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and analyze these structures is notoriously difficult, harboring
some of the largest and most complex data challenges when
it comes to translating image data to research impact.

Volume electron microscopy (VEM) methods are commonly
used to reconstruct samples of brain with enough resolution to
resolve the fine processes, distributions of structures, and the
connections between neurons, synapses, while also harboring
the throughput to image extents and fields large enough to con-
tain populations and circuits of neurons [1]. This approach is
comprehensive with one major barrier: the creation of datasets
with exponential footprints on hardware storage systems and
data-specific challenges that make the design of management
systems and analysis frameworks inaccessible [2]. As a result,
the study of micro-, meso-, macroconnectomics, and projec-
tomics has remained largely limited to a handful of institutes
worldwide, with studies from long-tail laboratories limited
to the characterization of fragments, samples, and subsets of
brain cells with analysis extents insufficient to contain whole
neurons [3], [4]. Neuroscience has remained one the world’s
most least understood domains with the throughput needed
to understand the structure-function relationship of the brain,
cognition and neurodegenerative disease, limited by the size
and complexity of data [5], [6]. A rethinking of the hardware-
software relationship is needed in order to carry this data
through meaningful and scalable computations.

The Pacific Research Platform (PRP) [7] and CHASE-CI
[8] together provide a purpose-built hardware and software
ecosystem spanning multiple institutions with the mission
of solving the big data challenges presented by numerous
sciences. The three foremost features are:

• 10Gb/s to 100Gb/s disk-to-disk connectivity,
• 500+ GPU-accelerated node distribution,
• Fully decentralized high-bandwidth storage infrastruc-

ture, and
• Kubernetes [9] engine for fully cloud-native development.

Abstract—The Neuroscience domain stands out from the field 
of sciences for its dependence on the study and characteri-
zation of complex, intertwining structures. Understanding the 
complexity of the brain has led to widespread advances in the 
structure of large-scale computing resources and the design of 
artificially i ntelligent a nalysis s ystems. H owever, t he s cale of 
problems and data generated continues to grow and outpace 
the standards and practices of neuroscience. In this paper, we 
present an automated neuroscience reconstruction framework, 
called NeuroKube, for large-scale processing and labeling of 
neuroimage volumes. Automated labels are generated through 
a machine-learning (ML) workflow, w ith d ata-intensive steps 
feeding through multiple GPU stages and distributed data 
locations leveraging autoscalable cloud-native deployments on 
a multi-institution Kubernetes system. Leading-edge hardware 
and storage empower multiple stages of machine-learning, GPU-
accelerated solutions. This demonstrates an abstract approach 
to allocating the resources and algorithms needed to elucidate 
the highly complex structures of the brain. We summarize 
an integrated gateway architecture, and a scalable workflow-
driven segmentation and reconstruction environment that brings 
together image big data with state-of-the-art, extensible machine 
learning methods.

Index Terms—Neuroscience, Segmentation, Superresolution, 
Machine Learning, Workflow, G ateway, B ig D ata, Kubernetes

I. INTRODUCTION

The Neuroscience domain stands out from the field of
sciences for its dependence on the study and characterization
of complex, intertwining structures. Biologists broadly use
large-data techniques to sequence and analyze the genes and
molecules of living organisms, integrating techniques from
across the omics spectrum. While neuroscience also depends
on these methods, the greater understanding of cognition and
disease comes from the structures and distributions of cells
in the brain. However, brain cells such as neurons and glia
form massively complex networks, projections, and highly
organized subcellular systems to form the central nervous sys-
tem. The instrumentation and methodology required to resolve
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Contributions. In this paper, we present an automated
neuroscience reconstruction framework, called NeuroKube,
that builds on top of these capabilities to provide a community
environment for large-scale processing and labeling of brain
images. Automated labels are generated through a machine-
learning (ML) workflow, with data-intensive steps feeding
through multiple GPU stages and distributed data locations.
Instead of relying on traditional data-center driven computes,
we leverage the CHASE-CI’s distributed node hardware and
PRP’s high-bandwidth, interconnected, optic fiber network to
transiently deploy storage and input locations in a way that can
be dynamically rotated onto requisite processing, visualization,
and development interfaces. We summarize an integrated gate-
way architecture, and a scalable workflow-driven segmentation
and reconstruction environment that brings together image
big data with state-of-the-art, extensible machine learning
methods. In stark contrast to existing HPC-based solutions,
this platform offers: (i) Fully interface-able, cloud-hosted,
software for data visualization; (ii) Auto-scaling execution
solutions for parallel processing of reconstruction workflows;
(iii) Interoperable filesystems designed for specific I/O data
challenges; and (iv) A web-based community interface for
experiment management. Through a thorough deployment of
NeuroKube cloud-native services to the PRP, large neuro-
science data is demonstrably more accessible to both machine
intelligence and users.

