measurements than
Corollary 2.1 by a factor of ((1 4 InL)/r)?®. Alternatively, the two corollaries can be
compared in terms of the requirement on the decay parameter « that achieves a near
isometry with 0(7‘) measurements. Suppose that the window length L is proportional
to N. According to the result by Corollary 2.1, a needs to be set to at least 1/In N,
whereas Corollary 2.2 relaxes the requirement to @ = 1/In(N/r). The improvement is
significant when the sparsity level is proportional to N. Therefore the optimized analysis
over relaxations of the canonical sparsity model allows that the near restricted isometry

property of random partial DSTFEFT applies to a broader class of window functions.

13



3 Sketching non-sub-additive sparsity models

Theorem 1.3 extends existing RIP theory to generalized sparsity models. However, this
generalization comes at a cost that the model loses the sub-additivity of sparsity level. In
other words, a near isometric map does not necessarily preserve the distance between two
sparse vectors with the same distortion in preserving the length. The vignette in this section
illustrates how this penalty can be overcome by leveraging the notion of multiresolution

restricted isometry property (MRIP) [34].

In the conventional sparsity models, which are given by a union of subspaces, the
function that measures the sparsity level of a vector is sub-additive. For example, in
the canonical sparsity model, ¢p-pseudo-norm that counts the number of nonzero entries
measures the sparsity level of a vector and satisfies ||z + y||, < ||z, + |y, for any = and
y. The sparsity level function has the same sub-additivity for the low-rank matrix model

and more generally for an atomic model [9].

The generalized sparsity model in Theorem 1.3 does not provide the sub-additivity of
sparsity level. Therefore a near isometry on the set of (K, 2s)-sparse vectors does not
necessarily imply the same property on the Minkowski difference of the set of (K, s)-
sparse vectors with itself. For inverse problems with a generalized sparsity model, the
latter property is crucial for deriving a performance guarantee of recovery methods [42].
Theorem 1.3 only provides the former result and the extension to the Minkowski difference
is not straightforward because of significant difference in geometry between conventional
union-of-subspace models and the generalized model given by a nonconvex cone. We show
that it is possible to obtain a weaker result providing a restricted near isometry with
additive distortion instead of multiplicative distortion as in Theorem 1.3. The derivation

will rely on a modified version of MRIP described below.

MRIP was originally proposed for the canonical sparsity model to analyze sketching of

an arbitrary set with random sign [34]. As the name implies, MRIP consists of RIPs at

14



various sparsity and distortion levels, where the two parameters vary simultaneously over
a certain range. We consider its extension with respect to a general sparsity model given
by a Banach space. Let X be a Banach space with unit ball K C B . Note that if K has

a nonempty interior then there exists a number
Smax(K) = [|1d : 657 — X||? (12)

such that [|z]|x < v/Smax(K)||z||2 holds for all x. For example, if H = ¢} and X = ¢V,
then spmax(K) = N. Given a sparsity generalized sparsity model by K with the maximum

sparsity level spax(K), MRIP on this model is defined as follows.

Definition 3.1 (Multi-resolution RIP for (K, s)-sparse vectors). Let X be a Banach space
with unit ball K C BY and symax(K) be defined in (12). For § >0 and s > 1, we say that
A € C™*N satisfies (K, s)-MRIP with distortion & if
sup [ Az]|3 — [|=]3] < max(2'/?5,2'5%)
|l x <V2Ts, |lz[l2=1
holds for alll € Z satisfying | —logy s| <1 < [logs(Smax(K)/s)].

Note that MRIP in Definition 3.1 is a generalization of the original definition by Oymak
et al. [34], which is obtained by substituting the canonical sparsity model by a generalized
model given by Banach space X. The generalized version in Definition 3.1 plays a key role

in analyzing sketching of non-sub-additive sparsity models.

Moreover, by definition, RIP is a special instance within MRIP at the resolution by
[ = 0. Therefore one expects that a larger number of measurements are necessary to
provide MRIP compared to that for RIP. For certain measurement maps, MRIP can be
guaranteed by a number of measurements that scales in the same order compared to that
for RIP. This is the case with the group structured measurements in Theorem 1.3, which

will be shown in the end of this section.

The following theorem demonstrates that (K, s)-MRIP provides a restricted near isom-

etry on the Minkowski difference of the set of (K, s)-sparse vectors in a weaker sense.
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Theorem 3.2. Let K C Bév and X be the Banach space whose unit ball is K. For § > 0,
s > 1, and spax(K) defined in (12), suppose that A € C™*N satisfies (K, s)-MRIP with
distortion 0. Then we have the following results for any (K, s)-sparse unit vectors x and y

m Eév : If Ax and Ay are separated enough by satisfying

Az — Ay|l2 > 4V25 (13)
then we have
(1= J5) 10— 40l < o =yl = (14 =) 14— 4yl (14)
V2 - - V2
Otherwise, if (13) is violated, then
|z —ylla <86. (15)

Proof of Theorem 3.2. Let h = x — y denote the difference between = and y. We first

show that
V23|z —yllx|z —yll2 26|z — yll3
|| ARJI3 — (]3| < max ; X0 (16)
NG s
It follows from the definition of s;.x that there exists | € Z such that
| —logy 5] <1 < [logy(smax(K)/s)] (17)
and
ol 1711% 141
5 < > < 27s. (18)
17213
This implies that A is (K, 2"+ s)-sparse. Thus the MRIP assumption provides
[AR[3 = 1R13] < max{é1, 671 HIA3 (19)

where 0, = 20+tD/25. 1f 5., < 1, then by (18) the right-hand side of (19) is upper-
bounded by
S ||l3 = 204D28| I3 < V265712 Al x ||All2 - (20)
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Otherwise, if §;41 > 1, then the right-hand side of (19) is bounded from above by
0fallRl3 = 2182 |[nlj3 < 28257 |[AlI% - (21)

Plugging in (20) and (21) into (19) provides (16).

By the triangle inequality, we obtain
[z —yllx < llzllx + llyllx < \/§||x||2 + \/§||?J||2 <2Vs.
Therefore from (16) we can continue as
| AR]3 — [[A]]3] < max{2v20]|h||2, 857} . (22)

Then we proceed with the proof by considering the following two complementary cases.

Case 1: ||hll2 > ||Ah|2. Tt follows that 21/28| k|2 > 1662 and the maximum in (22) is
attained by the first term. Thus by (13) and (22), we have

11113
IlI3 — 1 ARII3 < 2v20]|All> < 7572,

which implies ||h||2 < v/2||Ah||2. This together with (13) and (22) provides

| Anj3

Ah|2 — ||h||2] < 46]| AR, <
[I|AR|I5 — [|Al5| < 46]| ARz < 7

(23)

Note that (23) is equivalent to (14).

Case 2: ||h|l2 < ||Ah]|2. It follows from (22) and (13) that

2
[IAR||3 — [|R]|3] < 2v/26]|AR||; < ||142h||2

which implies (14). Thus the first assertion is proved.

