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Abstract—Computationally efficient optimal solutions for se-
lecting a subset of antennas to maximize the mutual information
of a MIMO channel have eluded the practitioners due to its
combinatorial nature, and the performance gap is widened
with massive MIMO. In this work, recent advances in deep
learning are leveraged to develop a deep neural network (DNN)
based receive antenna selection solution for a given problem
dimension. We detail the neural network structure and evaluate
several relevant figures of merit via numerical simulations. This
data-driven solution is shown to achieve near optimal mutual
information in simple settings, but does not scale naturally with
the problem dimension. For the practical scenario where the
number of selected antennas is unknown a priori, hybrid greedy
solutions are proposed which build on the DNN-based solution
for a given dimension and then greedily increase or decrease the
number of antennas to approximate the optimal solution of the
new problem dimension. Numerical simulations demonstrate the
effectiveness of the hybrid solutions.

I. INTRODUCTION

Deploying multiple antennas, especially at the base sta-
tions (BS) where the hardware size challenge is minimal
compared with at the user equipments (UE) and as a result
can accommodate potentially very large number of antennas,
has become a reality in contemporary wireless standards and
real-world systems [1]. However, the cost and complexity of
the transceiver design of (massive) multi-input multi-output
(MIMO) systems have become one of the key bottlenecks,
which increase substantially with the system dimension [2].

One critical component in the MIMO receiver is the in-
creased number of Radio Frequency (RF) chains — ideally
each receive antenna needs a dedicated RF chain to process
the analog and digital signals, but this can be prohibitive in
terms of energy consumption and hardware cost. One direction
in addressing this issue is to reduce the cost for each RF
chain. This has led to different solutions such as hybrid
analog-digital processing [3], low-resolution Analog-to-Digital
Converter (ADC) [4], and low-noise amplifier (LNA) [5]. On
the other hand, antenna selection (AS) aims at reducing the
number of RF chains by only selecting a subset of antennas
to process. This is a feasible alternative for reducing hardware
energy and cost, and is the main focus of this work.
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The study of AS started almost at the same time as MIMO
[6]-[8] but has gained significant interest in recent years
due to the proliferation of massive MIMO [9]-[12]. Various
performance measures and different algorithms have been
proposed in the literature. In this work, we first approach the
same AS problem by utilizing the recent advances in deep
learning, in particular deep neural networks (DNN). The idea
is to treat AS as a multi-class classification problem in machine
learning, and then to train a DNN model that learns the
nonlinear mapping from the channel conditions to the optimal
subset of antennas that maximize the mutual information. This
data-driven solution is principally different than the existing
AS solutions, which are optimization-based and model-driven.
Our approach, on the other hand, is data-driven and leverages
the plethora of recent advances in DNN. We focus on the
receive antenna selection (RAS) problem and evaluate the per-
formance of DNN-based solutions via numerical experiments,
which demonstrate their superior performance.

We then pivot to a practically important but largely over-
looked aspect of RAS — the adaptability of the problem
dimensions. Almost all of the existing solutions are non-
adaptive with the target number of antennas, and require a
pre-determined problem dimension in terms of the number
of selected antennas. However, in practice we often desire
the flexibility of changing the number of selected antennas
without re-training the DNN. We propose two simple yet
highly effective solutions for the dynamic RAS problem, called
Greedy+ and Greedy—, that combine the greedy principle
with the proposed DNN solution for a pre-determined problem
dimension. The proposed design is highly flexible in that it can
support any division between the pre-determined dimension
K and the dynamically changing dimension L (both increase
and decrease). More importantly, it can accommodate any
arbitrary solution for the pre-determined RAS problem, with
no requirement of its performance. Numerical experiments val-
idate the effectiveness of these solutions, which achieve near-
optimal performance while maintaining the required flexibility
with respect to L.

The rest of this paper is organized as follows. Section II
presents the system model and describes the static receive an-
tenna selection problem. The DNN-based solution is proposed
in Section III, and the hybrid greedy solutions are introduced
in Section IV. Finally, Section V concludes the paper.



II. SYSTEM MODEL

A standard narrowband MIMO wireless channel is con-
sidered. The transmitter is equipped with M antennas while
the receiver has a total of N antennas. The overall channel
matrix H € CV*M captures the small-scale fading effect of
the MIMO wireless channel, with the (¢, j)th element h;
denoting the complex channel coefficient between the jth
transmit antenna and the ith receive antenna. A slow-fading
channel model is assumed, in which the channel matrix H
remains constant for a duration of 7' (the channel coherence
time) and then changes independently to another value.

