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We present a calculation of the contribution of the Θ-term to the neutron and proton electric dipole
moments using seven 2þ 1þ 1-flavor highly improved staggered quark ensembles. We also estimate the
topological susceptibility for the 2þ 1þ 1 theory to be χQ ¼ ð66ð9Þð4Þ MeVÞ4 in the continuum limit at
Mπ ¼ 135 MeV. The calculation of the nucleon three-point function is done using Wilson-clover valence
quarks. The CP form factor F3 is calculated by expanding in small Θ. We show that lattice artifacts
introduce a term proportional to a that does not vanish in the chiral limit, and we include this in our chiral-
continuum fits. A chiral perturbation theory analysis shows that the Nð0Þπð0Þ state should provide the
leading excited-state contribution, and we study the effect of such a state. Detailed analysis of the
contributions to the neutron and proton electric dipole moment using two strategies for removing excited-
state contamination are presented. Using the excited-state spectrum from fits to the two-point function,
we find dΘn is small, jdΘn j≲ 0.01Θ̄ e · fm, whereas for the proton we get jdΘp j ∼ 0.02Θ̄ e · fm. On the other

hand, if the dominant excited-state contribution is from the Nπ state, then jdΘn j could be as large as
0.05Θ̄ e · fm and jdΘp j ∼ 0.07Θ̄ e · fm. Our overall conclusion is that present lattice QCD calculations
do not provide a reliable estimate of the contribution of the Θ-term to the nucleon electric dipole moments,
and a factor of 10 higher statistics data are needed to get better control over the systematics and possibly
a 3σ result.
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I. INTRODUCTION

The permanent electric dipole moments (EDMs) of
nondegenerate states of elementary particles, atoms and
molecules are very sensitive probes of CP violation (CP).
Since the EDMs are necessarily proportional to the par-
ticle’s spin, and under time reversal the direction of spin
reverses but the electric dipole moment does not, a nonzero
measurement confirms CP violation assuming CPT is
conserved. Of the elementary particles, atoms and nuclei
that are being investigated, the electric dipole moments
of the neutron (nEDM) and the proton (pEDM) are the
simplest quantities for which lattice QCD can provide
the theoretical part of the calculation needed to connect the

experimental bound or value to the strength of CP in a
given theory [1,2].
EDMs can shed light on one of the deepest mysteries of

the observed Universe, the origin of the baryon asymmetry:
the Universe has 6.1þ0.3

−0.2 × 10−10 baryons for every black-
body photon [3], whereas in a baryon symmetric universe,
we expect no more than about 10−20 baryons and anti-
baryons for every photon [4]. It is difficult to include such a
large excess of baryons as an initial condition in an
inflationary cosmological scenario [5]. The way out of
the impasse lies in generating the baryon excess dynami-
cally during the evolution of the Universe. But, if the
matter-antimatter symmetry was broken post inflation and
reheating, then one is faced with Sakharov’s three neces-
sary conditions [6] on the dynamics: the process has to
violate baryon number, evolution has to occur out of
equilibrium, and charge conjugation and CP invariance
have to be violated.
CP violation exists in the electroweak sector of the

standard model (SM) of particle interactions due to a phase
in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [7] and possibly due to a similar phase in the
Pontecorvo-Maki-Nakagawa-Sakata matrix in the leptonic
sector [8,9]. The effect of these on nEDM and pEDM is,
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however, small: that arising from the CKM matrix is
about Oð10−32Þ e cm [10–12], much smaller than the
current 90% confidence level (C.L.) experimental
bound1 dn < 1.8 × 10−26 e cm [13] and than the reach of
ongoing experiments, dn < 3.4 × 10−28 e cm at 90%
confidence [15].
In principle, the SM has an additional source of CP

violation arising from the effect of QCD instantons. The
presence of these localized finite action nonperturbative
configurations in a non-Abelian theory leads to inequiva-
lent quantum theories defined over various “Θ” vacua
[16,17]. Because of asymptotic freedom, all nonperturba-
tive configurations including instantons are strongly sup-
pressed at high temperatures [18,19] where baryon number
violating processes occur. Because of this, CP violation
due to such vacuum effects does not lead to appreciable
baryon number production [20]. Nonetheless, understand-
ing the contribution of such a term to the nucleon EDM is
very important for two reasons. First, theΘ term constitutes
a “background” contribution to all hadronic EDMs that
needs to be understood before one can claim discovery of
new sources of CP violation through nucleon or hadronic
EDM measurements; and second, besides generating
higher-dimensional CP-odd operators, new sources of
CP violation beyond the Standard Model (BSM) also
generate a so-called “induced Θ-term” [1,21,22] if one
assumes that the Peccei-Quinn mechanism is at work [23].
Therefore, in the large class of viable models of CP
violation that incorporate the Peccei-Quinn mechanism,
quantifying the contribution of the induced Θ to the
nucleon EDM (operationally, the calculation is the same
as in the first case) is essential to bound or establish such
sources of CP violation.
Until recently, the calculation of hadronic matrix ele-

ments needed to connect nucleon EDMs to SM and BSM
sources of CP violation relied on chiral symmetry supple-
mented by dimensional analysis [24–32] or QCD sum rules
[1,22,33–36], both entailing large theoretical errors. Large-
scale simulations of lattice QCD provide a first-principles
method for calculating these matrix elements with con-
trolled uncertainties. Several groups have reported results
of lattice QCD calculations of the neutron EDM induced
by the QCD Θ-term [37–44] and by higher-dimensional
operators, such as the quark EDM [45,46] and at a more
exploratory level the quark chromo-EDM [47–49]. In this
paper, we present a new calculation of the contribution of
the Θ-term to the nEDM and pEDM and show that the
statistical and systematic uncertainties are still too large to
extract reliable estimates.

This paper is organized as follows: In Sec. II, we
describe our notation by introducing the Lagrangian with
CP due to the Θ-term and the needed matrix elements. In
Sec. III, we describe the decomposition of the matrix
elements into the electromagnetic form factors. Section IV
provides the lattice parameters used in the calculations. In
Sec. V, we present the implementation of the gradient flow
scheme, and in Sec. VI the calculation of the topological
susceptibility. Section VII describes the methodology for
extracting the CP phase α from the two-point function, This
phase, specific to the nucleon interpolating operator used,
controls the CP transformation of the asymptotic nucleon
state. Section VIII describes the calculation strategy for
obtaining the form factors when this phase α is nonzero and
gives the formulas used to extract the CP form factor F3

from the matrix elements. In Sec. IX, we discuss the
extraction of F3ðq2Þ and the removal of the excited-state
contamination. The extrapolation of F3ðq2Þ to q2 ¼ 0 is
presented in Sec. X. Section XI discusses the lattice-
spacing artifacts. Our results with the excited-state spec-
trum taken from the two-point function are presented in
Sec. XII and those with an Nπ excited state in Sec. XIII.
These results are compared to previous calculations in
Sec. XIV. Conclusions are presented in Sec. XV. Further
details on the connection between Minkowski and
Euclidean notation, the extraction of the form factors,
the chiral extrapolation, excited-state contamination, and
the OðaÞ corrections in the Wilson-clover theory are
presented in five appendixes.

II. THE QCD Θ-TERM

QCD allows for the existence of a P and T (and CP if
CPT is conserved) violating dimension-four operator, i.e.,
the Θ-term. In its presence, the QCD Lagrangian density in
Euclidean notation becomes

LQCD → LCP
QCD ¼ LQCD þ iΘ

Ga
μνG̃

a
μν

32π2
; ð1Þ

where Ga
μν is the chromo-field strength tensor, G̃a

μν ¼
1
2
ϵμνλδGaλδ is its dual, and Θ is the coupling.2 GμνG̃μν is

a total derivative of a gauge-variant current and its space-
time integral gives the topological charge

Q ¼
Z

d4x
Ga

μνG̃
a
μν

32π2
: ð2Þ

1The slightly stronger 95% C.L. bounds dn <1.6×10−26 ecm
and dp < 2.0 × 10−25 e cm can be obtained from the experimen-
tal limit on the 199Hg [14] EDM, assuming that nucleon EDMs are
the dominant contributions to the nuclear EDM.

2Throughout the paper, we work in Euclidean space, using q
for the Euclidean 4-momentum and Q for the topological charge.
The gauge field includes a factor of the strong coupling, g,
so that the kinetic term is Ga

μνGa
μν=4g2. Also, our conventions for

connecting the Euclidean and Minkowski metrics are given in
Appendix A.
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Nonzero values of Q are tied to the topological structure
of QCD and the Uð1Þ axial anomaly. In addition, higher
dimension operators that arise due to novel CP couplings at
the TeV scale generate this term under renormalization in a
hard cutoff scheme like lattice regularization or gradient
flow [45]. Also, BSM models in which the Peccei-Quinn
mechanism is operative induce such a term [1].
Under a chiral transformation, one can rotate Θ into a

complex phase of the quark matrix and vice versa. It is,
therefore, necessary to work with the convention indepen-
dent Θ̄ ¼ Θþ ArgDetMq, which includes both Θ from all
sources and the overall phase of the quark matrixMq. Since
the argument of the determinant is ill defined when it is
zero, all physical effects of Θ̄ vanish in the presence of even
a single massless quark flavor.
If the overall Θ̄ is nonzero, then this operator would

induce an nEDM dn of size

dn ¼ Θ̄X; ð3Þ

X ≡ lim
q2→0

F3ðq2Þ
2MNΘ̄

: ð4Þ

Here X is obtained from the CP part of the matrix element
of the electromagnetic vector current within the neutron
state in the presence of the Θ-term and F3 is the CP
violating form factor defined in Eq. (6). At the leading
order, F3 is obtained from

hNjJEMμ jNijΘ̄ ≈ hNjJEMμ jNijΘ̄¼0

− iΘ̄
D
N
���JEMμ

Z
d4x

Ga
μνG̃

a
μν

32π2

���NE
; ð5Þ

where we have assumed that the Θ̄-term is the only source
of CP. In other words, X provides the connection between
the CP coupling ðΘ̄Þ and the nEDM ðdnÞ. Using the leading
order form, instead of inserting exp iΘ̄Q, improves the
signal-to-noise ratio.
At present, the upper bound on the nEDM, jdnj < 1.8 ×

10−26 e cm (90% C.L.) [13], is used along with an estimate
X ∼ ð2.50� 1.25Þ × 10−16 e cm [1] to set a limit on the
size of Θ̄≲ 10−10. This is an unnaturally small number.
One solution to this unnaturalness is the dynamical tuning
of Θ̄ ¼ 0 using the Peccei-Quinn mechanism3 [23].
Our goal is to calculate X using lattice QCD, which

multiplied by the cumulative value, Θ̄, from all sources
(SM or BSM), gives the full contribution to nEDM from the
dimension-4GG̃ operator in Eq. (1). Knowing X will allow

current and future bounds on (or measured value of) dn to
more stringently constrain or pin down Θ̄.
In the rest of the paper, all the analyses are carried out

assuming that the only CP coupling arises from the Θ-term,
whose strength is Θ̄. Results are presented for Θ̄ ¼ 0.2,
which we have checked is small enough so that OðΘ̄2Þ
corrections are negligible for all quantities of interest (α and
F3 defined later).
The lattice calculation consists of the evaluation of

the connected and disconnected diagrams shown in
Fig. 1. The disconnected diagram gets contributions from
all quark flavors in the loop—but their contributions to the
CP-conserving form factors of the vector current are small
[50]. In this work, we assume the same holds for the
CP-violating ones and neglect these diagrams and their
contribution to the electric dipole moment.

