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Contribution of the QCD O-term to the nucleon electric dipole moment
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We present a calculation of the contribution of the ®-term to the neutron and proton electric dipole
moments using seven 2 + 1 + 1-flavor highly improved staggered quark ensembles. We also estimate the
topological susceptibility for the 2 + 1 + 1 theory to be o = (66(9)(4) MeV)* in the continuum limit at
M, = 135 MeV. The calculation of the nucleon three-point function is done using Wilson-clover valence
quarks. The CP form factor F5 is calculated by expanding in small ®. We show that lattice artifacts
introduce a term proportional to a that does not vanish in the chiral limit, and we include this in our chiral-
continuum fits. A chiral perturbation theory analysis shows that the N(0)z(0) state should provide the
leading excited-state contribution, and we study the effect of such a state. Detailed analysis of the
contributions to the neutron and proton electric dipole moment using two strategies for removing excited-
state contamination are presented. Using the excited-state spectrum from fits to the two-point function,
we find d9 is small, |d®| < 0.010 e - fm, whereas for the proton we get |d§| ~0.020 e - fm. On the other
hand, if the dominant excited-state contribution is from the Nz state, then \d,(?| could be as large as
0.050 e - fm and |d1‘?| ~0.070 e - fm. Our overall conclusion is that present lattice QCD calculations
do not provide a reliable estimate of the contribution of the ®-term to the nucleon electric dipole moments,
and a factor of 10 higher statistics data are needed to get better control over the systematics and possibly

|

a 30 result.
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I. INTRODUCTION

The permanent electric dipole moments (EDMs) of
nondegenerate states of elementary particles, atoms and
molecules are very sensitive probes of CP violation (CP).
Since the EDMs are necessarily proportional to the par-
ticle’s spin, and under time reversal the direction of spin
reverses but the electric dipole moment does not, a nonzero
measurement confirms CP violation assuming CPT is
conserved. Of the elementary particles, atoms and nuclei
that are being investigated, the electric dipole moments
of the neutron (nEDM) and the proton (pEDM) are the
simplest quantities for which lattice QCD can provide
the theoretical part of the calculation needed to connect the
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experimental bound or value to the strength of CP in a
given theory [1,2].

EDMs can shed light on one of the deepest mysteries of
the observed Universe, the origin of the baryon asymmetry:
the Universe has 6.1705 x 107!° baryons for every black-
body photon [3], whereas in a baryon symmetric universe,
we expect no more than about 1072° baryons and anti-
baryons for every photon [4]. It is difficult to include such a
large excess of baryons as an initial condition in an
inflationary cosmological scenario [5]. The way out of
the impasse lies in generating the baryon excess dynami-
cally during the evolution of the Universe. But, if the
matter-antimatter symmetry was broken post inflation and
reheating, then one is faced with Sakharov’s three neces-
sary conditions [6] on the dynamics: the process has to
violate baryon number, evolution has to occur out of
equilibrium, and charge conjugation and CP invariance
have to be violated.

CP violation exists in the electroweak sector of the
standard model (SM) of particle interactions due to a phase
in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing
matrix [7] and possibly due to a similar phase in the
Pontecorvo-Maki-Nakagawa-Sakata matrix in the leptonic
sector [8,9]. The effect of these on nEDM and pEDM is,
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however, small: that arising from the CKM matrix is
about O(1073) ecm [10-12], much smaller than the
current 90% confidence level (C.L.) experimental
bound' d, < 1.8 x 10726 ¢cm [13] and than the reach of
ongoing experiments, d, <3.4x 1078 ecm at 90%
confidence [15].

In principle, the SM has an additional source of CP
violation arising from the effect of QCD instantons. The
presence of these localized finite action nonperturbative
configurations in a non-Abelian theory leads to inequiva-
lent quantum theories defined over various “®” vacua
[16,17]. Because of asymptotic freedom, all nonperturba-
tive configurations including instantons are strongly sup-
pressed at high temperatures [18,19] where baryon number
violating processes occur. Because of this, CP violation
due to such vacuum effects does not lead to appreciable
baryon number production [20]. Nonetheless, understand-
ing the contribution of such a term to the nucleon EDM is
very important for two reasons. First, the ® term constitutes
a “background” contribution to all hadronic EDMs that
needs to be understood before one can claim discovery of
new sources of CP violation through nucleon or hadronic
EDM measurements; and second, besides generating
higher-dimensional CP-odd operators, new sources of
CP violation beyond the Standard Model (BSM) also
generate a so-called “induced ®-term” [1,21,22] if one
assumes that the Peccei-Quinn mechanism is at work [23].
Therefore, in the large class of viable models of CP
violation that incorporate the Peccei-Quinn mechanism,
quantifying the contribution of the induced ® to the
nucleon EDM (operationally, the calculation is the same
as in the first case) is essential to bound or establish such
sources of CP violation.

Until recently, the calculation of hadronic matrix ele-
ments needed to connect nucleon EDMs to SM and BSM
sources of CP violation relied on chiral symmetry supple-
mented by dimensional analysis [24—32] or QCD sum rules
[1,22,33-36], both entailing large theoretical errors. Large-
scale simulations of lattice QCD provide a first-principles
method for calculating these matrix elements with con-
trolled uncertainties. Several groups have reported results
of lattice QCD calculations of the neutron EDM induced
by the QCD ©-term [37-44] and by higher-dimensional
operators, such as the quark EDM [45,46] and at a more
exploratory level the quark chromo-EDM [47-49]. In this
paper, we present a new calculation of the contribution of
the ©-term to the nEDM and pEDM and show that the
statistical and systematic uncertainties are still too large to
extract reliable estimates.

"The slightly stronger 95% C.L. bounds d,, < 1.6 x 10720 ecm
and d,, < 2.0 x 107> e cm can be obtained from the experimen-

tal limit on the '°’Hg [14] EDM, assuming that nucleon EDMs are
the dominant contributions to the nuclear EDM.

This paper is organized as follows: In Sec. II, we
describe our notation by introducing the Lagrangian with
CP due to the ®-term and the needed matrix elements. In
Sec. III, we describe the decomposition of the matrix
elements into the electromagnetic form factors. Section IV
provides the lattice parameters used in the calculations. In
Sec. V, we present the implementation of the gradient flow
scheme, and in Sec. VI the calculation of the topological
susceptibility. Section VII describes the methodology for
extracting the CP phase a from the two-point function, This
phase, specific to the nucleon interpolating operator used,
controls the CP transformation of the asymptotic nucleon
state. Section VIII describes the calculation strategy for
obtaining the form factors when this phase a is nonzero and
gives the formulas used to extract the CP form factor F;
from the matrix elements. In Sec. IX, we discuss the
extraction of F3(g?) and the removal of the excited-state
contamination. The extrapolation of F5(g?) to g*> = 0 is
presented in Sec. X. Section XI discusses the lattice-
spacing artifacts. Our results with the excited-state spec-
trum taken from the two-point function are presented in
Sec. XII and those with an Nz excited state in Sec. XIIL
These results are compared to previous calculations in
Sec. XIV. Conclusions are presented in Sec. XV. Further
details on the connection between Minkowski and
Euclidean notation, the extraction of the form factors,
the chiral extrapolation, excited-state contamination, and
the O(a) corrections in the Wilson-clover theory are
presented in five appendixes.

II. THE QCD O-TERM

QCD allows for the existence of a P and T (and CF if
CPT is conserved) violating dimension-four operator, i.e.,
the ®-term. In its presence, the QCD Lagrangian density in
Euclidean notation becomes

G G“
32 2 '

Locp — ‘CQCD = Locp + 10 (1)
where Gy,
1€,,,5G™ is its dual, and © is the coupling.” G,,G,, is
a total derivative of a gauge-variant current and its space-
time integral gives the topological charge

o-[#%E o

is the chromo-field strength tensor, GZU =

3272

2Throughout the paper, we work in Euclidean space, using g
for the Euclidean 4-momentum and Q for the topological charge.
The gauge field includes a factor of the strong coupling, g,
so that the kinetic term is Gy, Gy, / 44”. Also, our conventions for
connecting the Euclidean and Minkowski metrics are given in
Appendix A.
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Nonzero values of Q are tied to the topological structure
of QCD and the U(1) axial anomaly. In addition, higher
dimension operators that arise due to novel CP couplings at
the TeV scale generate this term under renormalization in a
hard cutoff scheme like lattice regularization or gradient
flow [45]. Also, BSM models in which the Peccei-Quinn
mechanism is operative induce such a term [1].

Under a chiral transformation, one can rotate ® into a
complex phase of the quark matrix and vice versa. It is,
therefore, necessary to work with the convention indepen-
dent ® = © + ArgDetM 4> Which includes both © from all
sources and the overall phase of the quark matrix M. Since
the argument of the determinant is ill defined when it is
zero, all physical effects of @ vanish in the presence of even
a single massless quark flavor.

If the overall ® is nonzero, then this operator would
induce an nEDM d,, of size

d, = 0X, (3)
F 2

X = tim 24) (4)
¢*=0 2MN®

Here X is obtained from the CP part of the matrix element
of the electromagnetic vector current within the neutron
state in the presence of the ®-term and F; is the CP
violating form factor defined in Eq. (6). At the leading
order, F3 is obtained from

(NITMINY[® = (N|TMIN) (0=

G G
JEM / ai

- i®<N

N).(9)

where we have assumed that the ®-term is the only source
of CP. In other words, X provides the connection between
the CP coupling (©) and the nEDM (d,,). Using the leading
order form, instead of inserting expi®Q, improves the
signal-to-noise ratio.

At present, the upper bound on the nEDM, |d, | < 1.8 X
1072% e cm (90% C.L.) [13], is used along with an estimate
X ~ (250 £1.25) x 107! ecm [1] to set a limit on the
size of ® <1071°. This is an unnaturally small number.
One solution to this unnaturalness is the dynamical tuning
of ® = 0 using the Peccei-Quinn mechanism’ [23].

