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Fast flavor oscillations in dense neutrino media with collisions
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We investigate the impact of the nonzero neutrino splitting and elastic neutrino-nucleon collisions on fast
neutrino oscillations. Our calculations confirm that a small neutrino mass splitting and the neutrino mass
hierarchy have very little effect on fast oscillation waves. We also demonstrate explicitly that fast
oscillations remain largely unaffected for the time/distance scales that are much smaller than the neutrino
mean free path but are damped on larger scales. This damping originates from both the direct modification
of the dispersion relation of the oscillation waves in the neutrino medium and the flattening of the neutrino
angular distributions over time. Our work suggests that fast neutrino oscillation waves produced near the
neutrino sphere can propagate essentially unimpeded which may have ramifications in various aspects of

the supernova physics.
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I. INTRODUCTION

Neutrino flavor oscillation is a quantum phenomenon
caused by the misalignment of the weak-interaction states
of the neutrinos in which they are produced and the
eigenstates of their Hamiltonians (see, e.g., Ref. [1] for a
review). This phenomenon becomes very rich and interest-
ing in, e.g., a core-collapse supernova or a neutron star
merger, where a large portion of a dense neutrino medium
can experience flavor oscillations collectively because of
the coupling among the neutrinos themselves (see, e.g.,
Ref. [2] for a review). Because of its nonlinear nature,
collective flavor oscillations in dense neutrino media pose a
great challenge to both numerical and analytic approaches
and have yet to be fully understood. Nevertheless, impor-
tant progress has been made in recent years which has shed
light on this intriguing phenomenon.

Early studies of collective neutrino oscillations have
employed stringent symmetric conditions such as the homo-
geneity and isotropy in the early Universe (see, e.g.,
Refs. [3,4]) and the time invariance, spherical symmetry,
and axial symmetry in supernovae (see, e.g., Refs. [5,6]).
However, these symmetries are likely to be broken sponta-
neously by neutrino oscillations because of the flavor
instabilities in the neutrino media, even if these symmetries
are present initially [7-11] (see Ref. [12] for a review).
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The breaking of these symmetries have been confirmed by
numerical calculations with simplified models [13-17].

Collective oscillations occur on time or distance scales of
(wp)~"/? when neutrinos of different species have the same
angular distribution [18], where @ and p are the vacuum
oscillation frequency of the neutrino and the strength of the
neutrino-neutrino coupling, respectively. Much attention
has been paid recently to the fast oscillations that occur on
the scales of x~! when the neutrino species have different
angular distributions (see, e.g., Refs. [19-21]; see also
Ref. [22] for a review). These fast oscillations can occur in
the region where neutrinos decouple from the matter and,
therefore, may have a great impact on the supernova
physics (see, e.g., Refs. [23,24]).

Since its introduction by Ref. [25], the stability analysis
of the linearized equations of motion has been used
extensively to predict the prospect of flavor oscillations
in static or homogeneous neutrino gases. For dynamic
inhomogeneous oscillations, one can study the analytical
structures of the dispersion relations of the neutrino
media which distinguish various kinds flavor instabilities
[26-29]. The validity of this approach has been verified in
numerical simulations in both the linear and nonlinear
regimes [30,31].

In an earlier study we have demonstrated that fast
oscillation waves can spontaneously appear in collisionless
dense neutrino media under suitable conditions and redis-
tribute the electron lepton number (ELN) as the flavor
waves propagate in space [31]. (The calculations in
Ref. [32] obtained flavor-depolarized steady states instead
of wavelike solutions. However, it appears that the simu-
lation tools used in Ref. [32] have difficulty in maintaining
the causality over a long time scale.) It has been shown that
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neutrino collisions, although rare outside the neutrino
sphere of a supernova, can influence the results of collec-
tive oscillations [33,34]. Inside the supernova core, colli-
sions may even trigger fast oscillations [35,36] which in
turn will affect the supernova dynamics, nucleosynthesis,
and neutrino signals.