Outline. The rest of this paper is organized as follows. In
Section 2, we introduce the new team science and a reference
architecture to make it effective. Section 3 introduces the
NeuroKube framework architecture on top of CHASE-CI,
and the NeuroKube Gateway. In Section 4, we introduce the
overview the labeling and segmentation methods implemented
in NeuroKube. Section 5 provides a summary of our experi-
mental results and provides a discussion of the performance
of the segmentation methods on large image data. We review
related work in Section 6 and conclude in Section 7.

II. COMPREHENSIVE SEGMENTATION OF DIFFERENT
BRAIN REGIONS

The brain is composed primarily of neurons and glial cells
interlacing through the neuropil. Computer vision is needed
to resolve several hierarchies of information regarding the
structures, distribution, and subcellular content of these cells.
Computer vision-based approached also provide the potential
to automatically generate labels using ML (see Figure 1). A
challenge of ML-driven electron microscopy (EM) image la-
beling is that the volumes are too large to be hosted in memory,
and must be partitioned and windowed in pre-processing and
merged in post-processing. The first neural networks to infer
biological structures were 2D, and 3D volumes were tiled into
2D squares. Recent advances in ML architectures have enabled
3D neural networks with height, width, as well as depth,
to drive higher accuracy measurements in VEM data [10].
While this approach has elevated the fidelity of ML analysis
to make real and accurate structural analysis of biological
tissue, it has the notable drawback of necessitating that the

windowing and partition process be likewise volumetric. ML
models underperform at the edges of their viewpoints, so
windows have to overlap to some degree and be blended
back into outputs to remove checkerboarding artifacts. The
use of permutations gives ML models the opportunity to
view data at different viewpoints in order to merge these
predictions together in ensemble techniques to further drive
accuracy improvements. The combination of permutations and
volumetric windowing makes the internal application design
very data-intensive. A further challenge is that large image
volume inputs are 8-bit grayscale data, a data type specific to
reducing the storage footprint of large volumes. Outputs are
semantic, object, and instance segmentations with bit types
required to encompass a vast number of labels.

One popular way to describe the challenges affiliated with
volumetric processing is the curse of dimensionality [11].
Not only does this affect application design, but it can limit
the ability of machine intelligent systems to conceptualize
data and objects at scale. For example, volumetric windows
applied to brain VEM data must be sampled at the reso-
lution required to resolve synapses and their components,
however these objects may not be present in every window
applied during training and inference, which can result in
underperforming automated labeling schemes [12]. A recent
advance to address these issues is the introduction of multi-
label classification schemes in which single neural networks
are trained to interpret the separation of objects in a scene
[13]. While this is meaningful in the ongoing sophistication
of automated labeling, the challenge is always the same. The
data gets bigger.

In addition to multi-label schemes, ML workflows can be
orchestrated to resolve the individual cellular regions of im-
ages. Since the brain is made up of intertwined, fine processes
of a vast number of cells in 3D, this requires that bit types are
high enough to encode an extremely high number of region
labels.

VEM data is also anisotropic, with differential resolutions
across axial planes. Much work has gone into the engineering
of microscopes capable of acquiring isotropic resolutions
but the overwhelming amount of VEM data has high XY
resolutions with Z resolutions limited by microscope type
[14]. Recent advances in Generative Artificial Intelligence
(AI) techniques have shown that resolution information can
be translated across microscopy modes or axial planes to
improve limited resolutions from specific equipment [15].
While this technique improves the acuity along the planes at
which volumetric microscopes operate, it increases data size
by whatever factor of isotropy is targeted. A sample with
a 6nm x 6nm x 60nm pixel size would therefore be 10
times larger when translated to a 6nm x 6nm x 6nm volume.
This process can be attenuated by targeting an improved axial
resolution, such as 6nm x 6nm x 30nm, in which case the data
size would have doubled. Taking all data-increasing factors
into account, consider the analysis of an volume of arbitrary
size 100x100x100 in the brain. Say that the axial resolution
on Z must be improved by at least a factor of two due to
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microscopy mode limitations. In order to give the ML model
sufficient viewpoints, a total of 4 permutations is made, with a
window overlap percentage of 25. Therefore, we would expect
data size during application scaling and deployment to be

X x Y x Z x Zs x Zw x P x O x C x B

where X , Y , and Z are the dimensions of the volume, Zs is
the upscaling factor targeted by a superresolution generator,
Zw is the z-depth of windows, P is number of permutations,
O is the percentage of overlap between 3D windows, C is the
number of classes to resolve each structure of interest, and
B is the higher bit type for the instance segmentation data.
While the initial volume would have contained an already large
number of voxels at one million, an estimation for data size
during execution would be 350 times higher than the input of
100 x 100 x 100.