III. FORM FACTOR OF THE
ELECTROMAGNETIC CURRENT

The parameterization of the matrix element of the
electromagnetic current, JEMμ ðqÞ, defined in Eq. (5), within
the nucleon state in terms of the most general set of form
factors consistent with the symmetries of the theory is

hNðp0; s0ÞjJEMμ jNðp; sÞiΘ̄=CP
¼ ūNðp0; s0Þ

�
γμF1ðq2Þ

þ 1

2MN
σμνqνðF2ðq2Þ − iF3ðq2Þγ5Þ

þ FAðq2Þ
M2

N
ð=qqμ − q2γμÞγ5

�
uNðp; sÞ; ð6Þ

whereMN is the nucleon mass, q ¼ p0 − p is the Euclidean
4-momentum transferred by the electromagnetic current,
σμν ¼ ði=2Þ½γμ; γν�, and uNðp; sÞ represents the free neu-
tron spinor of momentum p and spin s obeying
ði=pþMNÞuNðp; sÞ ¼ 0, with γ4 implementing the parity
operation on the asymptotic (i.e., free) state. Throughout,
we work in Euclidean space and refer the reader to

FIG. 1. The connected (left) and disconnected (right) diagrams
with the insertion of the bilinear vector current (red filled circle)
in the nucleon two-point function. The signal is given by the
correlation between this three-point function and the topological
charge shown by the filled yellow circle.

3The Peccei-Quinn mechanism relaxes Θ̄ dynamically to Θind,
the point where the effective potential achieves its minimum.
In the absence of other sources of CP violation in the theory,
Θind ¼ 0.
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Appendix A for details on our conventions. F1 and F2

are the Dirac and Pauli form factors, in terms of which
the Sachs electric and magnetic form factors are GE ¼
F1 − ðq2=4M2

NÞF2 and GM ¼ F1 þ F2, respectively.4

The anapole form factor FA and the electric dipole form
factor F3 violate parity P; and F3 violates CP as well. The
zero momentum limit of these form factors gives the
charges and dipole moments: The electric charge is
GEð0Þ ¼ F1ð0Þ, the magnetic dipole moment is
GMð0Þ=2MN ¼ ðF1ð0Þ þ F2ð0ÞÞ=2MN , and the EDM is
defined in Eq. (4).
In all the discussions in this paper, the current JEMμ used

is the renormalized local vector current ZV
P

i eiψ̄ iγμψ i,
where ei is the electric charge of a quark with flavor i. The
renormalization is carried out by taking ratios of all three-
point fermion correlators with the lattice estimate of the
vector charge, gV ≡ 1=ZV , which is given by the forward
matrix element of ψ̄ iγ4ψ i. These ratios are constructed with
identical source, sink, and current insertion positions and
within the single jackknife loop used for the statistical
analysis of the data to take advantage of error reduction due
to correlated fluctuations.5

IV. LATTICE PARAMETERS

We present results on seven ensembles, whose param-
eters are specified in Table I. These were generated by
the MILC Collaboration [51] using 2þ 1þ 1 flavors of
highly improved staggered quark (HISQ) action. For the

construction of the nucleon correlation functions we use the
clover-on-HISQ formulation that has been used extensively
by us in the calculation of the nucleon charges and form
factors as described in Refs. [52,53]. These ensembles
cover three values of the lattice spacing, a ≈ 0.12, 0.09 and
0.06 fm and three values of the pion mass Mπ ≈ 315, 220
and 130 MeV. Further details of the lattice parameters and
methodology, statistics, and the interpolating operator used
to construct the nucleon two- and three-point correlation
functions can be found in Refs. [52,53].

V. TOPOLOGICAL CHARGE UNDER
GRADIENT FLOW

We calculate the topological charge using the gradient
flow scheme to implement operator renormalization and to
reduce lattice discretization effects [41,54]. The primary
advantage of the scheme is that at finite flow times,6 i.e., for
τgf > 0, the flow time provides an ultraviolet cutoff, and the
continuum limit, a → 0, of all operators built solely from
gauge fields is finite. Moreover, since topological sectors
arise dynamically as we take the continuum limit, the
gradient flowed topological charge takes on integer values,
and no renormalization is needed to convert it to a scheme
that preserves this property; in particular, correlators of the
topological charge are flow-time independent [54].
These statements are, however, not true at finite lattice

spacing and volume. At small τgf , we get Oða2=τ2gfÞ
artifacts. In Fig. 2, we show the distribution of the
topological charge Q as a function of the flow time τgf

TABLE I. Lattice parameters, nucleon massMN , number of configurations analyzed, and the total number of high precision (HP) and
low precision (LP) measurements made. We also give the bin size (configurations per bin) used in the statistical analysis of two- and
three-point functions. The last column gives the topological susceptibility χQ calculated at flow time τgf ¼ 0.68 fm and with a bin size
of 20 configurations. The ensembles a06m310 and a06m220 have been used only for the calculation of χQ, and 861 configurations were
used to calculate χQ on the a06m135 ensemble.

Ensemble
ID a [fm] Mval

π [MeV] L3 × T Mval
π L τ=a aMN Nconf

Configurations
per bin NHP NLP χ1=4Q [MeV]

a12m310 0.1207(11) 310.2(2.8) 243 × 64 4.55 f8; 10; 12g 0.6660(27) 1013 8 4052 64832 145.9(2.7)
a12m220 0.1184(09) 227.9(1.9) 323 × 64 4.38 f8; 10; 12g 0.6122(25) 1000 8 4000 64000 145.3(2.4)
a12m220L 0.1189(09) 227.6(1.7) 403 × 64 5.49 f8; 10; 12g 0.6125(21) 1000 8 4000 128000 141.3(2.5)

a09m310 0.0888(08) 313.0(2.8) 323 × 96 4.51 f10; 12; 14g 0.4951(13) 2196 18 8784 140544 129.5(2.3)
a09m220 0.0872(07) 225.9(1.8) 483 × 96 4.79 f10; 12; 14g 0.4496(18) 961 8 3844 123008 115.0(2.2)
a09m130 0.0871(06) 138.1(1.0) 643 × 96 3.90 f10; 12; 14g 0.4204(23) 1289 11 5156 164992 106.8(1.7)

a06m310 0.0582(04) 319.3(5) 483 × 144 4.5 970 127.0(5.5)
a06m220 0.0578(04) 229.2(4) 643 × 144 4.4 1014 103.0(4.2)
a06m135 0.0570(01) 135.6(1.4) 963 × 192 3.7 f16; 18; 20; 22g 0.2704(32) 453 9 1812 28992 89.3(2.8)

4We emphasize that we use q2 for the Euclidean four-
momentum squared that is denoted by Q2 in our previous work
and throughout the literature. As noted in Appendix A, it is the
negative of the Minkowski four-momentum squared.

5This forward matrix element has very small excited-state
contamination and, therefore, does not affect our excited-state fits
at this level of precision.

6We use the notation τgf ≡
ffiffiffiffi
8t

p
for the flow time, where t is the

parameter in the flow equations in Ref. [54]. We used the Runge-
Kutta integrator given in that reference for integrating the flow
equations, with a step size of 0.01. Changing the step size to
0.002 changed the results on topological susceptibility by less
than 0.2%.
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in physical units. Its distribution has stabilized by
τgf ¼ 0.34 fm for the a ¼ 0.12 fm ensembles and by τgf ¼
0.17 fm for the a ¼ 0.09 and 0.06 fm ensembles. The large
values of Q that form the long tail of the distribution at
τgf ¼ 0 are smoothed out, indicating that they are lattice
artifacts.
In Fig. 3, we show the distribution of the difference from

the nearest integer. This distribution stabilizes more slowly
and it is only by τgf ¼ 1.31 fm (τgf ¼ 0.76 fm) on the a ≈
0.12 fm (a ≈ 0.09 and 0.06 fm) ensembles that the charges
are close to integers. The relevant distribution important for
the calculation of the nucleon correlation functions is,
however, likely to be the distribution of Q shown in Fig. 2.
To explore this, we show in Fig. 4 the value of F3 as a
function of τgf for the a ≈ 0.12 and 0.09 fm ensembles and
find that indeed the correlation functions, and thus F3,
do stabilize early but the τgf required for the coarser lattices
is longer. Thus, to be conservative, the results presented

below are obtained with flow times τgfða06Þ ¼ 0.68 fm,
τgfða09Þ ¼ 0.68 fm and τgfða12Þ ¼ 0.86 fm, respectively.
In Fig. 5, we show the distribution of the nearest integer,

Qint, to the topological charge at τgf ≈ 1.4 fm (τgf ¼
0.76 fm) on the a ≈ 0.12 fm (a ≈ 0.09 and 0.06 fm)
ensembles, by which time the Qint identified with a given
configuration has stabilized. This distribution is approx-
imately symmetric about zero as expected since hQi ¼ 0,
and no gaps are visible in the distribution. In Fig. 6,
we show the autocorrelation function of Q versus the
flow time. The data show no significant change after
τgf ≳ 0.3 fm, so we can determine the autocorrelation from
these data. We do not observe a long time freeze inQ in any
of the ensembles analyzed as illustrated using the a09m130
and a06m135 ensembles at flow time τgf ¼ 0.68 fm in
Fig. 7. The autocorrelation is less than about ten configu-
rations for all but the a06m135 ensemble. Based on this
study, the bin size used in the single elimination jackknife
procedure is given in Table I.

FIG. 3. The panels show the distribution of the difference,
Q −Qint, of the measured Q from the nearest integer Qint.

FIG. 2. The distribution of the topological charge Q as a
function of the flow time τgf . The panels on the left (right) show
data for the a ¼ 0.12 fm (a ¼ 0.09 fm) ensembles.
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FIG. 4. Data for F̃3;n=Θ̄, defined in Eq. (28), at the smallest value of q2, respectively, on the a12 (left panel) and the a09 (right panel)
ensembles. The estimates show no significant change after τgf ≈ 0.4 fm on the a09 ensembles and τgf ≈ 0.6 fm on the a12 ensembles.

FIG. 5. The distribution of the nearest integer charge, Qint,
associated with a given configuration at τgf ≈ 1.4 fm (a12
ensembles) and 0.76 fm (a09 and a06 ensembles), by which
time the Qint identified with a given configuration has stabilized.

FIG. 6. The autocorrelation function for different values of the
flow time. The data show that the long τgf behavior stabilizes by
τgf ¼ 0.34 fm in all cases.
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VI. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility χQ is defined as

χQ ¼
Z

d4xhQðxÞQð0Þi: ð7Þ

Its value in the pure gauge theory, χquenchedQ , is related to the
mass of the η0 meson in a theory with Nf light flavors in
the chiral limit via the axial anomaly, viz., the Witten-
Veneziano relation [55,56]

M2
η0 ≈

2Nf

F2
π
χquenchedQ ; ð8Þ

where Fπ is the pion decay constant in the convention
where its physical value is about 92 MeV. Following
Ref. [57], we can include the effects of the quark masses.
Including SUð3Þ breaking at leading order in χPT but
neglecting the heavier quarks gives

χquenchedQ ≈
F2
πðM2

η0 −M2
ηÞ

6

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

32δ2Kπ
9

r
þ 2δKπ

3

�
;

χquenchedQ ≈
F2
πðM2

η0 −M2
ηÞ

6

�
1þ 2

M2
η −M2

K

M2
η0 −M2

η

�
; ð9Þ

where δKπ ≡ ðM2
K −M2

πÞ=ðM2
η0 −M2

ηÞ is an SUð3Þ
breaking ratio. The two expressions, which can be
derived independently, give χquenchedQ ≈ ð172 MeVÞ4 and
ð179 MeVÞ4 respectively, thus quantifying the accuracy of
the expansion.