In this work we investigate the impacts of neutrino
collisions on the formation and propagation of the fast
oscillation waves. As the first step, we include only the
neutrino-nucleon scattering as in Ref. [37]. We will also
investigate the validity of the zero mass-splitting approxi-
mation for fast oscillations which has been widely adopted
in the literature but was questioned in Ref. [38]. The rest of
the paper is organized as follows. After establishing the
mathematical formalism and the physical model (Sec. II),
we demonstrate the impacts of the collisions on fast
neutrino oscillations both analytically (Sec. III) and
numerically (Sec. IV). We conclude by summarizing our
main results and discussing their implications (Sec. V).

II. FORMALISM AND MODEL

A. General description

We use the flavor density matrix pj (7, 7) to describe the
flavor content of the momentum mode p of a neutrino
medium at the spacetime point (7, 7), where its diagonal
elements are the occupation numbers in the corresponding
weak-interaction states, and the off-diagonal elements are
the coherences between these states [39]. In this work we
employ the two-flavor mixing between v, and v,, where v,
represents a linear combination of the physical ¢ and 7
flavor neutrinos (see, however, Ref. [40] for a possible
limitation of the two-flavor mixing approximation). The
flavor density matrix obeys the following quantum kinetic
equation in the mean field limit [39,41]:

(9, + b+ V)py = =ilHz. p5] + Cp, (1)

where the Hamiltonian Hj(z, 7) dictates the coherent flavor
evolution of the neutrino medium, and C ;,(t, 7) determines
the incoherent evolution due to the collisions, absorptions,
and emissions of the neutrinos. Here we have adopted the
natural units with 2 = ¢ = 1, and we have assumed that the
neutrinos are ultra-relativistic so that they have velocities
? = p/|p|. We have ignored the gravitational effect and the
possible oscillations between the neutrino and the anti-
neutrino or the sterile neutrino. The flavor density matrix
pp(t.7) for the antineutrino is defined in a similar way and
obeys a similar equation of motion.
The Hamiltonian in Eq. (1) has three components:

Hy = Q + A+ V. 2)

The first component of the Hamiltonian, Q, = M?/2e,
describes the vacuum oscillation of the neutrino, where M?

and e = |p| are the mass-squared matrix and the energy of
the neutrino, respectively. The second component of the
Hamiltonian is the matter potential A = v/2Ggdiag[n, 0],
where Gy is the Fermi constant, and n, is the net num-
ber density of the electron [42]. Here, we have assumed
that the matter does not have a (significant) overall
motion and the number densities of the heavy leptons
are negligible. The last component of the Hamiltonian is
due to the neutrino-neutrino coupling [43-45] and takes
the form of

3 7
vﬁzﬁGF/<1—@-@’><pP—ﬁ,~,>é7”)3. 3)

The Hamiltonian for the antineutrino is similar except
with Q, replaced by —Q,.

For the incoherent evolution we consider only the elastic
collisions of the neutrinos and antineutrinos off nonrela-
tivistic nucleons in this work:

v+N->v+N,

where v represents a neutrino or antineutrino of any flavor,
and N can be either a neutron (n) or proton (p). This
collision effect is given by [46]

1 ain 1 0ss
Cp =S {1 = pp} = {1 5}, (4)

where {-,-} denotes the anticommutator. In the limit that
the neutrino energy ¢ is much less than the nucleon mass
my, the energies of the neutrino before and after the
collision are approximately equal. In this isoenergetic limit,
the gain and loss potentials become

. 3.,/
" = [ RaG 20y
82 0 (~ »/
= (2”)3 RIS(U’ v )pﬁ’dgf/’ (58')
. &’ p’
Hif,)ss = /RIS(Uv 1/>(1 _/75’) (2”)3

£2 e
- o | R0 = pp)d0 ()

A Al

where Ris(9,?') = R%(9,9)5(¢/ — €) is the isoenergetic
scattering kernel, and dQ; is the differential solid angle
pointing in the direction of ?’. For nonrelativistic, non-
degenerate nucleons, one has [47]

Ris(0.%) = 22GEY _ny{[(c})? +3(c))?]