Our goal is to calculate X using lattice QCD, which
multiplied by the cumulative value, ®, from all sources
(SM or BSM), gives the full contribution to nEDM from the
dimension-4 GG operator in Eq. (1). Knowing X will allow

The Peccei-Quinn mechanism relaxes ® dynamically to ©;,,
the point where the effective potential achieves its minimum.
In the absence of other sources of CP violation in the theory,
()ind = 0.

=

T

QQORQ0

FIG. 1. The connected (left) and disconnected (right) diagrams
with the insertion of the bilinear vector current (red filled circle)
in the nucleon two-point function. The signal is given by the
correlation between this three-point function and the topological
charge shown by the filled yellow circle.

current and future bounds on (or measured value of) d,, to
more stringently constrain or pin down ©.

In the rest of the paper, all the analyses are carried out
assuming that the only CP coupling arises from the ®@-term,
whose strength is ©. Results are presented for @ = 0.2,
which we have checked is small enough so that O(®?)
corrections are negligible for all quantities of interest (@ and
F5 defined later).

The lattice calculation consists of the evaluation of
the connected and disconnected diagrams shown in
Fig. 1. The disconnected diagram gets contributions from
all quark flavors in the loop—but their contributions to the
CP-conserving form factors of the vector current are small
[50]. In this work, we assume the same holds for the
CP-violating ones and neglect these diagrams and their
contribution to the electric dipole moment.

III. FORM FACTOR OF THE
ELECTROMAGNETIC CURRENT

The parameterization of the matrix element of the
electromagnetic current, J;"(q), defined in Eq. (5), within
the nucleon state in terms of the most general set of form
factors consistent with the symmetries of the theory is

(NGB N (. 5))G,

+ ﬁ%%(%(qz) — iF3(q%)rs)
+ F;‘é% ) (49, — 6127’;4)75] un(p.s), (6)

where My is the nucleon mass, g = p’ — p is the Euclidean
4-momentum transferred by the electromagnetic current,
0, = (i/2)[yu. 7., and uy(p,s) represents the free neu-
tron spinor of momentum p and spin s obeying
(i + My)uy(p,s) =0, with y, implementing the parity
operation on the asymptotic (i.e., free) state. Throughout,
we work in Euclidean space and refer the reader to
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TABLE L

Lattice parameters, nucleon mass M, number of configurations analyzed, and the total number of high precision (HP) and

low precision (LP) measurements made. We also give the bin size (configurations per bin) used in the statistical analysis of two- and
three-point functions. The last column gives the topological susceptibility y, calculated at flow time 7, = 0.68 fm and with a bin size
of 20 configurations. The ensembles a06m310 and a06m220 have been used only for the calculation of y, and 861 configurations were

used to calculate y,, on the a06m135 ensemble.

Ensemble Configurations

ID a [fm] M%A [MeV] L3xT MYL t/a aMy  News  perbin - Nyp Npp o zg' [MeV]
al2m310  0.1207(11) 310.2(2.8) 243 x 64 4.55 {8,10,12}  0.6660(27) 1013 8 4052 64832 145.9(2.7)
al2m220 0.1184(09) 227.9(1.9) 323 x64 438  {8,10,12}  0.6122(25) 1000 8 4000 64000 145.3(2.4)
al2m220L 0.1189(09) 227.6(1.7) 40° x64 549  {8,10,12} 0.6125(21) 1000 8 4000 128000 141.3(2.5)
a09m310 0.0888(08) 313.02.8) 323x96 4.51 {10,12,14} 0.4951(13) 2196 18 8784 140544 129.5(2.3)
a09m220 0.0872(07) 225.9(1.8) 483 x96 4.79 {10,12,14} 0.4496(18) 961 8 3844 123008 115.0(2.2)
a09m130 0.0871(06) 138.1(1.0) 643 x96 3.90 {10,12,14} 0.4204(23) 1289 11 5156 164992 106.8(1.7)
a06m310 0.0582(04) 319.3(5) 483 x 144 45 970 127.0(5.5)
a06m220 0.0578(04) 229.2(4) 643 x 144 44 1014 103.0(4.2)
a06m135 0.0570(01) 135.6(1.4) 963 x 192 3.7 {16,18,20,22} 0.2704(32) 453 9 1812 28992 89.3(2.8)

Appendix A for details on our conventions. | and F,
are the Dirac and Pauli form factors, in terms of which
the Sachs electric and magnetic form factors are Gy =
F,—(¢*/4M%)F, and G, = F, + F,, respectively.*
The anapole form factor F, and the electric dipole form
factor F'5 violate parity P; and F3 violates CP as well. The
zero momentum limit of these form factors gives the
charges and dipole moments: The electric charge is
Gp(0) = F(0), the magnetic dipole moment is
Gu(0)/2My = (F(0) 4+ F,(0))/2My, and the EDM is
defined in Eq. (4).

In all the discussions in this paper, the current JEM used
is the renormalized local vector current Zy ), ey, y;,
where e; is the electric charge of a quark with flavor i. The
renormalization is carried out by taking ratios of all three-
point fermion correlators with the lattice estimate of the
vector charge, gy = 1/Zy, which is given by the forward
matrix element of ,y,y;. These ratios are constructed with
identical source, sink, and current insertion positions and
within the single jackknife loop used for the statistical
analysis of the data to take advantage of error reduction due
to correlated fluctuations.’

IV. LATTICE PARAMETERS

We present results on seven ensembles, whose param-
eters are specified in Table I. These were generated by
the MILC Collaboration [51] using 2 + 1 + 1 flavors of
highly improved staggered quark (HISQ) action. For the

*We emphasize that we use ¢ for the Euclidean four-
momentum squared that is denoted by Q in our previous work
and throughout the literature. As noted in Appendix A, it is the
ne%ative of the Minkowski four-momentum squared.

This forward matrix element has very small excited-state
contamination and, therefore, does not affect our excited-state fits
at this level of precision.

construction of the nucleon correlation functions we use the
clover-on-HISQ formulation that has been used extensively
by us in the calculation of the nucleon charges and form
factors as described in Refs. [52,53]. These ensembles
cover three values of the lattice spacing, a = 0.12, 0.09 and
0.06 fm and three values of the pion mass M, = 315, 220
and 130 MeV. Further details of the lattice parameters and
methodology, statistics, and the interpolating operator used
to construct the nucleon two- and three-point correlation
functions can be found in Refs. [52,53].

V. TOPOLOGICAL CHARGE UNDER
GRADIENT FLOW

We calculate the topological charge using the gradient
flow scheme to implement operator renormalization and to
reduce lattice discretization effects [41,54]. The primary
advantage of the scheme is that at finite flow times, i.e., for
7gr > 0, the flow time provides an ultraviolet cutoff, and the
continuum limit, @ — 0, of all operators built solely from
gauge fields is finite. Moreover, since topological sectors
arise dynamically as we take the continuum limit, the
gradient flowed topological charge takes on integer values,
and no renormalization is needed to convert it to a scheme
that preserves this property; in particular, correlators of the
topological charge are flow-time independent [54].

These statements are, however, not true at finite lattice
spacing and volume. At small z,, we get O(a*/7})
artifacts. In Fig. 2, we show the distribution of the

topological charge Q as a function of the flow time 7,

%We use the notation z,; = /81 for the flow time, where ¢ is the
parameter in the flow equations in Ref. [54]. We used the Runge-
Kutta integrator given in that reference for integrating the flow
equations, with a step size of 0.01. Changing the step size to
0.002 changed the results on topological susceptibility by less
than 0.2%.
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FIG. 2. The distribution of the topological charge Q as a
function of the flow time z,;. The panels on the left (right) show
data for the a = 0.12 fm (a = 0.09 fm) ensembles.

in physical units. Its distribution has stabilized by
7or = 0.34 fm for the @ = 0.12 fm ensembles and by ¢ =
0.17 fm for the @ = 0.09 and 0.06 fm ensembles. The large
values of Q that form the long tail of the distribution at
7o = 0 are smoothed out, indicating that they are lattice
artifacts.

In Fig. 3, we show the distribution of the difference from
the nearest integer. This distribution stabilizes more slowly
and it is only by 7,; = 1.31 fm (75 = 0.76 fm) on the a ~
0.12 fm (a = 0.09 and 0.06 fm) ensembles that the charges
are close to integers. The relevant distribution important for
the calculation of the nucleon correlation functions is,
however, likely to be the distribution of Q shown in Fig. 2.
To explore this, we show in Fig. 4 the value of F5 as a
function of 74 for the a ~ 0.12 and 0.09 fm ensembles and
find that indeed the correlation functions, and thus Fj,
do stabilize early but the 7,; required for the coarser lattices
is longer. Thus, to be conservative, the results presented
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104 0 74=0.34 fm [ 74r=0.34 fm
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| [ 7=1.04 fm 5 8 [ 14r=0.76 fm
o 64 o
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2 24
H 5 e e
0 - v v + 0 + + v U
-06 -04 -02 00 0.2 0.4 0.6 -06 -04 -02 0.0 0. 0.4 0.6
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FIG. 3. The panels show the distribution of the difference,

QO — Qi of the measured Q from the nearest integer Q.

below are obtained with flow times 7,¢(a06) = 0.68 fm,
7,¢(a09) = 0.68 fm and 7,¢(a12) = 0.86 fm, respectively.