The second assertion is proved by contradiction. Suppose that ||Ahl2 < 4v/2§ and
llh|l2 > 86 hold simultaneously. In this case the first term achieves the maximum in (22).
Therefore (22) provides

11113

hlIZ = lAR|2 < 24268 R < .
[A]l3 — |AR[l3 < [ ||2_2\/§
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Then it follows that

2v/2
I3 < 22 A3 < 6402 < 3.

2V2 —

which is a contradiction. Therefore, || Ahll2 < 4v/28 implies ||h||2 < 85. This completes the

proof. O

Theorem 3.2 implies that if the distance between Az and Ay for two unit-norm sparse
vectors = and y is larger than 41/28, then the distance between z and y in £ is equivalent to
||Az — Ayl|2 up to a constant factor. In other words, one can distinguish = and y from their
linear measurements. However, if Az and Ay are close by satisfying || Az — Aylla < 4v/26,
then Theorem 3.2 only confirms that ||z —yl|2 is less than 84, i.e., one cannot distinguish two
similar sparse vectors x and y from their measurements. Obviously, this result is weaker
than sketching any two sparse vectors (regardless of the amount of distance) given by the
restricted isometry on a sub-additive sparsity model. However, this weak result applies to a
broader class of signals and can be useful for certain applications. For example, in locality-
sensitive hashing, if the centroids of clusters are well separated via the dimensionality

reduction via A, then one can compute clustering in the compressed domain.

Remark 3.3. We did not attempt to optimize the constants in Theorem 3.2. The result
can be stated with positive constants a and § that satisfy o > 2v/2 and o? < (8 — 2v/2)
as follows: If ||Ah|ls > «d, then

22 242
1—————— | |43 < |Inll3 < |1+ ———] || 4h]5.

ala—2v?2) ala—2v/2)

Otherwise, if ||Ahll2 < ad, then ||hll2 < £d. One may optimize the constants o and g in

order to further tighten the estimates.

Next, in the following corollary, we demonstrate that MRIP preserves the fo-norm of

two (K, s)-sparse unit vectors  and y under a mild condition on the sparsity level of z —y.
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Corollary 3.4. Suppose that the hypothesis of Theorem 3.2 holds. For any € > 0, we have

e~ Al — e — ol < min { 12218 =9 55 23l - ol (24)

SN—I

provided that x,y € are (K, s)-sparse and satisfy

e — ylx \ﬂ( y)”2 (25)

Remark 3.5. Corollary 3.4 preserves the distance of two (K, s)-sparse vectors z,y by (24)
if the sparsity level of the difference 2 — y is below the threshold s/2(1 + €)262, which is
higher than the sparsity level s of each of  and y for small §. The estimate in (24) implies

that the distortion is strictly less than ||z — yl||3, which implies a local injectivity.

Since the fo-norm is preserved by RIP up to a small multiplicative distortion §, we can
always compare two spare vectors after normalization. Suppose that |z|2 = |lyll2 = 1.
Then (24) also implies that the distortion is no larger than 2v/28||z — y||2. Although this
distortion bound is more conservative than §||z — y||3, which is available if the sparsity
level is sub-additive, it can still be useful for certain applications. For example, similar
deviation bounds have been used in the analysis of iterative optimization algorithms for

matrix completion (see [10, Lemma 5] and [47, Lemma 8]).

Proof of Corollary 3./ . The arguments in that for Theorem 3.2 are used to prove Corol-
lary 3.4 . For the sake of claity, we repeat these arguments. Let h = z—y. By the definition

of Smax that there exists | € Z such that | —logy s| <1 < [logy(Smax(K)/s)] and
o L1 141
Vs <05 < 278, (26)
17213
The upper bound in (26) implies that h is (K,2"+1s)-sparse. Thus by MRIP we have

AR = [IAl13] < max{di1, 674 A , (27)

where 641 := 241/25. From the lower bound in (26) together with the assumption in
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(25) for h = x — y provides

I s

ols < ,
"SR T 21+ 020?

which implies

1
Oppq = 2UAD/25  —
I+1 < 1T+ e <

Therefore the upper bound in (27) reduces to

V20||hllx ([l
\/g )

where the second step follows from the lower bound in (26). Recall that |h| y is upper-

Sue1|[hll3 = 20FV25 ) A|J3 < (28)

bounded by (25). Moreover since each of z and y is (K, s)-sparse, by the triangle inequality,

we obtain
Ihllx < llzllx +llyllx < Vs(llzll2 +llyll2) = 2Vs .

The assertion is obtained by plugging in the minimum of these two upper bounds on ||A|| y

into (28). O

Next we show that Theorem 3.2 provides a recovery guarantee for the following opti-

mization problem:
minimize  ||Z| x
v (29)

subject to Az = Az, ||Z|2=1.
Suppose that x satisfies ||z|2 = 1 and ||z||x < /s. Let & be the solution to (29). Since

x is feasible in (29), we have ||Z||x < ||z][x < +/s. Moreover, & also satisfies ||z]l2 = 1.

Therefore, by Theorem 3.2, it follows that ||z — |2 < 86.

However, the optimization in (29) is a nonconvex program with a spherical constraint.
Furthermore, computing the X-norm may be expensive (e.g. certain tensor norms are
NP-hard to compute. [17]). It will be a fruitful direction to pursue a guaranteed method

and its practical implementation to solve (29).

Finally we conclude this section by showing that MRIP holds with high probability for

the group structured measurements in Theorem 1.3.

20



Proposition 3.6. Suppose that the hypothesis of Theorem 1.3 holds and smax(K) is defined

in (12). Then there exists a numerical constant ¢ such that

4= \/17n [‘7(91)?7 o olgmy] € C™N

satisfies (K, s)-MRIP with distortion § with probability 1 — ¢ provided
-2 )2 5 -1 2
m > 6 “smax {To(X*)*(1 4+ Inm)°, InIn(smax(K)) + (¢ } Inll%- - (30)

Proof. Fix | € IN. Since it trivially holds that 2's/(2//25)? = s/62, it follows from Theo-

rem 1.3 that there exists a numerical constant ¢ such that (30) implies

P sup

; C .9 2 1 2 C
HIHOS lS, ||$||2771 j=1

~ [logs(8max(K))] '

Since [ was arbitrary, the assertion is obtained by applying the union bound over | —logy s| <

< 10gs(Smax (K)/5)]- =

4 Sketching by group structured measurements with ran-

dom sign

The third vignette demonstrates how Theorem 1.3 can be strengthened by introducing
extra randomness to the group structured measurement operator. Specifically we show that
the composition of the group structured measurement operator and the diagonal operator
with random sign achieves a restricted near isometry on any set by the “Gordon-optimal”
number of measurements. For the baseline of comparison, we first recall the result by

Gordon [14] on the number of Gaussian measurements for sketching an arbitrary set.