Not only would this data be extremely large, but it would
be flowing through GPU accelerations, limited by VRAM,
meaning that large-RAM/CPU node configurations would be
unable to resolve runtime costs. ML Applications must be
designed to resolve as many of the data challenges as possible
during execution in order to produce rational intermediate
and output storage footprints. Permutations can be blended at
runtime, block-wise overlaps can be merged upon application
end, high-bit data can be compressed, label data can be
downsampled, and all can be stored in specialized concurrent
data structure schemes. Even assuming all of these challenges
are addressed, what if there is interest in multiple datasets from
different parts of the brain? Tolerating multiple runs would
further add to dimensions of the problem. What if the extent
should be doubled on XxY xZ to contain additional structures
of interest? Doubling the XxY xZ dimensions would mean
8 times more information flowing through GPU accelerators.
VEM data is already one of the largest data producers in the
world [16].

Figure 1. Volumetric electron microscopy (VEM) data with colorized labels.
(Scale Bar 2µm)

III. NEUROKUBE FRAMEWORK AND GATEWAY

NeuroKube is a framework for the analysis of large im-
age volumes for neuroscience research. While contemporary

computing approaches rely on purpose-built servers and hard-
ware to interconnect with HPC resources predicated on the
transfer of data from server to cluster [17], NeuroKube rotates
users and resources directly onto data. Application streaming,
workflow development, and database integration execute with
transient compute resources dynamically allocated at runtime
based on operational needs. From the application of ML
techniques on large image volumes to the visualization of
teravoxel information, threads and memory are made available
as-needed, based on rapid and scalable storage systems. This
was created using cloud-native development, a type of systems
engineering that combines high-performance computing, cloud
development, and application environment scaling.

Kubernetes, is used in place of contemporary scheduling
systems for deployment of applications and services to drive
a global neuroinformatic scheme [9]. Cloud native comput-
ing engines like Kubernetes remove reliance on server-client
hierarchies that have defined high-performance computing
management systems. Instead, connections are built between
serverless deployments of microservices and batch commands
where resource provisions are based on abstract ranges that
can be re-defined and re-allocated in real-time based on
demand [18]. The computing ecosystem is provided by the
PRP and CHASE-CI, a multi-institution partnership hosting
GPU-enabled compute nodes connected and established under
a high-bandwidth ESnet Science DMZ model. The Kubernetes
engine running on the PRP is called Nautilus, and research
projects are separated into team userbases called namespaces.
Ceph is an open source distributed storage platform used
as the backbone of both the distributed filesystem and the
requestable block storage in Nautilus [19]. Ceph nodes are
placed among the cluster to distribute the data to allow for
redundancy and fault tolerance. This is done through Rook
which is the Kubernetes operator for Ceph.

Figure 2. NeuroKube Framework Architecture
Figure 2 illustrates NeuroKube framework architecture with

containerized software and application layers of the hardware
and storage managed by CHASE-CI. Operating systems and
software are hosted in repositories of Docker containers stored
in GitLab services within the high-speed network. Docker
containers are layered, and components of their constituent
operating system, stored in files, are hierarchical, with additive
building of containers based on a preset of built layers. When
executed on Kubernetes, runtime software data is accrued as
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an additional layer, and when the cost of computation exceeds
available local resources, the container is flashed onto a new
compatible node which does possess the available request, and
data links are maintained alongside runtime information to
carry on the computation at the higher cost. Because Docker
layers are pre-cached onto nodes, the transient transfer of
containers happens rapidly across the networked infrastruc-
ture. This ‘stateless’ execution of containerized applications
enables a transient automatic way to scale the virtualization
applications.