In Fig. 5, we show the distribution of the nearest integer,
Oin» to the topological charge at 7, =~ 1.4 fm (74 =
0.76 fm) on the a~0.12 fm (a~0.09 and 0.06 fm)
ensembles, by which time the Q;, identified with a given
configuration has stabilized. This distribution is approx-
imately symmetric about zero as expected since (Q) = 0,
and no gaps are visible in the distribution. In Fig. 6,
we show the autocorrelation function of Q versus the
flow time. The data show no significant change after
Tor 2 0.3 fm, so we can determine the autocorrelation from
these data. We do not observe a long time freeze in Q in any
of the ensembles analyzed as illustrated using the a09m130
and a06m135 ensembles at flow time 7, = 0.68 fm in
Fig. 7. The autocorrelation is less than about ten configu-
rations for all but the a06m135 ensemble. Based on this
study, the bin size used in the single elimination jackknife
procedure is given in Table L.
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FIG. 4. Data for F° 3.1/ ©, defined in Eq. (28), at the smallest value of ¢, respectively, on the a12 (left panel) and the a09 (right panel)
ensembles. The estimates show no significant change after 7, ~ 0.4 fm on the 09 ensembles and 7, ~ 0.6 fm on the a12 ensembles.
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FIG. 7. The time history of Q on the a09m130 (upper) and
a06m135 (lower) ensembles at 7, = 0.68 fm. While the auto-
correlations increase as a — 0, the data show no long-time
freezing of the topological charge.

VI. TOPOLOGICAL SUSCEPTIBILITY
The topological susceptibility y, is defined as

w—/wwmmw. (7)

Its value in the pure gauge theory, ;(‘gen‘:hed, is related to the

mass of the ' meson in a theory with N light flavors in
the chiral limit via the axial anomaly, viz., the Witten-
Veneziano relation [55,56]

MZ, ~ 2N f . quenched ( 8)

”NF%){Q ’

where F, is the pion decay constant in the convention
where its physical value is about 92 MeV. Following
Ref. [57], we can include the effects of the quark masses.
Including SU(3) breaking at leading order in yPT but
neglecting the heavier quarks gives

e - 6 9 3

2 2 2
)(quenched ~ F”(Mn’ - M’I) 1+ ZM% - M%(
¢ 6 M - M)’

2 2 2

©)

where &, = (My —M3)/(M; —M;) is an SU(3)
breaking ratio. The two expressions, which can be
derived independently, give ;(‘éue"cmd ~ (172 MeV)* and

(179 MeV)* respectively, thus quantifying the accuracy of
the expansion.

With dynamical fermions, however, the susceptibility
should vanish in the chiral limit. For SU(N,) flavor

group with finite but degenerate quark masses, it should
behave as [58-60]

1 1 2N,
)(_ ~ quenched + MZ F2 : (10)
o Xo l'n

For N, =2 light flavors and the strange quark, but
neglecting the heavier quarks that give negligible correc-
tions, leading order chiral perturbation theory (yPT) modi-
fies this to

1 1 4 M2\ !
™ " quenched +M2F2 (1 _31‘,;2) : (11)
)(Q )(Q al n

We calculate y on the 2 + 1 + 1-flavor HISQ ensem-
bles, which are O(a) improved. The results are given
in Table I. In addition to the seven ensembles used to
calculate F5;, we include data from the a06m310 and
a06m220 ensembles. We remind the reader that the
MILC Collaboration has previously highlighted the issue
of frozen topology on these ensembles [61], which is why
we do not use them in the calculation of Fj;.

As discussed in Sec. V, the topological susceptibility at
finite flow time needs no renormalization and should be
independent of flow time up to O(a?/7;) effects. As shown

in Fig. 8, this is true up to a small, almost linear, downward
drift with increasing flow time. In Fig. 9, we compare the
results on al12m220 and a12m220L ensembles and show
that this is a Téf /L? effect, where L is the lattice size.” At the
flow times and volumes we use in the calculation, this is a
small effect and therefore neglected.

To obtain y, at M, = 135 MeV and a = 0, we use the
fit ansatz

xola.M,) = c;a® + ;M2 + c3a* M2, (12)

which assumes y is zero in the chiral-continuum limit. We
do not find a viable y*/d.o.f. on including all nine data
points. Reasonable fits are found on neglecting (i) all three
a~0.12 fm points and (ii) all three a % 0.12 fm and the
a06m310 point. These two fits give y, = [70(6) MeV]*
and yo = [63(9) MeV]*, respectively, at M, = 135 MeV.
We take the average y, = [66(9)(4) MeV]* as our best
estimate, the larger of the two errors and an additional
systematic uncertainty, which is half the difference. These
results are in good agreement with the expected value
(79 MeV)*, obtained using the physical meson masses and

"For asymmetric, (T/a > L/a), lattices like ours, we expect
the smaller spatial extent L/a to dominate the finite volume
effect.
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Ilustration of the flow-time dependence of the topological susceptibility at small flow times showing that it is almost

independent of the flow time when the flow time is much larger than the lattice spacing.
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FIG. 9. Comparison of the flow-time dependence of the
topological susceptibility at large flow times on two ensembles
differing only in lattice volume, showing that the dependence is a
finite size effect.

decay constants in Eqs. (9) and (11). The data and the fit
case (i) are shown in Fig. 10.

VII. CALCULATION OF THE CP PHASE «

In a field theory in which parity is not conserved, the
definition of parity of a composite state, e.g., the neutron
state, needs care [22,33,37]. To explain this, we start with
the most general spectral decomposition of the time-
ordered two-point nucleon correlator

(QITN(p.7)N(p.0)|Q) =) e B AMS, (13)

where A; is the amplitude for creating state i, E; is its
energy, the Euclidean time 7 is the separation between the
source and the sink, and, for notational convenience, we are
assuming a discrete spectrum. A common choice on the
lattice of the neutron interpolating operator N is

1
N = eabe [d“TCyS —J; L u”} d, (14)

where C = y,y4 (the sign is conventional and does not
affect the nucleon correlators we study; see Appendix A for
details of our convention) is the charge conjugation matrix,
a, b, and c are the color indices and u and d are the quark
flavors. The 4 x 4 spinor matrix M¢ in Eq. (13) depends on
the state and the momentum p. Its most general form
consistent with Lorentz covariance is

o (i M)
ZM§:el"f757< ”; = ) iz (15)
N 1

= Sl (p.s)ay (p.s)e, (16)

where p7 =1iE;. It is clear that because of the presence
of the phases a;, the parity operator that transforms the
spinor associated with the ith asymptotic state is
P,, = e®7sPe~i@s where P =ny, is the usual parity
operator for a particle with intrinsic parity #. The phases
a; depend on the realization of discrete symmetries: If the
interpolating field is chosen such that P implements parity
in the free theory, Im @; = 0 for a PT symmetric theory,
Re a; =0 for the CP symmetric theory, and o; = 0 for
a P symmetric theory. For our case of only CP, all a;
are, therefore, real, which will be implicit except in
Appendix B. It is important to note that the value of q;
depends on the interpolating operator N, the state, and the
source of CP. Its value for the ground state can be extracted
from the large 7 behavior of the imaginary part of the
nucleon two-point function. Consider

8Up to a possible extra factor of ys, which, however, is
prohibited by PT symmetry in our calculations.
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FIG. 10. Fits to the data for the topological susceptibility, v, using the ansatz given in Eq. (12).
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Keeping only the first two states one gets
M, sin(2
ra(r) ~ 0 Sln( ao)
Ey + Mg cos(2aq)
M, E, sin(2a;) 2 ,—(E,\—Ey)r
1+ MOE? sin(2ag |‘A | e (20)

)
M 2¢=(Ev=Eo)r’
T (Eo+Mq cos(2a)) E ‘A [Fe

where A; = A;/Ay. At zero three-momentum (E; = M,)
the above expression simplifies to

1+51ng ;lA |2 —(M,=M,)t
r.(7) & tan o sin(2 21
«(7) 0 X 1+cosz ;|A |2 ~(M~Mq)t 1)

We provide these formulas for the general case, without
expanding to linear order in «;, but checked explicitly that
for the values of ® used in our calculation, we are in the
linear regime. The results for a/® and F5/® can, however,
show a tiny dependence on © as a result. The data for r,
versus 7 are shown in Fig. 11 for all seven ensembles. The
ap for the ground state obtained from the two-state fit
agrees with the plateau at large 7, where the lowest state
dominates, and is independent of the momentum.

The ground-state value of «a, for a neutron, denoted ay,
extracted using Eq. (21) depends on the mass gap
M, — M. The same is true for the form factor F;. In
Appendix D, we present a chiral perturbation theory
analysis showing that the lowest excited state that can

contribute to the matrix element defined in Eq. (6) is the
N(0)z(0). We have therefore carried out the full analysis of
the contribution of the ®-term to the neutron EDM using
two estimates of the mass gap. In the first, standard, case,
the M|, — M, is obtained from a three-state fit to the real
part of the two-point function. In the second, the excited
state is taken to be N(0)z(0) with mass gap M ,. The values
of these two mass gaps and the corresponding values of the
phases obtained, ay and a)”, are given in Table II.

VIII. THREE-POINT FUNCTIONS IN THE
PRESENCE OF THE PHASE «

In the presence of the phase ay for the ground-state
nucleon [47], the most straightforward way to extract the
matrix element of the electromagnetic current J;M within
the neutron ground state in the presence of CF is to
calculate the correlation function

e s QN (0 2) M (0. )N (7. 0)) i

 (=ipf + My)OF(q)(—ip + My), (22)
where p’ = p + ¢ and
Ot(q) =y"F, +2M o' q"(F, — iF3ys)
Fa (1w u
+M2 (49" = a*r*)rs (23)

Here, the current J;M is inserted at times ¢ between the
neutron source and sink operators located at time O and =,
and a sum over the spin labels is implicit. We also assume
that # and 7 are large enough that only the ground state
dominates the correlation function. This form results from
the realization that y, remains the parity operator for the
ground-state nucleon when working with the interpolating
field defined to be e~*®7s N instead of N in all correlation
functions.
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FIG. 11. The extraction of the phase ay/® with ® = 0.2 for the ground-state nucleon on the seven ensembles from the asymptotic

value of r, defined in Eq. (21) using the excited-state mass gap obtained from the real part of the two-point function given in Table II. It
is a Lorentz scalar and independent of the momentum as confirmed by the lattice data. The y2/d.o.f. values presented are from fully
correlated fits, except for the case of the a09m220 and a06m135 ensembles on which we use uncorrelated fits to avoid instabilities.

