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Abstract—In this paper, we present an approach for estimating
the leaf density of trees while navigating in a forest. To this end,
we consider an Unmanned Aerial Vehicle (UAV) equipped with
a biosonar sensor that mimics the sonar sensors of echolocating
bats. Such sensors provide a light-weight and cost-effective alter-
native to other widely used sensors such as camera, LiDAR and
are gaining popularity among the robotics research community.
The obtained echo signals during UAV navigation are processed
to obtain the leaf density in the main lobe of the sonar first
using a mel spectogram and then a Deep Convolutional Neural
Network (CNN) trained on a set of known environment. We
further evaluate our approach in simulation by considering trees
with different leaf density (that is, resolution). It is seen that our
method achieves promising results with an accuracy of 98.7%.

Index Terms—Unmanned Aerial Vehicle, Deep Convolutional
Neural Networks, Mel-Spectogram, Unknown Environment

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have been used exten-
sively in the recent past with applications spanning a variety
of areas such as surveillance, search and rescue, mapping,
and agriculture. The agility and three-dimensional mobility of
these vehicles require sensors that provide information about
the three-dimensional environment surrounding the vehicle [1].
Of late there has been an increased need for preserving rain
forests 1 and its biodiversity. UAVs offer excellent capabilities
in terms of mapping and exploring the biodiversity to harness
the much needed information towards preserving the natural
terrestrial ecosystems. In this paper, we develop an approach
for navigation of UAVs among trees, shrubs and other complex
foliage using biosonar sensors. In this regard, the echo signals

1https://www.xprize.org/articles/xprize-announces-new-10-million-
competition

are first converted to Mel-spectrogram and then fed to a Deep
Convolutional Neural Network (DCNN) to classify the tree
structure based on the leaf density (number of leaves in a
given echo).

Bats are well known to fly and navigate through naturally
complex and highly structured chaotic environments such as
bushes and trees even in complete darkness [2]; similar is the
behaviour of dolphins in the waters [3]. They achieve that
by sending a chirp signal to the environment and perceiving
the returned echo signal. Their ability to resolve two echo
signals 2 ms apart and sense objects with a precision of 0.3
mm [4] enables them to not only echolocate themselves but
also to classify objects according to their 3D structure, such
as leaves of a tree. This motivates and serves as a strong
foundation for the development of aerial robots embedded with
bio-mimetic sonars or biosonars for aerial surveillance. The
aerial navigation capability of UAVs is acquired by successful
deployment of airborne sonars able to classify and explore
complex features in chaotic environments.

Developing flying robots that mimic the sensing behavior of
bat like species has been researched in the past [5], [6]. Yet,
these works are tailored to developing mechanisms and struc-
tures which enable these robots to achieve the agility and flight
performance of bats in a mechanical perspective. However,
there is a need to address the sensing capabilities, especially
light weight sensors that aid in mapping and exploration. This
paper intends to address this gap. An overview of the proposed
approach can be seen in Fig. 1.

As discussed previously, we classify the acquired echo
signals to esimate the leaf density. State-of-the-art methods in
audio signal classification use techniques such as dictionary
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Fig. 1: The proposed pipeline. Mel-spectrogram converts the audio signal to an equivalent image. This image is then used for
feature extraction using CNN. The number of leafs in the biosonar lobe is then returned as the output.

learning [7], wavelet-filterbank [8], [9], and most recently
Convolutional Neural Networks (CNNs) [10], [11]. CNNs
provide a powerful framework for the classification and fea-
ture extraction purposes. Even though CNNs have primarily
been used primarily in the visual recognition context, CNNs
have also found applications in diverse areas of engineering
such as image processing [12], speech recognition [13]–[16],
sports analytics [17], traffic signs classification [18], pedestrian
detection [19], electron microscopy image processing [20],
house number recognition [21] and robotics [22]. CNNs are
very suited to our purpose due to 1) They capture energy
modulation precisely when they are given inputs like Mel-
spectrogram [23], 2) They are immune to noisy inputs unlike
other approaches such as Mel-Frequency Cepstral Coefficients
(MFCC) that are susceptible to noise [24].

Mel-spectrogram has been demonstrated to powerfully rep-
resent audio signals pictorially as inputs to CNNs [25]–[27].
This motivates us to use Mel-spectrogram as an input to CNN
for our purpose, that is, feature extraction from biosonar echos
in aerial robots. In particular, we use an approach similar
to that presented in [28] for estimating the tree structure,
that is, the leaf density. We first construct a Mel-spectrogram
from the echo signals of the biosonar and then use a CNN
to extract the required features of the environment. The rest
of the paper is organized as follows. Section II details the
complete methodology used to extract the number of leaves
encountered by the sensor. In Section III, we discuss our
experimental findings and the effectiveness of our method.
Section IV concludes this paper.