Figure 3. NeuroKube Gateway Components

Figure 3 diagrams the Neurokube front-end. The user first
interacts with a spawner that sets minimum resource require-
ments: GPUs, CPUs, Memory, and Storage Types (upper-left).
Workflow protocols are a collection of Jupyter notebooks that
wrap around the HPC application workflow stages in a way
that models can be trained and tested (upper-right). Current
distribution of PRP optic fiber network (bottom-left, see
traceroute.nautilus.optiputer.net). Automatically labeled brain
VEM volumes in PRP-Jupyter-hosted Paintera software in-
ferace with wiring diagrams from hypothalamus (left) and
cerebellum (right).

To reduce the burden of expertise in scientific programming
with low-level languages, a resource-transient application for
interactive development is provided with a JupyterHub service
[20] through a user gateway. Figure 3 shows the resource
allocation, notebook-based workflows and image analysis soft-
ware interfaces provided through the NeuroKube Gateway.
With Kubernetes, support for deployed services allows server-
side perpetual hosting of full-stack services like JupyterHub
(see Figure 2). In this model, the hub spawns JupyterLab
instances horizontally, inhabiting the same larger Kubernetes
cluster, yet the hub requisitions some abstract allocation of
resources, with 1/4th of a CPU being minimally threaded on
average and running on multiple full CPUs based on real-
time user demand. The downstream JupyterLab is given a
user-defined minimum resource request, and further memory
and threads are allocated during execution of notebooks.
Within the JupyterLab instance, kernels for Python, Matlab,
and R alongside the machine-learning frameworks Tensorflow,
PyTorch, and Caffe create a comprehensive environment for

workflow and ML development using only high-level scien-
tific computing languages [21]. One or more GPUs can be
requested to enable high-throughput training and inference
of demanding model architectures and data inputs from the
JupyterHub.

JupyterLab runs alongside a node.js environment where ex-
tensions can be installed that enable graphical interaction with
data [22]. Image volumes and model outputs are visualized
in-line with 3D slice viewers and scalable volume rendering
engines, a capability that goes beyond a more commonly-
used Matlab IDE for volumetric image processing [23], [24].
The markdown of notebooks and mounting of shared storage
spaces creates both a scalable and shareable protocol hub for
multiple users to collaborate. A NextCloud service provides a
cloud sharing web service for easy-to-access data downloads
of notebooks and intermediate data and a RocketChat service
for a forum messaging space, all hosted on PRP/CHASE-CI
[25], [26].

The Jupyter Desktop Xubuntu environment hosts an image
analysis software stack. The primary and commonly-used tools
installed are IMOD and ImageJ [27], [28]. The gateway also
hosts Paintera, a large-scale, open-source, volume segmenta-
tion, validation, and visualization software that imports and
formats data from ML workflows [29]. This application offers
real-time mesh generation and teravoxel segment editing, how-
ever this exacts a heavy CPU cost and requires a GPU to run
efficiently in real-time, making local multi-user configurations
expensive.

As a summary, NeuroKube provides low-latency application
streams of common imaging software at dynamic throughputs.
The NeuroKube gateway can spawn any number of users
into GPU-enabled instances with abstract definitions of CPU
cores for a full operating environment for high-performance
software.

IV. LABELING AND SEGMENTATION METHODS IN
NEUROKUBE

Applications to resolve a number of biological structures
using a manifold of ML techniques are developed, and de-
ployed on the same distributed environment to decompose
each challenge of a neuroscience image segmentation problem.
ML model trainings and inference demos are partitioned and
tested in Jupyter UserLab instances, with a downstream batch
Kubernetes process being deployed for full big-data infer-
ences. Models detect objects in a 3D scene, boost resolution,
and feed-forward into a full instance cell segmentation of cells
in the brain.

Figure 4 shows the end-to-end workflow from the data
access to segmentation, labeling and visualization of the recon-
struction. The first stage, Superresolution, involves addressing
the resolution deficit across one of the three cardinal axes
in the microscopy volume. A pair of generative adversarial
networks are trained on image pairs with and without the
target resolution in order to infer the prospective additional
sections to the volume. The datasets had section thicknesses
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Figure 4. Workflow Steps

in the range of 40 − 60nm, with a generator resolving to
20− 30nm, doubling each image size.

Figure 5. VEM Superresolution (Scale Bar 250nm)

Figure 5 Orthogonal views of a VEM subvolume. The
original view displays the anisotropic problem with the XY
plane presenting higher resolution than the XZ or YZ planes.
The section thickness is artificially halved by upsampling
blank slices interleaved with the original image. A generator
then resolves these blank sections into the target resolution
by artificially translating pixel features across VEM sections.
The resolved orthogonal views now have twice as many voxels
along the z-axis with visibly smoother feature details.