+[(ef)? = (eX)](2- )}, (6)
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where ny (N = n,p) are the number densities of the
nucleons,

= o 2sin’Oy, e (7a)

! _9a

ey =-% (7b)

are the weak coupling constants with g, ~ 1.27, and
sin? @y ~ 0.23. For isoenergetic scatterings, Eq. (4) is
reduced to

&* A
C; = W/R?s(vv V) (pp — pp)dQy. (8)

B. Homogeneous axial neutrino gas

We investigate the fast neutrino oscillations on very short
time and distance scales over which the matter distribution
can be considered as both constant and uniform. As in
Ref. [31], we simplify the problem by imposing the
translation symmetries along both the x and y directions
and the axial symmetry about the z axis. We further assume
that the neutrino field is nearly uniform along z at = 0 but
can change later on. Because the isoenergetic collisions do
not change the energies of the neutrinos, we adopt the
single-energy approximation by assuming that the evolu-
tion of the neutrino gas is represented by monochromatic
neutrinos and antineutrinos of a characteristic energy e.
This single-energy approximation can be removed in future
works to study the impact of inelastic collisions.

For this simplified model, it is convenient to express the
flavor density matrices in terms of the polarization vectors

p(1.7) o (%)Pu,o(z, )+ <%>G-Pu(t,z), (9a)

py(1,7) (%)Pu,o(t, 2)+ (%)6'1_’“0, z). (%)

where u is the velocity component of the neutrino along the
z axis, and o; (i = 1, 2, 3) are the Pauli matrices. The trace
term P, (P,q) describes the total spatial and angular
distribution of the neutrino (antineutrino) of both flavors,
while the polarization vector P, (P,) describes the coherent
flavor distribution of the neutrino (antineutrino). We
normalize both the trace terms and polarization vectors
at t =0 and z = 0 so that

1
1

/ Pu,3
-1

1

—/ P,3(0,0)du=1,

1

1 1 _
/ Pu.o(O,O)duz/ P,(0,0)du

-1
(0,0)du

(10)

and
Fy=n,(0,0)£n,(0,0), (11a)
Fy =n;(0,0) £n;(0,0), (11b)

where n,(t,z) is the number density of the neutrino
species v.
In the representation of the polarization vectors, one has

1 _
“ilbg 5] — | [ 1= (P P

+ (B4 dey)| <P, (12)
where
F
o= 13
&=z (13)
and
om*\ . .
B = B [sin(26,)e; — cos(20,)e;], (14)
€
A = V2Ggn,, (15)
and
p=\2GpF_ (16)

measure the strengths of the vacuum, matter, and neutrino
potentials, respectively. Here 6m? and 6, are the mass-
squared difference and the vacuum mixing angle of the
neutrino, respectively, and e; (i = 1, 2, 3) are the unit basis
vectors in the flavor space. We will work in the reference
frame that rotates about e; in flavor space in which

B + /163 —> —wes, (17)

where the effective oscillation frequency o =
(6m?/2€) cos(26,) is positive for the normal neutrino mass
hierarchy (NH) and negative for the inverted hierarchy
(IH). The values of P,3 and P,3, which determine the
flavor transformation of the neutrino and antineutrino, are
unaffected by the rotating frame transformation. In this
rotating frame, Eq. (1) becomes
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1 /1 K
(3t + Maz)Pu.O = —Kopu.o —+ 5/1 (KO — —11/”,[/) Pu’,OdW,

! _
(0, + ud,)P, = [—a)e3 —I—ﬂ/ (1 —uu)(P, — aPM/)du’}
-1

1 [1
x P, —koP, + —/ Ko — AL, P,du,
2/ 3

_ _ 1 /M -
(8t + u@Z)Pu’O = _KOPu,O -+ E/ <K'0 —%MUI> Pu’,Odu/v
-1

(18¢c)

_ 1
(0, + ud,)P, = {+we3 ]

-1

(1 - uu')(P, — al_’u/)du’}

_ _ 1 [1 _
x P, — kP, + —/ Ko — 5w P, du,
2/ 3

(18d)

where

N

N2
Ko = %G]%EZZI’[N |:(C[X)2 + ( \3/) }, (19a)
N

0 = 2GREY () - (] (19)
N

are the positive constants that measure the strength of the
isoenergetic scattering of the neutrinos by the nucleons. For
a charge neutral matter consisting of free nucleons and
electrons, one obtains

Ky
—~0.5 20
. (20)

for the electron fraction Y, = 0.3. We will use this nominal
ratio in the rest of the paper.

