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Abstract. We have analyzed the COVID19 epidemic data of more than 174 countries
(excluding China) in the period between January 22 and March 28, 2020. We found that
some countries (such as the US, the UK, and Canada) follow an exponential epidemic
growth, while others (like Italy and several other European countries) show a power law
like growth. Regardless of the best fitting law, many countries can be shown to follow
a common trajectory that is similar to Italy (the epicenter at the time of analysis), but
with varying degrees of delay. We found that countries with “younger” epidemics, i.e.
countries where the epidemic started more recently, tend to exhibit more exponential like
behavior, while countries that were closer behind Italy tend to follow a power law growth.
We hypothesize that there is a universal growth pattern of this infection that starts off
as exponential and subsequently becomes more power law like. Although it cannot be
excluded that this growth pattern is a consequence of social distancing measures, an
alternative explanation is that it is an intrinsic epidemic growth law, dictated by a
spatially distributed community structure, where the growth in individual highly mixed
communities is exponential but the longer term, local geographical spread (in the absence
of global mixing) results in a power-law. This is supported by computer simulations of
a metapopulation model that gives rise to predictions about the growth dynamics that
are consistent with correlations found in the epidemiological data. Therefore, seeing a
deviation from straight exponential growth may be a natural progression of the epidemic
in each country. On the practical side, this indicates that (i) even in the absence of strict
social distancing interventions, exponential growth is not an accurate predictor of longer
term infection spread, and (ii) a deviation from exponential spread and a reduction of
estimated doubling times do not necessarily indicate successful interventions, which are
instead indicated by a transition to a reduced power or by a deviation from power law
behavior.

1 Introduction

An outbreak of a novel coronavirus, named COVID19, was reported in December 2019 in
Wuhan, China, and has been the source of significant morbidity and mortality due to pro-
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gressive pneumonia [1, 2]. It has since spread around the world and become a pandemic,
with large infection burdens reported in Europe, the United States, and in other parts of
the world. Disease severity and mortality seem age-dependent, with a higher chance of
respiratory complications and death among older people [3], and are further influenced
by the availability of health care resources [4]. Non-pharmaceutical interventions, such
as social distancing, have been an important tool to slow down the spread of COVD19 [5].

As the non-pharmaceutical interventions are being relaxed in a range of countries, and
renewed virus spread is expected to occur, a better understanding of the basic growth dy-
namics of COVID19 is useful for the interpretation of the emerging epidemiological data.
Data from the beginning of the pandemic suggested COVID19 to spread exponentially
[6, 7], which is consistent with other epidemics and epidemiological theory [8]. Longer
term data, however, suggest that COVID19 spread in China is sub-exponential [9], and
it was argued that this is driven by the implementation of strong non-pharmaceutical
interventions. A more comprehensive analysis of the growth dynamics of this infection
before strict lockdown measures were put in place, however, remains to be carried out. In
this study, we compare the per capita virus spread kinetics observed for many countries
around the globe during the time frame before strict interventions were put in place,
in order to obtain a better understanding of similarities and differences. While some
countries can be better described by exponential growth, many other countries are more
accurately described by a power law. Interestingly, we find that the growth dynamics
become more power-law like if the epidemic is more advanced. This indicates that the
long-term dynamics of COVID19 spread might be intrinsically governed by a power law,
even in the absence of strict non-pharmaceutical interventions. We interpret these find-
ings with computer simulations of a metapopulation model, which can account for an
initial exponential spread phase, followed by a longer-term power law behavior. We relate
model predictions to epidemiological correlations found in the data. Because power law
growth results in a slow-down of the infection growth rate over time even in the absence
of strict interventions, these insights are important for the assessment of the developing
pandemic and of the effectiveness of non-pharmaceutical interventions.