Theorem 4.1 (Gordon’s escape through the mesh [34, Theorem 1.2]). Let 0 < § < 1, T
be a subset of the unit sphere SNV, and &1,. .., &y, be ii.d. Normal(0,b 2Iy) for by =
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V2I(m/2)/T((m + 1)/2), where T' denotes the Gamma function. Then

m

> I o) —ll=li3

Jj=1

P q sup >0, <¢

zeT

holds provided
2
m > 52 (w(T) n 21n(2/()> ,

where w(T') denotes the Gaussian width of T defined by

w(T) := Esup(&, ) . (31)
zeT

Remark 4.2. The Gaussian width in (31) satisfies w(1") = w(absconv(T")), where absconv(T’)
denotes the absolute convex hull of D. It also coincides with the Gaussian-summing norm,
also known as the £-norm, of the identity operator from £ to Y, where Y is the Banach

space with unit ball as absconv(7T") [11].

Further extensions of Theorem 4.1 showed that random matrices with either i.i.d. sub-
gaussian entries or i.i.d. subgaussian rows also achieve a similar near optimal sample
complexity result in Theorem 4.1 [21, 22, 29, 33]. However these random matrices do not
provide a useful structure for fast computation. In contrast, the group structured mea-
surement operator in Theorem 1.3 can describe Fourier transform and its generalization
to a broader class including Gabor transform, short-time Fourier transform, and Radon
transform. In a companion paper [20], we have shown that the number of group structured
measurements m for RIP in Theorem 1.3 scales near optimally for certain sparsity models
(e.g. sparsity models with respect to Banach spaces X = 611\7 for the canonical sparsity or
X = S} for low-rankness). However, in general, one might need a larger number of mea-
surements for the group structured case than the Gaussian case by more than a logarithmic
factor. To strength Theorem 1.3 so that it is comparable to Theorem 4.1, we adopt the

idea of applying random sign before the structured measurement operator.

Oymak et al. [34] showed that the composition of a matrix providing the multiresolution

RIP, which is formally defined below, and a random sign operator provides near isometric
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sketching of an arbitrary set where the number of measurements is slightly larger than that
for Theorem 4.1 only by a logarithmic factor. This result generalizes an earlier work by
Krahmer and Ward [23] that applies to any finite set. Below we provide a summary of the
result by Oymak et al. [34] for the convenience of readers. Multiresolution RIP is formally

defined as follows:

Definition 4.3 (Multiresolution RIP [34]). We say that A : Y — (' satisfies multires-
olution restricted isometry property (MRIP) with distortion level § > 0 and sparsity level
s>14f

sup [[|Az[|3 — ||z ]3] < max(2'/%5, 2'6°)
lello<2ts

for alll=0,1,...,[logy(N/s)].

The following theorem by Oymak et al. [34] shows that a matrix with multiresolution

RIP followed by random sign provides near isometric sketching.

Theorem 4.4 (Oymak et al. [34, Theorem 3.1]). Let T C SV~! and D. € RV*N be qa
diagonal matriz with a Rademacher sequence on the diagonal. Then there exists a numerical
constant ¢ such that if H € R™N obeys MRIP with sparsity and distortion levels s =
200(1 4 In(¢™Y)) and 6 = ¢d/w(T), then for § € (0,1)

2 2
P {sup .l - 113 2 6} <.
z€T
Combining the multiresolution RIP result for group structured measurements in Propo-
sition 3.6 and Theorem 4.4 provides the following corollary.

Corollary 4.5. Let T C SN~ and D, be as in Theorem J.J. Suppose that the hypothesis
of Theorem 1.3 holds with X = Zév for g =1n(N)/In(N/e). Then there exists a numerical
constant ¢ such that for § € (0,1)

P < sup

1 — .
— > (Deo(gy) ma) 2= w3 = 9 b <¢
zeT =1
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provided
m > 6 2w(T)%*(1 +In(¢™1))? max {1+mN)(1+ Inm)®, 1+ ln(C_l)} nll% .

Proof. The assertion follows by combining Proposition 3.6 for K = BCJIV and Theorem 4.4.

O]

To achieve near isometric sketching at the sample complexity comparable to Gordon’s
result, it is important for matrix A to satisfy RIP at a near optimal rate. Oymak et al. [34]
considered a set of such random matrices including partial Fourier [37] and its generaliza-
tion to a subsampled bounded orthogonal system [36]. Corollary 4.5 demonstrates that a
group structure measurement operator, which is considered as a generalization of partial
Fourier along a different perspective, also provides a Gordon-optimal isometric sketching
by leveraging Theorem 1.3. For example, DSTFT in Section 2 does not belong to a set of

bounded orthogonal systems.

For a special case of Corollary 4.5, we consider T' = K, = /sK NSV~ for a fixed

convex body K C Bév . Then we obtain the following corollary.

Corollary 4.6. Suppose that the hypothesis of Corollary 4.5 holds. Then there exists a

numerical constant ¢ such that for § € (0,1)

T S (Do) n )2 — el = 8} < ¢

1
lellx <V3. llzll,=1| ™ 5=

holds provided

m > 6 2sw(K)*(1 +1n(¢™1))? max {1+ N)2(1+1Inm)5, 1+ ln(C_l)} Inll% . (32)

Proof. Let Ky = /sK NSY~!. Then w(K,) < w(y/sK) < /sw(K). The assertion follows

from Corollary 4.5 as a special case where T' = K. O
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Note that two key parameters w(K) and |[[n|,, determine the sufficient number of
measurements for RIP in (32) for the generalized sparsity model given by Banach space X.
The Gaussian width of the unit ball K describes the complexity of the model whereas the
second parameter [|n||,, is corresponding to the incoherence of measurement functionals
to the canonical sparsity model, which is totally independent of the model by X. Due to
decoupling of the measurement operator and the sparsity model by random sign operator
D., the result holds without the G-invariance of the unit ball K in X. In other words,
the group structured measurement operator with random sign provides a near isometry

universally for any sparsity model.

One may deduce that it is always desirable to incorporate random sign to measure-
ments. However, in certain scenarios, a group structured measurements without random
sign can performs better due to its coupling to the sparsity model through the G-invariance.
For example, in a high-dimensional case with very large NV, sampling-based approximation
of (n,o(g)z) for selected group indices can accelerate sketching. Moreover, in an extreme
case, where the model is built on an infinite-dimensional vector space, discretization simi-
lar to the Marcinkiewicz-type problem [41] is inevitable unless an equipment that directly
takes measurements (like Fourier transform by a lens in optical imaging) is available. With
the G-invariance of the model, random sampling can be utilized to apply empirical method
universally to all selected group indices without increasing the approximation error. In
contrast, incorporating random sign may lose the restrictive power of the model and re-
sult in significantly increased approximation error. If the Banach space X is a lattice,
then it is also invariant under random sign and there will be no such penalty. However,
there are models which are not invariant with entry-wise sign changes such as low-rank
matrices/tensors and functions constrained by a Sobolev seminorm. Therefore we deduce
that the group structured measurements tightly coupled with the sparsity model through

G-invariance are still preferred over that with random sign in certain scenarios.
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5 Extension to infinite-dimensional sparsity models

In the last section, we present an extension of Theorem 1.3 that applies to an infinite-
dimensional “sparsity” model. We are interested in preserving (semi-) norms by finitely
many measurements up to certain accuracy. Similar to its counterpart in finite dimension,
this is possible only when the input is restricted appropriately. Particularly we consider
sparsity models those given by coupling various (semi-) norms on the vector space of
functions defined on the unit interval and measurements induced by a translation group.
A focus will be given to explain how the theory for infinite-dimensional models deviates
from the finite-dimensional counterpart. We start with an extension of Theorem 1.3 to an
abstract infinite-dimensional model via the Fourier series, which will be made substantive

with concrete examples that follow.