With dynamical fermions, however, the susceptibility
should vanish in the chiral limit. For SUðNfÞ flavor
group with finite but degenerate quark masses, it should
behave as [58–60]

1

χQ
≈

1

χquenchedQ

þ 2Nf

M2
πF2

π
: ð10Þ

For Nf ¼ 2 light flavors and the strange quark, but
neglecting the heavier quarks that give negligible correc-
tions, leading order chiral perturbation theory (χPT) modi-
fies this to

1

χQ
≈

1

χquenchedQ

þ 4

M2
πF2

π

�
1 −

M2
π

3M2
η

�−1
: ð11Þ

We calculate χQ on the 2þ 1þ 1-flavor HISQ ensem-
bles, which are OðaÞ improved. The results are given
in Table I. In addition to the seven ensembles used to
calculate F3, we include data from the a06m310 and
a06m220 ensembles. We remind the reader that the
MILC Collaboration has previously highlighted the issue
of frozen topology on these ensembles [61], which is why
we do not use them in the calculation of F3.
As discussed in Sec. V, the topological susceptibility at

finite flow time needs no renormalization and should be
independent of flow time up toOða2=τ2gfÞ effects. As shown
in Fig. 8, this is true up to a small, almost linear, downward
drift with increasing flow time. In Fig. 9, we compare the
results on a12m220 and a12m220L ensembles and show
that this is a τ2gf=L

2 effect, where L is the lattice size.7 At the
flow times and volumes we use in the calculation, this is a
small effect and therefore neglected.
To obtain χQ at Mπ ¼ 135 MeV and a ¼ 0, we use the

fit ansatz

χQða;MπÞ ¼ c1a2 þ c2M2
π þ c3a2M2

π; ð12Þ

which assumes χQ is zero in the chiral-continuum limit. We
do not find a viable χ2/d.o.f. on including all nine data
points. Reasonable fits are found on neglecting (i) all three
a ≈ 0.12 fm points and (ii) all three a ≈ 0.12 fm and the
a06m310 point. These two fits give χQ ¼ ½70ð6Þ MeV�4
and χQ ¼ ½63ð9Þ MeV�4, respectively, at Mπ ¼ 135 MeV.
We take the average χQ ¼ ½66ð9Þð4Þ MeV�4 as our best
estimate, the larger of the two errors and an additional
systematic uncertainty, which is half the difference. These
results are in good agreement with the expected value
ð79 MeVÞ4, obtained using the physical meson masses and

FIG. 7. The time history of Q on the a09m130 (upper) and
a06m135 (lower) ensembles at τgf ¼ 0.68 fm. While the auto-
correlations increase as a → 0, the data show no long-time
freezing of the topological charge.

7For asymmetric, (T=a > L=a), lattices like ours, we expect
the smaller spatial extent L=a to dominate the finite volume
effect.
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decay constants in Eqs. (9) and (11). The data and the fit
case (i) are shown in Fig. 10.

VII. CALCULATION OF THE CP PHASE α

In a field theory in which parity is not conserved, the
definition of parity of a composite state, e.g., the neutron
state, needs care [22,33,37]. To explain this, we start with
the most general spectral decomposition of the time-
ordered two-point nucleon correlator

hΩjT Nðp; τÞN̄ðp; 0ÞjΩi ¼
X
i;s

e−EiτA�
iAiMs

i ; ð13Þ

where Ai is the amplitude for creating state i, Ei is its
energy, the Euclidean time τ is the separation between the
source and the sink, and, for notational convenience, we are
assuming a discrete spectrum. A common choice on the
lattice of the neutron interpolating operator N is

N ≡ ϵabc
�
daTCγ5

1þ γ4
2

ub
�
dc; ð14Þ

where C ¼ γ2γ4 (the sign is conventional and does not
affect the nucleon correlators we study; see Appendix A for
details of our convention) is the charge conjugation matrix,
a, b, and c are the color indices and u and d are the quark
flavors. The 4 × 4 spinor matrixMs

i in Eq. (13) depends on
the state and the momentum p. Its most general form
consistent with Lorentz covariance is8

X
s

Ms
i ¼ eiαiγ5

ð−i=pi þMiÞ
2Ep

i
eiα

�
i γ5 ð15Þ

≡ eiαiγ5
X
s

uiNðp; sÞūiNðp; sÞeiα�i γ5 ; ð16Þ

where p4
i ≡ iEi. It is clear that because of the presence

of the phases αi, the parity operator that transforms the
spinor associated with the ith asymptotic state is
Pαi ≡ eiαiγ5Pe−iαiγ5 , where P ≡ ηγ4 is the usual parity
operator for a particle with intrinsic parity η. The phases
αi depend on the realization of discrete symmetries: If the
interpolating field is chosen such that P implements parity
in the free theory, Im αi ¼ 0 for a PT symmetric theory,
Re αi ¼ 0 for the CP symmetric theory, and αi ¼ 0 for
a P symmetric theory. For our case of only CP, all αi
are, therefore, real, which will be implicit except in
Appendix B. It is important to note that the value of αi
depends on the interpolating operator N, the state, and the
source of CP. Its value for the ground state can be extracted
from the large τ behavior of the imaginary part of the
nucleon two-point function. Consider

FIG. 8. Illustration of the flow-time dependence of the topological susceptibility at small flow times showing that it is almost
independent of the flow time when the flow time is much larger than the lattice spacing.
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FIG. 9. Comparison of the flow-time dependence of the
topological susceptibility at large flow times on two ensembles
differing only in lattice volume, showing that the dependence is a
finite size effect.

8Up to a possible extra factor of γ5, which, however, is
prohibited by PT symmetry in our calculations.
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rαðτÞ≡
ImCP

2ptðτÞ
ReC2ptðτÞ

ð17Þ

≡ ImTr½γ5 1
2
ð1þ γ4ÞhNðτÞN̄ð0Þi�

ReTr½1
2
ð1þ γ4ÞhNðτÞN̄ð0Þi� ð18Þ

¼
P

iMi sinð2αiÞjAij2=ð2EiÞe−EiτP
iðEi þMi cosð2αiÞÞjAij2=ð2EiÞe−Eiτ

: ð19Þ

Keeping only the first two states one gets

rαðτÞ ≈
M0 sinð2α0Þ

E0 þM0 cosð2α0Þ

×
1þ M1E0

M0E1

sinð2α1Þ
sinð2α0Þ jÃ1j2e−ðE1−E0Þτ

1þ ðE1þM1 cosð2α1ÞÞE0

ðE0þM0 cosð2α0ÞÞE1
jÃ1j2e−ðE1−E0Þτ

; ð20Þ

where Ãi ¼ Ai=A0. At zero three-momentum (Ei ¼ Mi)
the above expression simplifies to

rαðτÞ ≈ tan α0 ×
1þ sinð2α1Þ

sinð2α0Þ jÃ1j2e−ðM1−M0Þτ

1þ cos2ðα1Þ
cos2ðα0Þ jÃ1j2e−ðM1−M0Þτ

: ð21Þ

We provide these formulas for the general case, without
expanding to linear order in αi, but checked explicitly that
for the values of Θ̄ used in our calculation, we are in the
linear regime. The results for α=Θ̄ and F3=Θ̄ can, however,
show a tiny dependence on Θ̄ as a result. The data for rα
versus τ are shown in Fig. 11 for all seven ensembles. The
α0 for the ground state obtained from the two-state fit
agrees with the plateau at large τ, where the lowest state
dominates, and is independent of the momentum.
The ground-state value of α0 for a neutron, denoted αN ,

extracted using Eq. (21) depends on the mass gap
M1 −M0. The same is true for the form factor F3. In
Appendix D, we present a chiral perturbation theory
analysis showing that the lowest excited state that can

contribute to the matrix element defined in Eq. (6) is the
Nð0Þπð0Þ. We have therefore carried out the full analysis of
the contribution of the Θ-term to the neutron EDM using
two estimates of the mass gap. In the first, standard, case,
the M1 −M0 is obtained from a three-state fit to the real
part of the two-point function. In the second, the excited
state is taken to be Nð0Þπð0Þwith mass gapMπ. The values
of these two mass gaps and the corresponding values of the
phases obtained, αN and αNπ

N , are given in Table II.

VIII. THREE-POINT FUNCTIONS IN THE
PRESENCE OF THE PHASE α

In the presence of the phase αN for the ground-state
nucleon [47], the most straightforward way to extract the
matrix element of the electromagnetic current JEMμ within
the neutron ground state in the presence of CP is to
calculate the correlation function

e−iαNγ5hΩjNðp0; τÞJEMμ ðq; tÞN̄ðp; 0ÞjΩij=CPe−iαNγ5
∝ ð−i=p0 þMNÞOμðqÞð−i=pþMNÞ; ð22Þ

where p0 ≡ pþ q and

OμðqÞ≡ γμF1 þ
1

2MN
σμνqνðF2 − iF3γ5Þ

þ FA

M2
N
ð=qqμ − q2γμÞγ5: ð23Þ

Here, the current JEMμ is inserted at times t between the
neutron source and sink operators located at time 0 and τ,
and a sum over the spin labels is implicit. We also assume
that t and τ are large enough that only the ground state
dominates the correlation function. This form results from
the realization that γ4 remains the parity operator for the
ground-state nucleon when working with the interpolating
field defined to be e−iαNγ5N instead of N in all correlation
functions.
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FIG. 10. Fits to the data for the topological susceptibility, χQ, using the ansatz given in Eq. (12).
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This approach, however, requires, evaluating the full
4 × 4 matrix of three-point correlation functions. In our
calculation, we have implemented the spin projection
using

P3pt ≡ 1

2
ð1þ γ4Þð1þ iγ5γ3Þ; ð24Þ

so the contribution of a nonzero αN has to be incorporated
at the time of the decomposition of the matrix element into
the form factors. As discussed in Appendix B, by taking a
suitable ratio of three- and two-point functions, one can
isolate the four-vector Vμ encoding the nucleon ground-
state contribution to the matrix element of the electromag-
netic current:

Vμ ≡ 1

4
Tr½eiαNγ5P3pteiαNγ5ð−i=p0 þMNÞOμð−i=pþMNÞ�;

ð25Þ

where Oμ is given in Eq. (23). The full expressions for
V1;2;3;4, along with a general strategy for extracting F3,
from the four coupled complex equations is given in
Appendix B.

TABLE II. The phase αN for two values of the mass gap of
the first excited state. In the first case, αN is determined using
M1 −M0 from a three-state fit to the real part of the two-point
function. In the second, the Nð0Þπð0Þ state is assumed to be the
first excited state, in which case the mass gap in equal to Mπ .