2 Data sources

The data of confirmed COVID19 cases over time have been obtained from the data
repository maintained by Johns Hopkins University Center for Systems Science and En-
gineering (CSSE) [10]. As of March 28, 174 countries were represented in the database,
as well as the cases on “Diamond Princess” (which were not used in the analysis). We
only included the total counts for each country, even though information on the different
provinces was available for several countries. The number of confirmed cases has been
recorded since January 22, 2020, and has been updated daily.

We also used “Our World in Data” [11] to collect information on the daily number of
tests, the number of positive tests, and the number of deaths in different countries.
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To compare the time course of COVID19 cases across different locations, the per
capita incidence was calculated, normalizing the numbers by the total population size of
the country. The information on the population size and the area of different countries
was taken from Wolfram Mathematica’s database, “CountryData”. Challenges arising
as a result of differences in testing policies in different countries and in the same country
over time are discussed below.

The COVID19 data analyzed here span the period until March 28, 2020. Soon after
that date, many countries experienced a significant slowing down and “saturation” in the
infection spread, which indicates the influence of factors that go beyond the scope of the
present paper, where we seek to understand the basic laws of initial infection spread.

It is important to note that while the Johns Hopkins data set is comprehensive and is
based on many data sources, including government data, it is possible that they contain
inaccuracies, e.g. data might not be backfilled if they have an earlier onset date. The
supplement compares the Johns Hopkins data to those presented by the Italian health
ministry, and we find good agreement. The exact methodology used by the Johns Hopkins
data source is provided in [12], which makes clear the advantages and disadvantages of
this dataset.

3 Results

3.1 Per capita case numbers and time lags

Here, we present the comparison of the kinetics according to which cumulative COVID19
cases grow over time in different countries around the world. Figure 1(a) presents the
raw data showing total case counts for a select number of countries. Figure 1(b) shows
the corresponding per million case counts.

A complication for comparing the growth dynamics is that the timing of the onset
of community spread varies across locations. The growth curve of confirmed cases was
therefore shifted in time to make them comparable, according to the following proce-
dure. The cumulative confirmed COVID19 case counts in Italy were chosen to be the
example against which the growth curves in all other countries were compared, due to
Italy being an epicenter of the outbreak at the time of this analysis. The (normalized,
cases per million) infection growth curves of the other locations were shifted in time such
that the difference between all data points of the country under consideration and Italy
was minimized. The shift that minimized this Euclidean distance between the curves
was assumed to indicate the number of days that the country lags behind Italy. Some
examples of such results are presented in figure 2. We note that this assumes that all
the countries test for COVID19 at comparable levels, which is an over-simplification. If
a country tests less than Italy, it will lag behind Italy to a lesser extent. Conversely, if
a country tests more than Italy, it is predicted to be further behind Italy. A more in
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depth description of the role of testing is given in the “Discussion and Conclusion” section.

In this way, we obtained a time course of confirmed COVID19 cases that are tem-
porally synchronized with Italy, which allows for a more straightforward comparison of
the kinetics. An interesting observation in figure 2 is that over time, the different coun-
tries converge to a similar, sub-exponential growth pattern. While the onset of a certain
degree of social distancing could account for sub-exponential growth [9], the observed
similarity in the growth patterns across the different countries might argue against this
explanation. We therefore hypothesize that the sub-exponential growth patterns are an
intrinsic characteristic of COVID19 spread. We explore this hypothesis in detail in the
following sections.

Figure 1: Example of the data. The number of confirmed cases is plotted as a function
of time for 6 countries and Orange County: (a) the raw counts, (b) cases per million.
The numbers of confirmed COVID19 cases in Orange County, the home of the authors,
have been obtained from the daily updates provided by the website of the Orange County
Health Care Agency (OCHCA).

3.2 Growth laws of the epidemic in different countries

The above analysis indicated that COVID19 spread in a number of countries is sub-
exponential. Previous work [13] has suggested that a power law might be a good descrip-
tion of the cumulative COVID19 cases over time in China during the earlier stages of the
pandemic. Therefore, we hypothesized that for a subset of the countries, a power law is
an appropriate description. To test this hypothesis, we fit both exponential and power
law curves to the data for each country and determined the goodness of fit.