III. COLLISIONAL DAMPING

The scattering of the neutrinos off a homogeneous
thermalized matter tends to make the neutrino gas more
homogeneous and isotropic, and thus damps the neutrino
oscillations. This effect can be understood analytically in
our model.

A. Total neutrino angular distributions

We first consider the effect of the collisions on the
evolution of the total density distributions P, , and P,yofa
homogeneous neutrino gas. It is obvious from Eq. (18) that
these total distributions are decoupled from the evolution of

the flavor polarization vectors. We expand the total neutrino
distribution in terms of the Legendre polynomials,

o0

Puo(t) =Y fe()Le(u), (1)

=0

where L,(u) is the Legendre polynomial of degree £ with
Lo(u) =1 and L;(u) =u. Using Eq. (18a) and the
orthogonal relation

/_ i Lo ()L () du = Til‘sf’f’ (22)

we obtain
fo=0, (23a)
fi=—(ko+x1)f1, (23b)
fo=—xofr (£22). (23¢)

where we have dropped the spatial derivative for the
homogeneous gas. The above equations have the simple
solutions

fo(t) = const, (24a)
f1(f) & e~kotxi)r, (24b)
fe(t) xe™! (¢£>2). (24c)

Because both x, and x; are positive, all the multipoles
decay away on the time scale of k', except for the
monopole (£ = 0) which remains constant. The overall
distribution of the antineutrino behaves in a similar way.

As a concrete example, we consider the following
homogeneous distribution at ¢ = O:

P,0(0) = g(u.0.6), (25)
where
g(u,w) o e~ (w1720, (26)

with the normalization condition |1, g(u,w)du = 1. In the
upper panel of Fig. 1 we show a few snapshots of P, () for
the scenario with x,/u = 2 x 1073, Following many other
works on fast oscillations, we measure all energies in terms
of u and distance/time in y~' by setting

u=1. (27)

Fig. 1 clearly shows that the collisions make the neutrino
gas more isotropic over the timescale of kg
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Ko=2x1073
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FIG. 1. The overall neutrino distribution P, (top panel) and

the ELN distribution G, (bottom panel) of a homogeneous gas at
a few times (as indicated in the legend) in the strong collision
scenario with x, = 2 x 1073, The thin horizontal dot-dashed lines
in both panels are the asymptotic limits when the distributions are
fully isotropic. A necessary condition for fast flavor instabilities
to exist is that the ELN distribution in the bottom panel crosses
the dotted line along G, = 0.

B. Flavor instabilities

A dense collisionless neutrino gas can support collective
oscillation modes or normal modes with S, S, « ¢!(Ka=),

where
Su = Pu.l - iPu,Z and Su = Pu,l - ipu,2 (28)

are the amplitudes of the waves, and Q and K are the
frequency and wave number of the normal modes, respec-
tively. Using Eq. (18) we obtain

1
(0, + ud,)S, = (—w —iky)S, —l—/t/ (1 —uu)

-1
X [Gu’Su - Pu,3(Su’ - aSu')]du/

i1
—|—%/_1 (KO —%uu’) Sdu, (29a)
_ _ 1
i(0; +u0,)S, = (+w —ixy)S, —I—,u/ (1 —uu)
-1
X [Gu'gu - pu.3(Su’ - aSu’)]du/
i [l K _
+3 /_ 1 (KO - g‘uu'> S, du, (29b)

where
Gu(t’ Z) = Pu,3(t7 Z) - aPu,S(t’ Z) (30)

is the instantaneous ELN distribution. From Eq. (29) one
can derive the dispersion relation Q(K) of the neutrino
oscillation wave in the linear regime when S, and S, are
small [26]. As in Ref. [31], we will consider only the
branches of the dispersion relation that have real wave
numbers. For these branches, a positive (negative) value of
the imaginary component of the collective oscillation
frequency Im(Q2) gives the exponential growth (decay)
rate of the corresponding normal mode.

The impact of neutrino collisions are manifested in
Eq. (29) both directly and indirectly. The direct impact
is the presence of x, and k; in this equation which tends to
decrease the overall value of Im(€2). The indirect impact is
on the ELN distribution G, (¢), which changes over time
because of the collisions.