II. MATERIALS AND METHODS

We consider an aerial robot with the embedded biosonar that
navigates in a forest with complex foliage. We note here that
our approach is not restrictive to any particular environment
and can be readily adapted to any given environment. As
the UAV navigates, chirp signals are sent to the trees or
to other vegetation which results in echos being returned.

Algorithm 1: Deep CNN training and Validation
Result: Leaf Predictions
A. Signal Pre-processing

if Training then
1) Apply Mel-Spectogram to Inputs
2) Apply DCNN to fit the model on training data
(960 samples, 80% randomly selected)
3) Get the trained network

else
Validate the DCNN of test set of 240 samples
(20% randomly selected);

end
Make predictions and estimate model accuracy;

The echo returned consists of the reflections of chirp signal
from various number of leaves whose density we intend to
recover. An approach for simulating foliage echos that can
produce simulated echoes by mimicking bat’s biosonar has
been introduced in our previous work [29]. An approach for
simulating naturally looking trees, including their branches,
sub-branches, and leaves can be found in [30] and we use the
same approach for simulating a forest.

Fig. 1 provides an overview of our system that computes
the number of leaves in the main lobe of the UAV biosonar.
At first, the echo signal that has been sensed by the biosonar
is used to generate a Mel-spectrogram. Mel-spectrogram then
converts the audio signal to an equivalent image. This is
depicted in the figure as a heatmap where the yellow region
shows the information contained (data) and the blue region
represents the empty data areas. This heat map is then sent to
the CNN for feature extraction, which then takes this image
of sound and then applies it to the first layer of convolution
combined with Rectified Linear Unit (ReLU), followed by the
layer of pooling to prepare the data for classification. The
classification first flattens the data and further maxpools it,
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thereby resulting in the prediction of the number of leaves in
the sonar lobe.

The echo signal produced by biosonar is an outcome of the
variation in air pressure being observed over time. A sampling
rate of 44.1kHz is used to transform analog data (echo) into
digital form. However, as shown in the right column of Fig 2,
the echo signal contains several dead regions (amplitude close
to zero) between spikes which are not useful for leaves density
estimation. Therefore, we remove all the data points less than
or equal to 3× 10−4 from the echo signal to get a finer form
of input sample for representation learning.

Subsequently, we map the trimmed echo signal from the
time domain to the frequency domain using the fast Fourier
Transform considering 64 overlapping windowed segments.
We convert the color dimension (amplitude) to decibels and
map the y-axis (frequency) onto the mel scale to form the
Mel-spectrogram of echo signal (see Fig 1). The mel scale
is a non-linear transformation of frequency-scale based on the
perception of spikes, so that two pairs of frequencies separated
by some ∆ in the mel scale are perceived as being equidistant.

In this study, Mel-spectrogram represents a time-frequency
representation of an echo signal: the power spectral den-
sity P (f, t). It is sampled into a number of points around
equally spaced times t and frequencies f (on a Mel frequency
scale (1)). We do that by applying a bank of overlapping
triangular filters with frame-duration of 20 ms and hop-
duration of 10 ms that computes the energy of the spectrum in
each band (total 64 bands). The mel frequency scale is defined
as:

fmel = 2595× log10(1 +
Hz

700
) (1)

Fig. 2: The working mechanism of biosonar. The green dots
represent the leaves inside the sonar main lobe. Ultrasonic
pulses are emitted and the received echoes reflected from the
leaves are shown on the right.

CNN Parameters Values
Training Set 70%
Validation Set 15%
Test Set 15%
Batch Size 128
Optimizer adam
InitialLearnRate 1× 10−3

LearnRateDropFactor 0.1
LearnRateDropPeriod 10 epochs
MaxEpochs 30
Validation Frequency 20 Iterations
Shuffle every-epoch
dropoutProb 0.2

TABLE I: Deep CNN training Parameters used for all the 3
experiments i.e., with the resolution 5, 10, and 20.

B. Deep Convolutional Neural Network (CNN)

In deep learning, a deep Convolutional Neural Network
(CNN) is used for representation learning of visual imagery.
CNN is also known as shift invariant or space invariant
artificial neural network, because of its shared-weights archi-
tecture and translation invariant characteristics. With the aid of
deep convolutional neural networks, image understanding has
achieved remarkable success in the past few years. Notable
examples include residual networks [31] for image classifica-
tion, FastRCNN [32] for object detection, and Deeplab [33]
for semantic segmentation, to name a few.