This approach, however, requires, evaluating the full
4 x 4 matrix of three-point correlation functions. In our
calculation, we have implemented the spin projection
using

TABLE II. The phase ay for two values of the mass gap of
the first excited state. In the first case, ay is determined using
M| — M, from a three-state fit to the real part of the two-point
function. In the second, the N(0)z(0) state is assumed to be the
first excited state, in which case the mass gap in equal to M.

Ensemble M, — M, [GeV] ay M, [GeV] an®

al2m310 0.54(18) 0.353(28) 0.3102(28) 0.375(29)
al2m?220 0.67(13) 0.532(36) 0.2279(19) 0.597(46)
al2m220L 0.81(13) 0.590(43) 0.2276(17) 0.715(51)
a09m310 0.93(14)  0.243(16) 0.3130(28) 0.276(19)
a09m220 0.77(12) 0.321(39) 0.2259(18) 0.360(44)
a09m130 0.706(85) 0.551(43) 0.1381(10) 0.766(67)
a06m135 0.788(66) 0.393(64) 0.1356(14) 0.51(12)

Pape =5 (1 +74)(1 + iysrs), (24)

N =

so the contribution of a nonzero ay has to be incorporated
at the time of the decomposition of the matrix element into
the form factors. As discussed in Appendix B, by taking a
suitable ratio of three- and two-point functions, one can
isolate the four-vector V), encoding the nucleon ground-
state contribution to the matrix element of the electromag-
netic current:

1 , .
Vi = T[Sy s (=i + My) 0¥ (=i + M),
(25)

where O* is given in Eq. (23). The full expressions for
V1234, along with a general strategy for extracting F7,
from the four coupled complex equations is given in
Appendix B.
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FIG. 12. The improvement in signal under subtraction of the ® = 0 contribution and averaging over equivalent momenta. The panel
on the left shows, using data from the a12m310 ensemble, (i) the improvement in F5, as ® — 0 and (ii) even ® = 1 is in the linear
regime. The panel in the middle shows the signal in R'(z,,q) with both the ® = 0 subtraction and momentum averaging on the
a09m310 ensemble with ® = 0.2 and ¢ = (1, 1, 1)2z/La, while that on the right is without averaging over equivalent momenta.

To extract F5, the CP part of the three-point functions, a
very significant simplification of the analysis and improve-
ment in the signal is achieved by subtracting the ® = 0
contribution from each component of the current in Eq. (25)
before making the excited-state fits and decomposing
the resulting ground-state matrix element in terms of
form factors. This is implemented by analyzing the
ground-state contribution in terms of the combination
V, =V,(0)-=V,(0). Working to first order in ©, and
recalling that s, = sinaycosay~ay~0(0), and
F3 ~ 0(0), the expressions for the ground-state contribu-
tions of the three-point functions 171.2,3.4 in terms of form
factors simplify to

_ 1
V= —5611613G3, (26a)
- 1
V, = —56]26]3G3, (26b)
- 1
Vi = 2 (2My(Ey — My)s,, Gy — 43G3). (26¢)
_ i
V= 3 (q3(Exy + My)G3 = 2q3M y 54, G),
E M
= iq;My (M F3—s, GE), (26d)
My, v

where G; = F| + F, and G3 = F3 + 5, F,. We solve the
above system for G, and G;. At g> = 0 there is a further
simplification because G (0) = Qy + F»(0), where Qy is
the nucleon charge. With this, we get

F3(0) = G3(0) = 54, (G1(0) — Q). (27)

The largest contribution to G3 comes from s, F,, and
the statistical error in the right-hand side is much smaller
when G3(g?) — s4,(G1(¢*) — Q) is extrapolated, rather
than only G;(¢?) and combined with s, ky using the

precisely measured nucleon anomalous magnetic moment
G,(0) — Qy = F»(0) = ky. Also, note that G3(g*) can be
obtained uniquely from V; and V, for a number of values of
q*, which provides a useful check. One can extend Eq. (27)
to define

F3(¢*) = G3(4%) = 54, (G1(4*) — Ow) (28)

as it improves the extraction of F3(0) = F5(0) since the
extrapolation of F5(¢?) to g> — 0 shows better control.

The subtraction of the ® = 0 contribution also allows
averaging of the three-point functions over momenta
related by cubic invariance, as seen by comparing the
simpler Egs. (26) with Egs. (B8). We illustrate the improve-
ment in the signal in Fig. 12. The averaging over equivalent
cases (over momenta related by cubic symmetry and over
V, and V,) significantly reduces the statistical errors and
improves the analysis of excited-state contamination (ESC)
discussed next.

Previous work has suggested multiple ways of reducing
the error in such calculations. A systematic study of various
definitions of the topological charge was carried out in
Ref. [62], and most definitions were seen to be highly
correlated, with one outlier: a spectral projection method
[63,64]. We have not investigated such fermionic defini-
tions of the topological charge in this work. We did,
however, study the proposals made in Refs. [43,44,65,
66] to integrate the topological charge density in a limited
volume about the nucleon three-point function to reduce
the error. The motivation is the intuitive expectation based
on cluster decomposition that the correlation between the
two is short ranged; therefore, outside an appropriately
selected volume, the topological density does not contrib-
ute to the signal but only to the noise. In Fig. 13 we show
data for both @y /® and F3,,/® with GG(x) integrated over
a 4D box of size 2 x Ry in the time extent for the three
ensembles at @ ~ 0.09 fm. In the two heavier mass ensem-
bles, a09m310 and a09m?220, the results plateau for a Ry
that is smaller than the time extent of the lattice, while the
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FIG. 13.  The value of the phase ay (upper) and F’5,, form factor
(lower) calculated using the topological charge density GG (x)
integrated over a 4D box with full extent in spatial directions and
2 x Ry in time about the neutron source [ty — ty.| < Ry for ay
and from time slices |ty — #;,s| < Ry about the current insertion
for F5,. The dotted lines are the Ry — oo estimates. These
figures have already been presented in Ref. [67].

errors grow with Ry. In these cases, choosing the value with
smaller errors near the start of the plateau would give an
essentially unbiased estimate. This favorable situation,
however, breaks down on our physical pion mass ensemble,
a09m130. In this case there is no plateau, so we need to
integrate over the full lattice or otherwise control for the
extrapolation systematics to avoid using a biased value.
Needless to say, even with integration over the full volume,
there could be a bias on sufficiently small lattices but that is
considered to be a part of the standard finite lattice size
correction. Based on the size of the bias observed in Fig. 13
for a09m130, how slowly it goes to zero, and, more
importantly, because we do not, a priori, know how to
correct for such a bias, we do not use this variance
reduction method on the current set of lattices. However,
we do note, based on the data from the a09m310 and
a09m220 ensembles, that for sufficiently large lattice
volumes this method will become useful for even physical
mass ensembles, but, even in those cases, one would need
to estimate whether the gain due to error reduction is offset
by the additional uncertainty arising from residual bias. The
good news for this method is that such an analysis can be
performed a posteriori and the appropriate R determined
and used as long as the data for > GG(x) are output by

time slice, i.e., as a function of ¢ with sums over only the
spatial points. Alternately, the calculation of Y GG(x)
over the appropriate region can be redone as it is
inexpensive.

IX. REMOVING ESC IN F3

In order to extract the ground-state contribution Vﬂ from
lattice data on the ratio R*(z,t,q) of three- and two-point
functions defined in Eq. (B7), we need to remove all
excited states that make a significant contribution.

We have analyzed data on R*(z, t,q) in terms of a two-
state fit, following two strategies. In the first, we have
taken the first excited-state energies from a three-state fit
to the two-point function. In the second strategy, we have
set the first excited-state energy to the noninteracting
energy of the Nz state, motivated by the yPT expectation
that the leading excited state is the Nz state, with
amplitude of the same size as the ground-state contribu-
tion (see Appendix D for more details). In Fig. 14 we
compare the two strategies for Im(R*(z,t,q)). The

y*/d.of. of the fits are similar for the two cases on all

three ensembles, but the ground-state estimate is vastly
different and thus the contribution to the nEDM. With the
current data, picking between them is the key unresolved
challenge for this calculation. The very large extrapolation
for 7 — oo in the Nz case, however, leads us to question
whether a two-state fit is sufficient if the Nz state is
included and whether a similar effect might also con-
taminate our extraction of ay. We therefore first perform
the analysis taking the excited-state energy E; from a
three-state fit to the two-point function and return to an
analysis including a N7z state in Sec. XIIL

A second issue arising from the small signal in Fj is
that two-state fits to many of the correlation functions
with the full covariance matrix are unstable with respect
to variations in the values of 7 and 7g,, the number of
points skipped in the fits adjacent to the source and sink
for each 7. Examples of this are shown in Fig. 15 for
Re(R!(z,t,q)). This has two consequences for the analy-
sis. First, we have carried out the final analysis using only
the diagonal elements of the covariance matrix. We have,
however, checked that in cases where fully covariant fits
are possible, the two results are consistent. Since we use
uncorrelated fits for removing excited-state contamina-
tion, we do not quote a y?/d.o.f. for these fits. Second,
the system of four equations, Eqgs. (26), overdetermines
G; and G;. While we solve the full set of equations as
explained in Appendix B, the data from Re(R'?(z,1,q)),
which have poor signal, do not make a significant
contribution. We have checked this by removing them
from the analysis and the results are essentially
unchanged; i.e., the results are dominated by
Re(R*(z,1,q)) and Im(R*(z,1,q)).
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FIG. 14. Comparison of the two-state fit to the ratio Im(R*(z, ¢, ¢)) defined in Eqs. (B7) with the first excited-state energies taken from
a three-state fit to the two-point function (left panels) and set equal the noninteracting energy of the Nz state (right panels). The data for
the three ensembles with @ ~ 0.09 fm are shown in the three rows. The y%/d.o.f. of the two sets of fits are comparable, but the
extrapolated ground-state value (solid black line) is vastly different. The data are shown for ¢ = (0,0, 1)2z/La and the four largest
values of 7. All data are with © = 0.2.