When S, and S, are small, G,(t,z) = G,(t) remains
homogeneous, and its time evolution is governed by the
following equation which is also derived from Eq. (18):

. 1 1 K ’ '
G, ~—-k,G, + 3 Ko = -l Gydu'.  (31)
-1

Because this equation is similar to Eq. (18a) without the
spatial derivative, we expect the ELN distribution to flatten
out on the timescale of k;! as P,y does. As an example, we
consider a homogeneous neutrino gas with

P,(t=0.2) = g(u,0.6)es, (32a)

P,(t=0,z) = g(u,0.53)e;, (32b)
and o = 0.92. We chose this initial condition because it
produces the Gy, spectrum in Ref. [31] against the
calculations of which we will make comparisons. We
computed the evolution of G, (1) with xy, =2 x 1073,
and the results are shown in the lower panel of Fig. 1.
As expected, the ELN distribution becomes isotropic
over time.

To further investigate the impact of neutrino collisions
on the flavor instabilities of the neutrino gas, we com-
puted P,(t) and P,(t) in both a strong collision scenario
with x, =2 x 1073 and a weak collision scenario with
ko =2 x 107*. Both P,(t) and P,(t) obey the same
equation of motion as G, (¢) in Eq. (31). We then computed
the dispersion relation Q(K) from Eq. (29) as a function
of time in both collision scenarios. In these calculations,
we assume an effective vacuum oscillation frequency
@ = £107>, where the plus and minus signs are for the
NH and IH, respectively. The maximum exponential
growth rates, Im(Q2), of the normal modes for all scenarios
are shown in Fig. 2. We have employed both 256 and 64
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0.2 0.3

1000

Ko=2X 1073

.

-0.3 -0.2 -0.1
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FIG. 2. The time evolution of the instabilities in a weak collision scenario (x, = 2 x 107#, left panels) and a strong collision scenario
(ko = 2 x 1073, right panels) with the normal neutrino mass hierarchy (NH, upper two rows) and the inverted hierarchy (IH, lower two
rows), respectively. The color of each pixel in the figures of the first and third rows represents the maximum exponential growth rate
Im(Q) (in units of x/100) of the normal mode with wave number K (horizontal axis) at time  (vertical axis). The same growth rates as
functions of K at a few times (as indicated in the legend) are plotted in the second and fourth rows. A value below the thin dot-dashed line
along Im(Q) = 0 in these panels represents a exponential decay instead of growth of the wave amplitude. The thin curves in the second
and fourth rows are computed with 64 angle bins, and the rest are computed with 256 angle bins.

angle bins in these calculations. These numbers of angle
bins are much smaller than those needed in the static
models because the spurious instabilities are negligible in
dynamic fast oscillations [31].

Fig. 2 shows that a nonzero mass splitting and the
neutrino mass hierarchy have a very small effect on the
dispersion relation when |w|/u < 1. Tt also shows that

the presence of the collisions does reduce the instabilities.
In fact, a wide range of the normal modes which are
stable in the absence of collisions now have a decay rate of
order k5! at 1 =0. As time progresses, the maximum
growth rates of the unstable modes also decrease as
the ELN distribution flattens. In the strong collision
scenario, the flavor instabilities virtually disappear at
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Ko=2x10"% u= —0.5, NH

Ko=2x1073, u= —0.5 NH
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FIG. 3. The time evolution of the transverse components of the polarization vectors of the neutrino and antineutrino, P (top panels)

and P (bottom panels), of the velocity mode u ~ —0.5 in a weak collision scenario (left panels) and a strong collision scenario (right
panels), respectively. The normal neutrino mass hierarchy (NH) is employed in both calculations.

12Ky ! when the ELN crossing vanishes (see the lower
panel in Fig. 1).