5.1 RIP on infinite-dimensional sparsity models

In Theorem 1.3, we considered a generalized sparsity model given as the set of vectors those
satisfying ||z||x < v/s||z|l2, where X is a Banach space in ¢). In fact, the derivation of
Theorem 1.3 does not rely on the fact that fo-norm satisfies the definiteness, i.e. ||zl =0
implies # = 0. Moreover, it does not depend on £) being finite dimensional. Below we
show that the result in Theorem 1.3 extends to an infinite-dimensional sparsity model
in L5[0,1], which is obtained by substituting ¢} to a (semi-) normed space H, and by
choosing a Banach space X in L2[0,1]. Specifically we consider a class of (semi-) norms on

L5[0, 1] defined by using the Fourier series representation. Let (f[k])rez denote the Fourier

series of the periodization of f € L0, 1], i.e.

A~

1 —_—
R = ) = [ 0s0
where ¢, : R — C denotes the complex sinusoidal function defined by
Un(t) = e (33)
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For a nonnegative sequence (wg)gez, we define a weighted (semi-) norm by

) 1/2
112 = (Zwk f[k]\) . (34)

kEZ
For example, if wy, = k for all k € Z, then it follows that || f||2.. = || f'||2 for all f € C1[0,1],

where f’ denotes a weak derivative of f. Let H,, denote the (semi-) normed space equipped
with || - [|2,w. Particularly if wy > 0 for all k € Z, then || - ||2,, is a valid norm and H,, is a

Hilbert space. Otherwise if (wg)gez is finitely supported, then || - ||2,, is only a seminorm.

With the (semi-) norm defined in (34), we state the following theorem that extends

Theorem 1.3 to an infinite-dimensional case.

Theorem 5.1. Let X be the Banach space defined by the Minkowski functional of a convex
body K C By, where By denotes the unit ball in L2[0,1]. Let 0 : G — U be a continuous
group homomorphism of a group G to the unitary group U acting on L9[0,1]. Let g1,. .., gm
be independent copies of a Haar-distributed random variable on G. Let u : X — Eg be fized.
Suppose the following conditions hold: i) X* has type 2; i) X is a Banach lattice; iii)
K is G-invariant; iv) E 77, lu(o(g;) I3 = m||f||%,w for all f € Ly[0,1], where || - ||2,w
is a (semi-) norm as in (34); and v) o(g) commutes with any point-wise operation on

f € Ls[0,1]. Then there exists a numerical constant ¢ such that for 6 € (0,1)

<4

1 G 2 2
sup | — > Jlula(g) N3 — 1113,
‘|‘|§|‘|‘X§\/1§ mi4 ‘
2,w—

holds with probability 1 — ¢ provided

2
, (39)
X*

d 1/2
m > 6 2s {TQ(X*)2(1 +1Ind)5(1 +1nm)® + ln(g_l)} H <Z |u*(el)|2>
=1

where ey, . .., eq denote the standard basis vectors in RY.

Theorem 5.1 can be thought of as an extension of Theorem 1.3 from the following
perspectives: Most importantly, the sparsity model in Theorem 5.1 is built upon an infinite-

dimensional vector space together with /2-norm substituted by a (semi-) norm |-, ,,, which
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may violate the definiteness. If the set V = {xz : [|z||, ,, = 0} is a subspace, then the result
of Theorem 5.1 implies a near isometry on the quotient space with respect to V. (One such
case will be illustrated in the next section.) Furthermore the measurements in Theorem 5.1
are obtained via u : L3[0,1] — £ from an orbit of the input. Therefore each measurement

is vector-valued whereas that in Theorem 1.3 is scalar-valued.

Proof of Theorem 5.1. Tt is straightforward to verify that [20, Theorem 2.1] still applies
when an Hilbert space H in the original statement is substituted by a (semi-) normed space
H,, with slight modifications described below. Specifically, the result of [20, Theorem 2.1]

remains valid when the assumption

sup E— ) |lu(r, f) H (36)
171 Z °T
is substituted by

E— Z lu(o(g) N5 = 1f13w > V- (37)

Indeed, the identity in (37) follows from the assumption that E||u(a(g;)f)[|* = HfH%w

Set the parameter p in [20, Theorem 2.1] to 2 and choose the 1-homogeneous function

g on linear maps from X to ¢4 so that

d 1/2
Qg w H (Z |w*(el)]2>
=1

Since X is a Banach lattice, i.e. |||f]l|x = ||f| x for all f € X, and X* has type 2, it follows
from [20, Theorem 3.11] that

X*

My oy (K) S To(X*)(1+Ind)*?

where Ms ,,(K) is defined in [20, eq. (7)]. Therefore the assumptions of [20, Theorem 2.1]
except (36) are satisfied. Recall that we substituted (36) by (37).
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In the above setting, the modification of [20, Theorem 2.1] provides the tail bound in

(42) if m satisfies

1/k
m > ed 25Ty (X*)?(1 4 Ind)®(1 + Inm)® sup (E sup ag(uTy; )%) (38)

kelN 1<j<m

and
1/k

- 12k

m >cd “ssup | E sup Huth X — EQH (39)
kelN 1<j<m

for some constant c. It remains to show that (35) implies both (38) and (39).

First we show that ag(ur;) = ag4(u) for all j = 1,...,m. Then the last factor in the

right-hand side of (38) simplifies to aq(u)?. Indeed ag(u;) is written as

d 1/2
ag(ut;) = sup <’f|7 (Z |U(9j)*U*(€l)‘2> > :
=1

I fllx<1
Since o(g;) commutes with both the point-wise square-root and point-wise magnitude

operators, we have

<!f\»(lzd;la(gj)*U*(ez)2>l/2> <|f| (Zlu e1)] >1/2>
o (Ewiae) )
(n (et )

Therefore, by the assumption that K is G-invariant and X is a Banach lattice, we can

d 1/2
ag(ury;) = sup <\f|,<ZIU*(€z)\2> >=ad(U)-
=1

continue as

IFllx<t

Similarly we simplify the right-hand side of (39) by dropping the supremum over k£ € IN.

