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Abstract—A distributed approach is proposed to the prob-
lem of signal-to-interference-plus-noise-ratio (SINR)-guaranteed
power minimization (SGPM) for multicell multiuser (MCMU)
multiple-input multiple-output (MIMO) systems. Unlike prior
SGPM approaches, the proposed technique is based on solving
necessary and sufficient optimality conditions, which are derived
by decomposing the original problem into forward and backward
(FB) subproblems, while ensuring the strong duality of each
subproblem. The proposed distributed SGPM algorithm makes
use of FB adaptation and Jacobi recursion, respectively, for
iterative filter design and power allocation. A sufficient condition
for the feasibility of the proposed distributed algorithm is
analyzed, based on the matrix inverse-positive theory. Unlike
the existing fully distributed FB filter update algorithms, the
proposed approach guarantees target SINR performance as well
as its convergence to a stationary point. Simulation results
illustrate the enhanced power efficiency with the performance
guarantees of the proposed method compared to the existing
distributed techniques.

Index Terms—Multiple-input multiple-output (MIMO) net-
work, performance-guaranteed power minimization, forward-
backward (FB) iteration, Jacobi recursion.

I. INTRODUCTION

The deluge of wireless data traffic catalyzed by the growing
number of data-intensive devices has motivated the deploy-
ment of small-cells in fifth-generation (5G) networks [2]–[4].
Simultaneously, as spectrum dedicated to wireless commu-
nications continues to be in high demand, dense small-cell
deployment in sub-28 GHz millimeter wave (mmWave) bands1

becomes increasingly important [5]–[7]. Unlike the above-28
GHz spectrum, in sub-28 GHz bands, fully digital processing
is feasible and dense urban channels follow Rayleigh/Rician
fading [8]. Thus, in both sub-6 GHz and sub-28 GHz mmWave
bands, interference is still a limiting factor [7], [9] and poses
challenges as accumulated intra-cell and inter-cell interference
can severely deteriorate the link quality.

An approach to addressing the interference issue is em-
ploying advanced multiple-input multiple-output (MIMO) pre-
coding techniques in order to maximize the network sum
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1In 5G, sub-28 GHz bands, e.g., X-band (8–12 GHz), Ku-band (12–18
GHz), and Ka-band (24–28 GHz) have been popularly discussed.

rate [7], [10]–[12]. However, these approaches do not provide
user-wise quality of service (QoS) guarantee because sum-
rate maximization often results in unexpected interference
amplification. Reducing or turning off the transmit power of
strong users can effectively mitigate the interference [13], [14].
A drawback of such approaches is insufficient utilization of
the available degrees of freedom. A rather prudent strategy is
minimizing the transmit power while guaranteeing a certain
level of quality of service (QoS) for each user [15]. In this
category, the designs of MIMO precoders and/or combiners
that minimize the total transmit power subject to signal-
to-interference-plus-noise-ratio (SINR) constraints have been
popularly studied [15]–[27]. We refer to the latter strategy as
SINR-guaranteed power minimization (SGPM). The SGPM
problem in MIMO is non-convex, so it is not directly solvable.

Optimal approaches to SGPM have been studied for single-
user MIMO systems, based on the application of the majoriza-
tion theorem [16], second-order-cone programming (SOCP)
[17], and uplink-downlink (UD) duality2 [17]. It is possible to
extend UD duality and SOCP to multicell multiuser (MCMU)
MIMO beamforming scenarios [18], which can be solved by
primal decomposition [24], [25], dual decomposition [26],
or more advanced alternating direction method of multipliers
[27]. However, UD duality and SOCP only hold when the
receive combiner is held fixed. Once joint precoder and com-
biner design is involved, UD duality and SOCP does not hold
[19], and the above algorithms [17], [18], [24]–[27] cannot
be directly extended. Hence, many have turned to iterative
heuristics that combine SOCP (or UD duality) with separate
combiner design algorithms [19], [21]–[23]. Although the
convergence to the first-order necessary Karush-Kuhn-Tucker
(KKT) conditions has been presented [23], the sufficient and
necessary optimality conditions of MCMU MIMO SGPM have
not been fully addressed. Therefore, in this paper, we establish
the sufficient and necessary optimality conditions of SGPM
when joint precoding and combining are considered.

Global channel state information (CSI) was a prerequisite
of prior SGPM techniques for power allocation [18]–[23].
In practice, a large fraction of MCMU MIMO networks
will not have access to global CSI. This has motivated the
investigation of fully distributed MCMU MIMO precoding
and combining techniques [7], [13], [14], [28]–[30] that rely
only on local CSI available at each communication end. They

2UD duality refers to the situation when the primal downlink SGPM
problem shares the same set of SINR values as the dual uplink SGPM problem.
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employ forward and backward (FB) iteration to update the
combiners in the downlink and the precoders in the uplink,
based on the channel reciprocity in time division duplexing
(TDD). They can resort to tractable subproblem formulations,
such as maximum (max)-SINR [13], [28], interference leakage
minimization (ILM) [14], [28], and weighted minimum mean
square error (WMMSE) [29], [30] subject to user-wise power
constraints. Except for max-SINR [13], [28], the convergence
of FB ILM [14], [28] and WMMSE [29], [30] has been
established. However, the lack of user-wise QoS guarantees
is a major drawback.

Some recent research on distributed power minimization has
addressed QoS guarantee such as per-user rate constraints [24].
By relaxing the original problem to tractable convex programs,
the work in [24] established the objective convergence of the
proposed distributed algorithm. In [24], both precoding and
combning were also jointly considered. However, optimality
and feasibility conditions have not been identified. The fea-
sibility of distributed power minimization is determined by
the target QoS values that must be set prior to iterate the
algorithm. If these values are improperly set, the algorithm
can return non-positive power values.

In this paper, we propose a fully distributed SGPM frame-
work for MCMU MIMO precoding and combining systems.
We establish the optimality conditions of the MCMU MIMO
SGPM problem and based on these, derive a fully distributed
SGPM algorithm and its feasibility conditions, which relies
on local CSI while providing QoS guarantees. We begin
by decomposing the original SGPM problem into forward
and backward non-convex subproblems and show that strong
duality holds for each subproblem. Obtaining the necessary
and sufficient optimality conditions of each subproblems, it
can be readily shown that the joint optimality conditions of the
forward and backward subproblems are indeed equivalent to
those of the original SGPM problem. Our proposed distributed
FB SGPM algorithm is centered on solving these optimality
conditions.

In particular, the proposed algorithm makes use of Jacobi
recursion [31] for the power allocation in conjunction with the
FB precoder and combiner adaptation to iteratively solve the
optimality conditions. The Jacobi method refines the transmit
power values by leveraging one scalar feedback introduced
between the users and base stations (BSs). We provide a
distributed approach to predetermine the target SINR values
at each communication end to satisfy feasibility based on
the application of the matrix inverse-positive theory [32],
[33]. The convergence to a stationary point of the proposed
distributed algorithm is established according to the first-
order stationary conditions. Any target SINR value chosen to
meet the feasibility condition ensures the convergence of the
proposed algorithm to a stationary point.

We numerically demonstrate substantially enhanced power
efficiency and QoS guarantees of the proposed algorithm,
especially, for dense small-cell networks. It is revealed that the
proposed technique combines the best features of both prior
SGPM strategies [15]–[23] and fully distributed methods [7],
[13], [14], [28]–[30] while addressing their individual draw-
backs. Possible variations of the proposed distributed algo-

rithm are also presented by extending the proposed technique
to the distributed rank adaptation (RA) and QoS adaptation
(QA).

In this paper, we have approached the problem of MCMU
MIMO SGPM transceiver design from a linear-transceiver-
optimization point-of-view, with a primary focus on establish-
ing the optimality conditions and the feasibility guarantee. Re-
cently, there has been active development of general non-linear
transceiver design such as widely linear transceiver [34], time-
sharing [35], [36], and rate-splitting [37], [38]. These non-
linear approaches can lead to improved QoS with moderately
increased complexity especially in the interference-limited
regime. Moreover, they are flexible to be combined with linear
precoding to inspire further improved methods in different
scenarios [39]. Investigation of ways of introducing non-linear
structure to the proposed SGPM to refine performance and
feasibility is an interesting topic for future work.

The rest of the paper is organized as follows. In Section
II, the system model and preliminaries are present. In Section
III, the SGPM subproblem formulations and their optimality
analysis are enunciated. Section IV devises the distributed
SGPM algorithm. Section V presents the convergence analysis.
In Section VI, we discuss several practical issues of the
proposed algorithm. The numerical simulation results and the
concluding remarks are presented in Section VII and Section
VIII, respectively.

Notation: A bold lower case a is a vector, a bold upper case
A is a matrix. A(u, v) is the uth row and vth column entry
of A. 1M ∈ RM×1, 000M×N ∈ RM×N , and IM ∈ RM×M are
the all-one column vector, all-zero matrix, and M-dimensional
identity matrix, respectively. We denote, respectively, ‖A‖F ,
‖A‖∞, ‖A‖, A∗, tr(A), and rank(A) as the Frobenius norm,
infinity norm that is defined by maxu

∑
v |A(u, v)|, arbitrary

induced matrix norm, conjugate transpose, trace of A, and
rank of A. ν1:d(A) extracts the first d dominant eigenvectors
of A. ρ(A) = maxi |λi(A)| is the spectral radius of A with
λi(A) being the ith eigenvalue of A. R(A) is the range space
of A. R+ is the set of non-negative real numbers and �
denotes an elements-wise vector or matrix inequality.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we discuss the system model and prob-
lem formulation under consideration. We also introduce the
inverse-positive matrix theory [32], [33] and derive some
preliminary results, which will be used in the rest of the paper.

A. System Model

Consider a MCMU MIMO small cell network consisting
of L cells with each cell having one base station (BS) that
simultaneously serves K users. We assume channel reciprocity
in the TDD setting. Users and BSs are equipped with M
and N antennas, respectively. We use the notation `k to
denote the kth user in the `th cell where k ∈ {1, ...,K}
and ` ∈ {1, ..., L}. Both downlink (forward direction) and
uplink (backward direction) transmission are considered. The
downlink signal model is first presented.
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1) Forward Direction: The received signal in the downlink
at user `k is modeled as

y
(DL)
`k

= H`k,`Ṽ`ks
(DL)
`k

+
∑
ij 6=`k

H`k,iṼijs
(DL)
ij

+n
(DL)
`k

, (1)

where H`k,i ∈ CM×N is the channel from BS i to user `k
and n

(DL)
`k

∈ CM×1 is the noise vector at user `k with each
entry being an independent and identically distributed (i.i.d.)
zero mean and σ2 variance Gaussian random variable, i.e.,
n

(DL)
`k

∼ CN (0, σ2IM ). Ṽ`k ∈ CN×d is the linear precoder
for user `k, where d is the number of data streams. It can
be decomposed to Ṽ`k =

√
α`kV`k , where α`k ∈ R+ is the

transmit power value and ‖V`k‖F = 1. s(DL)
`k

∈ Cd×1 is the
signal vector and follows s(DL)

`k
∼CN (0, Id). The second term

on the right hand side (r.h.s.) of (1) corresponds to the intra-
and inter-cell interference at user `k. A linear combiner U`k ∈
CM×d is employed at user `k to restore s

(DL)
`k

from y
(DL)
`k

such that ŝ
(DL)
`k

= U∗`ky
(DL)
`k

. The rank of V`k and U`k is
assumed to be d, i.e., rank(V`k) = rank(U`k) = d. Under
the assumption that joint encoding is used across streams for
each user, joint decoding of each user’s streams is used at the
users, and interference is treated as noise, the Shannon rate of
user `k is

R`k = log
∣∣Id + U∗`kR`kU`k(U∗`kQ`kU`k)−1

∣∣ , (2)

where R`k , H`k,`Ṽ`k

(
H`k,`Ṽ`k

)∗
and Q`k ,∑

ij 6=`k H`k,iṼij

(
H`k,iṼij

)∗
+ σ2IM denote the desired

signal and the interference-plus-noise covariance matrices of
user `k, respectively.