IV. NUMERICAL RESULTS

To verify the damping effects of the collisions that are
presented in the previous section, we carried out a suite of
calculations using the numerical schemes similar to
Ref. [31] but with collisions. We assume that the neutrino
gas is confined within a periodic box of length L. We
employ the same parameters as in Sec. III B except for
small initial perturbations to initial polarization vectors:

Pu(o,z):g(u,o.6)[e(z)e1+ 1—62(z)e3], (33a)

[e(z)el o /1- ez(z)e3}, (33b)

P,(0,z) = g(u,0.53)

where

e(z) = ege™(@)*/50, (34)
with zo = L/2 and ¢; < 1 being a small positive constant.
We employed 64 angle bins in all the calculations which
reproduced the instabilities quite well (see Fig. 2). Because
the results with the NH and IH are very similar, the cal-
culations presented in this section assume the NH, i.e.,

@ = 107, unless otherwise noted.

A. Linear regime
We first consider the impact of the neutrino collisions in
the linear regime where the transverse components of the
polarization vectors,

|Su| and PJ_.M = |Su

P Lu = ) (35 )
are always small. For this purpose we took ¢, = 107 and
performed the calculations on 48000 discrete spatial bins
equally spaced within a periodic box of size L = 1200
which is about 1 m for a typical value of u ~ 10> km~! on
the surface of the protoneutron star. In Fig. 3 we show the
development of both P, and P, of the velocity mode u =
—0.5 in the weak and strong collision scenarios, respec-
tively. The neutrinos and antineutrinos behave similarly in
both scenarios, although there are small quantitative
differences between P, and P .

The results in the weak collision scenario are similar to
the earlier results without the neutrino collisions (see the
right panel of Fig. 2 in Ref. [31]). In this scenario, the initial
localized perturbation splits into two peaks. One peak is
transported to the left because of a (largely) real branch of
the dispersion relation. The other peak grows exponentially
while moving to the right because of a temporal instability.
This instability is absolute because the regions of the
exponential amplitude growth at later times always enclose
the earlier regions [48]. This can be seen, for example, by
noting that the right peaks of the dashed curves in the left
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Ko=2x 1074, NH

Ko=2x 1073, NH

t=900 +10
10 -\ 10
— t=720 +8
— 'A 8
I It=540 +6
G \ 6
o [t=360 +a
= 4 4
o t=180 +2
2 2 \N‘
t=0 +0
0 1 1 1 1 O 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
T T T T T T T T
12 T10q  12F ]
R 10 WVV\,\_,.AM'W +8 1 10 F ‘\/__
—
3
z °f W va 1 oF ]
=
< WA o 1 et \v4 ]
V T~
2r +0 1 2f ;
0 1 1 1 1 0 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
06 +t0.51 o6} 1
05k W +0.43 osf 3
04k VVV' 1031 oaf ]
. Vv.f
N o3l Y +0.21 o3} 1
02F 011 o2f -
01k +0.01 oaf -
0.0 1 1 1 1 0.0 1 1 1 1
0 500 1000 1500 2000 0 500 1000 1500 2000
z z

FIG. 4. The polarization vector components P; (upper panels) and P; (middle panels), both normalized by the magnitude of the
polarization vector |P| and for the velocity mode u ~ 1, and the electron lepton number (ELN) density £, (lower panels) of a neutrino
gas at various times ¢ (as labeled) as functions of the spatial coordinate z. The left and right panels are for the weak and strong collision
scenarios discussed in the text. The normal neutrino mass hierarchy (NH) is employed in both calculations. The curves are offset from
each other by 2 units in the upper two rows and by 0.1 in the bottom row for clarity.

panels of Fig. 3 are fully enclosed by the dot-dashed curves
which in turn are enclosed by the dotted curves.

In the strong collision scenario, however, the left moving
peaks are buried in extended envelopes which are caused by
the scattering from other velocity modes. The right moving
peaks grow fast initially because of the absolute instability,
but the growth slows down as time progresses. We note
that, unlike the weak collision scenario, the dot-dashed
curves (at = 400) in the right panels of Fig. 3 do not fully
enclose the dashed curves (¢t = 300). In other words, the
wave amplitude decreases in the previously perturbed
region after the instability has swept through it. This is a
well-known feature of a convective instability [48]. It has
been shown in Ref. [28] that an absolute instability can be

weakened into a convective instability when the ELN
crossing becomes shallower. As the ELN distribution is
further flattened, the crossing eventually disappears and the
instability vanishes. As a result, the exponential growth of
the wave amplitude stops, which is indicated by the similar
heights of the right peaks of the dot-dashed and dotted
curves (¢t = 500).