X. EXTRAPOLATION OF F;(¢*) TO ¢* - 0 (i) Linear: The quantities d; and S} are free parameters
and H; is set to zero.

2 2 . .
The ansatz used to extrapolate F3(g*) to g* — 0 is given (i) yPT: Only d; is a free parameter, S| are given

in Eq. (C1) with one caveat. We use F3(g?), defined in in Eq. (C11), go in Eq. (C7), and the H, in
Eq. (28), instead of F3(g?) as they are consistent to leading Eq. (C13).
order and the extraction of F3(g?) is better controlled. (iii) yPTg0: The same as yPT except g is left as a free
We examine three fits based on Eq. (C1). parameter.
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FIG. 15. Examples of unstable two-state fits to the ratio Re(R!(z, ¢, q)) defined in Egs. (B7) with the first excited-state energies taken
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FIG. 16. The extrapolation of F5(g?) to ¢*> — 0 using Eq. (C1) for the neutron. The three fit ansatz, linear, yPT and yPTg0, are defined
in the text. The y?/d.o.f. of the fits are given within square brackets. All data are with ® = 0.2.

The data and fits for the neutron and proton are presented
in Figs. 16 and 17. The data are, within errors, flat in all
cases and the extrapolated values from the three types of fits
are consistent. Since in most cases, we have reliable data at

only three values of g2, we take the final result from the
xPT fit. At the end, we will take the difference between the
linear and yPT fits to estimate the associated systematic
uncertainty.
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FIG. 17. The extrapolation of F5(¢?) to ¢*> — 0 using Eq. (C1) for the proton. The rest is the same as in Fig. 16.

XI. ADDITIONAL O(a) ARTIFACTS

Before performing a chiral-continuum extrapolation of
the results, in this section we justify our continuum
extrapolation formula for d,(®) that includes an M-
independent term that does not vanish in the chiral limit,
i.e., a term proportional to amy).

There are multiple sources of O(a) corrections that we
need to consider. First, since our clover coefficient cgy is
set to its tadpole-improved tree-level value, the action, and
hence all matrix elements, have residual O(aa) correc-
tions. Because of the use of smeared gauge fields, however,
the tadpole-improved tree-level approximation is extremely
good, and these are expected to be tiny effects. Second, the
vector current we insert is not improved [68], and, hence,
we expect its renormalization coefficient to have O(am,)
corrections. Such multiplicative terms, however, are unim-
portant near the chiral-continuum limit, where the CP form
factors vanish. A third source of O(a) effects is the required
improvement of the vector current by an O(amg) mixing
with the derivative of the tensor current, which can give rise
to a nonzero F3, but only in the presence of CP violation in

the theory. Since the topological charge does not introduce
CP violation in the chiral limit, we would expect the
behavior of d,, to be dominantly O(a?) in the chiral limit, if
these were the only O(a) effects.

In Appendix E, we analyze the Wilson-clover
theory based on the framework of a continuum EFT for
the lattice action and the axial Ward identities. Following
Refs. [69-71], we show that the topological charge gives
O(a) CP corrections and identify this as effectively due to
the insertion of the isoscalar quark chromo-EDM operator,
with which the topological term can mix. Since this term is
expected to survive in the chiral limit, we include an
O(am)) term in our chiral-continuum fits.

XII. CHIRAL-CONTINUUM EXTRAPOLATION
AND RESULTS

In this section, we present the chiral-continuum (CC)
extrapolation of data for d,, (and, similarly, d,,) obtained on
the seven ensembles. For each, we examine four cases.
These consist of two CC fits, linear and yPT, using the
leading order terms
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FIG. 18. The chiral-continuum extrapolation of d,, using the ansatz given in Eq. (30). The four rows show (i) a linear CC fit to the data
obtained using a linear extrapolation in ¢ discussed in Sec. X; (ii) a linear CC fit to the data obtained using the yPT extrapolation in ¢?;
(iii) a yPT CC fit to the data obtained using a linear extrapolation in ¢?; and (iv) a yPT CC fit to the data obtained using the yPT
extrapolation in g2. All data are with © = 0.2.
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TABLE III.

Results for the contribution of the ®-term to d,, and d,, for the four fit strategies defined in the text. Also given are the fit

parameters ¢; defined in Eqs. (29) and (30) and the y?/d.o.f. of the fit. Results are given for two choices of the first excited-state energy:
(top) from a three-state fit to the two-point function and (bottom) the noninteracting Nz state.

Neutron
Fit types F3/2My [fm] y?/d.of. ¢; [fm-GeV?] ¢, [GeV?] ¢y [fm-GeV?] e
Linear(q?)|linear(CC) —0.0044(36) 0.804 —0.24(20) 3.1(2.3) 0.02(16)
Linear(g?)|[yPT(CC) —0.018(13) 0.782 0.76(62) 0.45(33) 0.31(18)
¥PT(¢*)[linear(CC) 0.0005(17) 1.213 0.028(92) 0.8(1.2) —0.06(11)
7PT(¢%)|yPT(CC) —0.0032(66) 1.212 0.30(38) 0.12(19) 0.016(81)
Proton
Linear(g?)|linear(CC) 0.0076(46) 0.455 0.42(25) -7.6(3.4) 0.42(26)
Linear(q?)|yPT(CC) 0.037(18) 0.597 —1.84(97) —1.01(49) —0.28(24)
¥PT(¢*)[linear(CC) 0.0027(23) 0.578 0.15(13) —4.8(1.9) 0.43(17)
7PT(q%)|yPT(CC) 0.0238(98) 0.687 —1.40(58) —0.70(28) —0.02(11)
Neutron (with Nz excited state)
Linear(g?)|linear(CC) —0.0046(87) 1.402 —0.25(48) 10.6(7.8) —-0.79(70)
Linear(g?)|yPT(CC) —0.054(37) 1.323 3.2(2.2) 1.6(1.1) 0.27(45)
PT(g?)|linear(CC) 0.0039(42) 2.246 0.22(23) 8.4(3.8) —-1.07(37)
¥PT(¢*)|yPT(CC) —0.028(18) 2.430 2.5(1.1) 1.04(52) —0.26(20)
Proton (with Nz excited state)

Linear(q?)[linear(CC) 0.019(12) 0.347 1.04(66) -29(12) 2.2(1.0)
Linear(g?)[yPT(CC) 0.140(54) 0.358 -7.7(3.2) —4.0(1.6) —0.70(66)
PT(g?)|linear(CC) 0.0040(50) 0.398 0.22(27) -15.7(5.4) 1.51(52)
xPT(¢*)|[xPT(CC) 0.068(25) 0.522 —4.4(1.6) —2.09(75) —-0.02(27)

d,(a,M,) = c\M2 + coaM? + c3a, (29)
M2
d,(a,M,) = c;M%2+ c;;M21n (M—,ZJ\T,) + c3a,  (30)

where the term c3a is the O(a) effect discussed in Sec. XI,
because of which d,, , do not vanish in the chiral limit at
finite a. The ansatz are distinguished by the terms propor-
tional to ¢, (linear) and c,; (yPT). In these fits, My is set to
its physical value 940 MeV. We make these two fits to the
data for d, , obtained using (i) the linear and (ii) yPT
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extrapolation in g2, which leads to four estimates. These
four CC fits for the neutron and the proton are shown
in Figs. 18 and 19. The results and the fit coefficients c; are
given in Table III.

As discussed in Appendix C, at next-to-leading order
(NLO) in yPT the coefficient of the chiral logarithm c,; is
fixed in terms of the isovector scalar charge, the quark
condensate and the pion decay constant, leading to
(¢ar), = —(car), = 0.033 fm-GeV?. Although the central

values from the fits are approximately one order of
magnitude larger, our results are compatible with this
estimate at the 16—2¢ level.
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FIG. 20. The increase in the value of @ when fits to the two-point functions are made including a Nz excited state as compared to data

in Fig. 11.
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The chiral-continuum extrapolation of d, (top) and d,, (bottom) using the ansatz given in Eq. (30), using Nz as the excited-

state fits, and with the yPT(¢?)[yPT(CC) strategy. All data are with ® = 0.2.

For the final central values for d,, , defined in Eq. (4), we
take the yPT(g?)|yPT(CC) results

d, = —0.003(7)(20)® e - fm, (31)

d, = 0.024(10)(30)@ e - fm, (32)
where the second systematic error is the spread in the four
estimates given in Table III.

XIII. ANALYSIS INCLUDING
THE Nz EXCITED STATE

In this section, we describe how all ground-state
quantities change when the Nz excited state is included.
This analysis should be considered exploratory because
(i) the extrapolations in the fits to remove ESC (see
Fig. 14), (ii) the errors, and (iii) the cancellations when
combining different terms to get F3 using Eqs. (26) are
all large.

In Fig. 20, we show the increase in the value of a for
the two physical mass ensembles as compared to the
data presented in Fig. 11. The ¢*> behavior is similar to
that shown in Figs. 16 and 17, and the final results for
the four strategies are given in Table III. The CC fits for the
neutron and the proton using the yPT(g?)|yPT(CC) strat-
egy are shown in Fig. 21.