We define the SINR as the sum signal power across user
`k divided by the sum interference power. Then, the downlink
SINR of user `k is expressed as

γ
(DL)
`k

=
α`k

∥∥U∗`kH`k,`V`k

∥∥2

F∑
ij 6=`k αij

∥∥U∗`kH`k,iVij

∥∥2

F
+ σ2 ‖U`k‖

2
F

, (3)

which is invariant to power-scaling Ù
k
. Without loss of

generality, we assume ‖U`k‖F = 1. The downlink SINR in
(3) has a direct relation to the Shannon rate defined in (2) as

R`k ≥ log(d(1 + γ
(DL)
`k

)), (4)

whose proof can be found in Appendix A.
2) Backward Direction: In the uplink, the users become

the transmitters and the BSs become the receivers. Then, the
conjugate uplink signal received at BS ` is modeled by

y
(UL)
`k

=H∗`k,`Ũ`ks
(UL)
`k

+
∑
ij 6=`k

H∗ij ,`Ũijs
(UL)
ij

+n
(UL)
`k

,

where Ũ`k =
√
ω`k U`k and ω`k ∈ R+ is the uplink transmit

power. Other notations are defined in the same manner as the
downlink. Similarly, we can express the uplink SINR of user
`k at BS ` as

γ
(UL)
`k

=
ω`k
∥∥V∗`kH∗`k,`U`k

∥∥2

F∑
ij 6=`k ωij

∥∥V∗`kH∗ij ,`Uij

∥∥2

F
+ σ2

∥∥V`k

∥∥2

F

. (5)

We assume local CSI is available at each end. This

means that user `k has knowledge of the effective chan-
nel matrix H`k,`Ṽ`k and the receive covariance matrix∑
ij
H`k,iṼijṼ

∗
ij
H∗`k,i + σ2IM . Similarly, the BS ` has

knowledge of its effective channels
{
H∗`k,`Ũ`k

}K
k=1

and the
receive covariance matrix

∑
ij
H∗ij ,`ŨijŨ

∗
ij
Hij ,` + σ2IN .

We employ distributed FB iteration [7], [13], [14], [28]–
[30] to iteratively update the combiners in the downlink and
the precoders in the uplink. There are instantaneous and error-
free feedback links between a BS and its serving users. Each
feedback link transfers a scalar parameter per channel use and
will be utilized for the distributed power allocation devised in
Section IV.

B. Inverse-Positive Matrix Theory

The inverse-positive matrix theory [32], [33] is a key tool
that we will use to characterize the feasibility of the proposed
problem. Suppose a real linear system

Fx = b, (6)

where F ∈ Rn×n, x ∈ Rn×1, and b ∈ Rn×1
+ ∩R(F). We first

present some definitions.
Definition 1 (Inverse-positive Matrix): A square matrix F

is said to be inverse-positive if F−1 exists and F−1 � 000n×n.
If F is inverse-positive, the system in (6) has a non-negative
solution x = F−1b � 000n×1.

Definition 2 (Z-matrix): A square matrix F whose off-
diagonal elements are non-positive, i.e., F(u, v) ≤ 0 for
u 6= v, is called a Z-matrix.

Definition 3 (Positive Regular Splitting): If a square matrix
F can be divided into F = D −C, where D � 000n×n, C �
000n×n, and D is inverse-positive such that D−1 � 000n×n, the
decomposition F = D−C is called positive regular splitting.

It is shown in [33] that if F is a Z-matrix, there exists
a positive regular splitting F = D − C = (I − CD−1)D.
Because D is inverse-positive, so is F if and only if I−CD−1

is inverse-positive, which is closely related to the spectral
radius of the positive matrix CD−1 � 000n×n.

Theorem 1 ([33]): Let F = D − C be a positive regular
splitting. Then, the following three statements are equivalent:
(i) F is inverse-positive; (ii) ρ(CD−1) < 1; (iii) there exists
a non-negative solution x � 000n×1 of (6).

Theorem 1 reveals that if F is a Z-matrix, showing that
F = D − C is an inverse-positive matrix is equivalent to
verifying either (ii) or (iii). While a sufficient condition for
Theorem 1 has been identified in [40] where its proof relies on
stochastic matrix analysis and PF theorem [41], this sufficient
condition can be tractably indentified using a simple spectral
radius bound as shown below.

Lemma 1 ([40]): Let a square matrix F be a Z-matrix with
positive diagonal elements. Then, if F is strictly diagonal
dominant (SDD), i.e., |F(u, u)| >

∑
v 6=u
|F(u, v)|, ∀u, F is

inverse-positive.
Proof: Because F is a Z-matrix with positive diagonal

elements, there exists a positive regular splitting F = D−O,
where D � 000n×n is the diagonal matrix sharing the same
diagonal elements as F, and O � 000n×n has the zero diagonal
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elements and is formed by taking the absolute value of the
off-diagonal elements of F. We need to show that if F is
SDD, then ρ(OD−1) < 1 by Theorem 1. If F is SDD,
i.e., D(i, i) >

∑
j O(i, j), it follows ‖D−1O‖∞ < 1. Then,

invoking a bound ‖D−1O‖∞ ≥ ρ(D−1O) and the equality
ρ(D−1O) = ρ(OD−1) leads to ρ(OD−1) < 1. This com-
pletes the proof.

Lemma 1 is useful because it characterizes an inverse-
positive matrix without computing its spectral radius (the
condition (ii) in Theorem 1). Leveraging Lemma 1 is the key to
obtaining the feasibility condition of the proposed distributed
algorithm in Section IV.

C. General Statement of Technique

We let ξ`k > 0 be the target downlink SINR value of user
`k. The MCMU MIMO SGPM problem is then formulated as

min
{V`k

},{U`k
},{α`k}

∑
`k

α`k

subject to γ
(DL)
`k

({α`k}, {V`k},U`k)≥ξ`k , ∀`k,
(7)

where γ(DL)
`k

(
{α`k}, {V`j},U`k

)
is the downlink SINR in (3)

expressed in terms of {α`k}, {V̀k
} and Ù

k
. The problem in

(7) jointly optimizes the precoders, combiners, and transmit
power values by minimizing the total transmit power budget
subject to the downlink SINR constraints.

As mentioned in Section I, UD duality does not hold for
the problem in (7). Our goal is to devise a fully distributed
and feasible framework that is based on solving the optimality
conditions of (7). This will require stringent analysis to
characterize the optimality criteria of (7). Moreover, the aimed
distributed SGPM must choose the target SINR values {ξ`k}
relying on local CSI to ensure its feasibility. The challenge is
the coupled nature of (7) does not allow for amenable analysis.
As we will see in the next sections, the key to address the
challenges lies in how to alter the original problem in (7) to
get tractable subproblems that admit analysis.

III. OPTIMALITY CONDITIONS

In this section, the original problem in (7) is decomposed
into forward and backward SGPM subproblems, and the opti-
mality conditions of (7) are obtained, based on the combined
analysis of the two subproblems. The forward subproblem is
discussed first.

A. Forward SGPM Subproblem

We fix the precoders {V`k} and reformulate the problem in
(7) in terms of the combiners {U`k} and the transmit power
values {α`k}, yielding the forward SGPM subproblem:

min
{U`k

},{α`k}

∑
`k

α`k

subject to γ
(DL)
`k

({α`k},U`k) ≥ ξ`k , ∀`k.
(8)

Even though the precoders {V`k} are fixed, (8) is still non-
convex. This is in contrast with the prior work [17]–[23],
in which the optimization was with respect to the precoders

{V`k} and transmit power values {α`k}, in which the problem
is separable and thus can be optimally solved, for example, by
using a SOCP framework.

Though non-convex, strong duality holds for the forward
SGPM in (8) and hence the optimality conditions are available,
which is formally stated in the following theorem.

Theorem 2: If the primal problem (8) is feasible, the strong
duality of (8) holds and the optimal solution obeys the
following fixed-point equations:( ∑

ij 6=`k
αijH`k,iVijV

∗
ijH

∗
`k,i

+σ2IM

−α`k
ξ`k

H`k,`V`kV
∗
`k
H∗`k,`

)
U`k =000M×d, ∀`k, (9)

and

tr

(
U∗`k

( ∑
ij 6=`k

αijH`k,iVijV
∗
ij
H∗`k,i + σ2IM

−α`kξ`k H`k,`V`kV
∗
`k
H∗`k,`

)
U`k

)
= 0, ∀`k. (10)

Proof: See Appendix B.

B. Backward SGPM Subproblem

In the uplink, the backward SGPM subproblem is formu-
lated by fixing {U`k} in the uplink SINR in (5) as

min
{V`k

},{ω`k}

∑
`k

ω`k

subject to γ
(UL)
`k

({ω`k},V`k) ≥ ξ`k , ∀`k.
(11)

The exact same strong duality as Theorem 2 holds for the
backward subproblem in (11). Its optimality conditions are
summarized below.

Corollary 1: If the backward SGPM subproblem in (11)
is feasible, the strong duality of (11) holds and its optimal
solution satisfies the following fixed-point equations:( ∑

ij 6=`k
ωijH

∗
ij ,`UijU

∗
ijH

∗
ij ,` + σ2IN

−ω`k
ξ`k

H∗`k,`U`kU
∗
`k
H`k,`

)
V`k =000N×d, ∀`k (12)

and

tr

(
V∗`k

( ∑
ij 6=`k

ωijH
∗
ij ,`

UijU
∗
ij
H∗ij ,` + σ2IN

−ω`kξ`k H
∗
`k,`

U`kU
∗
`k
H`k,`

)
V`k

)
= 0, ∀`k (13)

The proof of Corollary 1 follows the exact same procedure
as the proof of Theorem 2, so we omit it. The forward and
backward subproblems are coupled and related to the original
SGPM problem in (7). Regarding their joint optimality to the
original problem, we have the following theorem.

Theorem 3: If the SGPM problem in (7) is feasible, the op-
timal solution of (7) coincides with the joint optimal solution
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of the forward and backward SGPM subproblems in (8) and
(11), respectively. Solving for the joint optimality conditions
(9)–(10) and (12)–(13) leads to an optimal solution to the
original SGPM problem in (7).

Proof: See Appendix C.
Theorem 3 reveals that solving the original SGPM problem

in (7) is equivalent to solving for the fixed-point conditions
in (9)–(10) and (12)–(13). However, closed-form solutions
satisfying (9)–(10) and (12)–(13) are difficult to obtain due to
unresolvable coupling. Moreover, directly solving (9)–(10) and
(12)–(13) demands centralized approaches with global CSI,
which is impractical. As previously mentioned, the goal of
this work is to develop a fully distributed framework, based
on solving the optimality conditions in (9)–(10) and (12)–
(13). The coupling among {V`k}, {U`k}, {α`k}, {w`k} and
the local CSI requirement make distributed FB iteration, also
known as block coordinate descent (BCD), an ideal approach
to iteratively solve for the variables in (9)–(10) and (12)–(13).