Data fitting was performed as follows. Only the data points were considered where
the number of COVID19 cases had risen above a threshold, which we set at 1 case per
million people (see Supplement for variations of this threshold). We fit both a power
function and an exponential function to the data to determine which model fits the data
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Figure 2: The same data as in figure 1(bottom), presented by shifting individual lines to
match the Italy curve. The table shows the lag, that is, by how many days each country
is behind Italy.

better. For the power law function, a complication arose because fitting requires knowl-
edge of the “zero” point, that is, the moment of time when the growth (according to the
power law) began. The fits to the data change if the time scale is changed. Hence, we
started by assuming the first data point to be the day when the infection frequency first
exceeded 1 case per million, and fitted the power law, a1x

b1 , for some constants a1 and
b1. Then we shifted the time series incrementally by one day, and for each shift the power
law was fitted. For each fitting frame, a different value of the power law exponent, b1, was
obtained. Subsequently, we fit an exponential function to the same data (a2e

b2x). The
estimated exponent does not depend on the time shift, so fitting the exponential function
was straightforward and yielded a unique value b2 for all the fitting frames. For both
the exponential and the power law fits, we determined the sum squared error between
observed and expected, and compared them. We also used the Aikaike Information Cri-
terion to distinguish between exponential and power law fits and found results to remain
robust (see Supplemental Section 1).

Figure 3 shows the fitting errors calculated for 75 countries; we included a country if
the number of cases reached 20 per million, and excluded China and South Korea, since
their epidemics clearly deviate from an exponential or a power law. Since in smaller
countries (such as for example Luxembourg) the laws may be harder to determine and
the data are subject to a higher degree of noise, for classification purposes we restricted
the pool of countries to those with over a million inhabitants. The yellow horizontal lines
in figure 3 represent the exponential fitting and the blue lines the power law fitting, as
a function of the frame shift. We observe that there are several different configurations
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Figure 3: 75 countries’ fitting results are presented as errors (blue for power law fits and
yellow for exponential fits) as functions of the frame shift. Three distinct configurations
can be observed: blue below yellow (a clear power law case), blue above yellow (a clear
exponential case), and blue intersecting yellow. For such intermediate cases, we clas-
sified the growth as power-like if the power corresponding to the point of intersection
corresponded to the power b1 < 5. Otherwise it was classified as exponent-like.

Figure 4: Examples of three error graph configurations. (a) US, exponential; a log plot
of the data is presented with the exponential fit. (b) Italy, power-law; a log log plot of
the data is presented with the best fitting power law and exponential fits. (c) Greece,
exponential-like; as in (b), a log-log plot is presented.
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that are repeatedly encountered.

• For some countries (like the US, see also figure 4(a)), the power fitting error is
always above the exponential fitting error. Such countries are clearly showing an
exponential epidemic growth.

• There is another group of countries (such as Italy, see also figure 4(b)), where the
power law fitting error is always below the exponential error; here we clearly have
a power law growth.

• There are some other countries that we can classify as power law-like and exponential-
like. Suppose a power law error curve crosses the exponential error line (see Greece,
figure 4(c)), at a given frame shift. In this case, we will classify the growth as power
law-like if the value of the exponent b1 that corresponds to this frame shift satisfies
b1 < 5. Otherwise, we will classify the growth law as exponential-like.

For the examples mentioned here, figure 4 shows the best fits obtained by this method.
For (b) and (c) it is clear that the power law provides more satisfactory fits. More details
are provided in the Supplement.

A classification of all the countries into those that follow power law (or power law-
like) dynamics and those that follow exponential (or exponential-like) growth is given
in table 1. About 70% of the countries included in this analysis were classified as dis-
playing power law (or power law-like) dynamics, indicating that this is a wide-spread
phenomenon around the world. Geographic distribution of the countries with different
growth laws is shown in figure 5.