Ensemble M1 −M0 [GeV] αN Mπ [GeV] αNπ
N

a12m310 0.54(18) 0.353(28) 0.3102(28) 0.375(29)
a12m220 0.67(13) 0.532(36) 0.2279(19) 0.597(46)
a12m220L 0.81(13) 0.590(43) 0.2276(17) 0.715(51)
a09m310 0.93(14) 0.243(16) 0.3130(28) 0.276(19)
a09m220 0.77(12) 0.321(39) 0.2259(18) 0.360(44)
a09m130 0.706(85) 0.551(43) 0.1381(10) 0.766(67)
a06m135 0.788(66) 0.393(64) 0.1356(14) 0.51(12)

0.1

0.2

0.3

0.4

0.5

 0  2  4  6  8  10  12

a12m310
χ2/dof = 0.64

r α
 / 

Θ–
τ

p2 = 0.00 GeV2

p2 = 0.34 GeV2

0.0

0.1

0.2

0.3

0.4

 0  5  10  15  20

a09m310
χ2/dof = 0.53

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.36 GeV2

0.2

0.3

0.4

0.5

0.6

0.7

 0  2  4  6  8  10  12

a12m220
χ2/dof = 1.61

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.21 GeV2

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 0  2  4  6  8  10  12

a12m220L
χ2/dof = 0.47

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.13 GeV2

0.1

0.2

0.3

0.4

0.5

 0  5  10  15  20

a09m220
χ2/dof = 0.15

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.17 GeV2

0.2

0.3

0.4

0.5

0.6

0.7

 0  5  10  15  20

a09m130
χ2/dof = 0.97

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.10 GeV2

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 0  5  10  15  20  25  30

a06m135
χ2/dof = 0.05

r α
 / 

Θ–

τ

p2 = 0.00 GeV2

p2 = 0.10 GeV2

FIG. 11. The extraction of the phase αN=Θ̄ with Θ̄ ¼ 0.2 for the ground-state nucleon on the seven ensembles from the asymptotic
value of rα defined in Eq. (21) using the excited-state mass gap obtained from the real part of the two-point function given in Table II. It
is a Lorentz scalar and independent of the momentum as confirmed by the lattice data. The χ2=d:o:f: values presented are from fully
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To extract F3, the CP part of the three-point functions, a
very significant simplification of the analysis and improve-
ment in the signal is achieved by subtracting the Θ̄ ¼ 0
contribution from each component of the current in Eq. (25)
before making the excited-state fits and decomposing
the resulting ground-state matrix element in terms of
form factors. This is implemented by analyzing the
ground-state contribution in terms of the combination
V̄μ ¼ VμðΘ̄Þ − Vμð0Þ. Working to first order in Θ̄, and
recalling that sαN ≡ sinαN cos αN ∼ αN ∼OðΘ̄Þ, and
F3 ∼OðΘ̄Þ, the expressions for the ground-state contribu-
tions of the three-point functions V̄1;2;3;4 in terms of form
factors simplify to

V̄1 ¼ −
1

2
q1q3G3; ð26aÞ

V̄2 ¼ −
1

2
q2q3G3; ð26bÞ

V̄3 ¼
1

2
ð2MNðEN −MNÞsαNG1 − q23G3Þ; ð26cÞ

V̄4 ¼
i
2
ðq3ðEN þMNÞG3 − 2q3MNsαNG1Þ;

¼ iq3MN

�ðEN þMNÞ
2MN

F3 − sαNGE

�
; ð26dÞ

where G1 ¼ F1 þ F2 and G3 ¼ F3 þ sαNF2. We solve the
above system for G1 and G3. At q2 ¼ 0 there is a further
simplification because G1ð0Þ ¼ QN þ F2ð0Þ, where QN is
the nucleon charge. With this, we get

F3ð0Þ ¼ G3ð0Þ − sαN ðG1ð0Þ −QNÞ: ð27Þ

The largest contribution to G3 comes from sαNF2, and
the statistical error in the right-hand side is much smaller
when G3ðq2Þ − sαN ðG1ðq2Þ −QNÞ is extrapolated, rather
than only G3ðq2Þ and combined with sαNκN using the

precisely measured nucleon anomalous magnetic moment
G1ð0Þ −QN ¼ F2ð0Þ≡ κN . Also, note that G3ðq2Þ can be
obtained uniquely from V̄1 and V̄2 for a number of values of
q2, which provides a useful check. One can extend Eq. (27)
to define

F̃3ðq2Þ≡G3ðq2Þ − sαN ðG1ðq2Þ −QNÞ ð28Þ

as it improves the extraction of F3ð0Þ ¼ F̃3ð0Þ since the
extrapolation of F̃3ðq2Þ to q2 → 0 shows better control.
The subtraction of the Θ̄ ¼ 0 contribution also allows

averaging of the three-point functions over momenta
related by cubic invariance, as seen by comparing the
simpler Eqs. (26) with Eqs. (B8). We illustrate the improve-
ment in the signal in Fig. 12. The averaging over equivalent
cases (over momenta related by cubic symmetry and over
V̄1 and V̄2) significantly reduces the statistical errors and
improves the analysis of excited-state contamination (ESC)
discussed next.
Previous work has suggested multiple ways of reducing

the error in such calculations. A systematic study of various
definitions of the topological charge was carried out in
Ref. [62], and most definitions were seen to be highly
correlated, with one outlier: a spectral projection method
[63,64]. We have not investigated such fermionic defini-
tions of the topological charge in this work. We did,
however, study the proposals made in Refs. [43,44,65,
66] to integrate the topological charge density in a limited
volume about the nucleon three-point function to reduce
the error. The motivation is the intuitive expectation based
on cluster decomposition that the correlation between the
two is short ranged; therefore, outside an appropriately
selected volume, the topological density does not contrib-
ute to the signal but only to the noise. In Fig. 13 we show
data for both αN=Θ̄ and F3;n=Θ̄ withGG̃ðxÞ integrated over
a 4D box of size 2 × RT in the time extent for the three
ensembles at a ≈ 0.09 fm. In the two heavier mass ensem-
bles, a09m310 and a09m220, the results plateau for a RT
that is smaller than the time extent of the lattice, while the
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regime. The panel in the middle shows the signal in R1ðτ; t; qÞ with both the Θ̄ ¼ 0 subtraction and momentum averaging on the
a09m310 ensemble with Θ̄ ¼ 0.2 and q ¼ ð1; 1; 1Þ2π=La, while that on the right is without averaging over equivalent momenta.

CONTRIBUTION OF THE QCD Θ-TERM TO THE … PHYS. REV. D 103, 114507 (2021)

114507-11



errors grow with RT . In these cases, choosing the value with
smaller errors near the start of the plateau would give an
essentially unbiased estimate. This favorable situation,
however, breaks down on our physical pion mass ensemble,
a09m130. In this case there is no plateau, so we need to
integrate over the full lattice or otherwise control for the
extrapolation systematics to avoid using a biased value.
Needless to say, even with integration over the full volume,
there could be a bias on sufficiently small lattices but that is
considered to be a part of the standard finite lattice size
correction. Based on the size of the bias observed in Fig. 13
for a09m130, how slowly it goes to zero, and, more
importantly, because we do not, a priori, know how to
correct for such a bias, we do not use this variance
reduction method on the current set of lattices. However,
we do note, based on the data from the a09m310 and
a09m220 ensembles, that for sufficiently large lattice
volumes this method will become useful for even physical
mass ensembles, but, even in those cases, one would need
to estimate whether the gain due to error reduction is offset
by the additional uncertainty arising from residual bias. The
good news for this method is that such an analysis can be
performed a posteriori and the appropriate RT determined
and used as long as the data for

P
x GG̃ðxÞ are output by

time slice, i.e., as a function of t with sums over only the
spatial points. Alternately, the calculation of

P
x GG̃ðxÞ

over the appropriate region can be redone as it is
inexpensive.

IX. REMOVING ESC IN F3

In order to extract the ground-state contribution V̄μ from
lattice data on the ratio Rμðτ; t; qÞ of three- and two-point
functions defined in Eq. (B7), we need to remove all
excited states that make a significant contribution.
We have analyzed data on Rμðτ; t; qÞ in terms of a two-

state fit, following two strategies. In the first, we have
taken the first excited-state energies from a three-state fit
to the two-point function. In the second strategy, we have
set the first excited-state energy to the noninteracting
energy of the Nπ state, motivated by the χPT expectation
that the leading excited state is the Nπ state, with
amplitude of the same size as the ground-state contribu-
tion (see Appendix D for more details). In Fig. 14 we
compare the two strategies for ImðR4ðτ; t; qÞÞ. The
χ2=d:o:f: of the fits are similar for the two cases on all
three ensembles, but the ground-state estimate is vastly
different and thus the contribution to the nEDM. With the
current data, picking between them is the key unresolved
challenge for this calculation. The very large extrapolation
for τ → ∞ in the Nπ case, however, leads us to question
whether a two-state fit is sufficient if the Nπ state is
included and whether a similar effect might also con-
taminate our extraction of αN . We therefore first perform
the analysis taking the excited-state energy E1 from a
three-state fit to the two-point function and return to an
analysis including a Nπ state in Sec. XIII.
A second issue arising from the small signal in F3 is

that two-state fits to many of the correlation functions
with the full covariance matrix are unstable with respect
to variations in the values of τ and tskip, the number of
points skipped in the fits adjacent to the source and sink
for each τ. Examples of this are shown in Fig. 15 for
ReðR1ðτ; t; qÞÞ. This has two consequences for the analy-
sis. First, we have carried out the final analysis using only
the diagonal elements of the covariance matrix. We have,
however, checked that in cases where fully covariant fits
are possible, the two results are consistent. Since we use
uncorrelated fits for removing excited-state contamina-
tion, we do not quote a χ2=d:o:f: for these fits. Second,
the system of four equations, Eqs. (26), overdetermines
G3 and G1. While we solve the full set of equations as
explained in Appendix B, the data from ReðR1;2ðτ; t; qÞÞ,
which have poor signal, do not make a significant
contribution. We have checked this by removing them
from the analysis and the results are essentially
unchanged; i.e., the results are dominated by
ReðR3ðτ; t; qÞÞ and ImðR4ðτ; t; qÞÞ.
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X. EXTRAPOLATION OF F3ðq2Þ TO q2 → 0

The ansatz used to extrapolate F3ðq2Þ to q2 → 0 is given
in Eq. (C1) with one caveat. We use F̃3ðq2Þ, defined in
Eq. (28), instead of F3ðq2Þ as they are consistent to leading
order and the extraction of F̃3ðq2Þ is better controlled.
We examine three fits based on Eq. (C1).

(i) Linear: The quantities di and S0i are free parameters
and Hi is set to zero.

(ii) χPT: Only di is a free parameter, S0i are given
in Eq. (C11), ḡ0 in Eq. (C7), and the Hi in
Eq. (C13).

(iii) χPTg0: The same as χPT except ḡ0 is left as a free
parameter.
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FIG. 14. Comparison of the two-state fit to the ratio ImðR4ðτ; t; qÞÞ defined in Eqs. (B7) with the first excited-state energies taken from
a three-state fit to the two-point function (left panels) and set equal the noninteracting energy of the Nπ state (right panels). The data for
the three ensembles with a ≈ 0.09 fm are shown in the three rows. The χ2=d:o:f: of the two sets of fits are comparable, but the
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values of τ. All data are with Θ̄ ¼ 0.2.
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The data and fits for the neutron and proton are presented
in Figs. 16 and 17. The data are, within errors, flat in all
cases and the extrapolated values from the three types of fits
are consistent. Since in most cases, we have reliable data at

only three values of q2, we take the final result from the
χPT fit. At the end, we will take the difference between the
linear and χPT fits to estimate the associated systematic
uncertainty.
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XI. ADDITIONAL OðaÞ ARTIFACTS
Before performing a chiral-continuum extrapolation of

the results, in this section we justify our continuum
extrapolation formula for dnðΘ̄Þ that includes an Mπ-
independent term that does not vanish in the chiral limit,
i.e., a term proportional to am0

q.
There are multiple sources of OðaÞ corrections that we

need to consider. First, since our clover coefficient cSW is
set to its tadpole-improved tree-level value, the action, and
hence all matrix elements, have residual OðαsaÞ correc-
tions. Because of the use of smeared gauge fields, however,
the tadpole-improved tree-level approximation is extremely
good, and these are expected to be tiny effects. Second, the
vector current we insert is not improved [68], and, hence,
we expect its renormalization coefficient to have OðamqÞ
corrections. Such multiplicative terms, however, are unim-
portant near the chiral-continuum limit, where the CP form
factors vanish. A third source ofOðaÞ effects is the required
improvement of the vector current by an Oðam0

qÞ mixing
with the derivative of the tensor current, which can give rise
to a nonzero F3, but only in the presence of CP violation in

the theory. Since the topological charge does not introduce
CP violation in the chiral limit, we would expect the
behavior of dn to be dominantlyOða2Þ in the chiral limit, if
these were the only OðaÞ effects.
In Appendix E, we analyze the Wilson-clover

theory based on the framework of a continuum EFT for
the lattice action and the axial Ward identities. Following
Refs. [69–71], we show that the topological charge gives
OðaÞ CP corrections and identify this as effectively due to
the insertion of the isoscalar quark chromo-EDM operator,
with which the topological term can mix. Since this term is
expected to survive in the chiral limit, we include an
Oðam0

qÞ term in our chiral-continuum fits.