IV. DISTRIBUTED SGPM
Based on the analysis in Section III, we devise in this

section a distributed FB SGPM algorithm with a feasibility
guarantee. The overall FB iteration structure is introduced first
and detailed algorithmic descriptions follow afterward.

A. FB Iteration Structure
We let n be the FB iteration index. At the first FB iteration

n = 1, the algorithm initializes the parameters {V(0)
`k
},

{U(0)
`k
}, {α(0)

`k
}, and {ω(0)

`k
}, and determines the feasible target

SINR values {ξ`k}. At each FB iteration, the algorithm solves
for the forward optimality conditions (9) and (10) in the
downlink and the backward optimality conditions (12) and (13)
in the uplink. Assuming that {V(n−1)

`k
}, {U(n−1)

`k
}, {α(n−1)

`k
},

and {w(n−1)
`k

} have been designed at the (n−1)th FB iteration,
we focus on the nth FB iteration, in which {V(n)

`k
}, {U(n)

`k
},

{α(n)
`k
}, and {w(n)

`k
} are optimized by solving the following

subproblems:
(F1) Fix the precoders {V(n−1)

`k
} and downlink power val-

ues {α(n−1)
`k

}, users optimize the combiners {U(n)
`k
}

to satisfy (9) in the downlink;
(P1) Fix the combiners {U(n)

`k
} and precoders {V(n−1)

`k
},

users optimize the downlink power values {α(n)
`k
} to

satisfy (10) in the downlink and feed them back to
the BSs;

(F2) Fix the combiners {U(n)
`k
} and uplink power values

{ω(n−1)
`k

}, BSs optimize the precoders {V(n)
`k
} to

satisfy (12) in the uplink;
(P2) Fix the precoders {V(n)

`k
} and combiners {U(n)

`k
},

BSs optimize the uplink power values {ω(n)
`k
} to

satisfy (13) in the uplink and feed then back to the
users.

A conceptual diagram of the proposed FB iteration is present
in Fig. 1. In what follows, we give detailed algorithmic
descriptions for (F1), (P1), (F2), and (P2). We first discuss
the combiner design (F1) and downlink power allocation (P1)
in the forward iteration.
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Fig. 1. Block Diagram of the proposed algorithm for the FB iteration.

B. Forward Iteration

1) Combiner Design (F1): The combiner obeying (9) does
not admit a unique solution. For instance, if U

(n)
`k
∈ CN×d

with rank(U
(n)
`k

) = d satisfies (9), right multiplication of
U

(n)
`k

with ΨΨΨ ∈ Cd×d, i.e., U
(n)
`k

ΨΨΨ, where rank(ΨΨΨ) ≤ d,
also satisfies (9). However, U

(n)
`k

ΨΨΨ fails to resolve the d

distinct streams because rank(U
(n)
`k

ΨΨΨ) ≤ d. To decouple
the d distinct streams, we assume full-rank filters. Then, the
following lemma provides the solution to (F1).

Lemma 2: Suppose the problem (F1) in the nth FB itera-
tion:

find U
(n)
`k

subject to
(−→
Q

(n)
`k
− 1

ξ`k

−→
R

(n)
`k

)
U

(n)
`k

= 000M×d,

‖U(n)
`k
‖F = 1, and rank

(
U

(n)
`k

)
= d, ∀`k,

(14)

where
−→
Q

(n)
`k

,
∑
ij 6=`k H`k,iṼ

(n−1)
ij

(
H`k,iṼ

(n−1)
ij

)∗
+

σ2IM and
−→
R

(n)
`k

, H`k,`Ṽ
(n−1)
`k

(
H`k,`Ṽ

(n−1)
`k

)∗
are the

interference-plus-noise and the desired signal covariance
matrices of user `k, respectively, where Ṽ

(n−1)
ij

=√
α

(n−1)
ij

V
(n−1)
ij

. We let the Cholesky decomposition of
−→
Q

(n)
`k

be
−→
Q

(n)
`k

, L∗L, where L ∈ CM×M is an upper triangular
matrix. The optimal solution of (14) is then given by

U
(n)
`k

?
=

L−1ν1:d

(
(L∗)−1−→R(n)

`k
L−1

)
∥∥∥L−1ν1:d

(
(L∗)−1

−→
R

(n)
`k

L−1
)∥∥∥

F

, ∀`k, (15)

where ν1:d(A) extracts the first d dominant eigenvectors of a
symmetric matrix A.

Proof: See Appendix D.
Note that the constraint ‖U(n)

`k
‖F = 1 in (14) makes (15)

invariant to ξ`k . Moreover, the first constraint of (14) is a
generalized eigenvalue problem, which can be equivalently
formulated as the Rayleigh quotient problem

max
U

(n)
`k

γ
(DL)
`k

(
{α(n−1)

`k
},U(n)

`k

)
subject to U

(n)
`k

∗−→
R

(n)
`k

U
(n)
`k

diagonal,

(16)

whose solution is also (15) [42, Algorithm 8.7.1]. Due to this
equivalence and the SINR maximization criterion in (16), we
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conclude that U(n)
`k

?
does not decrease the downlink SINR and

γ
(DL)
`k

(
{α(n−1)

`k
},U(n−1)

`k

?)
≤ γ(DL)

`k

(
{α(n−1)

`k
},U(n)

`k

?)
. (17)

The monotonicity in (17) will be useful when characterizing
the feasibility of the power allocation.

2) Downlink Power Allocation (P1): To facilitate a dis-
tributed implementation of (P1), we propose the following
power update structure

α
(n)
`k

= δ
(n)
`k
α

(n−1)
`k

, (18)

where δ(n)
`k
∈ R+ is a power scaling factor to be optimized to

satisfy (10). For notational simplicity, we define the downlink
precoding and combining factor as

β
`k,(n)
ij ,(n−1) ,

∥∥(U(n)
`k

)∗
H`k,iṼ

(n−1)
ij

∥∥2

F
. (19)

Then (10) can be rewritten as

δ
(n)
`k
β
`k,(n)
`k,(n−1)∑

ij 6=`k δ
(n)
ij
β
`k,(n)
ij ,(n−1) + σ2

= ξ`k , ∀`k. (20)

Collecting the LK equations in (20) yields

A
(n)
(n−1)a

(n) =q, (21)

where q = σ2[ξ11 , ξ12 , . . . , ξLK ]T ∈ RLK×1, a(n) =

[δ
(n)
11
, δ

(n)
12
, . . . δ

(n)
LK

]T ∈ RLK×1, and

A
(n)
(n−1)=


β

11,(n)
11,(n−1) −β

11,(n)
12,(n−1)ξ11

· · · −β11,(n)
LK ,(n−1)ξ11

−β12,(n)
11,(n−1)ξ12

β
12,(n)
12,(n−1) · · · −β12,(n)

LK ,(n−1)ξ12

...
. . .

... · · ·
−βLK ,(n)

11,(n−1)ξLK−β
LK ,(n)
12,(n−1)ξLK · · · β

LK ,(n)
LK ,(n−1)

. (22)

(P1) is now formulated as

find a(n)

subject to A
(n)
(n−1)a

(n) = q and a(n) � 0LK×1.
(23)

3) Feasibility Condition of (23): The prerequisite of solv-
ing (23) is to guarantee the feasibility, i.e., showing that the
set

Ra(n) , {a(n) � 0LK×1|A(n)
(n−1)a

(n) = q} (24)

is non-empty. The condition ensuring the feasibility is pro-
vided in the following theorem.

Theorem 4: For fixed {Ṽ(n−1)
`k

} and {U(n)
`k
}, if the target

SINR ξ`k satisfies

0 < ξ`k < β
`k,(n)
`k,(n−1)

/∑
ij 6=`k

β
`k,(n)
ij ,(n−1), ∀`k, (25)

the (P1) in (23) is feasible.
Proof: By the definition of A

(n)
(n−1) in (22), A

(n)
(n−1) is

a Z-matrix with the positive diagonal entries. Note that the
inequalities in (25) correspond to A

(n)
(n−1) being SDD. Then,

A
(n)
(n−1) is inverse-positive by Lemma 1. It is concluded from

Condition (iii) of Theorem 1 that Ra(n) in (24) is non-empty.
This completes the proof.

To solve (23) in a distributed manner, we propose a Jacobi-
based power allocation algorithm.

Jacobi-Based Power Allocation: Jacobi recursion [31]
refers to an iterative procedure to solve a linear sys-
tem equation without matrix inversion. We let D

(n)
(n−1) =

diag
(
β

11,(n)
11,(n−1), · · · , β

LK ,(n)
LK ,(n−1)

)
∈ RLK×LK be the diagonal

matrix whose entries are taken from A
(n)
(n−1). Then, (21) can

be rewritten as D
(n)
(n−1)a

(n) = (D
(n)
(n−1) − A

(n)
(n−1))a

(n) + q.

Multiplying both sides with (D
(n)
(n−1))

−1
leads to the Jacobi

recursion formula,

a
(n)
(m) =

(
ILK−

(
D

(n)
(n−1)

)−1

A
(n)
(n−1)

)
a

(n)
(m−1)+

(
D

(n)
(n−1)

)−1

q, (26)

where m ≥ 1 is the Jacobi-iteration index. If∥∥ILK − (D
(n)
(n−1))

−1
A

(n)
(n−1)

∥∥
∞ < 1, for an initial a

(n)
(0) ,

any sequence a
(n)
(0) ,a

(n)
(1) , . . . produced by (26) converges to

the solution of A(n)
(n−1)a

(n) =q [31].
Regarding the convergence of the Jacobi recursion in (26)

to the solution of (23), we have the following corollary.
Corollary 2: If the condition in (25) holds, the Jacobi

recursion in (26) converges to the solution of (23).
Proof: A(n)

(n−1) is SDD due to (25). Therefore, the Jacobi
recursion converges to the solution of (23) because the inequal-
ity
∥∥ILK−(D

(n)
(n−1))

−1
A

(n)
(n−1)

∥∥
∞ < 1 holds.

By Corollary 2, the achievable SINR region of the downlink
Jaboci power allocation is given by

S(n)
`k

=

{
ξ`k

∣∣∣∀ξ`k satisfying (25)
}
, ∀`k. (27)

Remark 1: Due to the monotonicity of the downlink SINR,
i.e., (17), the nested property of the achievable SINR region
implies that S(n−1)

`k
⊆ S(n)

`k
for n > 1, holds. This means that

if ξ`k ∈ S
(1)
`k

, the forward direction becomes feasible. Hence,
characterizing the achievable SINR region S(1)

`k
at the first FB

iteration is sufficient to guarantee the feasibility of the overall
algorithm.

In the proposed approach, the Jacobi recursion in (26) is
run in a distributed manner using feedback as detailed below.
When m=1, BSs initialize δ(n)

`k,(0) = 1 in (18), ∀`k. Then user

`k measures its local CSI, i.e., β`k,(n)
`k,(n−1) and

∑
ij 6=`k β

`k,(n)
ij ,(n−1).