For the central value we again take the
xPT(q?)|¥PT(CC) results

d,|n, = —0.028(18)(54)0 e - fm, (33)

dy|n, = 0.068(25)(120)0 e - fm, (34)

where the second systematic error is the spread in the four
estimates given in Table III.

XIV. COMPARISON TO PREVIOUS WORK

There are two estimates [44,72] of the contribution of the
O-term to the nEDM since the clarification of the impact
of the phase a that arises in the nucleon spinor in a theory
with CP in Ref. [47]. That work also contains a review of
previous results, which after correction were consistent
with zero. No estimate is given in Ref. [47], but there is a
preliminary value in a subsequent conference proceedings,
Ref. [66]. All three post-Ref. [47] calculations use the small
® expansion and gradient flow method for topological
charge renormalization as employed in this work. All these
results are summarized in Table IV.

The ETM Collaboration [72] has performed the calculation
on one 2+ 1+ I-flavor twisted mass clover-improved
ensemble with a=0.0801(4) fm, M, = 139(1) MeV, and
ML = 3.62. Data are presented for a single value of 7 = 12
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TABLE IV. Summary of lattice results for the contribution of
the ®-term to the neutron and proton electric dipole moment.

Neutron Proton
[© e fm] [0 e - fm]
This work d, = —0.003(7)(20) d, = 0.024(10)(30)
This work d, = —0.028(18)(54) d, = 0.068(25)(120)
with Nz
ETMC [72] |d,| = 0.0009(24)
Dragos d, = -0.00152(71) d, = 0.0011(10)
et al. [44]
Syritsyn d, ~0.001
et al. [66]

so there is no information on excited-state effects, continuum
extrapolation, chiral behavior, or finite-size effects. They also
implicitly implement the ® = 0 subtraction [see Eqs. (26)]
that we find reduces the statistical noise by using the spin
projector (1 + y4)iysy,/4. They determine F5(0) by making
a constant fit to the lowest three g points. Their final result is
taken using the spectral projectors method, which they find
reduces the errors by a factor of about 2 compared to the
field-theoretic definition of the topological charge used in
this work. They do not assess a systematic error associated
with excited-state effects or extrapolation in ¢ or to the
continuum limit.

The calculation presented in Ref. [44] uses six 2 + 1-
flavor Wilson-clover ensembles but only one below
M, =567 MeV, with M, =410 MeV. The values of
lattice spacings range between 0.068 < a < 0.11 fm. A
linear fit in ¢ is made to obtain F5(0). Also, artifacts due to
ESC are not analyzed and, in any case, their data with the
heavy pion masses studied, M, > 410 MeV, would not be
sensitive to analyses with or without including a Nz state.
This is the only other calculation that has presented a chiral
extrapolation using the yPT ansatz [Eq. (30) but with a
O(a?) discretization correction instead of our c3a term].
As shown in the bottom right panels in Figs. 18 and 19,
such chiral fits have an inflection point close to the smallest
M, data point in order to satisfy the constraint F; = 0 at
M, =0. In the case of Ref. [44], this occurs around
M, = 400 MeV, raising questions on the reliability of
the extrapolation.

XV. CONCLUSIONS

This paper presents a calculation of the contribution of
the ®-term to the nucleon electric dipole moment using
2+ 1+ 1-flavor HISQ ensembles and Wilson-clover
valence quarks. Two of the seven ensembles analyzed
are at the physical pion mass, which anchor our chiral fits.
The calculation has been done using the small ® expansion
method. Significant effort has been devoted to getting a
reliable signal in the CF violating form factor F3. The
gradient flow scheme has been used to renormalize the

®-term and the results are shown to be independent of the
flow time. Our estimate of the topological susceptibility
for the 2+ 1+ 1 theory is yo = (66(9)(4) MeV)* in the
continuum limit at M, = 135 MeV.

We also present two technical issues. First, in
Appendix D, we show that, in chiral perturbation theory,
the Nz excited state should provide the dominant con-
tamination. We have, therefore, used two strategies for
removing excited-state contamination. In the first, the mass
gaps are taken from fits to the spectral decomposition of the
nucleon two-point function, and in the second we assume
they are given by the noninteracting energy of the N(0)z(0)
state. We find a very significant difference between the two
as shown in Secs. IX and XIII and by the results
summarized in Tables III and IV.

The second technical issue discussed in Sec. XI and
Appendix E is that, for Wilson-type fermions, lattice
artifacts introduce a term proportional to am), because
of which d,, does not vanish in the chiral limit at finite a.
Our chiral-continuum fits have been made including
this term.

The analysis of the g> dependence of F (39 has been carried
out using both a linear and the leading order yPT
expression as described in Sec. X. The current data do
not distinguish between the two. Similarly, fits versus M2
are also carried out using a linear and the leading order yPT
expression as described in Sec. XII. The results from these
four sets of fits and the two strategies to remove excited-
state contributions are summarized in Table III.

Our preferred values are obtained using the leading
order yPT expressions. The analysis using excited states
from fits to the two-point function indicate that d is small,
|d9| <0.010 e - fm, whereas for the proton we get
|d9| ~0.020 e - fm. On the other hand, if the dominant
excited-state contribution is from the Nz state, then |d9|
could be as large as 0.050 e - fm and |d9| ~ 0.070 e - fm.
Lastly, we find the sign of d to be opposite to that of d9.

From the final summary of results presented in Table IV,
which also includes estimates from previous works, it is
clear that, at present, lattice calculations do not provide a
reliable estimate. To improve the current 100% uncertainty
to a 3o result will require a factor of at least 10 improve-
ment in statistics.
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APPENDIX A: CONNECTION BETWEEN
MINKOWSKI AND EUCLIDEAN NOTATIONS

To make our conventions explicit, we present the
connection between Minkowski and Euclidean variables
in Table V.

To connect the Lagrangian density for the ® term in
Minkowski and Euclidean spaces, we take the Minkowski
action associated with the QCD ®-term to be

S = = o0z [ G WGl (AD

where (Gy)%, = (1/2)6’,{,}’aﬂ(GM)gﬂ and (€y)o103 = +1 =
—e1?%. Upon rotating to the Euclidean space one gets
d4xM = —id4xE and

ofp a H a
6//1:;(/ (GM);W(GM)Z/J = l(eE)/waﬁ(GE)yu(GE)z/}‘ (AZ)
The factor of +i arises from the transformation of the field
strength and because each term in the sum has one factor of
Gy; (or Gjy) and one factor of G ;. Moreover, we used

0ijk _

€y = (€E)4ijk = (eg)*¥,

(A3)

which implies

(€E)ijk4 = —(€M)Oijk (A4)
and hence (eg);34 = +1.
Making these changes in the Lagrangian density and the

measure in the right-hand side of Eq. (A1) gives

@ va, a a
S = - et [ PrGe G (43)
and hence (iSM = —SF)
SE = 412 et [ g (Go)a ()G A6
®_+l64ﬂ,’2 E xp(GE)g, (X)( E)a/j(x)’ (A6)

consistently with Eq. (1).

TABLE V. Connection between Euclidean and Minkowski variables.

Quantity Minkowski <> Euclidean Remarks
4-vector v* 19, = vy = —ivE = —ivgy Ensures vy, - v, = —vp - v;; in particular, v3, = —v2.
P i
’UM = Vyi — ’UE = Vg;
t=xY, = —ixt = —ir
Py =—ipp =E
Derivatives oM = ok 0, = 0/0x" and 9" = J/0x, in both E and M
Mi _ _gM _ _9E _ _oFi
M = -9 = —9F = 9"
Gauge fields AM = iAE D, = 0, — A, transforms homogeneously
Mi _ _AM _ _AE _ _AEi
A = AV = —AF = A%

(GM)(.)f = _i(G'FT)M, (GM)Oi = i(GE)4i
(Gu)" = (GE)". (Gu)ij = (GE)y

y matrices vy =15 v = —irl,
vy = vErrart = =iy = -1y = -1
Y = YerYesrerdve
Py = —ipc
Pu=iDg
Charge Cy = irry
Conjugation C. = iyyrs
Matrix Ce =7r5v§

We adopt the DeGrand-Rossi basis [74]. These
Euclidean gamma matrices are Hermitian.
Minkowski gamma matrices are unitarily transformed
from the standard chiral basis % [75].

W =YYW and @y = . yly.
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APPENDIX B: EXTRACTION OF F;

The Euclidean four-vector V¥(q) defined in Eq. (25) can
be determined from lattice data by taking appropriate ratios
of three-point function and two-point functions. This is
achieved by defining the projected two- and three-point
functions as follows:

Cop(t.p) = Tr[Pop(QUIN(p. )N (p.0)|Q)].  (BI)
Chn(7.1.9) = Tr[P3p(QIN(p, 1) J™M ()N (p, 0)|Q)].
(B2)
with ¢ =p" —p, p' =0, P53, given in Eq. (24),
1
Popt = 3 (1+74), (B3)
and, neglecting the contributions of heavier quarks,
JEM = e((2/3)uy,u - (1/3)c_ly#d— (1/3)5y,s). (B4)
The ratio
P — Cop(7: 2. 9) <Czp1(I,P’)Czpt(T,P’)Czpt(T - t,p)> 172
CZpt(Tvp/) CZpt(t’p)CZpt(T’p>CZpt(T - t’P/)
(B5)

Vi = icy, My(q2 +iq))F1(q%) + {_CaNMNq2 -

— 2i[84,q2(Ex — my) = ¢4, q1931F (%)

1

Vo = coyMy(qy + iqa)Fi(q?) + {CaNMNCh )

+ Zi[SaN% (EN - mN) + CaNf]z%]FA(qz)

2

2

becomes independent of ¢+ and ¢ when ¢ and 7 are
sufficiently large that excited-state effects can be neglected
and takes the form

V(q)

VE,E(E,+Mycos(2ay))(E, +Mycos(2ay)) (B6)

In our plots to demonstrate the signal and the contribution
of excited states, we choose to show the quantity

R#(z,t,q)

R+
= g_ E,E,(E,+ Mycos(2ay))(E, + My cos(2ay)).
v

(B7)

where gy = C5,(7,1,0)/Cyp(2,0) and ay is calculated

from fits to the two-point functions with momentum p
or p' as discussed in Sec. VIIL
The components of 1V, are expressed in terms of form

factors F 53 4(q*) defined in Eq. (6) as follows:

1 .
[Say @193 + iCqyq1(Ey — MN)}}FZ((IZ)

2

[Caquq3 — iS4, 41 (Ey — MN)]F3(¢12)’ (B8a)
508 + ic0, 03(Ex = M) | Fo(a?)