XII. CHIRAL-CONTINUUM EXTRAPOLATION
AND RESULTS

In this section, we present the chiral-continuum (CC)
extrapolation of data for dn (and, similarly, dp) obtained on
the seven ensembles. For each, we examine four cases.
These consist of two CC fits, linear and χPT, using the
leading order terms
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FIG. 17. The extrapolation of F̃3ðq2Þ to q2 → 0 using Eq. (C1) for the proton. The rest is the same as in Fig. 16.
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FIG. 18. The chiral-continuum extrapolation of dn using the ansatz given in Eq. (30). The four rows show (i) a linear CC fit to the data
obtained using a linear extrapolation in q2 discussed in Sec. X; (ii) a linear CC fit to the data obtained using the χPT extrapolation in q2;
(iii) a χPT CC fit to the data obtained using a linear extrapolation in q2; and (iv) a χPT CC fit to the data obtained using the χPT
extrapolation in q2. All data are with Θ̄ ¼ 0.2.
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FIG. 19. The chiral-continuum extrapolation of dp using the ansatz given in Eq. (30). The rest is the same as in Fig. 18.
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dnða;MπÞ ¼ c1M2
π þ c2aM2

π þ c3a; ð29Þ

dnða;MπÞ ¼ c1M2
π þ c2LM2

π ln

�
M2

π

M2
N

�
þ c3a; ð30Þ

where the term c3a is the OðaÞ effect discussed in Sec. XI,
because of which dn;p do not vanish in the chiral limit at
finite a. The ansatz are distinguished by the terms propor-
tional to c2 (linear) and c2L (χPT). In these fits,MN is set to
its physical value 940 MeV. We make these two fits to the
data for dn;p obtained using (i) the linear and (ii) χPT

extrapolation in q2, which leads to four estimates. These
four CC fits for the neutron and the proton are shown
in Figs. 18 and 19. The results and the fit coefficients ci are
given in Table III.
As discussed in Appendix C, at next-to-leading order

(NLO) in χPT the coefficient of the chiral logarithm c2L is
fixed in terms of the isovector scalar charge, the quark
condensate and the pion decay constant, leading to
ðc2LÞn ¼ −ðc2LÞp ¼ 0.033 fm-GeV2. Although the central
values from the fits are approximately one order of
magnitude larger, our results are compatible with this
estimate at the 1σ–2σ level.

TABLE III. Results for the contribution of the Θ-term to dn and dp for the four fit strategies defined in the text. Also given are the fit
parameters ci defined in Eqs. (29) and (30) and the χ2=d:o:f: of the fit. Results are given for two choices of the first excited-state energy:
(top) from a three-state fit to the two-point function and (bottom) the noninteracting Nπ state.

Neutron

Fit types F3=2MN [fm] χ2=d:o:f: c1 [fm-GeV2] c2 [GeV2] c2L [fm-GeV2] c3

Linearðq2ÞjlinearðCCÞ −0.0044ð36Þ 0.804 −0.24ð20Þ 3.1(2.3) 0.02(16)
Linearðq2ÞjχPTðCCÞ −0.018ð13Þ 0.782 0.76(62) 0.45(33) 0.31(18)
χPTðq2ÞjlinearðCCÞ 0.0005(17) 1.213 0.028(92) 0.8(1.2) −0.06ð11Þ
χPTðq2ÞjχPTðCCÞ −0.0032ð66Þ 1.212 0.30(38) 0.12(19) 0.016(81)

Proton
Linearðq2ÞjlinearðCCÞ 0.0076(46) 0.455 0.42(25) −7.6ð3.4Þ 0.42(26)
Linearðq2ÞjχPTðCCÞ 0.037(18) 0.597 −1.84ð97Þ −1.01ð49Þ −0.28ð24Þ
χPTðq2ÞjlinearðCCÞ 0.0027(23) 0.578 0.15(13) −4.8ð1.9Þ 0.43(17)
χPTðq2ÞjχPTðCCÞ 0.0238(98) 0.687 −1.40ð58Þ −0.70ð28Þ −0.02ð11Þ

Neutron (with Nπ excited state)
Linearðq2ÞjlinearðCCÞ −0.0046ð87Þ 1.402 −0.25ð48Þ 10.6(7.8) −0.79ð70Þ
Linearðq2ÞjχPTðCCÞ −0.054ð37Þ 1.323 3.2(2.2) 1.6(1.1) 0.27(45)
χPTðq2ÞjlinearðCCÞ 0.0039(42) 2.246 0.22(23) 8.4(3.8) −1.07ð37Þ
χPTðq2ÞjχPTðCCÞ −0.028ð18Þ 2.430 2.5(1.1) 1.04(52) −0.26ð20Þ

Proton (with Nπ excited state)
Linearðq2ÞjlinearðCCÞ 0.019(12) 0.347 1.04(66) −29ð12Þ 2.2(1.0)
Linearðq2ÞjχPTðCCÞ 0.140(54) 0.358 −7.7ð3.2Þ −4.0ð1.6Þ −0.70ð66Þ
χPTðq2ÞjlinearðCCÞ 0.0040(50) 0.398 0.22(27) −15.7ð5.4Þ 1.51(52)
χPTðq2ÞjχPTðCCÞ 0.068(25) 0.522 −4.4ð1.6Þ −2.09ð75Þ −0.02ð27Þ
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FIG. 20. The increase in the value of α when fits to the two-point functions are made including a Nπ excited state as compared to data
in Fig. 11.
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For the final central values for dn;p defined in Eq. (4), we
take the χPTðq2ÞjχPTðCCÞ results

dn ¼ −0.003ð7Þð20ÞΘ̄ e · fm; ð31Þ

dp ¼ 0.024ð10Þð30ÞΘ̄ e · fm; ð32Þ

where the second systematic error is the spread in the four
estimates given in Table III.

XIII. ANALYSIS INCLUDING
THE Nπ EXCITED STATE

In this section, we describe how all ground-state
quantities change when the Nπ excited state is included.
This analysis should be considered exploratory because
(i) the extrapolations in the fits to remove ESC (see
Fig. 14), (ii) the errors, and (iii) the cancellations when
combining different terms to get F3 using Eqs. (26) are
all large.
In Fig. 20, we show the increase in the value of α for

the two physical mass ensembles as compared to the
data presented in Fig. 11. The q2 behavior is similar to
that shown in Figs. 16 and 17, and the final results for
the four strategies are given in Table III. The CC fits for the
neutron and the proton using the χPTðq2ÞjχPTðCCÞ strat-
egy are shown in Fig. 21.

For the central value we again take the
χPTðq2ÞjχPTðCCÞ results

dnjNπ ¼ −0.028ð18Þð54ÞΘ̄ e · fm; ð33Þ

dpjNπ ¼ 0.068ð25Þð120ÞΘ̄ e · fm; ð34Þ

where the second systematic error is the spread in the four
estimates given in Table III.

XIV. COMPARISON TO PREVIOUS WORK

There are two estimates [44,72] of the contribution of the
Θ-term to the nEDM since the clarification of the impact
of the phase α that arises in the nucleon spinor in a theory
with CP in Ref. [47]. That work also contains a review of
previous results, which after correction were consistent
with zero. No estimate is given in Ref. [47], but there is a
preliminary value in a subsequent conference proceedings,
Ref. [66]. All three post-Ref. [47] calculations use the small
Θ expansion and gradient flow method for topological
charge renormalization as employed in this work. All these
results are summarized in Table IV.
TheETMCollaboration [72] has performed the calculation

on one 2þ 1þ 1-flavor twisted mass clover-improved
ensemble with a¼0.0801ð4Þ fm, Mπ ¼ 139ð1Þ MeV, and
MπL ¼ 3.62. Data are presented for a single value of τ ¼ 12
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FIG. 21. The chiral-continuum extrapolation of dn (top) and dp (bottom) using the ansatz given in Eq. (30), using Nπ as the excited-
state fits, and with the χPTðq2ÞjχPTðCCÞ strategy. All data are with Θ̄ ¼ 0.2.
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so there is no information on excited-state effects, continuum
extrapolation, chiral behavior, or finite-size effects. They also
implicitly implement the Θ̄ ¼ 0 subtraction [see Eqs. (26)]
that we find reduces the statistical noise by using the spin
projector ð1þ γ4Þiγ5γk=4. They determineF3ð0Þ by making
a constant fit to the lowest three q2 points. Their final result is
taken using the spectral projectors method, which they find
reduces the errors by a factor of about 2 compared to the
field-theoretic definition of the topological charge used in
this work. They do not assess a systematic error associated
with excited-state effects or extrapolation in q2 or to the
continuum limit.
The calculation presented in Ref. [44] uses six 2þ 1-

flavor Wilson-clover ensembles but only one below
Mπ ¼ 567 MeV, with Mπ ¼ 410 MeV. The values of
lattice spacings range between 0.068 < a < 0.11 fm. A
linear fit in q2 is made to obtain F3ð0Þ. Also, artifacts due to
ESC are not analyzed and, in any case, their data with the
heavy pion masses studied, Mπ > 410 MeV, would not be
sensitive to analyses with or without including a Nπ state.
This is the only other calculation that has presented a chiral
extrapolation using the χPT ansatz [Eq. (30) but with a
Oða2Þ discretization correction instead of our c3a term].
As shown in the bottom right panels in Figs. 18 and 19,
such chiral fits have an inflection point close to the smallest
Mπ data point in order to satisfy the constraint F3 ¼ 0 at
Mπ ¼ 0. In the case of Ref. [44], this occurs around
Mπ ¼ 400 MeV, raising questions on the reliability of
the extrapolation.