If n = 1, user `k chooses ξ`k ∈ S
(1)
`k

. The power update
formula at user `k is then given by the ((`− 1)K + k)th row
of (26),

δ
(n)
`k,(m)=ξ`k

(∑
ij 6=`k δ

(n)
ij ,(m−1)β

`k,(n)
ij ,(n−1)+σ2

)
/β

`k,(n)
`k,(n−1). (28)

After the update, user `k feeds back δ
(n)
`k,(m) to BS `. At the

(m+1)th iteration, BSs form the precoders {
√
δ

(n)
`k,(m)Ṽ

(n−1)
`k

}
using the fed back {δ(n)

`k,(m)}. On the downlink reception, user

`k updates its power value by (28) and feeds back δ(n)
`k,(m+1)

to BS `. This closed-loop recursion continues until (28)
converges. Denoting the converged power scaling factor as
δ

(n)
`k

, the downlink power α(n)
`k

update follows (18). A formal
description of the closed-loop Jacobi algorithm is outlined in
Algorithm 1.
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Algorithm 1 Closed-loop Jacobi iteration for downlink power
allocation (P1)

Require: Initialize {Ṽ(n−1)
`k

}, {U(n)
`k
}, {δ(n)

`k,(0) = 1}, m = 1.
1: Begin iteration
2: BSs transmit in the downlink with the precoders
{
√
δ

(n)
`k,(m−1)Ṽ

(n−1)
`k

};
3: if n = 1 and m = 1 then User `k sets ξ`k ∈ S

(1)
`k

in (27);
4: end if
5: User `k updates δ(n)

`k,(m) by (28) and feeds back it to BS
`;

6: m = m+ 1 and go to Step 2;
7: Repeat until converge, set δ(n)

`k
= δ

(n)
`k,(m).

8: Set the power α(n)
`k

at BS ` by (18).

C. Backward Iteration

The exact same procedures for solving (F1) and (P1) apply
to (F2) and (P2). Hence, we briefly describe their algorithmic
procedures.

1) Precoder Design (F2): We define the desired
signal and interference-plus-noise covariance matrices
as

←−
R

(n)
`k

, H∗`k,`Ũ
(n)
`k

Ũ
(n)∗

`k
H`k,` and

←−
Q

(n)
`k

,∑
ij 6=`k H

∗
ij ,`

Ũ
(n)
ij

(
H∗ij ,`Ũ

(n)
ij

)∗
+ σ2IN , respectively, at

the nth backward iteration, where Ũ
(n)
`k

=
√
ω

(n−1)
`k

U
(n)
`k

.
Then, the problem (F2) is reformulated as

find V
(n)
`k

subject to
(←−
Q

(n)
`k
− 1

ξ`k

←−
R

(n)
`k

)
V

(n)
`k

= 000N×d,

‖V(n)
`k
‖F = 1, and rank

(
V

(n)
`k

)
= d, ∀`k.

(29)

Given the Cholesky decomposition
←−
Q

(n)
`k

= M∗M, where
M ∈ CN×N is an upper triangular matrix, the solution to
(29) is given by

V
(n)
`k

?
=

M−1ν1:d

(
(M∗)−1←−R(n)

`k
M−1

)
∥∥∥M−1ν1:d

(
(M∗)−1

←−
R

(n)
`k

M−1
)∥∥∥

F

, ∀`k. (30)

Following the same reasoning as (17), the precoder in (30)
does not decrease the uplink SINR values,

γ
(UL)
`k

(
{ω(n−1)

`k
},V(n−1)

`k

?)
≤ γ(UL)

`k

(
{ω(n−1)

`k
},V(n)

`k

?)
. (31)

2) Uplink Power Allocation (P2): Similar to (P1), we
employ the following power update structure

ω
(n)
`k

= %
(n)
`k
ω

(n−1)
`k

, (32)

where %(n)
`k
∈ R+ is a power scaling factor to be designed.

The uplink precoding and combining factor is defined as
κ
`k,(n)
ij ,(n) ,

∥∥(V(n)
`k

)∗
H∗ij ,`Ũ

(n)
ij

∥∥2

F
, which is related to (19) as

κ
`k,(n)
ij ,(n) = β

ij ,(n)

`k,(n)ω
(n−1)
ij

/α
(n)
`k

. Then, the LK conditions in
(13) are compactly put into a linear system:

B
(n)
(n)b

(n) = q, (33)

Algorithm 2 Closed-loop Jacobi iteration for uplink power
allocation (P2)

Require: Initialize {U(n)
`k
}, {Ṽ(n)

`k
}, {%(n)

`k,(0) = 1}, m = 1.
1: Begin iteration
2: if n = 1 then User `k feeds back ξ`k to BS `;
3: end if
4: Users transmit in the uplink with {

√
%

(n)
`k,(m−1)Ũ

(n)
`k
};

5: BS ` updates %(n)
`k,(m) by (35) and feeds back it to users

`k;
6: m = m+ 1 and go to Step 4;
7: Repeat until converge and set %(n)

`k
= %

(n)
`k,(m);

8: Set the power ω(n)
`k

at user `k by (32).

where q = σ2[ξ11
, ξ12

, . . . , ξLK ]T ∈ RLK×1, b(n) =

[%
(n)
11
, %

(n)
12
, . . . , %

(n)
LK

]T ∈ RLK×1, and

B
(n)
(n) =


κ

11,(n)
11,(n) −κ11,(n)

12,(n)ξ11
· · · −κ11,(n)

LK ,(n)ξ11

−κ12,(n)
11,(n)ξ12

κ
12,(n)
12,(n) · · · −κ12,(n)

LK ,(n)ξ12

...
. . .

... · · ·

−κLK ,(n)
11,(n) ξLK −κ

LK ,(n)
12,(n) ξLK · · · κ

LK ,(n)
LK ,(n)

 ,

and (P2) is formulated as

find b(n)

subject to B
(n)
(n)b

(n) = q and b(n) � 0LK×1.
(34)

3) Feasibility Condition of (34): The feasibility of (P2) in
(34) is described by the following corollary.

Corollary 3: If the target SINR values {ξ`k} satisfy (25),
(P2) in (34) is also feasible, i.e., Rb(n) , {b(n) �
0LK×1|B(n)

(n)b
(n) = q} is non-empty.

Proof: Prior to the precoder update (F2) in the back-
ward iteration, the following equality holds κ

`k,(n−1)
ij ,(n) =

β
ij ,(n)

`k,(n−1)ω
(n−1)
ij

/α
(n−1)
`k

, which can be put into a ma-

trix equality B
(n−1)
(n) = (D1D2A

(n)
(n−1)D3D4)T , where

D1,D2,D3, and D4 ∈ RLK×LK are diagonal matrices
with the ((` − 1)K + k)th entry being ω

(n−1)
`k

, 1/ξ`k , ξ`k ,
and 1/α

(n−1)
`k

, respectively. Due to Theorem 4, A
(n)
(n−1) is

SDD. Thus, it is inverse positive. Moreover, because D1,
D2, D3, and D4 are positive diagonal matrices, there exists
a non-negative solution b(n) such that B

(n−1)
(n) b(n) = q is

feasible for the target SINR values {ξ`k}. Optimizing the
filters in (F2) updates B

(n−1)
(n) to B

(n)
(n). Then, by the nested

property of the achievable SINR region in (31), updating
the filters {V(n)

`k
} does not alter the feasibility and, thereby,

B
(n)
(n)b

(n) = q has a non-negative solution. This completes the
proof.

The Jacobi recursion to solve (34) for user `k at BS ` is
given by

%
(n)
`k,(m) =ξ`k

(∑
ij 6=`k %

(n)
ij ,(m−1)κ

`k,(n)
ij ,(n) +σ2

)
/κ

`k,(n)
`k,(n). (35)
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TABLE I
SUMMARY OF INFORMATION AND VARIABLES NEEDED AT EACH SUBPROBLEM AND EACH FB ITERATION.

Subproblems (F1) (P1) (F2) (P2)

Nodes User `k User `k BS ` BS `

Required information −→
R

(n)
`k

,
−→
Q

(n)
`k

U
(n)
`k

,
−→
R

(n)
`k

,
−→
Q

(n)
`k

←−
R

(n)
`k

,
←−
Q

(n)
`k

V
(n)
`k

,
←−
R

(n)
`k

,
←−
Q

(n)
`k

Update U
(n−1)
`k

7−→ U
(n)
`k

α
(n−1)
`k

7−→ α
(n)
`k

V
(n−1)
`k

7−→ V
(n)
`k

ω
(n−1)
`k

7−→ ω
(n)
`k

Feedback None User `k
δ
(n)
`k,(m)−→ BS ` None

If n = m = 1, User `k
ξ`k−→ BS `

BS `
%
(n)
`k,(m)−→ user `k

After the update in (35), BS ` feeds back %(n)
`k,(m) to user `k.

By Corollary 3, (35) converges to a feasible solution after
a suitable number of the closed-loop iterations. The uplink
Jacobi iteration is outlined in Algorithm 2.

Remark 2: If the target SINR values {ξ`k} are chosen to
ensure the feasibility of the forward SGPM, it is now a
direct consequence of Corollary 3 that {ξ`k} also ensures
the feasibility of the backward SGPM. For this reason, the
users and BSs share the same {ξ`k} via feedback in Step 2 of
Algorithm 2.

The entire operation of the proposed distributed FB SGPM
is now outlined in Algorithm 3. What information is needed
and what variables are updated at each iteration are summa-
rized in Table I.

Algorithm 3 Proposed Distributed FB SGPM

Require: Initialize {V(0)
`k
}, {U(0)

`k
}, {α(0)

`k
}, and {ω(0)

`k
}.

1: Begin iteration, n = 1

2: Users update {U(n)
`k
} by (15) and set

{Ũn)
`k

=
√
ω

(n−1)
`k

U
(n)
`k
} in the forward iteration;

3: Users update {α(n)
`k
} according to Algorithm 1 and feed

back them to BSs;
4: BSs update {V(n)

`k
} by (30) and set {Ṽ(n)

`k
=
√
α

(n)
`k
V

(n)
`k
}

in the backward iteration;
5: BSs update {ω(n)

`k
} according to Algorithm 2 and feed back

them to users;
6: n = n+ 1 and go to Step 2;
7: Repeat until converge.

V. CONVERGENCE ANALYSIS

In general, distributed FB iteration with power allocation
does not admit tractable convergence analysis [13]. Neverthe-
less, this is not the case of the proposed distributed algorithm.

Theorem 5: The FB iteration in Algorithm 3 does not
increase the total transmit power∑

`k

α
(n−1)
`k

≥
∑
`k

α
(n)
`k
, ∀n > 1,

and it converges to a stationary point.
Proof: See Appendix E.

Theorem 5 guarantees the convergence of
∑
`k
α

(n)
`k

to a sta-
tionary point. The stationary point is indeed a local optimum

because we impose the full-rank precoders and combines in
(30) and (15), respectively.

In this section, we further analyze what factors affect the
convergence speed of the closed-loop Jacobi power allocation
in Algorithms 1 and 2. We focus on the forward direction,
keeping in mind that the exact same observation can be made
for the backward direction. It is shown in [31] that the error
‖a(n)−a

(n)
(m)‖∞ of the Jacobi recursion in (26) is bounded by∥∥∥a(n) − a

(n)
(m)

∥∥∥
∞
≤
∥∥∥ILK − (D(n)

(n−1)

)−1
A

(n)
(n−1)

∥∥∥m
∞
. (36)

The smaller the value
∥∥ILK−(D(n)

(n−1)

)−1
A

(n)
(n−1)

∥∥
∞ < 1, the

faster the convergence will be. Due to Remark 1, the feasibility
in Corollary 2 implies

∥∥ILK − (D(n)
(n−1)

)−1
A

(n)
(n−1)

∥∥
∞ < 1.

Recalling the structure of A
(n)
(n−1) in (21), the following two

observations can be made:
(a) The quantity

∥∥ILK − (D(n)
(n−1)

)−1
A

(n)
(n−1)

∥∥
∞ in (36)

is proportional to the target SINR values {ξ`k}, i.e.,
for fixed {β`k,(n)

ij ,(n−1)} in A
(n)
(n−1), if ξ`k ≥ ξ′`k , we

have g
(
{ξ`k}, {β

`k,(n)
ij ,(n−1)}

)
≥ g

(
{ξ′`k}, {β

`k,(n)
ij ,(n−1)}

)
,

∀`k, where g
(
{ξ`k}, {β

`k,(n)
ij ,(n−1)}

)
,

∥∥ILK −(
D

(n)
(n−1)

)−1
A

(n)
(n−1)

∥∥
∞.