Training images for resolution boosting were unpaired, with
two separate generative adversarial networks (GANs) cycling
images cross-currently to create a pairwise alignment that can
be passed to a least-squares objective. Known as a cycleGAN
architecture, two GAN pairs and four neural networks are
ensembled during training to optimize one single generator,
which infers pixel features across the z-axis towards some tar-

get resolution [30]. Other similar methods have demonstrated
how VEM supperresolution can improve image acuity and
automated reconstruction results [31], [32].

Figure 6. Multilabel segmentation in the Hippocampus

Figure 6 A multilabel classifier output in the Hippocampus. A
single neural network is trained to predict seven distinct neu-
ropil structures. Synapses (pink), plasma membranes (green),
mitochondria (orange), endoplasmic reticulum (yellow), neu-
rotransmitter vesicles (cyan), cytoskeleton (blue) and cytosol
(purple). A 2D slice of 3D volume used in inference (upper
left) and the colorized classifier predictions (upper right).
A higher magnification shows more of the structural detail
(bottom row). (Scale Bar 2µm)

The next two workflow stages, Semantics and Classes, use
a 3D multilabel neural network to classify different biological
structures and semantically index regions in the volume. The
object detection model operates on nanoscale image features
relevant to biological analysis as well as regional attributes
to inform downstream instance labeling of cellular regions.
As shown in Figures 6 and 7, objects from this stage in the
segmentation workflow part into different downstream oper-
ational components. The membranes and synapses compile
themselves into a boundary map that is used in the cellular
instance segmentation to demarcate neuronal and glial pro-
cesses in the volume. An accessory binary classifier was also
used to infer boundary map probabilities. Other subcellular
objects such as the cytoskeleton, endoplasmic reticulum, and
mitochondria are forwarded to the end reconstruction to await
the cellular context computation from the boundary map.

The cell segmentation is solved via the Instances step, the
workflow’s only CPU-driven component. During this phase
the boundary map is oversegmented with watershed algorithms
and then agglomerated into a final segmentation using global
optimization with costs derived from boundary evidence. In or-
der to solve this optimization efficiently at scale, a hierarchical
block-wise decomposition scheme is employed. This approach
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Figure 7. Semantic segmentation in the Cortex (Scale Bar 2µm)

Figure 7 Classification of region semantics in the cortex.
A multilabel classifier predicts the appearance of neurites
as either axons (red) or dendrites (blue). This classification
creates a signal of each for downstream use in biological-
prior cell segmentation. A boundary map is inherited from the
previous stage’s membrane and synapse predictions (green).
A 2D VEM section from the 3D volume (upper left) with the
colorized predictions (upper right) and colorized VEM overlay
(bottom).

stands out for demonstrations that accuracy is sustained at
different scales [33]. Further work by Pape et al. [34] showed
that regional semantics enhance cell segmentation, so an addi-
tional GPU-driven workflow step detects axonal vs. dendritic
properties on a volume and returns a signal that can be passed
alongside the boundary map. This approach encodes spatial
semantic attributes as long-range interactions. Thus, it can
incorporate information derived from ML-detected regional
attributes with respect to known shape and morphological rules
to improve separation of cells.

For application design, several different ML architectures
were factored into each appropriate function. For generator-
discriminator adversarial pairs, deep residual layers were used
with upsampling operators [35]. Mutlilabel and binary classi-
fication used Unet3D and inception layers respectively [36],
[37]. A data concurrency and compression scheme for all
internal and external application I/O was defined using n5

Figure 8. Instance Segmentation in the Cerebellum (Scale Bar 1µm)

Figure 8 Instance segmentation in the cerebellum. The cellular
regions in the image are delineated into distinct colors labeling
different neurite or glial cell processes.

files with a Zarr backend [38], [39]. Tensor processing is
implicitly parallel using Parsl parallel scripting [40]. For big
data inference, node parallelization definitions are compiled
in a Python template engine. This is unique from other HPC
solutions as knowledge in Python is solely required for scaling
design, otherwise HPC systems require learning MPI or other
batching commands or scheduling [41], [42]. Models were
trained on Jupyter UserLab environments using ephemeral
RAM-disk mounts for rapid I/O, and model inference used
a scratch allocation to node’s local NVMe or SSD space with
an I/O exchange with the Ceph’s central shared filesystem at
the beginning and end of workflow stages. Several rapid I/O
ceph block devices are provisioned to store Jupyter userdata
or software-specific data at the workflows beginning and end
stages, such as the .n5 concurrent files required to import data
to Paintera.