We note that growth laws could potentially be impacted by changes in the level of
testing over time in a given country. We therefore have analyzed the dynamics of testing
(Supplemental Section 3) and saw that the number of tests has typically increased in
most countries. This means that the infection growth curves for those countries are ac-
celerated compared to the “true” epidemic growth curves. Thus, if a country is classified
as a “power law” or “power law-like” by our analysis, it is unlikely that correction for
an increase in testing would move it to an “exponential” or “exponential-like” category.
On the contrary, it is possible that some of the epidemic curves that were classified as
exponential are in fact slower growing. This makes our list of “power law” and “power
law-like” countries a conservative list, which may potentially be larger due to effects
of increasing testing. Furthermore, we have performed an analysis of death data (Sup-
plemental Section 4). For countries on the list that provided death data during the
time-frame of the analysis, we found that a large majority have a power law like death
curve, and this majority is larger among the countries in table 1 that we classified as
“power law (like)” compared to “exponential (like)”, which also corroborates our findings.

3.3 Growth laws in relation to the local stage of the outbreak

We investigate how the growth law of COVID19 spread correlates with the stage of
the outbreak in the different countries (i.e. how “old” the outbreak is). Figure 6(a)
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Law # List of countries

Exponential 9 Australia, Canada, Croatia, Israel, New Zealand, North Macedonia,
Oman, United Arab Emirates, US

Exponential-like 9 Austria, Dominican Republic, Ecuador, Ireland, Lithuania, Malaysia,
Portugal, South Africa, United Kingdom

Power law 20 Albania, Armenia, Belgium, Cyprus, Denmark, Georgia, Iran, Italy,
Jordan, Mauritius, Moldova, Netherlands, Norway, Qatar, Slovakia,
Slovenia, Sweden, Turkey, Uruguay

Power law-like 23 Bahrain, Bosnia and Herzegovina, Bulgaria, Chile, Costa Rica,
Czech Republic, Estonia, Finland, France, Germany, Greece, Hungary,
Kuwait, Latvia, Lebanon, Panama, Poland, Romania, Saudi Arabia,
Serbia, Singapore, Spain, Switzerland, Trinidad and Tobago

Table 1: Classification of countries according to the epidemic growth law.

shows a numerical probability distribution for the day when the infection in each country
reached the level of 1 case per million. If this mile stone is reached earlier in a given
country, the spread is more advanced. Blue represents the power law set and yellow the
exponential set (grey means an overlap of the two colors). The average date of reaching
1 case per million (counting from Jan 22) is about 48 days for the power law and 52
days for the exponential set (p = 0.035 by T test). This means that the countries with
a power law spread were at a slightly more advanced stage of the epidemic than the
exponentially developing countries. This points us towards a hypothesis that perhaps
it is typical to observe a transition between an early, exponential stage of growth, and
a later, power-like stage of growth. In other words, different countries are at different
stages of epidemic development, but they all roughly follow the same trajectory, where
an initial exponential growth is gradually replaced by a more power like behavior. Figure
7 demonstrates further evidence in favor of this theory. Panel (a) plots the number of
countries classified by the number of days they are delayed with respect to Italy. As
explained in section 3.1 (see also figure 2), we shifted the growth trajectories of all coun-
tries until, for each country, the best match with the Italian curve was obtained. As we
can see in figure 7(a), there are only a few countries that are just behind Italy, and as
the number of lag days increases, the number of countries grows. This corresponds to
more and more countries becoming affected as time goes by. Figure 7(b) calculates, for
each lag time, the percentage of countries that were classified as following power law or
exponential dynamics. We can see that for the countries that are just a few days behind
Italy, 100% of them belong to the power law group. As the lag time increases, indicating
an earlier stage of the epidemic, more and more countries exhibit exponential growth
(p < 10−4).