(b) The matrix
(
ILK −

(
D

(n)
(n−1)

)−1
A

(n)
(n−1)

)
has diago-

nal entries of zero and its off-diagonal entries are

ξ`k
β
`k,(n)

ij ,(n−1)

β
`k,(n)

`k,(n−1)

, ∀`k, ij , where the numerator β`k,(n)
ij ,(n−1) =

‖(U(n)
`k

)∗H`k,iṼ
(n−1)
ij

‖2F , ij 6= `k, corresponds to the in-
terference power at user `k leaked from BS i. Hence, the
quantity

∥∥ILK − (D(n)
(n−1)

)−1
A

(n)
(n−1)

∥∥
∞ is proportional

to the interference power.
The observations (a) and (b) reveal that the lower the target

SINR values {ξ`k} are and the greater the number of FB
iterations to monotonically increase the SINR values in (17),
a faster convergence of the Jacobi power allocation results.

VI. PRACTICAL ASPECTS

In this section, we underline some practical aspects of the
proposed algorithm.

A. Distributed CSI Acquisition
To acquire the local CSI at each FB iteration, a

channel estimation phase prior to the execution of the
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Fig. 2. The structure of FB CSI acquisition.

algorithm is needed. Specifically, in the forward itera-
tion, user `k first estimates the signal covariance matrix
H`k,`Ṽ`kṼ

∗
`k
H∗`k,` and the interference-plus-noise covariance

matrix
∑
ij 6=`k H`k,iṼijṼ

∗
ij
H∗`k,i + σ2IM ; in the backward

iteration, the BS ` estimates its signal covariance matrix{
H∗`k,`Ũ`kŨ

∗
`k
H`k,`

}K
k=1

and the interference-plus-noise co-
variance matrix

∑
ij 6=`k H

∗
ij ,`

ŨijŨ
∗
ij
Hij ,`+σ

2IN . A practical
CSI acquisition method based on orthogonal pilot-assisted
channel estimation technique has been independently studied
in [30]. The user-wise orthogonal pilot signals in [30] is
also called “User-specific reference signal” in 4G Long-Term
Evolution (LTE) standards [43], [44]. The structure of the
FB CSI acquisition and filter updates is illustrated in Fig.
2. According to Algorithm 3, the FB iterations are carried
out until the algorithm converges. When implemented in
practice, however, the total number of iterations is limited by
the channel coherence time. While low-overhead and robust
channel estimation issues have to be considered as well, such
matters are outside the scope of our current work.

B. Rank Adaptation

In severely interference-limited scenarios (i.e., improper
network), a rank adaptation (RA) mechanism [14], [45] can
be introduced to enhance the performance of the proposed
algorithm by turning down some spatial data streams. A simple
RA scheme in the downlink can be designed by taking the
optimality condition in (9) and the filter design criterion in
(14) such that

max
r`k

r`k

subject to
(−→
Q

(n)
`k
− 1

ξ`k

−→
R

(n)
`k

)
U

(n)
`k

= 000M×d,

‖U(n)
`k
‖F = 1, rank (U`k) = r`k ,

and r`k ≤ d, ∀`k.

(37)

Because U
(n)
`k

is extracted from the null space of
−→
Q

(n)
`k
− 1

ξ`k

−→
R

(n)
`k

according to (62), i.e., L∗
(
IM −

1
ξ`k

(L∗)
−1−→

R
(n)
`k

L−1
)
LU

(n)
`k

= 000M×d in (62), the problem
in (37) is equivalent to finding the first r`k largest eigenvalues
of ((L∗)−1−→R`kL

−1). By turning off some eigenmodes of
((L∗)−1−→R`kL

−1), whose eigenvalues are below a tolerance
level c > 0, the r`k at user `k can be determined by

r?`k = Card
(
{i|λi((L∗)−1−→R`kL

−1) > c}
)
, (38)

where Card(S) denotes the cardinality of set S and c is a
threshold value. Similarly, in the backward direction, each BS
adjusts the rank of the precoders according to

z?`k = Card
(
{i|λi((M∗)−1←−R`kM

−1) > c}
)
. (39)

The proposed Algorithm 3 can easily adopt the above RA
approaches by adding: i) one procedure before Step 2, where
each user finds the optimal r?`k by (38) and feeds back it to
its serving BS, and ii) another procedure before Step 4, where
each BS finds the optimal z?`k according to (39) and chooses
the smallest value between r?`k and z?`k . BSs then feed back the
adapted rank values to corresponding users. These procedures
ensure the rank synchronization between the users and BSs.

However, it should be mentioned that the latter RA scheme
demands additional coordination overhead for the rank syn-
chronization. In addition, the threshold value c in (38) and
(39) must be pre-determined so that the devised RA ensures
a performance improvement, especially, when the network is
improper. We will provide performance insight into the above
RA scheme in Section VII.

C. QoS Adaptation

As aforementioned in Remark 1 and Remark 2, the feasible
QoS chosen at the first iteration guarantees the feasibility of
the entire algorithm. Another important property revealed by
Remark 1 is that the target QoS value can be also increased
along with the FB iterations. This makes sense because if we
let the target SINR at the (n − 1)th FB iteration be ξ

(n−1)
`k

and ξ(n−1)
`k

∈ S(n−1)
`k

, the nested property S(n−1)
`k

⊆ S(n)
`k

for
n > 1, implies that there exists ξ(n)

`k
such that ξ(n)

`k
∈ S(n)

`k

and ξ
(n−1)
`k

≤ ξ
(n)
`k

for n > 1. Thus, it is desired that ξ(n)
`k

chosen close to the upper boundary of S(n)
`k

achieves a high
feasible QoS level. However, S(n)

`k
in (27) is an open set and

one cannot explicitly define the exact boundary. One simply
approach is to find a strict lower bound of the upper bound of
(27). Because σ2 is strictly positive, one can set

ξ
(n)
`k

= β
`k,(n)
`k,(n−1)

/∑
ij 6=`k

β
`k,(n)
ij ,(n−1) + σ2

, (40)

which satisfies ξ(n)
`k
∈ S(n)

`k
.

One requirement of the QoS adaptation (QA) is that each BS
and user need to share the updated ξ(n)

`k
per iteration, resulting

in large feedback overhead. From the distributed algorithm
perspective, this can be relaxed by updating the target SINR
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Fig. 3. Feasibility probability vs. target SINR for different networks
configurations for X = 1 and Y = 1.

in every ∆ > 1 interval such that ξ(1+(l−1)∆)
`k

is updated
according to (40) for l = 1, 2, . . .. We will evaluate the QA
scheme, based on (40) and describe its potential performance
gainin Section VII.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
distributed FB SGPM in Algorithm 3. We also explore the
extensions of Algorithm 3 by incorporating the distributed
RA and QA schemes proposed in Section VI. Throughout
the simulation, we assume MCMU MIMO downlink scenarios
where each channel matrix is realized to have i.i.d. entries
following CN (0, 1) and the noise power is set to σ2 = 1.
In the proposed Algorithm 3, each entry of the precoders
{V(0)

`k
} and combiners {U(0)

`k
} follows i.i.d. CN (0, 1). The

initial value of power budget
∑
`k
α

(0)
`k

is set to 10 dB with
equal power allocation. We consider both proper and improper
network configurations for evaluation, in which a MIMO
network becomes proper, if M + N > (LK + 1)d, and
improper, otherwise [46]3. Throughout the simulations, we use
the integer numbers X and Y to denote the numbers of FB
iterations and Jacobi iterations, respectively.

A. Feasibility vs. Target SINR

In Fig. 3, we evaluate the feasibility probability across the
target SINR value ξ`k for different network configurations.
Because the feasibility of the proposed algorithm is determined
if ξ`k ∈ S

(1)
`k

by Remark 1, the feasibility probability is defined
by

Pf ({ξ`k}) = Pr

(
LK⋂
`k=11

S(1)
`k

)
.

If any of S(1)
`k

is empty, we declare that Algorithm 3 is
infeasible. In Fig. 3, one proper case, i.e., N =M = 8, L=
2,K = 3, d = 2, and two improper cases, i.e., N = 64,M =
18, L= 4,K = 7, d= 3 and N =M = 16, L= 4,K = 3, d= 3,
are evaluated for X = 1 and Y = 1. For the proper network,

3If a network is proper, the interference could be made arbitrarily small
[46].
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8, L = 2,K = 3, d = 2, and Y = 3.

5 10 15

FB iteration (X)

2

4

6

8

10

12

T
o
ta

l t
ra

n
sm

it 
p
o
w

e
r 

(d
B

)

Target SINR=2 dB

Target SINR=3 dB

Target SINR=4 dB
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18, L = 4,K = 7, d = 3, and Y = 3.

the proposed distributed FB SGMP becomes feasible with
high probability. However, the feasibility rate decreases as the
network becomes improper and dense. These results provide
guidance on how to choose the target SINR values for a
specific network configuration.

B. Convergence

In this set of simulations, we evaluate the convergence of Al-
gorithm 3 asserted in Theorem 5. Figs. 4 and 5 show the total
transmit power budget

∑
`k
α

(n)
`k

across different numbers of
FB iteration X , while keeping the number of Jacobi iteration
constant Y = 3. We choose the two network configurations
in Fig. 3 for evaluation, one for a proper network with
N=M=8, L=2,K=3, d=2, and the other for an improper
network with N=64,M=18, L=4,K=7, d=3. The curves
are evaluated for three different target SINR values, 2, 3, and
4 dB that are chosen to be feasible with high probability in Fig.
3. Specifically, for both configurations, the total transmit power
values monotonically decrease. The figures clearly show that
to guarantee the same target QoS level, an improper network
requires a higher total transmit power. The curves quickly
converge to stationary points when the network is proper, while
the convergence become slow for the improper network.

In the next set of simulations, the network configurations
are labeled as (N,M,L,K, d,X-Y ) for brevity. In Fig. 6,
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we evaluate the effects of allocating different numbers of FB
iteration X and Jacobi iteration Y to the power efficiency and
SINR guarantees. The target SINR values are set to 0, 1, 2, 3, 4,
and 5 dB based on the improper configuration N = M =
16, L = 4,K = 3, d = 3 in Fig. 3. The curves are evaluated
for the 5% SINR outage probability,

Pout({ξ`k}) = Pr

(
LK⋂
`k=11

{
γ

(DL)
`k

< ξ`k

})
= 5%, (41)

where γ
(DL)
`k

denotes the achieved downlink SINR value.
From Fig. 6, it can be seen that increasing the number of
Jacobi iteration, while holding the number of FB iteration,
allows Algorithm 3 to achieve a higher target SINR value. For
instance, when X = 10, the proposed algorithm can achieve
up to 5 dB SINR with Y = 5, while it only achieves 4.8
dB SINR when Y = 3. Moreover, allocating more number
of FB iteration to update precoders and combiners improves
the power efficiency in Fig. 6. The same setting applies to
Fig. 7 except for that the numbers of antennas increase from
N = M = 16 to N = 32,M = 16. From Fig. 7, it can
be seen that having larger numbers of BS and user antennas
can greatly improve the power efficiency. Both Figs. 6 and 7
reveal that the power efficiency and the SINR guarantee of the
proposed algorithm can be effectively controlled by properly
adjusting the numbers of antennas (N,M) and the numbers
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2,K = 3, d = 2, X = 10, Y = 3.
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Fig. 9. Total transmit power vs. achievable rate for N = 64,M = 18, L =
4,K = 7, d = 3, X = 10, Y = 3.

of FB iteration X and Jaboci iteration Y .