[CaNCIQ% - isaNqZ(EN - MN)]F3(L]2)’ (ng)

. [
V3 = Mylica,q3 + 54, (Ex — My)IF1(q%) + 3 {~ica,(Exn = My)q3 = Sayq5 + 254, My (Ey — My)]}F2(q7)

. 1 .
= 2ica |t + BIFa(@?) = 5[cay 43 — i50,3(En — My)]F3(4%), (B&c)
. 1 .
V) = Mylca, (Ey + My) — isq,q3]F1(¢*) — 3 {Cay (B — M%) = isq,q3(Exy — My)|}F2(q%)
1.
+ 5 [lcaNq3(EN + MN) + saN (EIZV - M%V)}F?a(qz)’ (Bgd)

where ¢, = (cos2Rea + cosh 2Ima)/2 and s, = (sin 2Rea + i sinh 2Ima)/2. For PT symmetric theories, where a is

real, these expressions simplify to ¢, = cos’

a and s, = cosasina.

From the above expressions we want to extract F3(g?), which gives the neutron EDM. It turns out that the rhs of
Eqgs. (B8) is most naturally expressed in terms of G|, 3 given by
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GIZF1+F2, (B9a)

G,—F, - ‘IEZ Fytl ‘IEZ Fs, (B9b)
Am c4m

G3:F3 +£F2, (B9C)
C

where g% = ¢* + ¢; and s = sinacosa, ¢ = cos’ a.

For a given momentum transfer ¢ = (g, ¢,,q3),
Eqs. (B8) thus represent eight equations for G, 3. They
can be written in a compact form as follows:

(B10)

where K(q) is an 8 x 3 matrix given in block form by

K(q) = ((?)fl(q) (;](q) (P)(s(q)) (Bl1a)
—cq
Xi(q) =m C(q;:_m) , (B11b)
—isqs
9
X@=-zu 7| (B11c)
—i(E +m)
a
Y,(q) = me Zz , (B11d)
—i(E + m)
and V(g) is an eight-dimensional array given by
v = (i ) (B2
Vilg) = (ifn‘fff()q)), (B12b)
Vig) = <—§:fv(j()q))' (B12c)

To solve for G,3(q?), for a given three-momentum
transfer ¢ = (¢, ¢», g3) we can use a least squares esti-
mator. Namely, we minimize the function

F(G,3) q; Z wii(q)Ei(q)E;(q),  (BI3)

where
= ﬁim(q)Gﬂ -Vil@).  (Bl4)
wii(a) = €7 (@) (B1S)

and the weights matrix is the inverse of the covariance
matrix of lattice “measurements” V;(q):

[Cv(@)ly; = Cov(Vi(q). V;(q)).

For independent variables V;(gq), the covariance matrix Cy,
and it inverse are positive definite.” This guarantees
that F(G,,3) is minimized if and only if E;(¢) =0

(B16)

for all i. The sum over momenta runs over the six
permutations  (¢1.92.93),  (91.93.92),  (92.91.93),
(93-91:92)> (42.493.491), and (q3. q2.q1).
The function F(G,3) is stationary for
OF
=0, =1,2,3. B17
G, a (B17)
Explicitly, since OE;/9G, = K ,, one finds
2> Zw )Kia(q) =0,  a=1.2,3,
geP(q) inj
(B18)

or even more explicitly

> i (e

gepr(q

a= 1,2,3, (B19)

which is a system of three equations for G;,;. The

extremum condition for F(G;,3) implies the following

linear equation for G;,3(¢%):
AaﬂG/i = Ba» (BZO)

where the 3 x 3 matrix A and the three-dimensional array B
are given, respectively, by

°For ease of notation, we are ignoring current conservation,
which relates the various components V;(g). Strictly speaking,
we need to eliminate the dependent components of V;(g) when
using a conserved current to get an invertible covariance matrix.
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a[i_ Z ZK l (Q)’ (BZla)
= > ZK a)w;i(q)Vi(q). (B21b)
GeP(q) i.j

So, from the lattice data on V;(q), their covariance matrix,
and the explicit form of the matrix K, (g) given in
Eq. (B11), one can construct A, and B, and solve for
Gy 3. Error on Gy, ; can be assigned with the bootstrap
method.

APPENDIX C: CHIRAL EXTRAPOLATION
FORMULAS

We can express the electric dipole form factor as

Fi(q?)
oM,

=d; - Siq> + Hi(¢*), (C1)
where d; is the EDM, S’ the Schiff moment (with some
abuse of notation), and H;(g?) account for the higher-order
dependence on ¢°. Here, i is an isospin label, and the results
are more conveniently expressed in terms of an isoscalar
(i = 0) and isovector (i = 1) component. The neutron and
proton form factors are, respectively,

F3,(q%) = F3(¢°) + F3(4%),
F3,(q%) = F3(¢*) — Fi(¢?).

At NLO in yPT, the EDMs are given by [24,28,30,32]

(€2)

- egago |3xM,
o= o+ o0 i) )
- €gag M2 5z M,
dy = ed(u) + (4”/;7 (;2 [— — ZM_N}’ (C4)

where the renormalization scale dependence of the low-
energy constant d, cancels the u in the logarithm. Here
gs = 1.27 and F, = 92.4 MeV. g, is a CP pion-nucleon
coupling, defined as

O Nz -zN,

==

(C5)

a

which is related by chiral symmetry to the neutron-proton
mass splitting [24]

_ M,-M, M3 _
where m;!' =m;' +m3', 2m=m,+m,, and A, ~

1 GeV is the scale at which the yPT expansion breaks

down. gy is the isovector scalar charge, and the last equality
holds in the isospin limit. At the physical pion mass, one
obtains [76]

90

= (15.5+2.6) x 1070,
T ) X

(C7)

but the last term in Eq. (C6) allows the extension of the
relation to arbitrary masses in the regime of validity of yPT.
In particular, in the yPT fits to F3(q*) we use

95 26, (C8)

9o = 2B

with g¢ = 1.0 and B = 2.8 GeV. 6_10,1 are two low-energy
constants, which, by naive-dimensional analysis, scale as

. M2
01 =0((gapey)

The first derivative of the form factor is [28,30,32]

(C9)

Si =0, (C10)
egado S M,
(Yjp— A ) Cl1
L 6(4nF ) M2 { 4 MN} (C11)

At N?LO there are additional long- and short-distance
contributions to both isoscalar and isovector components.

The remaining momentum dependence of the electric
dipole form factor is given by the functions H;(q?)
introduced in Eq. (C1):

Ho(qz) =0,

o) -

with x = g*>/4M?2. h, appears at leading order:

15 I T+ 1/x+1 x
) == (1430 (Ve ) -2(143) )

(C12)

M,
8MN

degado

Hi(q%) = 15(4xF, )

w]. e

while 4, is generated at NLO:
hy(x) ! 3(14+2x)(5 ! arctan 14t
X)) = —— X ] X — —
b 7 Vx 3
- IOxZ} (C15)

Since these behave as h,(-")(x) = x> + O(x?) for x < 1, the

leading, O(g*), dependence of H; is consistent with the
definition in Eq. (CI).
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APPENDIX D: EXCITED-STATE
CONTAMINATION IN CHIRAL
PERTURBATION THEORY

In this appendix, we show that, in yPT, the gap between
the ground-state and excited-state contributions to the CP-
odd components of the three-point function Cg‘pt is expected

to be of order of the pion mass M. This can be intuitively
understood from the fact that the nucleon EDM induced by
the QCD ©®-term receives a LO contribution from a long-
range pion loop [24], shown in Fig. 22. In Minkowski
space, this diagram has a branch cut when the intermediate
pions and nucleon go on shell. In Euclidean space, this
translates into a Nz excited state, whose amplitude is of the
same size as the ground-state contribution. For simplicity,
we focus only on the diagram shown in Fig. 22 and assume
that the nucleon interpolating field does not couple to
nucleon plus pions.