With all N receive antennas being utilized, the received

signal is given by
| P
y = MHX +z, (1)

where P denotes the total transmit power, x € CM*1 ig
the transmitted signal vector with normalized power, and z is
the noise vector with independent and identically distributed
(i.i.d.) complex circularly symmetric Gaussian entries with
zero mean and unit variance. The fading distribution of H
is not critical since the antenna selection utilizes the channel
realizations, but for simplicity we assume that the elements
in H are i.i.d. complex circularly symmetric Gaussian entries
with zero mean and unit variance. In reality this holds when
the transmit and receive antennas are sufficiently spaced and
the channel is rich-scattering.

This work focuses on receive antenna selection (RAS),
where the task is to select K out of the total /N antennas
(K < N) at the receiver. The reason for AS could be due
to the receiver only has K RF chains, or because of other
considerations such as power and cost limitations. We use
S = {1,---,N} = [N] to denote the set of all receive
antennas, and Sk to denote the set of indices of the selected
receive antennas with |Sx| = K.

AS depends critically on the information available to the
algorithm and the performance metric. It is assumed that the
overall channel matrix H is perfectly known at the receiver for
AS. This seems to be a very strong assumption given that the
receiver may only have K RF chains, and hence can at most
perform channel estimation on K receive antennas. In reality,
this can be handled using multiple pilot cycles and switching
the RF chains on different set of receive antennas [10], [13],
which is reasonable particularly in a slow-fading environment
[7]. For the performance metric, we consider maximizing the
mutual information for RAS [8], [10], [14]. Specifically, by
assuming that elements in x follow i.i.d. standard Gaussian
distribution, the mutual information between x and y with
antenna subset Sx can be written as

P
C(Sk) = log det (I + MHSKHTSK) ) )

We also refer to this performance measure as capacity with the
implicit understanding that this is for i.i.d. standard Gaussian
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Fig. 1. Overview of the DNN structure.

input distribution. For a given K, the RAS problem seeks to
find the optimal antenna set S that maximizes (2):

C(Sk). 3)
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III. DEEP LEARNING BASED RAS

The key component of the RAS problem in (3) is sub-
matrix selection, which is known to be NP-hard [15]. An
exhaustive search has to evaluate all (I]\(]) subsets, which is
computationally prohibitive when N is large (e.g., in massive
MIMO). More efficient methods such as branch-and-bound
(BnB) have been applied to RAS [10]. However, its complexity
depends on the channel realizations and is limited by the
hardness of the problem. As a result, it cannot eliminate the
worst-case exponential complexity.

Given the significant advance of deep learning in solving
classification problems, and the fact that AS can be viewed
as a multi-class classification problem [16], it is natural to
explore whether deep neural network (DNN) can be designed
to provide a near-optimal alternative to the aforementioned
methods. Similar attempts have been reported in radar antenna
selection to minimize the Cramér-Rao lower bound [17],
and joint multicast beamforming and antenna selection to
maximize the minimum signal to noise ratio [18].

A. DNN design

In this section, we propose to solve Problem (3) with a
DNN-based receive antenna selection method. The adopted
DNN structure is simple: it has an input layer of size 2N M+1,
an output layer of size (I]\(]) and J hidden layers with different
number of nodes in each hidden layer. The hidden layers
share a common pipeline of Rectified Linear Unit (ReLU)
activation function and batch normalization (BN), while the
output layer replaces ReLU with a Softmax function. The input
size 2N M +1 corresponds to separating the real and imaginary
parts of complex-valued entries in the channel matrix H and
the additional input value is the receive SNR P. A pictorial
view of this simple DNN with J = 6 and hidden layer sizes
of 600, 800, 1200, 2000, 1000, 600 is given in Fig. 1.

We train the DNN above for various standard RAS tasks
under the MIMO system model described in Section II. Data
samples are generated with standard i.i.d. Raleigh block-fading
channel for every h; ;, and the labels are generated via brute-
force search over all possible RAS candidates for each channel



realization. We use the standard cross entropy loss function
for training, as well as mini-batch stochastic gradient descent
with momentum. The learning rate usually is 1.0 and the
momentum rate is always 0.9.

B. Figures of merit

The performance of DNN-based RAS is evaluated under
three performance metrics. The first is the usual RAS accuracy,
which is defined as the percentage of test data samples where
the DNN output does not match the label (ground truth
obtained from brute-force search). Note that as long as there
exists at least one selected antenna that is not in the ground
truth, this output is marked as erroneous. This objective, in a
sense, is too restrictive because it is possible that two different
DNN outputs, albeit both are erroneous, have different degrees
of error (e.g., one has all selected antennas wrong, while the
other only has one such error).