C. Power Efficiency vs. Achievable Rate

We demonstrate the improved power efficiency and rate
guarantees of the proposed algorithm by comparing it with
prior fully distributed MCMU MIMO precoding and com-
bining techniques, such as max-SINR [13], ILM [28], and
WMMSE [29]. We assume the exact same proper and im-
proper network configurations as in Figs. 4 and 5. In Figs. 8
and 9, the curves are displayed by evaluating the required
total transmit power vs. the achieved rate per user, which
satisfies 5% SINR outage probability in (41). Because those
benchmark algorithms have different objectives, i.e., maxi-
mizing weighted sum-rate [29], maximizing SINR [13], and
minimizing interference [28], under the same per-user power
constraint, we cannot predefine the target SINR values for
them. Instead we fix the total transmit power values and eval-
uate the average achievable rates per user of the benchmarks.

For the proposed Algorithm 3, we run X=10 FB iterations.
For each FB iteration, the downlink (respectively, uplink)
Jacobi iterations occupies Y = 3 (resp., 3) iterations, resulting
in a total of 60 (i.e., 10 × (3 + 3)) iterations (i.e., channel
uses). The same amount of channel use overhead is assumed
for all benchmarks. In Fig. 8, the total transmit power values
of the benchmarks are predefined by 0, 1.2, 2.4, 3.6, 4.8,
6.0, and 7.2 dB. If the system is proper, the benchmarks and
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the proposed algorithm achieve similar performance, in which
the proposed technique shows a slightly improved power
efficiency compared to other benchmarks. However, when the
network becomes dense and improper, the proposed algorithm
significantly outperforms the benchmarks as shown in Fig. 9.
For instance, in Fig. 9, to achieve a rate per user of around
7.2 bit/sec/Hz, the proposed algorithm only consumes about
10 dB of total transmit power. In contrast, WMMSE requires
around 14 dB of total transmit power to achieve the same rate.
The total transmit power values for the benchmarks in Fig. 9
are predefined by 2, 4, 6, 8, 10, 12, and 14 dB. This reveals
significantly improved power efficiency of Algorithm 3 when
the network is improper. It should be mentioned that WMMSE
[29] in this setting requires a total of LK=40 weight matrices
with each matrix having dimensions 18 × 64, shared in both
downlink and uplink per FB iteration. This clearly results in
impractical feedback overhead.

D. RA and QA Exploration

In this set of simulations, we evaluate the RA and QA
algorithms in Sections VI-B and VI-C, respectively. In Fig.
10, a network with N = M = 8, L = 2, and K = 3 is
assumed. We fix the numbers of FB and Jacobi iteration as
X = 20 and Y = 10, respectively. Fig. 10 demonstrates
total transmit power vs. achievable rate per user satisfying
5% SINR outage probability in (41) when RA is performed
based on (38) and (39). Each curve is evaluated as the target
SINR values increase from 0 to 5 dB. As seen from Fig. 10,
when d = 3 (i.e., an improper network), RA can significantly
improve the power efficiency, compared to the case without
RA. The improvement of power efficiency largely relies on the
choice of the threshold value c. When d = 2 (i.e., a proper
network), RA, however, rarely improve the power efficiency.
This is because sufficient degrees of freedom are provided for
the proposed FB algorithm to coordinate interference when
the network is proper.

In Fig. 11, we denote the network configuration as
(N,M,L,K, d, Y ) for brevity and demonstrate the distributed
QA algorithm in Section VI-C for two different network con-
figurations, where (8, 8, 2, 3, 2, 10) models a proper network
while (16, 16, 4, 3, 3, 10) models an improper network. The
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Fig. 11. Exploration of QA with ∆ = 10: achievable rate vs. FB iteration.

curves in Fig. 11 depict the achieved rate per user vs. FB
iteration, which obeys 5% SINR outage probability in (41). In
every ∆ = 10 iterations, the algorithm adaptively adjusts the
target SINR value according to (40). Seen from Fig. 11, the
proposed QA can achieve gradually increasing achievable rate
per user along with the number of FB iterations.

VIII. CONCLUSIONS

This paper studied the general MCMU MIMO precoding
and combining SGPM problem. Necessary and sufficient con-
ditions for the optimality of the MCMU MIMO SGPM prob-
lem have been characterized by dividing the original problem
into forward and backward SGPM subproblems. The derived
optimality conditions offer useful clues for designing a fully
distributed FB SGPM algorithm. The proposed distributed
algorithm is based on solving the four fixed-point equations
stemming from the optimality conditions. The sufficient fea-
sibility conditions for the distributed algorithm have been
established by leveraging the matrix inverse-positive theory.
We proposed closed-loop Jacobi power allocation and FB
iterative precoder and combiner design algorithms. The con-
vergence of the proposed algorithm was analytically verified.
Numerical studies demonstrated the greatly improved power
efficiency of the proposed algorithm for densely populated
improper networks. It was shown that the proposed distributed
technique combines power efficiency and SGPM feasibility to
address the convergence and SINR guarantees of the MCMU
MIMO spatial multiplexing systems. Practical issues such as
distributed RA and QA were also discussed. The proposed
distributed framework holds great potential to be adopted to
next generation small-cell networks.

APPENDIX A
JUSTIFICATION FOR THE CONSIDERED QOS

The rate formula in (2) can be lower-bounded by

R`k =
d∑
i=1

log
(
λi
(
Id+U∗`kR`kU`k(U∗`kQ`kU`k)−1

))
(42)

≥ log

(
d+

d∑
i=1

λi
(
U∗`kR`kU`k(U

∗
`k
Q`kU`k)

−1
))

, (43)
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where the inequality in (43) is due to the positive semi-definite
property of R`k and Q`k , and it holds for an arbitrary U`k .
Thus, maximizing the r.h.s of (43) with respect to U`k does
not alter the inequality in (43), yielding

R`k ≥ max
U`k

log

(
d+

d∑
i=1

λi
(
U∗`kR`kU`k(U

∗
`k
Q`kU`k)

−1
))

(44)

= max
U`k

log
(
d+tr

(
U∗`kR`kU`k(U∗`kQ`kU`k)−1

) )
, (45)

which is equivalent to the following optimization problem

max
U`k

tr
(
U∗`kR`kU`k(U∗`kQ`kU`k)−1

)
subject to rank (U`k) = d.

(46)

A solution to the problem in (46) is given by [42][Algorithm
8.7.1]

U?
`k

= L−1ν1:d

(
(L∗)−1R`kL

−1
)
, (47)

where Q`k = L∗L is the Cholesky decomposition of Q`k and
ν1:d(A) extracts the first d dominant eigenvectors of a matrix
A. Given the solution in (47), the following holds

tr
(
U?∗
`k
R`kU

?
`k

(U?∗
`k
Q`kU

?
`k

)−1
)

= d

tr
(
U?∗
`k
R`kU

?
`k

)
tr
(
U?∗
`k
Q`kU

?
`k

)
(48)

≥ d

(
tr
(
U∗`kR`kU`k

)
tr
(
U∗`kQ`kU`k

)) , (49)

The equality in (48) is due to U?
`k

in (47). Substituting U?
`k

for arbitrary U`k leads to (49). Noticing that the trace ratio
in (49) is the SINR measure in (3), the Shannon rate is now
lower bounded by

R`k ≥ log(d(1 + γ`k)). (50)

This completes the proof.

APPENDIX B
PROOF OF THEOREM 2

The Lagrangian of (8) is

L({λ`k}, {α`k}, {U`k}) ,
∑̀
k

α`k+
∑̀
k

λ`k

(
σ2

+
∑
ij 6=`k

αij‖U∗`kH`k,iVij‖2F−
α`k
ξ`k
‖U∗`kH`k,`V̀k

‖2F
)
, (51)

where {λ`k} are the Lagrangian multipliers. Rearranging the
order of the summations in (51) gives

L({λ`k}, {α`k}, {U`k}) =
∑̀
k

λ`kσ
2+
∑̀
k

λ`k tr

(
U∗`k

(
α`k
λ`k

IM

+
∑
ij 6=`k

αijH`k,iVijV
∗
ij
H∗`k,i−

α`k
ξ`k

H`k,`V̀ k
V∗`kH

∗
`k,

)̀
U`k

)
, (52)

where (52) comes from the fact that ‖U`k‖2F = 1, ∀`k. From
(52), the Lagrange dual function G({λ`k}) of (8) is given by

G({λ`k}) = min
{α`k},{U`k

}
L ({λ`k}, {α`k}, {U`k}) , (53)

which is always upper bounded by
∑̀
k

α`k , i.e.,

G({λ`k}) ≤
∑
`k

α`k . (54)

Next, we show that the KKT conditions of (8), which are
necessary, are indeed optimal for (8) if the primal problem (8)
is feasible. The KKT conditions of (8) are given by:

1) First order necessary condition for U`k , ∀`k:

2λ`k

( ∑
ij 6=`k

αijH`k,iVijV
∗
ij
H∗`k,i + σ2IM

−α`kξ`k H`k,`V`kV
∗
`k
H∗`k,`

)
U`k = 000M×d. (55)

2) First order necessary condition for α`k , ∀`k:

1 +λ`k tr
(
U∗`k(− 1

ξ`k
H`k,`V`kV

∗
`k
H∗`K )U`k

)
+
∑
ij 6=`k

λij tr
(
U∗ijHij ,`V`kV

∗
`k
H∗ij ,`Uij

)
= 0. (56)

3) Complementary slackness, ∀`k:

λ`k tr

(
U∗`k

( ∑
ij 6=`k

αijH`k,iVijV
∗
ij
H∗`k,i + σ2IM

−α`kξ`k H`k,`V`kV
∗
`k
H∗`k,`

)
U`k

)
= 0. (57)

The Lagrangian multiplier λ`k must be λ`k 6= 0, ∀`k, because
otherwise equality in (56) does not hold. By the feasibility of
(8), there exists a tuple ({U?

`k
}, {α?`k}, {λ

?
`k
}) satisfying the

KKT conditions, such that

G({λ?`k}) =
∑̀
k

λ?`kσ
2+
∑̀
k

λ?`k tr

(
U?
`k
∗
(
α?`k
λ?`k

IM

+
∑
ij 6=`k

α?ijH`k,iVijV
∗
ij
H∗`k,i−

α?`k
ξ`k

H`k,`V̀ k
V∗`kH

∗
`k,

)̀
U?
`k

)
. (58)

The duality gap is zero when α?`k = λ?`kσ
2, ∀`k, i.e.,

G({λ?`k}) =
∑̀
k

α?`k , because the second term on the r.h.s. of

(58) becomes zero due to (57). Therefore, strong duality of
(8) holds and the tuple ({U?

`k
}, {α?`k}, {λ

?
`k

= α?`k/σ
2}) are

the primal and dual solutions. Because under strong duality,
any pair of primal and dual optimal points must satisfy the
KKT conditions [47][Chapter 5.5.3], the stationary condition
in (55) and the complementary slackness in (57) are optimality
conditions that imply (9) and (10), respectively. This completes
the proof.

APPENDIX C
PROOF OF THEOREM 3

We first show the existence of a joint optimal solution of
the SGPM subproblems in (8) and (11). Then, the proof for
the coincidence between the joint optimal solution and the
solution of (7) follows.