We start from the fourth component of the three-point
function. Carrying out the Dirac traces in Eq. (25), in the
limit My > ¢, we find

(3‘3‘13t = ¢373 (4€;)I€i)2 e_MN'B_ENt{fO(Mm q.L)
+ ngli”j;% <e‘Mﬂ’ + e™Mals 4 51—’; (e7Esl 4 e Fals)
_ MHWJF”Eﬂ (e Ext=Mais 4 gMai=Exiy)
+ % (e~ Mt 4 e—(MﬁE,,)tB))

(D1)

-

where 1ty =711, Ey=\/M%+q¢*~My, E, = \/M2 + ¢*
and - - - denotes terms with a gap with two or more units of
momentum. fy(M,,q,L) denotes the ground-state loop
function, which we write as an infinite volume term f§° and
a correction A:

pO _kO ,'k'q . pON _kO ,-k
N
-
pON !_q kO ,k pON, ,0

FIG. 22. Leading order diagram for the excited-state contribu-
tion to the three-point function C’S‘pl in chiral perturbation theory.
A black square denotes an insertion of the CP-odd pion-nucleon
couplings gy. Filled circles denote CP-even pion-nucleon and
pion-photon couplings.

fO(Mn'v ‘LL) :fSO(Mm Q>+A(M7t’ qu) (DZ)
In the nonrelativistic limit, (M. g) is given by
d*k 1
JoM,, q) = 47t2</ =
FM9) = (45) 2n)* 12 + & + M2
1
X — ) (D3)
K+ (k+g)* + M2

and is ultraviolet divergent. In dimensional regularization
and in the MS scheme

1/1+ +1
feM,.q )—log 2—1—2 1—|—x1n

1+1i-

with x = ¢*/(4M2), which is of course the same function
as in Appendix C. The finite volume correction is given by

o= S5 [)

1
k3+k +M§k§+(k+q)2+M3,’
(DS)

which can be written in terms of Bessel functions as [77]

AM,, q,L —22/ de0< \/M2+qx1—x)|n|>

1#0

(D6)

At g =0, for ML ~4, A amounts to a 0.1% correction.
Equations (D1) and (D4) thus show that the excited
states have a gap of O(M,). The ratio of the ground-
and excited-state contributions is determined by the quan-
tity (4z)%/(LM,)* which is a number of order 1 for
LM, = 4. We thus do not expect a significant suppression
of the excited states. A similar calculation can be performed
for the spatial components C; - Yielding a result similar to
Eq. (D1), but with a sinh rather than a cosh behavior.

APPENDIX E: O(a) CORRECTIONS IN THE
WILSON-CLOVER THEORY

In this appendix, we analyze CP violation due to the
topological charge in the Wilson-clover theory at O(a).

We will denote by 09 0D and O™ the set of bare,
subtracted, and renormalized operators of dimension d,
respectively. Subtracted operators, i.e., operators free of
power divergences, are defined by
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0 =09 -3 3 Lu Pir C o),

. (E1)
et
while finite (renormalized) operators are given by
Ogld),ren — 7, Oiﬁi) (E2)

The presence of O;cd/) and not 0,((’1/) in Eq. (E1) is needed to
avoid ambiguities in the definition of lower-dimensional
coefficients ﬁ,(f,z. Note, however, that like all operators, the
subtracted operators allow any amount of admixture of
a?=410\Y) for d' > d.

We use the Wilson-clover quark action, in which the
Dirac operator reads

OD :DL +mw, (E3)

DL:l)—a<%D2+rcjw0'G>, (E4)

with cgw = 1+ O(¢?)."° To simplify the analysis, in the
following discussion we will first assume that the quark
mass matrix is proportional to the identity, pointing out the
minor modifications at the end.

The starting point of our analysis is the singlet axial
Ward identity (AWI) obtained by considering the axial
transformation on the quark fields ' = (u, d, s):

w(x) = (14 ia(x)ys)w(x),

w(x) = w(x)(1 + ia(x)rs), (ES)

where a(x) is the local transformation parameter. Denoting

by O(xy, ..., x,) any product of local operators, the singlet
AWTI reads
(O(xy, ..o x,) (O5A L (x) = 2myip (X)y sy (x) — X (x)))
() (0
where
A (x) = w(X)rrsw(x) (E7)

and X(x) is given by the variation of the Wilson-clover
term [69,71,78]:

X _(r rcsw

o _D? . . ES8

5 = —ay (2 +— )sz (E8)
"Throughout, we use D, 8 +iA, and G, =0,A,—0,A, +

i[A,.A,], so that [D,,D,] = and pp = D2 (1/2)

Insertions of X(x) vanish at tree level in the continuum
limit, but quantum effects induce power-divergent mixing
with lower-dimensional operators, that have to be taken
into account when taking the continuum limit. This is done
by writing [69,71,78]

X(x) = aX(x) = 2my (x)ysy(x) — (Zs

2N
+Zse P Z (GG gup-

-1 )auxA;t (x)
(E9)

where Ny is the number of quark flavors and X(x) is a
“subtracted” dimension-five operator; i.e., it is free of
power divergences, expanded according to Eq. (E1). The
operator aX(x) has no impact on the analysis of the axial
WI with elementary fields, while it induces contact terms in
the continuum limit of axial WIs involving composite fields
[69,70]. It is, however, essential in order to identify the
O(a) corrections to d,(®). Using the above expression
in (E6) and taking into account the mixing between (GG)
and 0,A* (which involves the renormalization constant
Zc), one arrives at [70,71]

(Ot (201 = Ze) i, 5) = 20 )50 ()

- I (6G) = aX (1)) ) = ~(2rtst))

(E10)
where

m=my —m (EIL1)
is the quark mass free of power divergences as we take the
continuum limit. Here, and henceforth, the O(ma) depend-
ence of the coefficients of the operators is suppressed.
Finally, upon integrating over [ d*x we arrive at

[ #x(ot.... >( 2 () sw ()
2Np

GG —
32” ( ren )>
/d4 80(xq, ..., X,
5(!@6()6))
Reference [79] performed a detailed diagrammatic analysis
of Eq. (E12), with O(x;,x;.x3) = N(x;)JEM(x,)N(x3) in
the a — 0 case, showing that the 6O terms cancel the
connected insertions of 2myysy. Their analysis shows that
insertions of the operator GG can be replaced by 2m times
the disconnected insertions of the isosinglet pseudoscalar

density wysy. Since the disconnected matrix elements
of the isoscalar density do not diverge in the chiral limit,

> (E12)

114507-26



CONTRIBUTION OF THE QCD ©-TERM TO THE ...

PHYS. REV. D 103, 114507 (2021)

this implies as a corollary that the neutron EDM should
vanish as m — 0. O(a) effects would modify the result of
Ref. [79] by modifying the rhs of their Eqs. (2.11) and
(3.5). In the context of our analysis, the term proportional
to aX in Eq. (E12) provides O(a) effects, which we
discuss next.

First, we project the subtracted operator X on the basis of
(subtracted) dim-5 operators, given in Ref. [80],

X =Y "ky, 00 (E13)

and analyze the consequences of Eq. (E13) for Eq. (E12).

The basis of dimension-5 operators oY) appearing on the
rhs of Eq. (E13) is given in [80] assuming generic diagonal
quark mass 72, and we repeat it here for completeness:

0\ = igsm Gy, (E14)

0 = & (wwiysw). (E15)

0y = iepd™ QF v, (E16)

0 = Tr[mQ?] %e””“ﬂF”DF{,ﬂ, (E17)

0% = Tr[m] %e"mﬂGﬁszﬁ, (E18)

0F) = e, (Fr'rsw), (E19)

OF) = 0,(prrsi) — S THMO, Br'rsy).  (E20)
o) = piysiy. (E21)

05 = Trliliysw. (E22)

Ol = Trlinliiysiiny, (E23)

0(151) = Ppr = WEYsYE. (E24)

055; =0 Ap = 0, [wer"rsy + Wr'rsyel, (E25)
O = Ay = ysws — wedrsw. (E26)

OSB = Ay = ie(FOA  yswir — QA ysy), (E27)

where 6 =5 (6"ys + ys0™) and g = (P + i)y
Keeping in mind that O(xy,...,x,) has the structure

N(x)JEM(x2)N(x3), in terms of the neutron source and

sink operator and the electromagnetic current, the various

05,5) contribute to Eq. (E12) as follows.

@) 0%5) is the isoscalar chromo-EDM operator and
contributes an O(a) term to the lhs of Eq. (E12).
In fact, as shown below, this is the leading O(a)
contribution, thus proving a linear relation between
isovector insertions of the pseudoscalar density and
the chromo-EDM.
(i1) 0;2,7 are total derivatives and their insertion in
Ecg; (E12) vanishes upon integration over | d*x.
032 involve one and two powers of the electromag-
netic field strength. In order to eliminate the photon
field in the correlation functions in Eq. (E12), one
needs electromagnetic loops, making the contribu-

tion of Ogs.i to Eq. (E12) of O(aagy/7) and thus
negligible to the order we are working.

(iii)

@iv) 025) provides a correction of O(am) proportional to
(GG) in the lhs of Eq. (E12).

(v) 0@710 become m*yiysy when 7 o I. Therefore,
their contributions have the same form of the
pseudoscalar insertion in Eq. (E12) but suppressed
by O(am).

(vi) The operators 0151?12.13714 vanish by using the quark
equations of motion and can contribute contact terms
to the lhs of Eq. (E12). However, it turns out that none
of them actually contributes at this order. 0(151)

contains two equation of motion operators.

Therefore, when inserted in Eq. (E12), it will always

involve a contraction with a quark field in the neutron

source or sink operator, and thus it will not contribute

(

to the residue of the neutron pole. 0152) is a total
derivative and drops out of Eq. (E12). OE? is a gauge-
variant operator and drops out of Eq. (E12) as long as
O(xy, ..., x,) is a gauge singlet, which is the case for
O(x1, %, x4) & N(x1) /M (x2) N (x3). OS) involves
the photon field and therefore can contribute to
Eq. (E12) only to O(aagy /7).
So in summary, for 7z « I, Eq. (E12) becomes

[ s 0t ox)-2mp s ()1 + Ofam)

Ny s
- I (GG) (1 + Oam) - ak ) )

R IR )
= - [ Sialn)

If /i # I, the singlet AWI, Eq. (E12), involves y 1 ysy.
All the arguments above go through, except for the effect

of 05(53,10- OS)) gives a correction of O(am) proportional to

(5)

wmysy, while Og,y contribute nonmultiplicative terms
involving the nonsinglet pseudoscalar densities of
O(am?) in Eq. (E28). The presence of these additional
terms does not affect our conclusion about the existence of
O(amy) corrections.

(E28)
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