3.4 Growth laws in relation to size and density of countries

Figure 6(b) shows the difference between countries with power law and exponential
growth in terms of their area. We find that the exponentially growing infection class

8



Figure 5: Geographic distributions of different epidemic growth laws. (a) Power law
epidemics; (b) Exponential epidemics.

is associated with larger countries (mean area of about 1.7 × 106 km2) compared to
the power law class (mean area about 2.3 × 105 km2, p = 0.018 by T test). Similarly,
exponential epidemic spread tends to correlate with lower density countries (figure 6(c)).
It is possible that it takes longer for a larger country of lower density to transition to a
power law growth. Below, we provide a possible explanation of this correlation in the
context of metapopulation modeling.

3.5 A metapopulation model can reproduce key trends in data

Our results can be interpreted in the context of a minimally parameterized metapopu-
lation model, see figure 8. Assume that within a local deme (such as a local community),
people interact with each other, resulting in mass action dynamics. For the infection to
spread further, however, people have to enter other demes, and seed the infection there.
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Figure 6: Comparison of the two classes of infection spread. (a) The timing of the
infection: the distribution of time of reaching 1 case per million (counting from Jan 22),
for the exponential and power law classes. The means are 48 days for the power law and
52 days for the exponential set (p = 0.035 by T Test). (b) Country size: the area of
countries for the exponential and power law classes. The means are about 2.3× 105 km2

for the power law and 1.7×106 km2 for the exponential, p = 0.018 by T test. (c) Country
density: the means are about 374 people per km2 for the power law and 98 people per
km2 for the exponential law, p = 0.035 by T test.

We have performed computer simulations of such a model to explore outcomes. The
model is a two-dimensional metapopulation consisting of N ×N patches. In each patch,
i, the infection dynamics are given by a set of ordinary differential equations (ODEs)
that take into account the population of susceptible (Si), infected (Ii), recovered (Ri),
and dead (Di) individuals:

dSi

dt
= − βSiIi

Si + Ii + ε
+ f

∑
j∈Bn

i

(Sj − Si), (1)

dIi
dt

=
βSiIi

Si + Ii + ε
− gIi + f

∑
j∈Bn

i

(Ij − Ii), (2)

dRi

dt
= g(1 − a)Ii + f

∑
j∈Bn

i

(Rj −Ri), (3)

dDi

dt
= gaIi. (4)

Here, infection is described by a frequency-dependent infection term [14], characterized
but the rate constant β and a saturation constant ε. Infected individuals die with a rate
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Figure 7: Temporal development of infection. The “age” of the epidemic is measured by
the days of delay with respect to Italy. (a) The number of countries for each value of the
time-lag with respect to Italy. The number of countries in the two growth law classes is
shown for comparison. (b) The percentage of countries with a given delay that belong to
the Power law group and to the Exponential law group. The trend that the percentage
of exponential growth increases with the time lag (that is, decreases with the epidemic
“age”) is significant (p < 10−4 by linear fitting).

ga and recover with a rate g(1− a). The migration terms include the outward migration
to n neighbors and an inward migration from all the n neighboring demes that belong
to neighborhood Bn

i of deme i. The migration rate is denoted by f and we assume that
each patch has eight direct neighbors, i.e. n = 8. The boundary demes are characterized
by fewer inward/outward migrations (that is, they have smaller neighborhood sets).

Using this model, we track the predicted dynamics for I + R + D over time, which
represents the cumulative infection case counts. In a first scenario, we start the computer
simulations with a small amount of infected individuals in a single patch, located in the
center of the grid. All other patches contain only susceptible individuals. The resulting
dynamics are shown in figure 9. We observe an initial exponential phase of infection
spread, followed by a transition to a power-law spread. The spread is initially exponen-
tial, because within a single patch (the first patch), the dynamics are governed by well
mixed populations. As the infection spreads to other patches by migration, the overall
infection spread starts to be governed by spatial dynamics, which explains the transition
to the power law behavior (see [15, 16] for the mathematical treatment of epidemic spread
in 2D). The key is the difference between the time scale of local spread and the time-scale
of global mixing.