B. Nonlinear regime

To investigate the impact of the collisions on fast
oscillations in the nonlinear regime, we took ¢, = 0.1
and performed the calculations again on 48000 equally
spaced lattice points, but in a larger box of size L = 2400.
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The polarization vector components P; (upper panels) and P; (middle panels), both normalized by the magnitude of the

polarization vector |P|, and |P| itself (lower panels) of a neutrino gas for all velocity modes at time 7 = 900 for the same calculations

shown in Fig. 4.

In Fig. 4 we show several snapshots of the polarization
vectors of the velocity mode u ~ 1 in the whole box in
both the weak and strong collision scenarios, respectively.
We also show the ELN densities

c, = / "6, (1, 2)du (36)

1

in the same figure. The results in the weak collision
scenario are, again, very similar to their counterparts in
the calculation without collisions (see the right panels of
Fig. 3 in Ref. [31]). The initial perturbation quickly grows
into the nonlinear regime and spawns a flavor oscillation
wave, the range of which expands over time. These results
also demonstrate the features of an absolute instability
because the flavor conversion regions at earlier times are
fully enclosed by those at later times. The results for the
strong collision scenario are initially like those of a
convective instability because the flavor conversion regions

of later times are larger than, but do not fully enclose, those
at earlier times. Because the ELN crossing has vanished at
t 2 500 in this scenario (see the lower panel of Fig. 1), the
flavor oscillation wave is dispersed according to the
dispersion relation while propagating.

As in the neutrino gas without collisions, the ELN in the
weak collision scenario is redistributed through the propa-
gation of the neutrino oscillation wave. In contrast, the
ELN density remains mostly homogeneous in the strong
collision scenario for the reason to be explained below.

In Fig. 5 we show the components of the polarization
vectors for all velocity modes at ¢ = 900 in both collision
scenarios. The results in the weak collision scenario are,
again, very similar to those in the previous calculation
without collisions (see the right panel of Fig. 5 in
Ref. [31]). The oscillation wave involves all the velocity
modes, but the flavor conversion concentrates in the
forward velocity modes where the ELN crossing occurs.
In contrast to the extended flavor conversion region in the
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FIG. 6. The polarization vector components P of the antineutrinos (normalized by the magnitude of the vector |P|) in the calculations
shown in Fig. 5 that employ the normal neutrino mass hierarchy (NH, upper panels) and those in the similar calculations with the

inverted neutrino mass hierarchy (IH, lower panels), respectively.

weak collision scenario, the flavor conversion in the strong
collision scenario exists only in a small region away from
where the oscillation wave was originally spawned and is
even more concentrated in the forward direction. Because
most of the neutrino modes do not experience significant
flavor conversion, the overall ELN density remains largely
homogeneous in the strong collision scenario.

In this work we have adopted a convention different
from that in Ref. [31] by normalizing the integral of initial P;
at z =0 instead of individual polarization vectors [see
Eq. (10)]. Because of the setup of the calculation, |P,(z, z)]
is approximately described by the solid curve in the upper
panel of Fig. 1 at = 0 and for all z. In the lower panels of
Fig. 5 we show the magnitudes of the polarization vectors
at t+ = 900. In the weak collision scenario, |P,| remains
approximately homogeneous even at t = 900, although there
are some minor changes due to the collisions. In the strong
collision scenario, however, |P,| is not only homogeneous
but also nearly isotropic. It has the smallest magnitude for the
neutrino field that has the largest flavor conversion, which is
yet another reason why the neutrino flavor conversion in the
strong collision scenario does not change the ELN density
very much. Because the collision term included in our
calculations changes the direction but not the flavor of the
neutrino, and because most of the neutrinos and antineutrinos
remain in the initial weak-interaction states in the strong
collision scenario, the collisions do not result in a significant
flavor depolarization except for the neutrinos and antineu-
trinos with notable flavor conversions.

In Fig. 6 we show P5 at t = 900 in the calculations that
employ the NH and IH calculations, respectively. Because
an antineutrino oscillates in the same way as a neutrino with
negative energy [49], the similarity between these plots and
those for P; in Fig. 5 shows the insensitiveness of fast
oscillation waves to the neutrino energies. Figure 6 also
demonstrates that the neutrino mass hierarchy has very
little impact on fast oscillation waves, which confirms the
validity of neglecting the vacuum term in most of the
literature.