XV. CONCLUSIONS

This paper presents a calculation of the contribution of
the Θ-term to the nucleon electric dipole moment using
2þ 1þ 1-flavor HISQ ensembles and Wilson-clover
valence quarks. Two of the seven ensembles analyzed
are at the physical pion mass, which anchor our chiral fits.
The calculation has been done using the small Θ expansion
method. Significant effort has been devoted to getting a
reliable signal in the CP violating form factor F3. The
gradient flow scheme has been used to renormalize the

Θ-term and the results are shown to be independent of the
flow time. Our estimate of the topological susceptibility
for the 2þ 1þ 1 theory is χQ ¼ ð66ð9Þð4Þ MeVÞ4 in the
continuum limit at Mπ ¼ 135 MeV.
We also present two technical issues. First, in

Appendix D, we show that, in chiral perturbation theory,
the Nπ excited state should provide the dominant con-
tamination. We have, therefore, used two strategies for
removing excited-state contamination. In the first, the mass
gaps are taken from fits to the spectral decomposition of the
nucleon two-point function, and in the second we assume
they are given by the noninteracting energy of theNð0Þπð0Þ
state. We find a very significant difference between the two
as shown in Secs. IX and XIII and by the results
summarized in Tables III and IV.
The second technical issue discussed in Sec. XI and

Appendix E is that, for Wilson-type fermions, lattice
artifacts introduce a term proportional to am0

q, because
of which dn does not vanish in the chiral limit at finite a.
Our chiral-continuum fits have been made including
this term.
The analysis of the q2 dependence of FΘ

3 has been carried
out using both a linear and the leading order χPT
expression as described in Sec. X. The current data do
not distinguish between the two. Similarly, fits versus M2

π

are also carried out using a linear and the leading order χPT
expression as described in Sec. XII. The results from these
four sets of fits and the two strategies to remove excited-
state contributions are summarized in Table III.
Our preferred values are obtained using the leading

order χPT expressions. The analysis using excited states
from fits to the two-point function indicate that dΘn is small,
jdΘn j≲ 0.01Θ̄ e · fm, whereas for the proton we get
jdΘp j ∼ 0.02Θ̄ e · fm. On the other hand, if the dominant
excited-state contribution is from the Nπ state, then jdΘn j
could be as large as 0.05Θ̄ e · fm and jdΘp j ∼ 0.07Θ̄ e · fm.
Lastly, we find the sign of dΘp to be opposite to that of dΘn .
From the final summary of results presented in Table IV,

which also includes estimates from previous works, it is
clear that, at present, lattice calculations do not provide a
reliable estimate. To improve the current 100% uncertainty
to a 3σ result will require a factor of at least 10 improve-
ment in statistics.
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APPENDIX A: CONNECTION BETWEEN
MINKOWSKI AND EUCLIDEAN NOTATIONS

To make our conventions explicit, we present the
connection between Minkowski and Euclidean variables
in Table V.
To connect the Lagrangian density for the Θ term in

Minkowski and Euclidean spaces, we take the Minkowski
action associated with the QCD Θ-term to be

SMΘ ¼ −
Θ

32π2

Z
d4xðGMÞaμνðxÞðG̃MÞaμνðxÞ; ðA1Þ

where ðG̃MÞaμν ¼ ð1=2ÞϵμναβM ðGMÞaαβ and ðϵMÞ0123 ¼ þ1 ¼
−ϵ0123M . Upon rotating to the Euclidean space one gets
d4xM ¼ −id4xE and

ϵμναβM ðGMÞaμνðGMÞaαβ ¼ iðϵEÞμναβðGEÞaμνðGEÞaαβ: ðA2Þ

The factor of þi arises from the transformation of the field
strength and because each term in the sum has one factor of
G0i (or Gi0) and one factor of Gjk. Moreover, we used

ϵ0ijkM ≡ ðϵEÞ4ijk ¼ ðϵEÞ4ijk; ðA3Þ

which implies

ðϵEÞijk4 ¼ −ðϵMÞ0ijk ðA4Þ

and hence ðϵEÞ1234 ¼ þ1.
Making these changes in the Lagrangian density and the

measure in the right-hand side of Eq. (A1) gives

SMΘ ¼ −
Θ

64π2
ϵμναβE

Z
d4xEðGEÞaμνðxÞðGEÞaαβðxÞ; ðA5Þ

and hence ðiSM ¼ −SEÞ

SEΘ ¼ þi
Θ

64π2
ϵμναβE

Z
d4xEðGEÞaμνðxÞðGEÞaαβðxÞ; ðA6Þ

consistently with Eq. (1).

TABLE V. Connection between Euclidean and Minkowski variables.

Quantity Minkowski ↔ Euclidean Remarks

4-vector vμ v0M ¼ vM0 ¼ −iv4E ¼ −ivE4 Ensures vM · v0M ¼ −vE · v0E; in particular, v2M ¼ −v2E.
viM ¼ −vMi ¼ viE ¼ vEi
t≡ x0M ¼ −ix4E ≡ −iτ
p0
M ¼ −ip4

E ¼ E

Derivatives ∂M
0 ¼ i∂E

4
∂μ ¼ ∂=∂xμ and ∂μ ¼ ∂=∂xμ in both E and M

∂Mi ¼ −∂M
i ¼ −∂E

i ¼ −∂Ei

Gauge fields AM
0 ¼ iAE

4
Dμ ¼ ∂μ − Aμ transforms homogeneously

AMi ¼ −AM
i ¼ −AE

i ¼ −AEi

ðGMÞ0i ¼ −iðGEÞ4i, ðGMÞ0i ¼ iðGEÞ4i
ðGMÞij ¼ ðGEÞij, ðGMÞij ¼ ðGEÞij

γ matrices γ4E ¼ γ0M, γ
i
E ¼ −iγiM We adopt the DeGrand-Rossi basis [74]. These

γ5E ¼ γ1Eγ
2
Eγ

3
Eγ

4
E ¼ −iγ0Mγ1Mγ2Mγ3M ¼ −γ5M ¼ −γ5c Euclidean gamma matrices are Hermitian.

γμM ≡ γc1γc3γ
μ
cγ3cγ

1
c Minkowski gamma matrices are unitarily transformed

from the standard chiral basis γμc [75].=pM ¼ −i=pE

=DM ¼ i=DE ψM ¼ γc1γc3ψc and ψ̄M ¼ ψ̄cγ
3
cγ

1
c.

Charge CM ¼ iγM0 γ
M
2

Conjugation Cc ¼ iγc0γ
c
2

Matrix CE ¼ γE2 γ
E
4
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APPENDIX B: EXTRACTION OF F3

The Euclidean four-vector VμðqÞ defined in Eq. (25) can
be determined from lattice data by taking appropriate ratios
of three-point function and two-point functions. This is
achieved by defining the projected two- and three-point
functions as follows:

C2ptðt; pÞ ¼ Tr½P2pthΩjNðp; tÞN̄ðp; 0ÞjΩi�; ðB1Þ

Cμ3ptðτ; t; qÞ ¼ Tr½P3pthΩjNðp0; τÞJEMμðtÞN̄ðp; 0ÞjΩi�;
ðB2Þ

with q ¼ p0 − p, p0 ¼ 0, P3pt given in Eq. (24),

P2pt ¼
1

2
ð1þ γ4Þ; ðB3Þ

and, neglecting the contributions of heavier quarks,

JEMμ ¼ eðð2=3Þūγμu − ð1=3Þd̄γμd − ð1=3Þs̄γμsÞ: ðB4Þ

The ratio

R̃μ ≡ Cμ3ptðτ; t; qÞ
C2ptðτ; p0Þ

×

�
C2ptðt; p0ÞC2ptðτ; p0ÞC2ptðτ − t; pÞ
C2ptðt; pÞC2ptðτ; pÞC2ptðτ − t; p0Þ

�
1=2

ðB5Þ

becomes independent of t and τ when t and τ are
sufficiently large that excited-state effects can be neglected
and takes the form

VμðqÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0 ðEpþMN cosð2αNÞÞðEp0 þMN cosð2αNÞÞ

p : ðB6Þ

In our plots to demonstrate the signal and the contribution
of excited states, we choose to show the quantity

Rμðτ; t; qÞ

≡ R̃μ

gV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EpEp0 ðEp þMN cosð2αNÞÞðEp0 þMN cosð2αNÞÞ

q
;

ðB7Þ

where gV ≡ Cμ3ptðτ; t; 0Þ=C2ptðt; 0Þ and αN is calculated
from fits to the two-point functions with momentum p
or p0 as discussed in Sec. VII.
The components of Vμ are expressed in terms of form

factors F1;2;3;Aðq2Þ defined in Eq. (6) as follows:

V1 ¼ icαNMNðq2 þ iq1ÞF1ðq2Þ þ
�
−cαNMNq2 −

1

2
½sαNq1q3 þ icαNq1ðEN −MNÞ�

	
F2ðq2Þ

− 2i½sαNq2ðEN −mNÞ − cαNq1q3�FAðq2Þ −
1

2
½cαNq1q3 − isαNq1ðEN −MNÞ�F3ðq2Þ; ðB8aÞ

V2 ¼ cαNMNðq1 þ iq2ÞF1ðq2Þ þ
�
cαNMNq1 −

1

2
½sαNq2q3 þ icαNq2ðEN −MNÞ�

	
F2ðq2Þ

þ 2i½sαNq1ðEN −mNÞ þ cαNq2q3�FAðq2Þ −
1

2
½cαNq2q3 − isαNq2ðEN −MNÞ�F3ðq2Þ; ðB8bÞ

V3 ¼ MN ½icαNq3 þ sαN ðEN −MNÞ�F1ðq2Þ þ
1

2
f−icαN ðEN −MNÞq3 − sαNq

2
3 þ 2sαNMNðEN −MNÞ�gF2ðq2Þ

− 2icαN ½q21 þ q22�FAðq2Þ −
1

2
½cαNq23 − isαNq3ðEN −MNÞ�F3ðq2Þ; ðB8cÞ

V4 ¼ MN ½cαN ðEN þMNÞ − isαNq3�F1ðq2Þ −
1

2
fcαN ðE2

N −M2
NÞ − isαNq3ðEN −MNÞ�gF2ðq2Þ

þ 1

2
½icαNq3ðEN þMNÞ þ sαN ðE2

N −M2
NÞ�F3ðq2Þ; ðB8dÞ

where cα ≡ ðcos 2Reαþ cosh 2ImαÞ=2 and sα ≡ ðsin 2Reαþ i sinh 2ImαÞ=2. For PT symmetric theories, where α is
real, these expressions simplify to cα ¼ cos2 α and sα ¼ cos α sinα.
From the above expressions we want to extract F3ðq2Þ, which gives the neutron EDM. It turns out that the rhs of

Eqs. (B8) is most naturally expressed in terms of G1;2;3 given by
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G1 ¼ F1 þ F2; ðB9aÞ

G2 ¼ F1 −
q2E
4m2

F2 þ
s
c
q2E
4m2

F3; ðB9bÞ

G3 ¼ F3 þ
s
c
F2; ðB9cÞ

where q2E ¼ q2 þ q24 and s≡ sin α cos α, c≡ cos2 α.
For a given momentum transfer q ¼ ðq1; q2; q3Þ,

Eqs. (B8) thus represent eight equations for G1;2;3. They
can be written in a compact form as follows:

KðqÞ

0
B@

G1

G2

G3

1
CA − VðqÞ ¼ 0; ðB10Þ

where KðqÞ is an 8 × 3 matrix given in block form by

KðqÞ ¼
�
X1ðqÞ 0 X3ðqÞ
0 Y1ðqÞ 0

�
; ðB11aÞ

X1ðqÞ ¼ m

0
BBB@

−cq2
cq1
sðE −mÞ
−isq3

1
CCCA; ðB11bÞ

X3ðqÞ ¼ −
c
2
q3

0
BBB@

q1
q2
q3

−iðEþmÞ

1
CCCA; ðB11cÞ

Y1ðqÞ ¼ mc

0
BBB@

q1
q2
q3
−iðEþmÞ

1
CCCA; ðB11dÞ

and VðqÞ is an eight-dimensional array given by

VðqÞ ¼
�
VRðqÞ
VIðqÞ

�
; ðB12aÞ

VRðqÞ ¼
�
ReV⃗ðqÞ
iImV4ðqÞ

�
; ðB12bÞ

VIðqÞ ¼
�

ImV⃗ðqÞ
−iReV4ðqÞ

�
: ðB12cÞ

To solve for G1;2;3ðq2Þ, for a given three-momentum
transfer q ¼ ðq1; q2; q3Þ we can use a least squares esti-
mator. Namely, we minimize the function