In this work, we consider deep CNN, composed of a stack
of convolutions, biases, fully-connected layers, and various
pooling layers in which the output is a vector containing one
score per class (e.g., number of leaves in the lobe). We number
the parameterized layers of the Deep CNN L = 1, ...,M + 1.
Each layer L corresponds to a convolution or fully-connected
layer with input width IL and output width OL. In the case
of a convolutional layer, IL and OL correspond to the num-
ber of input and output channels, respectively. We consider
L = M + 1 to be the last layer of the network. Thus OM+1

is the size of the final output vector. The neural network is
trained to minimize the cross-entropy loss:

L(θ) =
1

n

n∑
i=1

l
(
y(i), f(x(i),θ)

)
(2)

where θ are the parameters of model to be learned, y(i) is the
ground truth label of example i, f(·) represents the activation
function, x(i) = {x(i)

1 , x
(i)
2 , . . . , x

(i)
m } ∈ Rm denotes a training

sample, and l is a loss measuring how well the neural network
fits the data.

Specifically, we used a 5-layer CNN where each convo-
lutional layer is followed by batch-normalization, ReLU as
non-linearity function, and Max-pooling layer with stride of 2.
To reduce the possibility of the network memorizing specific
features of the training data, we added a small amount of
dropout (0.2) to the input to the last fully connected layer.
Finally, we employ softmax as an activation function to
classify the numbers of leaves outputs.
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(a) Resolution=20, Acc=98.70% (b) Resolution=10, Acc=81.46% (c) Resolution=5, Acc=57.80%

Fig. 3: DCNN confusion Matrix.

III. RESULTS AND DISCUSSION

We consider a UAV equipped with a biosonar navigating
in a simulated forest environment. To evaluate our proposed
approach, we consider trees with varying leaf density. We vary
the number of leaves that fall inside the main lobe of the
sonar from 0 to 100 and evaluate three scenarios of different
resolution, that is 5, 10, and 20. For example in scenario 1, the
leaves are varied from 0 to 100 with an increment of 5 leaves.
Each experiment was conducted using Signal Processing, Deep
Learning, and DSP System Toolbox of MATLAB™ version
R2019b. The overall dataset comprises of 25, 200 data samples
representing 21 classes (1200 samples per class). As discussed
in Sec II-A, the dead points from raw echo signal are removed
to extract trimmed version of data samples. Consequently, echo
samples of varied lengths (see Fig. 4), each representing a
particular class, constitutes the proposed dataset. We kept the
model training parameters fixed for all the three experiments.
Each parameters and their specific details can be seen in
Table I. The procedure for training and validation is elucidated
in Algorithm 1.

However, the fixed data split ratio in each experiment
corresponds to different number of classes and total data
samples associated with it. The details are as follows,
Resolution=5. In this particular setting, we aim at classifying
input sample as either 1, 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 leaves in the
lobe. Consequently, we have 25,200 sample in total out of
which randomly picked 17640, 3780 and 3780 samples are
considered as training, validation and testing sets, respectively.
Resolution=10. In this setting, we aim at classifying input
sample as either 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or
100 leaves in the lobe. Consequently, we have 13,200 sample
in total out of which randomly picked 9240, 1980 and 1980
samples are considered as training, validation and testing sets,
respectively.
Resolution=20. Similarly, in this setting, we aim at classifying
input sample as either 1, 20, 40, 60, 80 or 100 leaves in
the lobe. Consequently, we have 13,200 sample in total out
of which randomly picked 5040, 1080 and 1080 samples are

Fig. 4: Histogram of trimmed echo signals representing dataset
used in experiments. There are total 25,200 samples represent-
ing 21 classes. The signal length is in milliseconds.

considered as training, validation and testing sets, respectively.
As shown in Fig. 3, our method showed most promising

results with the accuracy of 98.7%. When the number of true
class (leaves) are set through 1 to 40, and the resolution is
set to 20 (increment from 1 to 40 is 20), we obtain 100%
accuracy. However, as the true class is varied from 40 to 100,
accuracy drops below 100. Average accuracy for true class 1
to 100 is 98.7%. Similarly, when the resolution is set to 10,
the average accuracy when the true class is varies through 1
to 100 is 81.46%. However, if the resolution is decreased to 5,
as shown by the confusion matrix the average accuracy drops
to 57.8%.

IV. CONCLUSION

We have discussed an approach for classifying biosonar
feedback of UAVs while navigating in forest and other com-
plex foliage. The echoes are fed through a deep CNN fused
with Mel-spectogram points to extract the leaf density. In this
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way the number of leaves in the biosonar lobe is estimated.
The approach is evaluated in simulation by varying the leaf
density with different resolution. As can be confirmed from
results, the greater the number of resolution with in the training
results gives much better accuracy that is 97.80%. If resolution
number is small, the accuracy turns out to be 57.80% or lower.
Hence, for extraction of the features in the environment, we
propose to use the resolution to a higher number.
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