Since K is G-invariant, we have

|uotg) s X = 68| = swp Ju(o(g) Nl = sup_fu(H)lly = ||u: X — 65|
Ifllx<1 Ifllx<1
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for all j =1,...,m. Furthermore, by Jensen’s inequality, we have

d 1/2 d 1/2 d 1/2
[u(Hlo = (ZK@Z,U(f))!Q) = (Z\(u*(ez),ﬁIQ) < <<Z\u*(€z)|2> ,If!> :
=1 1=1

=1

which, together with the fact that X is a Banach lattice, implies

1/2
|o:x @)= sw Julf)l, < sup <(§dj|u*<el>|2) ,|f|>=ad<u>.
=1

IFllx<t IFllx<t

Finally the assertion follows by plugging in the above estimates to (38) and (39). O

The next corollary follows from Theorem 5.1 as a special case where Banach space X is
set to Lg4[0,1] for 1 < ¢ < 2 and group actions represent all circular time shifts as follows:
Let 7, denote the linear operator on L9[0, 1] that maps f to its translation to the right by
t € [0,1) modulo 1. Then ¢+ 7 can be considered as a group homomorphism from [0, 1)

modulo 1 to a unitary group {7 : t € [0,1)} consisting of all time shifts modulo 1.

Corollary 5.2. Let g € (1,2] and 0 < 6 < 1. Let || - |20 be a (semi-) norm as in (34),

where (w;j)jez is determined explicitly by u : Ly[0,1] — €3 as

w, = |u(er)l3 - (40)

Suppose that ty, ..., t, are independent copies of a uniform random variable on [0,1). Then
1 «— 5

E— > fulr, I = I flow, Vf € La[0,1]. (41)

j=1

Moreover there exists a numerical constant ¢ such that

1 m
Pl sup | = > fu(m N3~ 1fl3] >8] <¢ (42)
||||}‘|\|\q§x/§ maia
2, w—

2A unitary group in infinite dimension is defined as an inductive limit.
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holds provided

2
;o (43)

/

d 1/2
m > 0 2s{q'(1+Ind)°(1+Inm)° +1In(¢"")} H (Z |u*(el)|2>
=1

q

where e1,. .., eq denote the standard basis vectors in RY.

Proof. Let j € {1,...,m} be arbitrary. Since 1); and v, are complex sinusoids as in (33),

we have

1
E(g, (77 u ur)e;) :/0 2D (e (wu) (W)t = O (b, (W) (1))

where 0y; denotes the Kronecker delta. Then (40) implies that Erfu*ur; is a Fourier
multiplier with respect to (wg)ren, i-e.
Erfu*ur : f— Zwkzpk(wk, f)-
keZ

Therefore we obtain
Ellu(re, Ol = I fll2w, Vi=1,...,m, (44)

which implies (41).

The second assertion is obtained as a consequence of Theorem 5.1. It only remains to
verify that the assumptions of Theorem 5.1 are satisfied. Let ¢’ satisfy 1/¢ + 1/¢' = 1.
Then Ly[0,1] has type 2 with To(Ly[0,1]) < /¢’ [8, Lemma 3]. Furthermore, L4[0,1]
is a Banach lattice and its unit ball is shift-invariant. The first assertion has already
satisfied E ) 0%, |u(re, £)|I3 = meH%w for all f. Finally, it is straightforward to see that

7¢; commutes with any point-wise operation. ]

Unlike the canonical sparsity model, where the sparsity level s counts the number of
nonzero elements, the corresponding parameter in the infinite-dimensional sparsity model

with Banach space Lg4[0,1] does not provide such a physical meaning in general. In the
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remainder of Section 5, we will illustrate the implication of Corollary 5.2 over two concrete
examples of weight sequence (wy)renw with their matching sparsity models in finite dimen-
sions. The assertion will be made substantive in the context of these examples providing

physical interpretation.

5.2 Approximating continuous-time sparse signals

In the first example, we consider the acquisition of a continuous-time signal f that is
sparsely supported within [0,1) but not necessarily continuous. This model arises, for
example, in imaging applications like seismology or functional magnetic resonance imaging,
where singularities convey information. It is often considered satisfactory to acquire the
signal up to certain frequency resolution, i.e. only the Fourier series coefficients f [k] at

k € [-N, N) for some finite N. Let V' denote a subspace of L]0, 1] given by
V= {f € Lo[0,1] : flk] =0, Vk € [—N,N)}

and W be the quotient space L2[0,1]/V. Then |||y, is written as a seminorm |-, ,, as in
(34) for (wg)rez given by

1 - N<EkE<N,
wy = (45)

0 otherwise .

Our objective here is to construct a near isometric map from a subset of W into finite
dimension, which will be made specific below. Particularly we show that it is possible to
construct such a near isometric map with m group structured measurements for m much
smaller than 2N. The map will be restricted to a set of continuous-time sparse signals

defined as

Kpny=1{f € La[0,1] = [[f'l2 < pllfll2, Asupp(f)) < 7} (46)

where f’ denotes a weak derivative of f [1] and A denotes the normalized Lebesgue measure
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on [0,1). Note that K, is restricted to sparse signals, those with small Sobolev (1,2)-

seminorm relative to Lo-norm.

The next lemma shows that K, is indeed a subset of the restricted domain in Corol-
lary 5.2. Therefore, we can utilize Corollary 5.2 to derive a near isometric map with group

structured measurements.

Lemma 5.3. Let (wi)rez and K, be as in (45) and (46), respectively. Suppose that p <
N/2. Then f € K, implies ||f|lq < v/3| fll2mw for ¢ € (1,2] and s = (1 + 4p%/N?)y?/a71,

Proof. By Parseval’s theorem, we have

~ 2 o 2
S| = NS |kfE| T = NS
k>N g
This together with ||f'|| < p||f], implies
o |2 P 1 f1l2
12 < 1130+ > \f[k]( <l + =57 =

[k|=N

Therefore, by using the fact that (1 —¢)~2 < (144t) for 0 < ¢ < 1/4 and by the assumption
N > 2p, we deduce

Iz < (L= /N7 HIf 2w < (14407 /N*)) fllz0 -

Let E be the support of f and 1g(t) denote the indicator function of E. Since |E| < v, by

Holder’s inequality, we obtain

q/2
515 < [ 1elrora < vlqﬂ( / \f(t)!q@/q)dt> |

This implies

g < AY2Nflla < (14 4p% /NP2 f

‘2,w .
Then the assertion follows by letting s = (1 + 4p?/N?)~?/a—1, O
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The following lemma presents a concrete example that belongs to K, 5, which consists
of a superposition of narrow pulses. The parameters p and - are explicitly determined by

the number of pulses and by the common pulse shape.

Lemma 5.4. Let ¢ be a positive function with ¢(0) = 1 and support contained in [—1/2,1/2).
Let ¢pp(x) =To(Tx) andty, ..., 4 € (1/2T7,1-1/2T) be 1/T-separated, i.e., [t;—ty| > 1/T
for all j # j'. Then

l
Ft) = ajor(t—t))
j=1

satisfies
l
Alsupp(f)) = &
and
17y Tl

IFlly Mol

Proof. The first assertion follows since f is the sum of disjointly supported functions.