V. EXPERIMENTAL RESULTS

Workflow stages were executed via a 512 batch Kubernetes
job. The parallelization schemes are defined using python-jinja
template engine to define iterations and model indexes to their
appropriate iterative process, with a unique Kubernetes job
hosting each batch. At the time of execution the PRP and
CHASE-CI had approximately as many GPUs as there were
batch jobs submitted. Stages with higher storage footprints
were more likely to be re-assigned nodes during execution in
order to maintain the required fluid stateless execution state
during batch runtime, in which case job the status is ”evicted”
(See Figure 10). The Kubernetes pod describes a job’s specific
deployment to some node in the resource pool. During evicted
phases, pods preserve runtime information prior to being killed
and are re-assigned a node that is able to handle whatever
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resource demand had been overrun, whether it was RAM,
Disk, or CPU usage, allowing jobs to maintain their state
regardless of node re-assignments.

Three primary image volumes were processed of the hip-
pocampus, cortex, and cerebellum sourced from mouse tissue.
These volumes were approximately 24 x 24 x 24 µm with
pixel sizes of 6 x 6 nm and slice thicknesses in the 40-60
nm range. Two other volumes were also tested with specific
workflow stages: A sample of mouse hypothalamus with EM
and fluorescent probes for exploratory integration of correlated
light-electron microscopy (CLEM) methods (See Figure 3).
Another was a cerebral cortex volume of a human specimen
biopsy from a patient with Alzheimer’s disease (AD) for the
purposes of testing these A.I. methods directly on clinically-
relevant samples (See Figure 9).

Figure 9. Multilabel segmentation of Alzheimer’s disease human biopsy
(Scale Bar 250 nm)

Figure 9 shows a subregion of a VEM volume acquired from
a biopsy of a patient with Alzheimer’s disease. Multilabel seg-
mentation labels standard neuropil structures such as synapses
(aquamarine), synaptic vesicles (gold), endoplasmic reticulum
(pink), mitochondria (green), glycogen (pale blue), cytoplasm
(red), and plasma membranes (orange). Pathologically-relevant
structures such as autophagic stress (navy blue) are also
detected.

Accounting for sections added by superresolution, approxi-
mately 40 billion voxels flowed through workflow stages from
these five datasets. While GPU provisions were chronologi-
cally fluid (See Figure 11), peaks of 80+ GPUs assigned to
execution were noticed. Because the Kubernetes Job object
assigns resources dynamically based on loads, requests, and
resource-availability, exact global processing times and storage
footprints are not easily discerned, however the following
observations were made. Model trainings were performed in
Userlabs with 4 GPUs where convergence time took about 24
hours for classification models (multilabel segmentors) and
72 hours for regressive models (cycleGANs). Time costs were
reversed for inference, where classifications took 4-8 hours
per dataset and cycleGAN supperresolutions only took 1-3
hours. These short inference times can be attributed to the
PRP/CHASE-CI ability to load-balance its hundreds of GPUs
based on real-time demand, and that inference can be more
easily divided, batched, and distributed than model training.

Figure 10 shows this stateless execution during the parallel-
process runtime, in which Kubernetes jobs spawn pods onto
nodes to iteratively complete a batched assignment. Kubectl

Figure 10. Status of stateless job executions during runtime.

can print the status of all currently operating pods. In this case,
volbatch-27 had overrun some resource allocation or other
pods on the node overran their respective resource allocations,
so the pod became evicted. This means that the job preserved
runtime information of the pod prior to being terminated,
and transmitted that data to another node with staged Docker
layers prepared to inherit the evicted pod’s current runtime
information, allowing for execution to continue seamlessly in
a second running volbatch-27 pod.

Figure 11. Dashboard of GPU resources

Figure 11 shows a Grafana dashboard of resource utility
with respect to graphics accelerations. Workflow stages esca-
late and de-escalate resource usage as GPUs are added and
released over time for highly batched processes.

Figure 12. Dashboard of CPU resources

Figure 12 shows a Grafana dashboard of central processing
unit (CPU) utility. CPUs are primarily used to import and
factor volumetric image data into tensors to be exchanged
through the GPU. However, perpetual services built through
Kubernetes also provision CPU utility, such as with the
JupyterHub service.