1) Existence of a joint optimal solution: If the origi-
nal SGPM problem (7) is feasible and has an optimal tu-
ple

(
{U?

`k
}, {V?

`k
}, {α?`k}

)
, substituting it into the forward
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SGPM subproblem (8) will make it feasible. Now, to show
the feasibility of the backward subproblem (11), we fix(
{U?

`k
}, {V?

`k
}
)

and formulate the forward and backward
power allocation problems:

min
{α`k}

∑
`k

α`k subject to γ
(DL)
`k

({α`k}) ≥ ξ`k , ∀`k, (59)

and

min
{ω`k}

∑
`k

ω`k subject to γ
(UL)
`k

({ω`k}) ≥ ξ`k , ∀`k, (60)

respectively. Due to the UD duality between (59) and (60)
[17], if we let {ω?`k} be the optimal solution of (60) we have
the following equality∑

`k

α?`k =
∑
`k

ω?`k . (61)

This concludes that the backward SGPM problem (11) is also
feasible for the tuple

(
{U?

`k
}, {V?

`k
}, {ω?`k}

)
. Hence there

exists a joint optimal solution for the forward and backward
subproblems.

2) Coincidence between the optimal solution of (7) and
the joint optimal solution of (8) and (11): First, we claim
that the tuple

(
{U?

`k
}, {V?

`k
}, {α?`k}

)
optimal to (7) also

jointly optimizes (8) and (11). This claim can be shown by
contradiction. If the tuple

(
{U?

`k
}, {V?

`k
}, {α?`k}

)
does not

jointly optimize (8) and (11), there exists at least another
tuple, for example,

(
{Ú`k}, {V?

`k
}, {ά`k}

)
that lowers the

total transmit power of (8), i.e.,
∑̀
k

ά`k ≤
∑̀
k

α?`k , meaning

that the total transmit power of (7) can be further lowered.
This contradicts the assumption that

(
{U?

`k
}, {V?

`k
}, {α?`k}

)
is optimal for (7).

Conversely, we claim that the joint optimal solution of
(8) and (11), denoted as

(
{Uo

`k
}, {Vo

`k
}, {αo`k}

)
, also op-

timizes (7). First, assume the optimal solution of (7) is
the tuple

(
{V?

`k
}, {U?

`k
}, {α?`k}

)
, which is different from(

{Vo
`k
}, {Uo

`k
}, {αo`k}

)
. This gives

∑
`k
α?`k ≤

∑
`k
αo`k for

(7). If we insert the tuple
(
{U?

`k
}, {V?

`k
}, {α?`k}

)
into (8)

the total transmit power will be decreased to
∑̀
k

α?`k ≤∑̀
k

αo`k . Moreover, fixing
(
{U?

`k
}, {V?

`k
}
)

in (11) results in∑
`k
ω?`k =

∑
`k
α?`k ≤

∑
`k
ωo`k =

∑
`k
αo`k due to (61). This

contradicts the fact that the tuple
(
{Vo

`k
}, {Uo

`k
}, {αo`k}

)
is

optimal for (8) and (11).
Therefore, the joint optimal solution of (8) and (11) is

equivalent to the optimal solution of (7).

APPENDIX D
PROOF OF LEMMA 2

Decomposing
−→
Q

(n)
`k

= L∗L and reformulating the constraint

in (14), the optimal U(n)
`k

?
must satisfy

L∗
(
IM −

1

ξ`k
(L∗)

−1−→
R

(n)
`k

L−1
)
LU

(n)
`k

?
= 000M×d. (62)

Because U
(n)
`k

?
and L are full rank, (62) is true if and only if

1
ξ`k

(L∗)
−1−→

R
(n)
`k

L−1 has at least d unit-eigenvalues. Because

the rank of 1
ξ`k

(L∗)
−1−→

R
(n)
`k

L−1 is d, the optimal solution must
obey

LU
(n)
`k

?
= a ν1:d

(
1

ξ`k
(L∗)−1−→R(n)

`k
L−1

)
, (63)

where a ∈ R is a normalization constant. Taking L−1 of both
sides of (63) and determining a to meet ‖U(n)

`k
‖F = 1 results

in (15).

APPENDIX E
PROOF OF THEOREM 5

The proof consists of three constituent parts: (i) convergence
of the objective, (ii) convergence of the parameters to a limit
point, and (iii) stationary point. We first prove the convergence
of the total transmit power value.

1) Convergence of the objective: We claim that (F1) and
(P1) in the forward direction of the nth FB iteration do not
increase the transmit power budget,∑

`k

α
(n−1)
`k

≥
∑
`k

α
(n)
`k
, ∀n > 1. (64)

This claim can be shown as follows. After the filter optimiza-
tion (F1), the target SINR values satisfy ξ`k ∈ S

(n)
`k

, ∀`k, i.e.,
Remark 1, and make the initial power allocation a

(n)
(0) = 1LK

feasible, i.e.,

A
(n)
(n−1)1LK � q. (65)

From (26), we have for m = 1,

a
(n)
(1) =

(
ILK−

(
D

(n)
(n−1)

)−1

A
(n)
(n−1)

)
1LK+

(
D

(n)
(n−1)

)−1

q. (66)

Rewriting the inequality in (65) as 1LK �
(
ILK −(

D
(n)
(n−1)

)−1
A

(n)
(n−1)

)
1LK +

(
D

(n)
(n−1)

)−1
q leads to 1LK �

a
(n)
(1) due to (66). Because

(
ILK −

(
D

(n)
(n−1)

)−1
A

(n)
(n−1)

)
�

0LK×LK , iterating the Jacobi recursion in (26) results in
1LK � a

(n)
(m) for m ≥ 1. Therefore, Algorithm 1 converges to

a solution

000LK×1 � a(n) � 1LK . (67)

Then Step 8 of Algorithm 1 gives(
ααα(n−1)

)T
1LK ≥

(
ααα(n−1)

)T
a(n) =

(
ααα(n)

)T
1LK , (68)

where ααα(n) = [α
(n)
11
, . . . , α

(n)
LK

]T and the inequality in (68) is
due to (67). This proves (64).

The backward iteration shares the same target SINR values
and the same feasibility as the forward iteration. Hence the
precoder design (F2) does not alter its feasibility due to (31).
Moreover, the uplink power allocation will not increase the
total uplink power budget due to the UD duality in (61).
Because the total transmit power is bounded above 0, the
objective converges.

2) Convergence of the parameters to a limit point:
Suppose the objective has converged to the total trans-
mit power value P ? at the lth FB iteration. We
let the achieved solution at the lth FB iteration be
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{{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}, {ω(l)

`k
}}. Because the proposed Al-

gorithm 3 guarantees that {{U(l)
`k
}, {V(l−1)

`k
}, {α(l)

`k
}} sat-

isfies (10), {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}} must also satisfy

(10); otherwise, the precoder update from {V(l−1)
`k
}

to {V(l)
`k
} leads to a reduced total transmit power

value, which contradicts the fact that the total transmit
power has converged to P ?. Due to the same reason,
{{U(l)

`k
}, {V(l)

`k
}, {ω(l)

`k
}} satisfies (13). Provided the latter

setting, we show that {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}, {ω(l)

`k
}} =

{{U(l+1)
`k
}, {V(l+1)

`k
}, {α(l+1)

`k
}, {ω(l+1)

`k
}} below.

At the (l+1)th forward iteration, the combiner is updated to
U

(l+1)
`k

according to (15). Due to the convergence of the total
transmit power, the updated U

(l+1)
`k

leads to the strict equality
A

(l+1)
(l) 1LK = q, i.e., (65). Otherwise, the proposed algorithm

reduces total transmit power by (68), which is a contradiction.
Therefore, the equality A

(l+1)
(l) 1LK = q implies,

tr

(
(U

(l+1)
`k

)∗
(−→
Q

(l+1)
`k

− 1

ξ`k

−→
R

(l+1)
`k

)
U

(l+1)
`k

)
= 0, ∀`k, (69)

where
−→
Q

(l+1)
`k

,
∑
ij 6=`k H`k,iṼ

(l)
ij

(
H`k,iṼ

(l)
ij

)∗
+ σ2IM and

−→
R

(l+1)
`k

, H`k,`Ṽ
(l)
`k

(
H`k,`Ṽ

(l)
`k

)∗
, which have been defined

in Lemma 2. Given the Cholesky decomposition
−→
Q

(l+1)
`k

=

L∗L, plugging U
(l+1)
`k

in (15) into (69) gives

tr

(
ΓΓΓ∗
(
IM×M −

1

ξ`k
(L∗)

−1−→
R

(l+1)
`k

L−1
)
ΓΓΓ

)
= 0, (70)

where ΓΓΓ , ν1:d

(
1
ξ`k

(L∗)−1−→R(l+1)
`k

L−1
)
∈ CM×d. De-

noting the d-dominant eigenvalues of 1
ξ`k

(L∗)−1−→R(l+1)
`k

L−1

as (ε1, ε2, . . . , εd) in descending order, the equality in (70)
implies that the summation of the d-dominant eigenvalues
of 1

ξ`k
(L∗)−1−→R(l+1)

`k
L−1 is equal to d, i.e.,

∑d
i=1 εi = d.

Because {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}} satisfies (10) for

−→
R

(l+1)
`k

and
−→
Q

(l+1)
`k

, we have

tr

(
(U

(l)
`k

)∗L∗
(
IM×M−

1

ξ`k
(L∗)

−1−→
R

(l+1)
`k

L−1
)
LU

(l)
`k

)
=0. (71)

Then, (71) holds only if U
(l)
`k

= U
(l+1)
`k

=

L−1ν1:d

(
1
ξ`k

(L∗)−1−→R(l+1)
`k

L−1
)∥∥L−1ν1:d

(
1
ξ`k

(L∗)−1
−→
R

(l+1)
`k

L−1
)∥∥

F

, ∀`k. Hence, after

the combiner update (F1) at the (l + 1)th forward
iteration, the following holds {{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}} =

{{U(l+1)
`k
}, {V(l)

`k
}, {α(l)

`k
}}. Moreover, due to

U
(l)
`k

= U
(l+1)
`k

, ∀`k, the power update (P1)
at the (l + 1)th forward iteration must satisfy
{{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}} = {{U(l+1)

`k
}, {V(l)

`k
}, {α(l+1)

`k
}},

i.e., α(l)
`k

= α
(l+1)
`k

. The proof for V
(l+1)
`k

= V
(l)
`k

and
ω

(l+1)
`k

= ω
(l)
`k
, ∀`k in the backward iteration follows the

exact same procedure as the forward iteration, so we omit it.
Therefore, the solution {{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}, {ω(l)

`k
}} is a

limit point.