Next we assumed that instead of starting with infecteds only being present in a single
patch, a small amount of infected individuals are initially present in more than one patch
around the same time. This could correspond to larger countries, in which the infection
is simultaneously seeded in multiple areas (e.g. due to travel from other places). Now,
we observe overall growth dynamics that are are more exponential-like. The length of
the predicted exponential phase becomes longer the more patches are initially seeded.
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Figure 8: The concept of partial social distancing measures and the metapopulation
model. There is a grid of N × N patches. Within each patch (which represents a local
community), deterministic SIR dynamics are assumed (complete mixing). Infection can
also spread by contact (mixing) with neighboring patches (demes). Global infection
transfer is also possible, e.g. by air travel within the country and outside, but this
is disrupted by partial social distancing measures. Equations (1-4) correspond to the
situation where long-haul interactions are not prresent. This is what we implemented by
simulations.

The reason is that with more initial seeding events, the importance of spatial spread is
de-emphasized.

In summary, the metapopulation model can predict an array of growth patterns where
an exponential phase of varying length is followed by a transition to power law, depend-
ing on the initial conditions of the simulation.

4 Discussion and Conclusions

In this paper, we analyzed data that document the cumulative COVID19 case counts over
time in a large number of countries around the world, and examined the laws according
to which the infection spreads. This suggests that although the initial phase of the spread
may be exponential, the longer term dynamics (extending to March 28, 2020) tend to
be governed by a power law. The analysis indicates that the countries that displayed
clear evidence for exponential growth were in a relatively early phase of the epidemic, and
that countries that were further along in the epidemic converged to a power law behavior.
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Figure 9: Results from implementing the metapopulation model, equations (1-4). The
total number of cases (given by I+R+D) is plotted as a function of time, on a log log scale
(a) and a log scale (b). The black line shows the dynamics where the simulation starts
with 1/10 of individuals infected in a single patch in the middle. The blue line corresponds
to the initial condition where 1/50 of the individuals are infected in 5 randomly chosen
patches. The red line shows the consequence of 1/500 of the individuals infected in 50
randomly chosen patches. The rest of the parameters are S = 10, R = 0, D = 0 initially
in all patches, β = 0.1, g = 0.05, f = 0.001, a = 0.01, ε = 1, N = 300.

These observations were interpreted by computer simulations of a metapopulation
model that takes into account both local spread and spread across geographical space.
This model predicts an initial exponential phase (due to local transmission events driving
the dynamics), followed by a transition to a power law (once spatial dynamics signifi-
cantly drive spread). The duration of the exponential phase is determined by the number
of patches that are initially seeded with the infection. If the infection originates in a sin-
gle location (patch), the exponential phase is likely not very pronounced, and most of the
growth curve is predicted to follow a power law. If the infection is seeded simultaneously
or nearly simultaneously in multiple locations, the duration of the exponential phase be-
comes longer. This might explain why countries with larger areas show more pronounced
exponential growth, as this makes multiple seeding events due to travel more likely. In-
terestingly, it has been shown that in China outside the Hubei province, COVID19 cases
initially grew relatively fast, and this was shown to correlate with human movement out
of Wuhan into the affected areas [17], indicating multiple seeding events. These model
predictions could also imply a more extensive exponential phase of infection spread dur-
ing second waves, after non-pharmaceutical interventions have been relaxed. The reason
is that once the infection has already propagated through the community before the inter-
ventions, it is already extensively seeded across most areas, resulting in more pronounced
exponential growth and less pronounced growth that is governed by spatial spread.