Results from segmentation stages are compiled and rendered
in 3D to confirm the appearance of targeted neuronal processes
(see Figure 13). Final mesh and voxel renders are visualized in
VAST and Amira while intermittent stage results are visualized
in Paintera, IMOD, and ImageJ [44], [45].
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Figure 13. Evaluation of Model Performances
Figure 13 is a representation of the model performance eval-
uation used by this framework. Various moduls are tested
to be integrated into the workflows available by NeuroKube.
This figure displays tests of automated domain translation by
cycleGAN image-to-image regression where inference data
was translated to appear more like the training data used by
classifiers. This approach has been shown in related work to
improve segmentation results [43]. The JupyterHub spawned
multiple labs where different users were able to test different
hyperparameters with the model names representing a different
metric tested. F-scores are evaluated (upper plot) for choosing
models and deciding whether a potential workflow stage
should be integrated into future designs. A visual of different
model outputs (bottom row) referenced against a ground truth
volume with true positives (yellow), false positives (red), false
negatives (green) and true negatives (black).

VI. RELATED WORK

The NVIDIA Grid vGPU was one of the first distributed
computing projects to guarantee real-time access to virtualized
GPU resources [46]. This model relied on the construction of
smaller, more distributed datacenters to drive real-time access
to a networked compute resource. This has furthered the idea
that application streaming can be an additional hallmark of
cloud computing, not just HPC work [47]. Similarly, the Neu-
rokube-PRP relationship is decentralized, and local nodes can
be requested on high-bandwidth university networks for low-
latency streams for demanding software. A Jupyter Desktop
Extension launches users into an Xubuntu environment where
software responds in real-time to user interactions. Recent
image analysis software has been developed to handle more
complex tasks in tandem with ML workflows, however the
computational demand of these solutions increases as well,
furthering the need for virtualized cloud-enabled resources.

The Janelia DVID system mirrors several of the Neu-
roKube’s key features but with several distinct differences [48].

Figure 14. Fully computer-vision generated 3D neuronal scene

Figure 14 shows a subset of neurites from cerebellum neuropil
that was extracted and rendered in 3D with structures of
interest labeled.

DVID is a volumetric image storage service for neuroscience
data with APIs to interact with cloud-hosted databases and
local clusters with analysis workflows. DVID is written in
GO with a RestAPI for porting into web services, local
storage clusters, viewable public databases, and resources
for segmentation workflows. Neurokube is built fully cloud-
native ontop of a Kubernetes engine, which is a compiled GO
middleware, with data storage completely decentralized. No
single datacenter or compute cluster hosts any of the totality
of Neurokube scientific data. DVID stores large immutable
grayscale data into arrays of HDD drives with label and
annotation data compressed into SSD arrays in sequence.
NeuroKube uses purely NVMe and SSD storage, with large
immutable grayscale data stored in a Ceph shared filesystem,
and label/annotation data stored into rapid I/O ceph block
devices with RADOS protocols for S3 and Swift APIs [19].
These partitioned volumes can span multiple nodes worldwide.
At the time of writing, DVID focuses on a public interface for
Petascale data and databasing, while NeuroKube emphasises
Terascale access to zero-latency HPC software and a diverse
set of GPU-powered ML stages in image processing, segmen-
tation, and analysis workflows.

For clinical neurology, DATAVIEW is a workflow process-
ing system for clinical imaging such as magnetic resonance
(MRI) and other spectroscopies [49]. Because this system is
used in diagnostic decision-making, scaling and sophistication
is important, as the system must account for patient load
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without exception. DATAVIEW thereby correlates job submis-
sions and integrated HPC grids with contact information for
algorithm developers for specific workflow stages. NeuroKube
uses a JupyterHub deployment, enabling developers to access
the Userlabs of individual users executing workflows in real-
time, allowing for closer interplay with exception-handling,
scaling executions, and use case specifics.

A few other scalable neuroimaging frameworks and
pipelines are being developed prior to publication with varying
degrees of human-in-the-loop and machine intelligence de-
pendence, and end-goals specific towards clinical neurology,
experimental neurobiology, or connectomics [50], [51].

VII. CONCLUSIONS AND FUTURE WORK

The NeuroKube framework demonstrates a new way to
compile complex computational tasks into a centralized usable
space. While resources and executions happen transiently
over nodes worldwide, the framework regardless provides a
central hub for workflow development, testing, and software
integration at the throughput necessary to tackle the challenges
of automated reconstructions of neural tissue.