V. DISCUSSION AND CONCLUSIONS

We have performed numerical calculations of fast
oscillations in dense neutrino media using monoenergetic
neutrinos and antineutrinos with |w|/u = 107>, a typical
value on the neutrino sphere inside a core-collapse super-
nova and for the atmospheric mass splitting, where @ and u
are the effective vacuum oscillation frequency of the neu-
trinos and the strength of the coherent neutrino-neutrino
forward scattering, respectively. We found that the mass
splitting and the mass ordering of the neutrino have very
little effect on fast oscillations in our calculations. This
result seems to contradict that of Ref. [38], which suggests
that the neutrino energy plays a prominent role in fast flavor
conversions. We also did not observe the fine angular
structures in neutrino flavor conversions as in Ref. [38].
This discrepancy may be because Ref. [38] studied homo-
geneous neutrino gases which can oscillate only in the
K = 0 modes instead of producing a propagating oscillation
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wave. The stability analysis also shows that the homo-
geneous modes have small instabilities in our models (see
Fig. 2). In any case, it seems unlikely that the neutrino mass
splitting can have a big impact on fast oscillation waves
where the neutrino vacuum oscillation frequencies are
much smaller than the exponential growth rates of their
flavor instabilities.

We have also investigated the effects of the elastic
neutrino-nucleon collisions on fast oscillation waves.
Although collisions may trigger fast oscillations [35], we
found that they damp the flavor oscillation waves on the
scale of the neutrino mean free path x;'. We have shown
analytically that the collisions make the neutrino angular
distributions significantly more isotropic and thus diminish
or even kill the ELN crossing completely after the neutrinos
have traveled for one mean free path. In addition, the
collisions also damp the neutrino oscillation waves by
adding imaginary components to the collective oscillation
frequencies. Because collisions mix the flavor contents of
different neutrino momentum modes, they tend to reduce
the magnitude of the polarization vectors and cause flavor
depolarization when the neutrinos of different momenta
have different flavor evolution histories. Our findings
contradict the results of Ref. [36] which suggest that
collisions can enhance fast flavor conversions in homo-
geneous neutrino gases on time scales much larger
than xy'.

In the strong collision scenario, we have found that the
neutrino oscillation wave continues to propagate even after
the ELN crossing has faded away. This finding should not
come as a surprise because the dispersion relation still
exists for the neutrino oscillation wave even without the
ELN crossing. It is, therefore, entirely possible that fast
neutrino oscillation waves that are produced inside the
proto-neutron star where the ELN crossings exist (see, e.g.,
Ref. [24]) can propagate through the regions without the
ELN crossing and influence various aspects of the super-
nova physics.

Although we have assumed that the neutrinos are
monoenergetic and that the collisions only change the
directions of the neutrinos, we do not expect that our results
will be significantly modified when these constraints are
relaxed. This is because, as explained above, the neutrino
mass splitting does not have a big impact on fast oscillation
waves, and neutrinos and antineutrinos of different energies

will have the same flavor evolution in the limit of a
vanishing neutrino mass splitting.

We have used unrealistically large neutrino collision
rates in this work to illustrate their impacts. The typical
mean free path on the surface of the proto-neutron star is
about ky!' ~ 10 km, which gives ko/u ~ 107, This is
orders of magnitude smaller than the value we used even
in the weak collision scenario. Our calculations suggest that
fast neutrino oscillation waves, once produced near or
inside the surface of the proto-neutron star, can propagate
almost unimpeded outward as the neutrinos become essen-
tially free streaming outside the neutrino sphere.

In this work we have limited the time ranges of the
calculations to avoid the unphysical consequences of the
periodic boundary condition. It is possible that small
angular structures may develop on longer time scales as
they do in homogeneous models (see, e.g., Ref. [50]). We
have also assumed an arbitrary ELN distribution which
favors the production of fast oscillation waves. It remains to
be seen how the absorptions, emissions, and collisions of
neutrinos that produce the ELN crossing in the first place
may interplay with the production and propagation of the
fast neutrino oscillation waves.
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