3) Stationary point: We need to show that the limit
point {{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}, {ω(l)

`k
}} satisfies the first-

order necessary conditions in (9)-(10) and (12)-(13).
We have already proved that {{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}}

and {{U(l)
`k
}, {V(l)

`k
}, {ω(l)

`k
}} satisfy, respectively, (10)

and (13) in Appendix E-2. In what follows, we
shown that {{U(l)

`k
}, {V(l)

`k
}, {α(l)

`k
}} satisfies (9) and

{{U(l)
`k
}, {V(l)

`k
}, {ω(l)

`k
}} satisfies (12). The former is shown

first.
Multiplying

(
U

(l)
`k

)∗
to both sides of (9) gives

Id −
1

ξ`k
ΛΛΛd×d = 000d×d. (72)

The equality in (72) holds because U
(l)
`k

in (15) diago-
nalizes

−→
R

(l)
`k

to
(
U

(l)
`k

)∗−→
R

(l)
`k
U

(l)
`k

= ΛΛΛd×d and
−→
Q

(l)
`k

to(
U

(l)
`k

)∗−→
Q

(l)
`k
U

(l)
`k

= Id, respectively. For d = 1, 1
ξ`k

ΛΛΛ1×1 = 1

because {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}} satisfies (10), which is equal

to (72). For d > 1, we prove that {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}}

satisfies (9) by contradiction. If 1
ξ`k

ΛΛΛd×d is not equal to Id,

it means that {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}} is not a solution to

(9). Then, in the next FB iteration, after filter updates, one
can decrease the total transmit power to P ′ ≤ P ? by (64).
This contradict with the fact that P ? is a limit point. Hence,

1
ξ`k

ΛΛΛd×d = Id and {{U(l)
`k
}, {V(l)

`k
}, {α(l)

`k
}} is the solution to

(9). Because the same proof can be extended to show that the
{{U(l)

`k
}, {V(l)

`k
}, {ω(l)

`k
}} is the solution to (12), it is omitted.

Therefore, the proposed algorithm converges to a stationary
point. This completes the proof.

ACKNOWLEDGEMENT

We are deeply indebted to the reviewers, whose invaluable
and consistent comments greatly improved the manuscript.

REFERENCES

[1] G. Xiong, T. Kim, and D. J. Love, “Distributed filter design and power
allocation for small-cell MIMO networks,” IEEE Vehical Technology
Conference-Fall, pp. 1–5, Sep 2017.

[2] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[3] S. Samarakoon, M. Bennis, W. Saad, M. Debbah, and M. Latva-aho,
“Ultra dense small cell networks: Turning density into energy efficiency,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp.
1267–1280, May 2016.

[4] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic,
R. T. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the
dominant theme for wireless evolution into 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 82–89, February 2014.

[5] G. R. Maccartney, T. S. Rappaport, S. Sun, and S. Deng, “Indoor
office wideband millimeter-wave propagation measurements and channel
models at 28 and 73 GHz for ultra-dense 5G wireless networks,” IEEE
Access, vol. 3, pp. 2388–2424, 2015.

[6] Initial Report on Horizontal Topics, First Results and 5G System
Concept. document METIS D6.2, March 2014.

[7] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Sum-rate maxi-
mization in sub-28-GHz millimeter-wave MIMO interfering networks,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp.
1649–1662, July 2017.

[8] M. K. Samimi and T. S. Rappaport, “Characterization of the 28GHz
millimeter-wave dense urban channel for future 5G mobile cellular”.
Tech. Rep. TR 2014-04, March 2014.



16

[9] M. Dong and T. Kim, “Interference analysis for millimeter-wave net-
works with geometry-dependent first-order reflections,” IEEE Transac-
tions on Vehicular Technology, vol. 67, no. 12, pp. 12 404–12 409, Dec
2018.

[10] D. Gesbert, S. Hanly, H. Huang, S. S. Shitz, O. Simeone, and W. Yu,
“Multi-cell MIMO cooperative networks: A new look at interference,”
IEEE Journal on Selected Areas in Communications, vol. 28, no. 9, pp.
1380–1408, December 2010.

[11] P. C. Weeraddana, M. Codreanu, M. Latva-aho, A. Ephremides,
and C. Fischione, Weighted Sum-Rate Maximization in
Wireless Networks: A Review. Now, 2012. [Online]. Available:
https://ieeexplore.ieee.org/document/8186919

[12] A. C. Cirik, R. Wang, Y. Hua, and M. Latva-aho, “Weighted sum-
rate maximization for full-duplex MIMO interference channels,” IEEE
Transactions on Communications, vol. 63, no. 3, pp. 801–815, 2015.

[13] D. Schmidt, C. Shi, R. Berry, M. Honig, and W. Utschick, “Com-
parison of distributed beamforming algorithms for MIMO interference
networks,” IEEE Trans. on Signal Processing, vol. 61, pp. 3476–3489,
July 2013.

[14] H. Ghauch, T. Kim, M. Bengtsson, and M. Skoglund, “Distributed low-
overhead schemes for multi-stream MIMO interference channels,” IEEE
Transactions on Signal Processing, vol. 63, no. 7, April 2015.

[15] M. Bengtsson, “A pragmatic approach to multi-user spatial multi-
plexing,” Sensor Array and Multichannel Signal Processing Workshop
Proceedings, pp. 130 – 134, 2002.

[16] D. P. Palomar, M. A. Lagunas, and J. M.Cioffi, “Optimum linear joint
transmit-receive processiong for MIMO cahnnels with QoS constraints,”
IEEE Transactions on Signal Processing, May 2004.

[17] A. Wiesel, Y. C. Eldar, and S. Shamai, “Linear precoding via conic
optimization for fixed MIMO receivers,” IEEE Transactions on Signal
Processing, vol. 54, no. 1, pp. 161–176, Jan 2006.

[18] H. Dahrouj and W. Yu, “Coordinated beamforming for the multicell
multi-antenna wireless system,” IEEE Transactions on Wireless Com-
munications, vol. 9, no. 5, pp. 1748–1759, May 2010.

[19] M. Codreanu, A. Tolli, M. Juntti, and M. Latva-aho, “Joint design of
Tx-Rx beamformers in MIMO downlink channel,” IEEE Transactions
on Signal Processing, vol. 55, no. 9, pp. 4639–4655, Sept 2007.

[20] J. Chang, L. Tassiulas, and F. Rashid-Farrokhi, “Joint transmitter receiver
diversity for efficient space division multiaccess,” IEEE Transactions on
Wireless Communications, vol. 1, no. 1, pp. 16–27, Jan 2002.

[21] B. Song, R. L. Cruz, and B. D. Rao, “Network duality for multiuser
MIMO beamforming networks and applications,” IEEE Transactions on
Communications, vol. 55, no. 3, pp. 618–630, March 2007.

[22] E. Visotsky and U. Madhow, “Optimum beamforming using transmit
antenna arrays,” in 1999 IEEE 49th Vehicular Technology Conference,
vol. 1, May 1999, pp. 851–856 vol.1.

[23] Q. Shi, M. Razaviyayn, M. Hong, and Z. Q. Luo, “SINR constrained
beamforming for a MIMO multi-user downlink system: Algorithms and
convergence analysis,” IEEE Transactions on Signal Processing, vol. 64,
no. 11, pp. 2920–2933, June 2016.

[24] H. Pennanen, A. Tolli, J. Kaleva, P. Komulainen, and M. Latva-aho,
“Decentralized linear transceiver design and signaling strategies for sum
power minimization in multi-cell MIMO systems,” IEEE Transactions
on Signal Processing, vol. 64, no. 7, pp. 1729–1743, April 2016.

[25] H. Pennanen, A. Tolli, and M. Latva-aho, “Decentralized coordinated
downlink beamforming via primal decomposition,” IEEE Signal Pro-
cessing Letters, vol. 18, no. 11, pp. 647–650, Nov 2011.

[26] A. Tolli, H. Pennanen, and P. Komulainen, “Distributed coordinated
multi-cell transmission based on dual decomposition,” in 2009 IEEE
Global Telecommunications Conference, Nov 2009, pp. 1–6.

[27] C. Shen, T. Chang, K. Wang, Z. Qiu, and C. Chi, “Distributed robust
multicell coordinated beamforming with imperfect CSI: An admm
approach,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp.
2988–3003, June 2012.

[28] K. Gomadam, V. Cadambe, and S. Jafar, “A distributed numerical
approach to interference alignment and applications to wireless inter-
ference networks,” IEEE Transactions on Information Theory, vol. 57,
no. 6, pp. 3309–3322, June 2011.

[29] Q. Shi, M. Razaviyayn, Z.-Q. Luo, and C. He, “An iteratively weighted
MMSE approach to distributed sum-utility maximization for a MIMO
interfering broadcast channel,” IEEE Transactions on Signal Processing,
vol. 59, no. 5, Sep 2011.

[30] R. Brandt and M. Bengtsson, “Distributed CSI acquisition and coordi-
nated precoding for TDD multicell MIMO systems,” IEEE Transactions
on Vehicular Technology, vol. 65, no. 5, pp. 2890–2906, May 2016.

[31] D. Kincaid and W. Cheney, Numerical Analysis, 2nd ed. Brooks/Cole
Publishing Company, 1996.

[32] A. Berman and R. Plemmons, Nonnegative Matri-
ces in the Mathematical Sciences. Society for Indus-
trial and Applied Mathematics, 1994. [Online]. Available:
https://epubs.siam.org/doi/abs/10.1137/1.9781611971262

[33] J.E.Peris and B. Subiza, “A characterization of weak-monotone matri-
ces,” Linear Algebra and its Applications, vol. 166, pp. 167–184, March
1992.

[34] S. Lagen, A. Agustin, and J. Vidal, “Coexisting linear and widely linear
transceivers in the MIMO interference channel,” IEEE Transactions on
Signal Processing, vol. 64, no. 3, pp. 652–664, Feb 2016.

[35] C. Hellings, F. Askerbeyli, and W. Utschick, “Two-user SIMO inter-
ference channel with treating interference as noise: Improper signaling
versus time-sharing,” IEEE Transactions on Signal Processing, pp. 1–1,
2020.

[36] C. Hellings and W. Utschick, “Improper signaling versus time-sharing
in the two-user gaussian interference channel with TIN,” IEEE Trans-
actions on Information Theory, vol. 66, no. 5, pp. 2988–2999, 2020.

[37] H. Joudeh and B. Clerckx, “Rate-splitting for max-min fair multi-group
multi-cast beamforming in overloaded systems,” IEEE Transactions on
Wireless Communications, vol. 16, no. 11, pp. 7276–7289, 2017.

[38] Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting for multi-antenna
non-orthogonal unicast and multicast transmission: Spectral and energy
efficiency analysis,” IEEE Transactions on Communications, vol. 67,
no. 12, pp. 8754–8770, 2019.

[39] B. Clerckx, Y. Mao, R. Schober, and H. V. Poor, “Rate-splitting unifying
SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A
simple two-user rate analysis,” IEEE Wireless Communications Letters,
vol. 9, no. 3, pp. 349–353, 2020.

[40] R. J. Plemmons, “M-matrices leading to semiconvergent splittings,”
Linear Algebra and its Applications, vol. 15, no. 3, pp. 243–252, 1976.

[41] C. D. Meyer, Jr, “The role of the group generalized inverse in the theory
of finite Markov chains,” SIAM Review, vol. 17, no. 3, pp. 443–464,
1975.

[42] G. Golub and C. V. Loan, Matrix Computations, 4th ed. The Johns
Hopkins University Press, 2014.

[43] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-Advanced for
Mobile Broadband, 1st ed. USA: Academic Press, Inc., 2011.

[44] J. Lee, J.-K. Han, and J. Zhang, “MIMO technologies in 3GPP LTE
and LTE-advanced,” EURASIP Journal on Wireless Communications
and Networking, vol. 2009, p. 3, 2009.

[45] D. J. Love and R. W. Heath, “Multimode precoding for MIMO wireless
systems,” IEEE Transactions on Signal Processing, vol. 53, no. 10, pp.
3674–3687, 2005.

[46] T. Liu and C. Yang, “On the feasibility of linear interference alignment
for MIMO interference broadcast channels with constant coefficients,”
IEEE Transactions on Signal Processing, vol. 61, no. 9, pp. 2178–2191,
May 2013.

[47] S. Boyd and L. Vandenderghe, Convex Optimization, 1st ed. Cambridge
University Press, 2004.