FðG1;2;3Þ ¼
X

q⃗∈Pðq⃗Þ

X8
i;j¼1

wijðqÞEiðqÞEjðqÞ; ðB13Þ

where

EiðqÞ ¼
X3
β¼1

KiβðqÞGβ − ViðqÞ; ðB14Þ

wijðqÞ ¼ ½C−1
V ðqÞ�ij; ðB15Þ

and the weights matrix is the inverse of the covariance
matrix of lattice “measurements” ViðqÞ:

½CVðqÞ�ij ¼ CovðViðqÞ; VjðqÞÞ: ðB16Þ

For independent variables ViðqÞ, the covariance matrix CV
and it inverse are positive definite.9 This guarantees
that FðG1;2;3Þ is minimized if and only if EiðqÞ ¼ 0

for all i. The sum over momenta runs over the six
permutations ðq1; q2; q3Þ, ðq1; q3; q2Þ, ðq2; q1; q3Þ,
ðq3; q1; q2Þ, ðq2; q3; q1Þ, and ðq3; q2; q1Þ.
The function FðG1;2;3Þ is stationary for

∂F
∂Gα

¼ 0; α ¼ 1; 2; 3: ðB17Þ

Explicitly, since ∂Ej=∂Gα ¼ Kjα, one finds

2
X

q⃗∈Pðq⃗Þ

X8
i;j¼1

wjiðqÞEiðqÞKjαðqÞ ¼ 0; α ¼ 1; 2; 3;

ðB18Þ

or even more explicitly

X
q⃗∈Pðq⃗Þ

X8
i;j¼1

wjiðqÞ
�X

β

KiβðqÞGβ − ViðqÞ
�
KjαðqÞ ¼ 0;

α ¼ 1; 2; 3; ðB19Þ

which is a system of three equations for G1;2;3. The
extremum condition for FðG1;2;3Þ implies the following
linear equation for G1;2;3ðq2Þ:

AαβGβ ¼ Bα; ðB20Þ

where the 3 × 3matrix A and the three-dimensional array B
are given, respectively, by

9For ease of notation, we are ignoring current conservation,
which relates the various components ViðqÞ. Strictly speaking,
we need to eliminate the dependent components of ViðqÞ when
using a conserved current to get an invertible covariance matrix.
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Aαβ ¼
X

q⃗∈Pðq⃗Þ

X8
i;j¼1

KjαðqÞwjiðqÞKiβðqÞ; ðB21aÞ

Bα ¼
X

q⃗∈Pðq⃗Þ

X8
i;j¼1

KjαðqÞwjiðqÞViðqÞ: ðB21bÞ

So, from the lattice data on ViðqÞ, their covariance matrix,
and the explicit form of the matrix KiαðqÞ given in
Eq. (B11), one can construct Aαβ and Bα and solve for
G1;2;3. Error on G1;2;3 can be assigned with the bootstrap
method.

APPENDIX C: CHIRAL EXTRAPOLATION
FORMULAS

We can express the electric dipole form factor as

Fi
3ðq2Þ
2MN

¼ di − S0iq
2 þHiðq2Þ; ðC1Þ

where di is the EDM, S0i the Schiff moment (with some
abuse of notation), and Hiðq2Þ account for the higher-order
dependence on q2. Here, i is an isospin label, and the results
are more conveniently expressed in terms of an isoscalar
(i ¼ 0) and isovector (i ¼ 1) component. The neutron and
proton form factors are, respectively,

F3;pðq2Þ ¼ F0
3ðq2Þ þ F1

3ðq2Þ;
F3;nðq2Þ ¼ F0

3ðq2Þ − F1
3ðq2Þ: ðC2Þ

At NLO in χPT, the EDMs are given by [24,28,30,32]

d0 ¼ ed̄0 þ
egAḡ0
ð4πFπÞ2

�
3πMπ

4MN

�
; ðC3Þ

d1 ¼ ed̄1ðμÞ þ
egAḡ0
ð4πFπÞ2

�
− ln

M2
π

μ2
þ 5π

4

Mπ

MN

�
; ðC4Þ

where the renormalization scale dependence of the low-
energy constant d̄1 cancels the μ in the logarithm. Here
gA ¼ 1.27 and Fπ ¼ 92.4 MeV. ḡ0 is a CP pion-nucleon
coupling, defined as

L ¼ −
ḡ0
2Fπ

N̄π · τN; ðC5Þ

which is related by chiral symmetry to the neutron-proton
mass splitting [24]

ḡ0 ¼
�
Mn −Mp

m̄ε
þO

�
M2

π

Λ2
χ

��
m�Θ̄ ¼ gSm̄ Θ̄; ðC6Þ

where m−1� ¼ m−1
u þm−1

d , 2m̄ ¼ mu þmd, and Λχ ∼
1 GeV is the scale at which the χPT expansion breaks

down. gS is the isovector scalar charge, and the last equality
holds in the isospin limit. At the physical pion mass, one
obtains [76]

ḡ0
2Fπ

¼ ð15.5� 2.6Þ × 10−3Θ̄; ðC7Þ

but the last term in Eq. (C6) allows the extension of the
relation to arbitrary masses in the regime of validity of χPT.
In particular, in the χPT fits to F3ðq2Þ we use

ḡ0 ¼
gS
2B

M2
πΘ̄; ðC8Þ

with gS ¼ 1.0 and B ¼ 2.8 GeV. d̄0;1 are two low-energy
constants, which, by naive-dimensional analysis, scale as

d̄0;1 ¼ O
�

M2
π

ð4πFπÞ3
�
: ðC9Þ

The first derivative of the form factor is [28,30,32]

S00 ¼ 0; ðC10Þ

S01 ¼
egAḡ0

6ð4πFπÞ2M2
π

�
1 −

5π

4

Mπ

MN

�
: ðC11Þ

At N2LO there are additional long- and short-distance
contributions to both isoscalar and isovector components.
The remaining momentum dependence of the electric

dipole form factor is given by the functions Hiðq2Þ
introduced in Eq. (C1):

H0ðq2Þ ¼ 0; ðC12Þ

H1ðq2Þ ¼
4egAḡ0

15ð4πFπÞ2
�
haðxÞ −

7π

8

Mπ

MN
hbðxÞ

�
; ðC13Þ

with x≡ q2=4M2
π. ha appears at leading order:

haðxÞ ¼ −
15

4

� ffiffiffiffiffiffiffiffiffiffiffi
1þ 1

x

r
ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=x

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=x

p
− 1

�
− 2

�
1þ x

3

��
;

ðC14Þ

while hb is generated at NLO:

hbðxÞ ¼ −
1

7

�
3ð1þ 2xÞ

�
5

�
1ffiffiffi
x

p arctan
ffiffiffi
x

p
− 1þ x

3

��

− 10x2
�
: ðC15Þ

Since these behave as hðnÞi ðxÞ ¼ x2 þOðx3Þ for x ≪ 1, the
leading, Oðq4Þ, dependence of Hi is consistent with the
definition in Eq. (C1).
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APPENDIX D: EXCITED-STATE
CONTAMINATION IN CHIRAL
PERTURBATION THEORY

In this appendix, we show that, in χPT, the gap between
the ground-state and excited-state contributions to the CP-
odd components of the three-point function Cμ3pt is expected
to be of order of the pion mass Mπ . This can be intuitively
understood from the fact that the nucleon EDM induced by
the QCD Θ̄-term receives a LO contribution from a long-
range pion loop [24], shown in Fig. 22. In Minkowski
space, this diagram has a branch cut when the intermediate
pions and nucleon go on shell. In Euclidean space, this
translates into a Nπ excited state, whose amplitude is of the
same size as the ground-state contribution. For simplicity,
we focus only on the diagram shown in Fig. 22 and assume
that the nucleon interpolating field does not couple to
nucleon plus pions.
We start from the fourth component of the three-point

function. Carrying out the Dirac traces in Eq. (25), in the
limit MN ≫ q, we find

C43pt ¼ q3τ3
ḡ0gA

ð4πFπÞ2
e−MNtB−ENt

�
f0ðMπ; q; LÞ

þ ð4πÞ2
L3MπE2

π

�
e−Mπ t þ e−Mπ tB þ Eπ

Mπ
ðe−Eπt þ e−Eπ tBÞ

−
Mπ þ Eπ

2Mπ
ðe−Eπ t−Mπ tB þ e−Mπ t−Eπ tBÞ

þ ðEπ −mπÞ2
2MπðEπ þMπÞ

ðe−ðMπþEπÞt þ e−ðMπþEπÞtBÞ
�

þ � � �
	
; ðD1Þ

where tB¼ τ− t, EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

Nþq2
p

∼MN , Eπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ q2
p

and � � � denotes terms with a gap with two or more units of
momentum. f0ðMπ; q; LÞ denotes the ground-state loop
function, which we write as an infinite volume term f∞0 and
a correction Δ:

f0ðMπ; q; LÞ ¼ f∞0 ðMπ; qÞ þ ΔðMπ; q; LÞ: ðD2Þ

In the nonrelativistic limit, f∞0 ðMπ; qÞ is given by

f∞0 ðMπ; qÞ ¼ ð4πÞ2
�Z

d4k
ð2πÞ4

1

k20 þ k⃗2 þM2
π

×
1

k20 þ ðk⃗þ q⃗Þ2 þM2
π

�
ðD3Þ

and is ultraviolet divergent. In dimensional regularization
and in the MS scheme

f∞0 ðMπ;qÞ¼ log
μ2

M2
π
þ2−

ffiffiffiffiffiffiffiffiffiffi
1þ1

x

r
ln

ffiffiffiffiffiffiffiffiffi
1þ 1

x

q
þ1ffiffiffiffiffiffiffiffiffi

1þ 1
x

q
−1

; ðD4Þ

with x ¼ q2=ð4M2
πÞ, which is of course the same function

as in Appendix C. The finite volume correction is given by

ΔðMπ; q; LÞ ¼ ð4πÞ2
Z

dk0
2π

�
1

L3

X
k⃗

−
Z

d3k
ð2πÞ3

�

×
1

k20 þ k⃗2 þM2
π

1

k20 þ ðk⃗þ q⃗Þ2 þM2
π

;

ðD5Þ

which can be written in terms of Bessel functions as [77]

ΔðMπ; q; LÞ ¼ 2
X
n⃗≠0

Z
1

0

dxK0

�
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

π þ q2xð1 − xÞ
q

jn⃗j
�
:

ðD6Þ

At q ¼ 0, for MπL ∼ 4, Δ amounts to a 0.1% correction.
Equations (D1) and (D4) thus show that the excited
states have a gap of OðMπÞ. The ratio of the ground-
and excited-state contributions is determined by the quan-
tity ð4πÞ2=ðLMπÞ3, which is a number of order 1 for
LMπ ¼ 4. We thus do not expect a significant suppression
of the excited states. A similar calculation can be performed
for the spatial components Ci3pt, yielding a result similar to
Eq. (D1), but with a sinh rather than a cosh behavior.