Moreover
n n
£ =" leyPllerilh = > lagPTPig]l5 -
j=1 J=1
Indeed, we deduce from a change of variable that

lérlp = T / S(Tx)P Tdz = TP .

l 1/p
1 fllp = ||¢HpT1/p< |ij|p> :
j=1

Note that ¢/ is also disjointly supported, and hence

This yields

!
£ =" Jayl” [l -
j=1
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Then we note that

[1er@P a = 101 o @] de = 75761
This implies

1/p )
T
171, = (Zl%lp> r o), = el

The second assertion follows as a special case. ]

The signal model in Lemma 5.4 consists of a superposition of translations and dilations
of ¢ with a compact support. This model can be considered as a generalization of cardinal
B-spline [43]. Particularly the translation parameters ¢i,...,¢ in Lemma 5.4 are not

necessarily on a uniform grid whereas knots in cardinal B-spline are integer-valued.

Next we proceed with deriving a near isometric map on K, . by using Corollary 5.2.
Note that there exists more than one linear operator u so that (wg)rez given by (40)
satisfies (45). We will consider two constructions of u. The following proposition employs

u that takes partial sums of the input Fourier series over a partition of [—-N, N) N Z.
Proposition 5.5. Let 0 < § < 1, (wg)rez be as in (45), and u : La[0,1] — ¢4 be defined
by

wife | YR

ke I=1
where Jh,...,Jq partition [-N,N)NZ so that L := maxi<;<q|J)| < [2N/d]. Suppose

that ty,...,ty are independent copies of a uniform random variable on [0,1) and p < N/2.

Then there exists a constant ¢ such that

1 m
Pl sup | =) [lu(rm;f)l5 - >d|<c¢ (47)
fEKp~ m]z; ’ ?
[l.f1l2,0=1

holds provided

> Hf:;ﬁ]z} n (min{iwﬁ {m (M) (14 md)(1 + Inm)® +1n(gl)} |
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Proof of Proposition 5.5. Let ¢ € (1,2]. Then Lemma 5.3 implies that every f € K, ,

satisfies

1£llq < Vsl fll2.w

for s = (14 4p%/N?)y?/9=1. Note that u(f) is written as

u(f) = (b, f))iy

where

hi="Y ¥

ke,

for I =1,...,d. For ¢ satisfying 1/¢+ 1/¢' = 1 and a4 as in Corollary 5.2, we have

d 1/2 d
ad(u) = (Z |hl|2> < \/iE Zslhl
=1 ) =1

q - q

< V2¢'d max [|hilly £ V/qdL MY

1<

/

for a Rademacher sequence (¢;)1<j<q, where the first and second inequalities respectively
follow from Khintchine’s inequality [15] and T>(Ly[0,1]) < v/¢/, and the last step follows
from the fact that the inverse Fourier series operator from £,(IN) to L,[0, 1] is a contraction

(see e.g. [46, Theorem IV.1]). Furthermore, for any ¢ € [0,1), we have

=3 e g = > |1k
k=—N

I=1 k€

2
= [1f112,0 -

’2
Therefore, by Corollary 5.2, it suffices to satisfy

2
m > 5’ (1 + ?52) YL*qd(yL)™7 {¢' (1 +Ind)*(1 + Inm)® + In(¢™H)} .

We choose ¢ =2 if yL > 1 and ¢’ = —21In(vyL) otherwise. Then the assertion follows since
Ld < 4N. O

Since f € V implies both | f[|5,, = 0 and u(rf) = 0 for all ¢ € [0,1), the tail bound
in (47) indeed implies that the measurement operator provides a near isometric map on

K, ~ in the quotient space W = L3[0,1]/V with high probability. One may choose d large
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enough so that yL = O(1). Then the number of translations m for this result can be as
small as YN L up to a logarithmic factor. Therefore the total number of measurements md
satisfies O(yN?). Furthermore, if YN = O(1), then the number of measurements scales
sublinearly in the dimension 2N of the reconstruction space £3V. Such small v = O(1/N)

can be interesting in certain infinite-dimensional scenarios like the one presented below.

In general, one cannot recover a sparse signal in an infinite-dimensional space from
finitely many measurements. For example, when unknown sparse signal f € L9[0,1] is
supported on a set of nonzero measure, at least a subsequence of the Fourier series at
the Landau rate is necessary [24]. Known exceptions include the case where the unknown
f corresponds to a point measure, that is a superposition of finitely many Dirac’s delta
functions (e.g. see [45, 7, 40]). We compare Proposition 5.5 to these results as follows: In
one hand, we have a slightly different goal to sketch continuous-time sparse signals up to
finite frequency resolution instead of exact recovery. This approximation is well accepted
in imaging applications. Meanwhile our model still avoid unnecessary discretization in the
time domain. On the other hand, Proposition 5.5 applies to a much wider class of signals,
which can be useful particularly in the context of imaging. Note that the previous results
apply only to point measures supported on a null set. In contrast, Proposition 5.5 applies
to continuous-time sparse signals whose support sets have nonzero measure. Modeling For
example, curves in 2D signals or surfaces in 3D signals correspond to a set of measure
zero (hence one can choose N arbitrarily large in Proposition 5.5). However they are not
described as a finite superposition of Dirac’s delta functions.

Recall that the construction of u in Proposition 5.5 is purely deterministic. The fol-

lowing result shows that the total number of measurements md for a near isometric map
can be significantly reduced to O(’yN d) when the deterministic v in Proposition 5.5 is

substituted by a random linear operator.

Proposition 5.6. Suppose that the hypothesis of Proposition 5.5 holds except that u :
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L2[0,1] — ¢4 is defined by

u : f —> Z Ekf[k‘] )

ke =1
where (ex)—N<k<nN 1S a Rademacher sequence independent of everything else. Then there

exists a numerical constant ¢ such that (47) holds provided
m > ¢ 2N {In(¢"") + ln(’y*l)}2 (1+1Ind)®(1 +1nm)°.

Proof of Proposition 5.6. Note that u(f) is written as

u(f) = (e, f))iy

where
hi="Y extr
ked;
for I = 1,...,d. By construction, the corresponding sequence (wg)rez by (40) satisfies
(45).

Let a4 be as in Corollary 5.2, that is

d 1/2
ag(u) = <Z |h12>
=1

!

q
Then a4(u) is a random variable due to the randomness in u. We compute a tail bound

on oy as follows. Let (£])1<;<a be a Rademacher sequence independent of everything else.

Then
d q d q N-1 q
Eeo || > ethi|| =Beo|| Y e > exthr| SEe|| D ent] (48)
=1 q’ =1 keJ; q k=—N q

where (€})_n<k<n is a Rademacher sequences independent of everything else. By applying
Khintchine’s inequality to the right-hand side of (48), we obtain

N 1/d

Ee,s’ S q/N . (49)

q
~Y
q

d
>
=1

!