A better understanding of the laws according to which COVID19 spreads through
populations is also of practical importance. (i) Projections and forecasts made under
the assumption of exponential growth lead to significantly faster virus spread compared
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to those assuming power-law growth, as shown in the Supplemental Section 5. (ii) As
COVD19 outbreaks in a given region or country unfold, an eventual deviation from expo-
nential growth and an estimated longer doubling time does not indicate that the infection
is being controlled, for example by non-pharmaceutical interventions. Power law growth
is characterized by a naturally decreasing “doubling time” (even in the absence of in-
terventions), and the repeated estimation of doubling times are not meaningful in this
case. To establish that interventions flatten the curve, it has to be demonstrated that
growth either transitions to a lower power, or that it deviates entirely from a power law,
which has occurred in many countries after the time period under consideration here.
(iii) Similarly, the power growth laws obtained in our analysis have implications for the
estimation of the effective reproduction number, see e.g. [18]. As the infection continues
to spread according to power laws, the effective reproduction number becomes lower over
time. Again, however, this is not necessarily the result of interventions, but a natural
consequence of the power law. This is important to keep in mind when estimating the
reproductive potential of SARS-CoV-2.

Alternative explanations can be invoked to account for sub-exponential growth pat-
terns. Data indicate that in China, the implementation of non-pharmaceutical interven-
tions can drive sub-exponential growth by depleting the pool of susceptible individuals
over time through social distancing [9], and this can lead to a temporary phase of power
law growth. An initial fast virus spread phase, followed by a slow-down of spread, can
also come about if the initial phase of spread is driven mostly by immigration of infected
individuals from other geographical areas, while subsequent community spread continues
with a slower rate [17]. While these mechanisms are certainly plausible, it would be
expected that growth patterns are different depending on the timing at which interven-
tions are implemented, the strength at which they are implemented, or depending on the
magnitude of infection seeding by immigration. Yet, we observe remarkably consistent
growth laws in a number of different countries, in which policies in response to the out-
break varied, and in which the magnitude of initial seeding events likely differed. This
points towards the possibility that the power law growth dynamics are an intrinsic fea-
ture of COVID19 spread through human populations, and that they are not externally
imposed.

As with any data and modeling studies, it is important to note that results can de-
pend on assumptions and methodologies. These are clearly defined here. One of the
larger challenges we faced in the data analysis is the lack of knowledge at what time
the infection was initiated in the individual countries. This information is not available.
The time frame in turn influences the fit of the power law to the data, which we have
addressed with our time shifting methodology. If further information becomes available
about the time when infections are estimated to have originated in the individual coun-
tries, the methodology can be updated. Genetic studies could provide valuable data in
this respect.

Another limitation of the data interpretation is the degree to which different coun-
tries test for SARS-CoV-2. If some countries test less than others, they will appear to
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be at an earlier stage of the outbreak than is true. This type of uncertainty however
does not change the central finding that the long term dynamics of COVID19 cases in
different countries follow a power law, after an initial stage of exponential growth. An-
other testing-related problem could be if the number of tests in a given country changes
over time. Typically, the level of testing has increased over time (Supplemental Section
3), but we argue that it is unlikely that an increasing number of tests over time would
invalidate our finding that instead of growing exponentially, the number of cases grow
according to a power law. Increased testing over time would accelerate the growth rate
and could potentially make the growth curve look more exponential, meaning that the
power laws we found are not likely to be an artifact of varying testing levels. In fact,
a fast growth in the number of tests could shift some countries where the true number
of cases grew as a power law to an “exponential” category, because of the accelerating
effect of the testing. We also considered COVID19-related deaths as a measure of dis-
ease spread (Supplemental Section 4), and found that our conclusions remained robust.
Deaths are less likely to depend on testing numbers, but are connected with their own
set of challenges. Different countries use different case definitions, testing criteria often
change even in a given country as the local epidemic progresses, and different definitions
of what constitutes a COVID19 death are used in different jurisdictions, and even at dif-
ferent stages of any given outbreak. While each individual measure of COVID19 spread
is connected to problems that make it difficult to interpret the data, the consistent pat-
terns that we found across those different measures strengthen our conclusions.
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