We thus further evaluate two other performance metrics. The
first is called partially correct accuracy, which is defined as
the percentage of correctly selected antennas in the RAS set.
In comparison, we refer to the previous RAS accuracy as best
match accuracy. For example, if the ground truth RAS subset
is {1,2,4,5} and the DNN output is {1, 3,4, 6}, then the best
match accuracy is O while the partially correct accuracy is
50%.

The second derivative metric is the capacity loss, which is
defined as

CLQ _ Cmax cQ

Cmax

where cmax is the maximum achievable capacity under the
optimal RAS, and cg is the achieved capacity under the DNN
output antenna subset.

C. Performance evaluation

We train DNNs as described in Section III-A for three
simple MIMO RAS problems: (M, N, K) = (2,4,2), (2,8,4)
and (4,8,4). The training data has le6 samples and the
test data has leb samples for each SNR. The three figures
of merit described in Section III-B, which are evaluated by
averaging over all test data samples at each SNR, are reported
in Fig. 2. We can see that DNN-based RAS is effective for
small dimensions — if we are interesting solely in finding
the optimal subset of receive antennas, DNN RAS has an
accuracy of over 90% throughout the range of SNRs for
(2,4,2) and (2,8,4), but the accuracy decreases for (4, 8,4),
which is a more difficult problem than the previous two. On
the other hand, the partially correct accuracy characterizes the
percentage of correctly selected antennas in the RAS set, and
we note that across all problem dimensions the DNN-based
method outputs accuracies between 91% and 99%. Lastly, the
capacity loss directly measures the impact of RAS on the
MIMO system utility, and we observe from Fig. 2(c) that
the DNN-based solution is extremely effective — the largest
percentage of capacity loss is less than 0.35%, across all SNR
ranges and all problem dimensions.

D. Enhancement

One interesting question that originates from the previous
numerical results is that whether the excellent performance
obtained by the DNN-based RAS design can be maintained
when we reduce the DNN model size. This is a practically
important aspect because smaller models require less storage
and less computation. We have evaluated six different DNN
model configurations as summarized in Table I, where model 1
corresponds to the previous model used in the simulation and
models 2 to 6 are reduced-size ones. We note that models 1, 2,
5, 6 still have comparable sizes, while models 3 and 4 are of
much smaller sizes. We carry out a numerical simulation where
we fix the problem dimension to be (4,8,4) and train each
model across a set of SNRs the same way as in the previous
experiment. We then report the average performance against
the training epochs for all SNRs in Fig. 4 for the six models in
Table I in order to evaluate their convergence behavior. Clearly,
two of the smallest models perform poorly, suggesting that the
model size does matter. However, models 2, 5 and 6 perform
competitively with model 1, which also suggests that there is a
reasonable tradeoff of reducing the model size and decreasing
the RAS performance — we see that model 6 can have almost
the same performance as model 1 but with only half of the
model parameters. We also note that for models with similar
number of parameters, the specific structure does not affect
the performance noticeably.

TABLE I
STRUCTURE OF SIX DNN MODELS.

No. Hidden Floating-Point

Model Index Layers No. Nodes Model Size
600, 800, 1200,

! 6 2000, 1000, 600 26.3 MB
600, 800, 1200,

2 5 1000, 600 13.4 MB

3 3 100, 200, 200 37T KB
100, 200, 200, 200,

4 8 200, 200, 200, 100 | -1 MB

5 3 1000, 2000, 1000 | 16.6 MB
800, 900, 900,

6 6 900, 900, 800 16.0 MB

IV. RAS VIA GREEDY ADAPTATION

The previous section studies how to obtain a near-optimal
RAS solution using DNN, and we have seen from the
simulation results that this approach is generally effective
for a given K. A significant limitation of the DNN-based
solution, however, is that any trained DNN only works for
a pre-determined K. It does not scale with K in a natural
way — even if we are given a well-trained DNN that can
approximate S, very well, it is unclear how to find a good
solution of S% , ; (the (M, N, K + L) problem) or S7_ (the
(M,N, K — L) problem) based on Sk that approximates S,
in a computationally efficient way. This problem is practically
relevant since the actual number of RF chains may not be
known prior to the offline DNN training. State-of-the-art DNN
is not adaptive with respect to the number of classes in the
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Fig. 2. Average performance of DNN RAS under different metrics.
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Fig. 3. Average performance of six different DNN models for RAS.