Automated label-analysis of the brain has broad implica-
tions in our understanding of brain connectivity, cognition, and
disease. Simple measurements like the precise total number
of brain cells and synapses in a vertebrate organism remain
unknown. The human brain is remarkable for both its size and
complexity, particularly in regions associated with memory
functions or reasoning, when compared to non-human primate
brains, yet knowledge of the fine details of cellular circuits in
brain areas which have structurally adapted to enable advanced
performance remains limited due to in our ability to build and
analyze detailed electron-microscopically-charted wiring dia-
grams of connectivity in rodent or primate brains. Determining
the organization of cellular structures and the spatial proteome
withing brain cells (neurons and glia) provides an even more
daunting challenge. For example, despite fulfilling a critical
role in major brain functions and hallmarks of neuropathology,
glial cells such as astrocytes constitute a large proportion of
the cell types in the brain, yet even less is understood about
their cell morphology and tissue-level context due to the their
greater difficulty in computationally-enhanced reconstructions
when compared to neurons [52], [53].

One of the greatest challenges in brain research is to accu-
rately determine the trajectory of long projections of neuronal
processes from one brain region to another, to define what
is referred to the “projectome”, differentiated from “connec-
tomes”, which to date remain smaller-scale maps within up to
a cubic mm of brain tissue. Neurons can be of both staggering
and insignificant size when measured by either their projection
extents or cell-body size. The cell bodies of Betz and Purkinje
neurons of the motor cortex and cerebellum, respectively, are
extraordinarily large, up to 100 µm in diameter, with fiber
lengths of 10-100s cm (depending upon species), while smaller
neuron types, such as cortical interneurons, display cell bodies
of approximately 10 µm in diameter, with axon projection

lengths in the 10-100s of micrometers [54], [55]. Virtually
any metric applied to the morphology of the neuron can be
expected to vary by orders of magnitude across individual
cells. Synapses as well are heterogeneous, and brain areas with
higher cognitive functions contain more structurally diverse
synapses [12]. As such, the study of all components of visible
ultrastructure should be evaluated when studying the brain.
Mitochondria, one of the most ubiquitous and vital organelles,
play roles in energy production and also modulate calcium
signals in actively-firing neurons, as does the endoplasmic
reticulum [56]. Synaptic vesicles in axon terminals actively
release neurotransmitter in organized structural patterns that
can indicate the strengths and types of synapses [57], [58].
Endoplasmic reticulum, often structured into organized arrays,
can distribute in ways that suggest a role in modulation of
synaptic plasticity [59]. The precise location of a synapse
harbors ultrastructural specializations which correlate with
complex organization of localized post-synaptic protein as-
semblies, which modulate the post-synaptic response to pre-
synaptic input [60]. Using A.I., reducing all of these structures
to metrics will elucidate the complex hierarchy of information
required to demystify the grandest challenges of neuroscience.

Research into dysfunctional brain states and their underly-
ing mechanisms can be greatly accelerated by the presence
of high-level cyberinfrastructure for A.I.-driven analysis of
brain circuits. As humans age, dementias driven by processes
underlying Alzheimer’s or Parkinson’s diseases remain a mon-
umental burden on human health. Alzheimer’s is characterized
by the accumulation of neurofibrillary tangles; Parkinson’s and
Alzheimer’s both show stress, structural dystrophy, and loss of
mitochondria and synapses [61]. All can be imaged by electron
microscopy and detected and analyzed by image processing
augmented by machine intelligence. Demyelinating diseases
such as Multiple Sclerosis (MS) and Amyotrophic Lateral
Sclerosis (ALS) form disastrous complications in the brains
of patients, with neuron-specific structures becoming a false
target of the immune system [62]. Vascular disorders that cause
strokes, Epilepsy-induced seizures, and cancers of the brain all
damage the highly sophisticated organization of brain tissue,
and much remains to be discovered about the implications
of all the biological component affects [63]. Our premise is
that advancing scalable A.I. technologies will provide new
gateways to propel advances in knowledge and understanding
of the earliest and causative processes which underly these
neurodegenerative diseases.

Kubernetes provides a vast toolkit of high-level cyberin-
frastructure. In collaboration with PRP and CHASE-CI, Neu-
roKube has so far only scratched the surface of the potential of
cloud-native development. The design of stateful and stateless
applications and databases will be explored as a direction to
handle large and more complex data across broad computa-
tional solutions, testing next-generation web services and new
computing chips, and furthering the integration of artificially
intelligent systems. We also intend these workflows to be test-
driven and collaboratively developed using the PPoDSlab (see
ppods.ai).
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