38



Since ¢’ was arbitrary, this upper bound indeed holds for any ¢’ > 2. From (49), we derive

an upper bound on the moments of ay(u). For r > ¢’ > 2, by Khintchine’s inequality, we

obtain
d 1/2||" 1/r d r\ T
(Eaq(w))"/" = | E (Z |hzl2> <VZE|D el
=1 , =1 q
q
d rN 1/7
<2 (IE > el ) <VrN .
=1 r
For r < ¢/, by Kahane’s inequality [25], we obtain
d 1/2||" 1/r d r\ /T
(Eaq(uw))/" = [E (Z lth) < V2| E||Y el
=1 q =1 q'
d 7\ V4
< V2 E[ D eh SVIN.
1=1 q

Therefore (Eay(u)")Y/" < max {/r,v/q'} N/2 for all 7 > 1, from which together with a

consequence of Markov’s inequality [12, Lemma A.1], we obtain that

ag(u) S /N (In(¢) +¢) (50)

holds with probability 1 — (/2. Conditioned on the event in (50), Corollary 5.2 provides
that (47) holds with probability 1 — (/2 if

m > 6> (1 + ZX;;) AN~2/7 (In(¢™1) + ¢') max {¢'(1 + Ind)°(1 +1nm)®, In(¢" 1)} .

Finally the assertion follows by letting ¢ = —21n~. O

5.3 Approximating Sobolev seminorm constrained signals

A total variation seminorm has been employed as an effective regularizer for denoising [38].
Particularly it is shown superior to other regularizers in terms of preserving edges with-

out incurring severe blurring. Another well-known regularizer for denoising that provides
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similar strength is the gth power of the Sobolev (1,¢q)-seminorm for ¢ > 1 [3], which is
defined as the Lg norm of weak derivative [1]. Motivated by these regularized denoising,

we propose two near isometric maps for signals g € L9[0, 1] N WL‘][O, 1] that satisfy
19'1l, < Vs llglls (51)
where ¢’ denotes a weak derivative of g, and
g[0] =0, (52)

where W14[0,1] denotes the Sobolev space equipped with the Sobolev (1,¢)-seminorm.
The first condition in (51) is crucial for providing another infinite-dimensional sparsity
model, whereas the latter condition in (52) is for the sake of simple presentation and can
be dropped with slight modifications of linear maps. In fact, the Sobolev (1, ¢)-seminorm

becomes a valid norm in the subspace given by (52).

We first present a near isometric map given by time-domain measurements. The fol-
lowing theorem shows that one can approximate the La-norm of g € Ls[0,1] N W4[0, 1]

satisfying (51) and (52) by finitely many random time samples.

Theorem 5.7. Let 1 < ¢ <2 and 0 < 6 < 1. Suppose that t1,...,t,, are independent
copies of a uniform random variable on [0,1). Then there exists a constant Cy depending

only on q such that

1 m
P sup = lgtp)l> = llgll3| =6 [ <¢
lg'lla<v/s, llgll2=1 | 5=
g[0]=0
holds provided
m > Cy0 %5 {d(1+ Inm)° + ln(C_l)} : (53)
Moreover, (53) also implies
Pl s S loty) — a0l — (ol o)) | 2 6| <c.
lg'lle<v/s, | 53
llgllz—lg[0][*=1

40



The result of Theorem 5.7 is similar to the Monte-Carlo method for Lipschitz continuous
functions (e.g. see [44, Section 8.2]). Both results show that an empirical process approxi-
mates its expectation. Note that the signal model in Theorem 5.7 is based on the Sobolev
(1, ¢)-seminorm, which is defined through weak derivatives, and include signals with singu-
larities. This flexible signal model can accurately describe signals in imaging applications

like neural activation in functional imaging or anomalies in anatomical imaging.

Proof of Theorem 5.7. For g satisfying ||¢[lq; < /s, [lgll2 = 1, and §[0] = 0, let f = ¢
denote a weak derivative of g. Furthermore, let ||-||5 ,, be a seminorm in (34) determined

by (wg)kez that satisfies
1

472 max(1, k2)
Then since f[k] = i2rkg[k] for all k € Z we have

-
1B = 3 LW S k= el =1

kez\{0} kez\{0}

Wp =

We also have | f[|, <

w- Moreover, the map u : f — (h, f) with
Z ﬂ)k
kGZ\{O}

satisfies

uy= Y el s f — S gl = 90) .

keZ\{0} keZ\{O} keZ\{0}
where the last step used the fact g[0] = 0. Since the weak derivative and shift operators

commute, we also have
w(t—e, ) = g(t;) -
Let a4 be as in Corollary 5.2. Note that d = 1, i.e. u is a linear functional. Therefore,

ag(u) simplifies and is upper-bounded by the Hausdorff-Young inequality as

1
<7)JEZ\{ 0}
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for some constant C; determined by g. Then Corollary 5.2 with the above estimates

provides that

P sup

1 m
—> u(r i, P = Il >0 | <¢
17 la<v/3, 1 fllaw =1|™ 5= ’

holds if (53) is satisfied. This indeed implies the first assertion. In general, without g[0] = 0,

we have

19113, + 13[0]1% = Il
and

u(re,g") + 9[0] = g(t;) -

Therefore the second assertion is obtained by plugging in these identities to the first asser-

tion. O

Next we present another near isometric map, which is given by Fourier-domain mea-
surements. In certain modalities like magnetic resonance imaging (MRI), measurements
are acquired sequentially in the Fourier domain. Therefore one can evaluate time samples
only after acquiring the full Fourier series. In such scenarios, it is preferable to design
the measurement operator in the Fourier domain and the following theorem presents the

analogous result.

Theorem 5.8. Let 1< q<2,0<d<1,andZ; ={k : 272 < |k| < 271} for 1 € N. Let
t1,...,tm be independent copies of a uniform random variable on [0,1). Then there exist

a numerical constants ¢ and a constant C, that only depends on q such that

2

1 m ———
. sup |3 > 1> walk]| —llgl3| =0 p <<
lo'lla<v/s lgll=1 ™ 5=1 1 <1<y | ke
§[0]=0
provided
lo > max{l,cln (5_15)} (54)
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and

m > Cy6 25 (¢'(1+1nm)® +In(¢C" )} . (55)

The constant C,, in Theorem 5.8 is proportional to f(g) = (¢ — 1)7'/9. Recall that as
q decreases toward 1, the sparsity model converges to the total-variation-sparsity model.
However, since f(g) increases in ¢, one cannot set ¢ arbitrarily close to 1. For example, for

q > 1.1, we have f(q) < 8.12.

Note that each scalar measurement in Theorem 5.8 is computed as the sum of Fourier
series coefficients of a translation of g over a given dyadic interval. For example in MRI,
this superposition can be obtained without access to the individual summands with an
appropriate design of the pulse sequence. The total number of measurements lom scales
at most O(slns). Specifically O(s) random translations and O(Ins) measurements per

translation suffice to invoke Theorem 5.8.