classification task. However, for the RAS problem, we need the
flexibility of changing the number of selected receive antennas
after the DNN has been trained offline for a fixed (M, N, K).
One possible solution for the adaptation problem is to
train a set of DNNs, each covering one possible (M, N, K).
This, however, requires much more offline computation as
well as on-board storage. Ideally, we would like to have
an offline well-trained DNN, which may have high offline
complexity but can output near-optimal S}, and then use a
low-complexity online algorithm that builds on the offline K-
solution to get a good (M,N,K + L) or (M,N,K — L)
solution. Formally, we want to solve the following problem:

Increase:
Decrease:

= arg maXSQS,\S\:K-ﬁ-L C(S)a
= argmaxgscs,|S|=K—L C(S)v

Sicir
5 4
S, “4)

with a given (possibly approximate) solution Sk to Prob-
lem (3).

A. Greedy adaptation for K + L

We first propose Greedy+ to solve the incrementally
mismatched RAS problem, which is compactly described in
Algorithm 1. It is not a surprise that the greedy principle is
adopted for an approximation algorithm for K + L, as greedy
search algorithms have been well studied in both RAS [6],
[14] and transmit antenna selection [12], [19]. In particular,
Vaze and Ganapathy [14] have proved that RAS with objective
function (2) falls into the monotone submodular function

maximization (SFM) category, which has been widely studied
[20]. This is an important observation because there exists a
rigorous performance guarantee for SFM: the simple greedy
algorithm, which maximizes per-step mutual information gain,
achieves (1 — 1/e) fraction of the optimal RAS [21] with a
polynomial-time complexity.

Algorithm 1: Greedy+
Imput: H, (M,N,K), P, L: N-K >L>0, Sk
Initialize: Sk, = Sk, V = [N]
for t < 1 to L do
r < argmaxyey (C(Sx 41 U {0}) — C(Sk 1)

SK+L — SK+L U {.’E}
end

Output: Sk,

B. Greedy adaptation for K — L

The dual problem of Section IV-A is that if we are given
a solution of Sk that approximates S7., how can we find a
computationally efficient solution to approximate S _;. The
proposed Greedy—, which is a dual version of Algorithm 1, is
given in Algorithm 2. The idea of Greedy- is the opposite of
Greedy+: starting from S, one always removes the element
that has the least impact of capacity reduction. Such reverse-
greedy operation is intuitive and easy to implement.



Algorithm 2: Greedy-
Imput: H, (M,N,K), P, L: K > L >0, Sk
Initialize: Sx_; = Sk, V = Sk
for t < 1 to L do
x + argmin, ey (C(Sk—r) — C(Sk-\{v}))

SKfL < SK,L\{Z'}
end

Output: Sk _1,

Greedy+, [M, K, L] = [4, 2, 2] and varying N Greedy-, [M, K, L] = [4, 4, 2] and varying N
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Fig. 4. Greedy+ (a) and Greedy- (b) for varying N.

C. Performance evaluation

We now evaluate the hybrid Greedy+/- designs in the
same MIMO RAS problem, using the same system described
in Section II. We focus on evaluating the capacity loss, which
is with respect to the optimal solution of S%-, ; or S, by
invoking the Greedy+/~ algorithms with S, . Figs. 4(a) and
4(b) present the numerical results for K + L (Greedy+) and
K — L (Greedy-), respectively. We note that the RAS tasks
here are more difficult than the ones in the DNN simulations of
Section III-C due to a larger MIMO dimension N, so that we
can evaluate the hybrid designs in a more practical, massive-
MIMO-representative setting. The capacity losses reported in
Fig. 4 are less than 0.7% for all SNRs and all receive antennas
N, indicating that this hybrid method, which starts from an
(M, N, K) solution and then greedily increases (or decreases)
the antennas by maximizing (or minimizing) the per-step
capacity gain (or loss) achieves almost the same performance
as the optimal solution for K + L (or K — L).

V. CONCLUSIONS

This paper made two contributions to the MIMO receive an-
tenna selection problem. First, we have proposed a deep neural
network based RAS solution that deviates from the existing
model-driven, optimization-based approaches. The impact of
model sizes to the RAS performance is also evaluated. Second,
we have addressed the dynamic RAS problem where a good
solution for a pre-determined K is given, but the actual prob-
lem may require selecting more (or fewer) than K receive an-
tennas. The proposed Greedy+/— solutions are very flexible
and can work with any pre-developed RAS solution for a given
problem dimension (M, N, K) to achieve a low-complexity
near-optimal RAS solution for (M, N, K + L). Numerical

simulations are carried out to validate the effectiveness of the
proposed solutions.
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