APPENDIX E: OðaÞ CORRECTIONS IN THE
WILSON-CLOVER THEORY

In this appendix, we analyze CP violation due to the
topological charge in the Wilson-clover theory at OðaÞ.
We will denote by OðdÞ

n , ÕðdÞ
n , and OðdÞ;ren

n the set of bare,
subtracted, and renormalized operators of dimension d,
respectively. Subtracted operators, i.e., operators free of
power divergences, are defined by

FIG. 22. Leading order diagram for the excited-state contribu-
tion to the three-point function Cμ3pt in chiral perturbation theory.
A black square denotes an insertion of the CP-odd pion-nucleon
couplings ḡ0. Filled circles denote CP-even pion-nucleon and
pion-photon couplings.
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ÕðdÞ
n0 ¼ OðdÞ

n0 −
X
d0<d

X
k

βðdÞn0k

ad−d
0 Õ

ðd0Þ
k ; ðE1Þ

while finite (renormalized) operators are given by

OðdÞ;ren
n ¼ Znn0Õ

ðdÞ
n0 : ðE2Þ

The presence of Õðd0Þ
k and not Oðd0Þ

k in Eq. (E1) is needed to
avoid ambiguities in the definition of lower-dimensional

coefficients βðdÞn0k. Note, however, that like all operators, the
subtracted operators allow any amount of admixture of
ad

0−dÕðd0Þ for d0 ≥ d.
We use the Wilson-clover quark action, in which the

Dirac operator reads

OD ¼ DL þmW; ðE3Þ

DL ¼ =D − a

�
r
2
D2 þ rcSW

4
σ ·G

�
; ðE4Þ

with cSW ¼ 1þOðg2Þ.10 To simplify the analysis, in the
following discussion we will first assume that the quark
mass matrix is proportional to the identity, pointing out the
minor modifications at the end.
The starting point of our analysis is the singlet axial

Ward identity (AWI) obtained by considering the axial
transformation on the quark fields ψT ¼ ðu; d; sÞ:

ψðxÞ → ð1þ iαðxÞγ5ÞψðxÞ;
ψ̄ðxÞ → ψ̄ðxÞð1þ iαðxÞγ5Þ; ðE5Þ

where αðxÞ is the local transformation parameter. Denoting
by Oðx1;…; xnÞ any product of local operators, the singlet
AWI reads

hOðx1;…; xnÞð∂μ
xAμðxÞ − 2mWψ̄ðxÞγ5ψðxÞ − XðxÞÞi

¼ −


δOðx1;…; xnÞ

δðiαðxÞÞ
�
; ðE6Þ

where

AμðxÞ ¼ ψ̄ðxÞγμγ5ψðxÞ ðE7Þ

and XðxÞ is given by the variation of the Wilson-clover
term [69,71,78]:

X
2
¼ −aψ̄

�
r
2
D2 þ rcSW

4
σ ·G

�
γ5ψ : ðE8Þ

Insertions of XðxÞ vanish at tree level in the continuum
limit, but quantum effects induce power-divergent mixing
with lower-dimensional operators, that have to be taken
into account when taking the continuum limit. This is done
by writing [69,71,78]

XðxÞ ¼ aX̃ðxÞ − 2m̄ ψ̄ðxÞγ5ψðxÞ − ðZA − 1Þ∂μ
xAμðxÞ

þ ZGG̃
2NF

32π2
ðGG̃Þsub; ðE9Þ

where NF is the number of quark flavors and X̃ðxÞ is a
“subtracted” dimension-five operator; i.e., it is free of
power divergences, expanded according to Eq. (E1). The
operator aX̃ðxÞ has no impact on the analysis of the axial
WI with elementary fields, while it induces contact terms in
the continuum limit of axial WIs involving composite fields
[69,70]. It is, however, essential in order to identify the
OðaÞ corrections to dnðΘ̄Þ. Using the above expression
in (E6) and taking into account the mixing between ðGG̃Þ
and ∂μAμ (which involves the renormalization constant
ZC), one arrives at [70,71]



Oðx1;…; xnÞðZAð1 − ZCÞ∂μ

xAμðxÞ − 2mψ̄ðxÞγ5ψðxÞ

−
2NF

32π2
ðGG̃Þren − aX̃ðxÞÞ

�
¼ −



δOðx1;…; xnÞ

δðiαðxÞÞ
�
;

ðE10Þ

where

m ¼ mW − m̄ ðE11Þ

is the quark mass free of power divergences as we take the
continuum limit. Here, and henceforth, the OðmaÞ depend-
ence of the coefficients of the operators is suppressed.
Finally, upon integrating over

R
d4x we arrive at

Z
d4x



Oðx1;…; xnÞ

�
−2mψ̄ðxÞγ5ψðxÞ

−
2NF

32π2
ðGG̃Þren − aX̃ðxÞ

��

¼ −
Z

d4x



δOðx1;…; xnÞ

δðiαðxÞÞ
�
: ðE12Þ

Reference [79] performed a detailed diagrammatic analysis
of Eq. (E12), with Oðx1; x2:x3Þ ¼ Nðx1ÞJEMμ ðx2ÞN̄ðx3Þ in
the a → 0 case, showing that the δO terms cancel the
connected insertions of 2mψ̄γ5ψ . Their analysis shows that
insertions of the operator GG̃ can be replaced by 2m times
the disconnected insertions of the isosinglet pseudoscalar
density ψ̄γ5ψ. Since the disconnected matrix elements
of the isoscalar density do not diverge in the chiral limit,

10Throughout, we use Dμ¼∂μþ iAμ and Gμν¼∂μAν−∂νAμþ
i½Aμ;Aν�, so that ½Dμ; Dν� ¼ iGμν and =D=D ¼ D2 þ ð1=2Þσ ·G.
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this implies as a corollary that the neutron EDM should
vanish as m → 0. OðaÞ effects would modify the result of
Ref. [79] by modifying the rhs of their Eqs. (2.11) and
(3.5). In the context of our analysis, the term proportional
to aX̃ in Eq. (E12) provides OðaÞ effects, which we
discuss next.
First, we project the subtracted operator X̃ on the basis of

(subtracted) dim-5 operators, given in Ref. [80],

X̃ ¼
X
n

KXnÕ
ð5Þ
n ðE13Þ

and analyze the consequences of Eq. (E13) for Eq. (E12).

The basis of dimension-5 operators Oð5Þ
n appearing on the

rhs of Eq. (E13) is given in [80] assuming generic diagonal
quark mass m̂, and we repeat it here for completeness:

Oð5Þ
1 ¼ iψ̄ σ̃μνGμνψ ; ðE14Þ

Oð5Þ
2 ¼ ∂2ðψ̄iγ5ψÞ; ðE15Þ

Oð5Þ
3 ¼ ieψ̄ σ̃μνQFμνψ ; ðE16Þ

Oð5Þ
4 ¼ Tr½m̂Q2� 1

2
ϵμναβFμνFαβ; ðE17Þ

Oð5Þ
5 ¼ Tr½m̂� 1

2
ϵμναβGb

μνGb
αβ; ðE18Þ

Oð5Þ
6 ¼ Tr½m̂�∂μðψ̄γμγ5ψÞ; ðE19Þ

Oð5Þ
7 ¼ ∂μðψ̄γμγ5m̂ψÞ − 1

3
Tr½m̂�∂μðψ̄γμγ5ψÞ; ðE20Þ

Oð5Þ
8 ¼ ψ̄iγ5m̂2ψ ; ðE21Þ

Oð5Þ
9 ¼ Tr½m̂2�ψ̄iγ5ψ ; ðE22Þ

Oð5Þ
10 ¼ Tr½m̂�ψ̄iγ5m̂ψ ; ðE23Þ

Oð5Þ
11 ≡ PEE ¼ iψ̄Eγ5ψE; ðE24Þ

Oð5Þ
12 ≡ ∂ · AE ¼ ∂μ½ψ̄Eγ

μγ5ψ þ ψ̄γμγ5ψE�; ðE25Þ

Oð5Þ
13 ≡ A∂ ¼ ψ̄γ5=∂ψE − ψ̄E=⃖∂γ5ψ ; ðE26Þ

Oð5Þ
14 ≡ AAðγÞ ¼ ieðψ̄Q=AðγÞγ5ψE − ψ̄EQ=AðγÞγ5ψÞ; ðE27Þ

where σ̃μν ≡ 1
2
ðσμνγ5 þ γ5σ

μνÞ and ψE ¼ ð=Dþ m̂Þψ .
Keeping in mind that Oðx1;…; xnÞ has the structure

Nðx1ÞJEMμ ðx2ÞN̄ðx3Þ, in terms of the neutron source and
sink operator and the electromagnetic current, the various

Oð5Þ
n contribute to Eq. (E12) as follows.

(i) Oð5Þ
1 is the isoscalar chromo-EDM operator and

contributes an OðaÞ term to the lhs of Eq. (E12).
In fact, as shown below, this is the leading OðaÞ
contribution, thus proving a linear relation between
isovector insertions of the pseudoscalar density and
the chromo-EDM.

(ii) Oð5Þ
2;6;7 are total derivatives and their insertion in

Eq. (E12) vanishes upon integration over
R
d4x.

(iii) Oð5Þ
3;4 involve one and two powers of the electromag-

netic field strength. In order to eliminate the photon
field in the correlation functions in Eq. (E12), one
needs electromagnetic loops, making the contribu-

tion of Oð5Þ
3;4 to Eq. (E12) of OðaαEM=πÞ and thus

negligible to the order we are working.
(iv) Oð5Þ

5 provides a correction of OðamÞ proportional to
ðGG̃Þ in the lhs of Eq. (E12).

(v) Oð5Þ
8;9;10 become m̂2ψ̄iγ5ψ when m̂ ∝ I. Therefore,

their contributions have the same form of the
pseudoscalar insertion in Eq. (E12) but suppressed
by OðamÞ.

(vi) The operators Oð5Þ
11;12;13;14 vanish by using the quark

equations of motion and can contribute contact terms
to the lhs of Eq. (E12). However, it turns out that none

of them actually contributes at this order. Oð5Þ
11

contains two equation of motion operators.
Therefore, when inserted in Eq. (E12), it will always
involve a contraction with a quark field in the neutron
source or sink operator, and thus it will not contribute

to the residue of the neutron pole. Oð5Þ
12 is a total

derivative and drops out of Eq. (E12).Oð5Þ
13 is a gauge-

variant operator and drops out of Eq. (E12) as long as
Oðx1;…; xnÞ is a gauge singlet, which is the case for
Oðx1; x2; x4Þ ∝ Nðx1ÞJEMμ ðx2ÞN̄ðx3Þ. Oð5Þ

14 involves
the photon field and therefore can contribute to
Eq. (E12) only to OðaαEM=πÞ.

So in summary, for m̂ ∝ I, Eq. (E12) becomes
Z

d4x



Oðx1;…; xnÞð−2mψ̄ðxÞγ5ψðxÞð1þOðamÞÞ

−
2NF

32π2
ðGG̃Þrenð1þOðamÞÞ − aKX1Õ

ð5Þ
1 Þ

�

¼ −
Z

d4xhδOðx1;…; xnÞ
δðiαðxÞÞ i: ðE28Þ

If m̂ ≠ I, the singlet AWI, Eq. (E12), involves ψ̄ m̂ γ5ψ .
All the arguments above go through, except for the effect

of Oð5Þ
8;9;10. O

ð5Þ
10 gives a correction of OðamÞ proportional to

ψ̄ m̂ γ5ψ , while Oð5Þ
8;9 contribute nonmultiplicative terms

involving the nonsinglet pseudoscalar densities of
Oðam̂2Þ in Eq. (E28). The presence of these additional
terms does not affect our conclusion about the existence of
Oðam0

qÞ corrections.
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