Proof of Theorem 5.8. By the triangle inequality, it suffices to show

2
. )
sup Ttg[k] §§ (56)
HQIHqS\/Ev Hg”2:1 l>l0 k‘EIl
gl0j=0, tefo,1) ~
and
1 m o0 2 5
Bo s D 1D gkl — gl =5 p << (57)
9" la<v/5 llglla=1 | 525 17 | kez,
910]=0
hold.

First we show that (54) implies (56). Let f = ¢’ and ¢ € [0, 1). Since the weak derivative

operator commutes with the shift operator, we have 7, f = (7:g)’. Therefore it follows that
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7.f[k] = i2rk7g[k] for all k € Z. Then we have
2
Z ZTtg[k] = Z <22 T >
1>lo | keT, 1>1| \ keTy
Z Yr
27k

< > Imfll;
where the first two inequalities follow from Hélder’s inequality and the Hausdorff-Young

2

2/q
=D (Z |k|—q> (58)
1>l

keZ;

1>l q

inequality. Furthermore, we have
2/q ol 2/q
(Z yk\q> < (2/ tth>
2l—1

ke
2 2
(21001 (901 ) /4 gy (2271 1) /4
B qg—1 B q—1 '

Ca

Note that Cy is monotone increasing in ¢ € (1,00) and Cj < 4 for all ¢ > 1. Therefore (58)

implies that there exists a numerical constant C such that

> > melk]

< % E 9—2l/q < Cg22b/d"
s
1>l | keZy 1>

Then (56) follows by choosing [y so that

9—2lo/d" 0
— 2Cs’

which is implied by (54).
Next we show that (55) implies (57) by using the following lemma, the proof of which

is deferred to the end of this section.

Lemma 5.9. Let 1 < ¢ < 2,0 < <1, and || - |2 defined by (34) and (40) from
w: f—= ((hy, f))iew. Suppose that ty, ..., ty, are independent copies of a uniform random

variable on [0,1). Then there exists a numerical constant ¢ such that

1 & 2
P sup — u(re, Py = 1f150| =6 p <¢
10V, a1 |™ ;; e, ) = 11
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holds provided

o0

2 - 2
m > 6254 ¢'(1+1Inm)° <Z(1 +In dl)5/2||hl||q/> +1In(¢™h) (Z ”thq’> . (59)
=1

=1

We apply Lemma 5.9 with (h;);eN given by
Y
hy = .
: Z 27k
keT,

Then (wg)gez determined by u as in (40) satisfies

s 1
wi = |lu(dr)|l3 = zz; |, r) |2 = 122

for all k # 0 and wo = 0. Let f = ¢’ be a weak derivative of g € L2[0,1] N W14[0, 1]. Since
flk] = i2nkglk] for all k € Z, we have f[0] = 0. Thus we have

.
1B = 3 YBE = S jam? = o3

jeZ\{0} J€Z\{0}

where the last step follows since §[0] = 0. Furthermore, by the Hausdorff-Young inequality,

we have
1/q / /
Y 1 3 (20 — 1)~V o—(-1)/q
hillg = —— < — k=4 = < .
Iully > ol <ol X T DT S gDk
2l-2<|k|<2t-1 7 k> 2l
Therefore (55) implies (59) and Lemma 5.9 provides (57). O

Finally we provide the proof of Lemma 5.9.

Proof of Lemma 5.9. We adapt the proof of [20, Proposition 2.6] to prove Lemma 5.9. As

shown earlier in the proof of Corollary 5.2, the weighted (semi-) norm satisfies

E [Ju(re, (D)[l5 = 1713

for all j = 1,...,m. For notational simplicity, let

D:={f:|flq < Vs |If

2w = 1} (60)
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and
1 2 2
=sup | — > fu(r, £)3 = [1£15.] -
D mj:l

For r € N, by the standard symmetrization technique [26, Lemma 6.3] we obtain

1/r

EZHV" < E sup

)

Z&gllu 71;.f) ||

where &1, ..., &, are i.i.d. Normal(0,1). Conditioned on t1,...,t,,, by the triangle inequal-
ity, we obtain

~\ L/

oo
SZ E sup

febD

1/r

E sup (61)

1 & '
Z&JHU 7, )13 Ez‘ijhhthsz
=1

Forl € IN, let v; : L,[0,1] — £} denote a linear operator defined by v; : f = ((hy, 7, f))1<j<m-

Then for all [ € IN by applying [20, Lemma 2.4] we obtain®

~\ L/

Z@ (b, 7, )1

E¢,....&, sup
fep |4

m 1/2
S ﬁ(;gg%l(hm@fﬂﬁ (52,1 (vz)+\/7"||vz||) ;

where £ 1 denotes a weighted sum of dyadic entropy numbers [see 20, Lemma 2.3] that
provides an upper bound of Talagrand’s s-functional [39]. Then by Holder’s inequality we

can continue as follows:

1/2r

° m " 1/2r
ml/r < ﬁ 2 r
CLAESDD E(;gg;um,mm) {E(gm (v) + V7 |lull)
P\ 1/2r
NG
< “—sup¢ E[ su (hy, 7

m le]lI\)I fegz| : tf>|

> N\ 1/2r N\ 1/2r
.(Z (B ()*) " + v/ (Ellul™) ) .

I=1

3The original version of [20, Lemma 2.4] is stated for a set D of unit vectors in a finite dimensional
Hilbert space. However, since the proof does not rely on this assumption, the result of [20, Lemma 2.4] also

applies to the set D defined in (60) in a semi-normed space.
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Note that the factor after \/s/m of the right-hand side is bounded from above as

m ~) 1/2r m ) 1/2r
sup E| sup hy, 1, )2 <<E sup hy, e, )2
- (f@jzlu v iy S
m oo ) 1/2r m ~) 1/2r
<SQE( sup > > [(hem ) = QE( sup > [lu(m, /)3
feb 15 Feb o
~\ /7 1/2
. 2 2 r1/r 1/2
< OBl Yl DB = W] | +mg = v {Ez) 1}
j=1

The last factor is also upper-bounded by the following facts: By the shift-invariance of the

unit ball in Ly [0, 1] we have
ol = e il = Wl
Moreover, by [20, Lemma 3.7], we also have
E21(v) SV (L +nm)>? |y -

Then by collecting the above upper bounds we obtain

2 2
EZ" 1/r < \/591 501 . \/592 . S0 62
R e A ey (62)

where

oo o
o1 =Y llhglly s 02 =) Va1 +mm)>?|hylly -
=1 =1

Since r was arbitrary, by a consequence of Markov’s inequality [12, Lemma A.1], (62) for

all » > 1 implies

g< Yo sat  Vsl(Cer  sln(¢Th)ed

~om m vm m
with probability 1 — ¢. Therefore (59) implies that the upper bound in (63) is at most
J. O

(63)
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