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Abstract
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CrossMark

The recent trend in adapting ultra-energy-efficient (but error-prone) nanomagnetic devices to
non-Boolean computing and information processing (e.g. stochastic/probabilistic computing,
neuromorphic, belief networks, etc) has resulted in rapid strides in new computing modalities.
Of particular interest are Bayesian networks (BN) which may see revolutionary advances when
adapted to a specific type of nanomagnetic devices. Here, we develop a novel
nanomagnet-based computing substrate for BN that allows high-speed sampling from an
arbitrary Bayesian graph. We show that magneto-tunneling junctions (MTJs) can be used for
electrically programmable ‘sub-nanosecond’ probability sample generation by co-optimizing
voltage-controlled magnetic anisotropy and spin transfer torque. We also discuss that just by
engineering local magnetostriction in the soft layers of MTJs, one can stochastically couple
them for programmable conditional sample generation as well. This obviates the need for
extensive energy-inefficient hardware like OP-AMPS, gates, shift-registers, etc to generate the
correlations. Based on the above findings, we present an architectural design and computation
flow of the MTJ network to map an arbitrary Bayesian graph where we develop circuits to
program and induce switching and interactions among MTJs. Our discussed framework can lead
to a new generation of stochastic computing hardware for various other computing models, such
as stochastic programming and Bayesian deep learning. This can spawn a novel genre of
ultra-energy-efficient, extremely powerful computing paradigms, which is a transformational

advance.

Keywords: magneto-tunneling junction, Bayesian network, stochastic computing

(Some figures may appear in colour only in the online journal)

1. Introduction

Bayesian networks (BN) enable reasoning under uncertainty.
Due to probabilistic graph-based learning, in BNs, inference
and learning can be treated together, supervised and unsuper-
vised learning can be merged, and missing data can be handled
easily. Not surprisingly, therefore, BNs are becoming an integ-
ral component of various internet-of-things (IoT) and cyber-
physical systems (CPS) [1-4].

The computation of posterior and marginal probabilit-
ies is at the cornerstone of any BN. The exact computa-
tion of these probabilities is known to be intractable for a
general BN [5]. Therefore, approximate inference methods,
especially stochastic simulation-based methods, are prevalent.

1361-6528/20/484001+8$33.00

In stochastic simulation methods, samples of random vari-
ables in a BN are drawn to determine the posterior prob-
abilities. To speed-up, the stochastic simulations, a variety
of algorithms (survey article: [6]) explore higher sample-
efficiency in Bayesian graphs. These algorithms speed-up the
inference in BNs but can still fall short of the escalating pace
and scale of BN-based decision engines in many IoT and CPS
[7-9].

Predictions from BNs can be accelerated by a computing
substrate that allows high-speed sampling from a Bayesian
graph. This work discusses the development of such a plat-
form. For the platform, mere stochasticity in devices is not
enough; for scalable BNs, we need ‘electrically program-
mable’ stochasticity (to encode arbitrary probability functions,

© 2020 IOP Publishing Ltd  Printed in the UK
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P(x); x = 0 or 1) as well as the mechanisms for stochastic
interaction among devices for conditional probability, P(x|y).
In this work, we show that a network of magneto-tunneling
junctions (MTJs) can be used for the ‘sub-nanosecond’ prob-
ability sample generation. We also discuss that by exploiting
magnetostriction, MTJs can also be stochastically coupled for
conditional sample generation. Our discussed network also
allows flexible programming of self and conditional probab-
ility parameters.

2. Background on Bayesian networks

BN can reduce complex reasoning problems to a probabilistic
graph where prior knowledge and probability theory can be
used for efficient reasoning and decision-making under uncer-
tainties. Figure 1 shows a motivating example. Using such
probabilistic graphs, one can answer questions such as ‘what
is the likelihood of lung cancer if one visits Asia,” or ‘if dys-
pnea occurs what are the chances that the patient is a smoker?’
In IoT and CPS, such BN-based reasoning is even more
versatile, and applications such as predictive maintenance
[10-12], event prediction [13, 14], packet sharing in cloud-
edge transmission [15], anomaly detection [16—18], and sensor
data fusion [19, 20] have been explored. Many of these applic-
ations operate in the real-time.

To speed up inference from stochastic simulation-based
predictions, a variety of methods have been explored. In
the first category, independent sampling methods such as
logic sampling, likelihood sampling, and importance sampling
have been developed. Sampling in these methods proceeds
in the topological order, i.e. the parent nodes are sampled
before the children. Independent sampling methods are, how-
ever, inefficient when dealing with the evidence on a child
node. In the second category, simulation algorithms based
on the Markov chain are used. The Markov chain sampling
methods adjust conditional probabilities at the edges based
on the evidence and sample in such a manner that the
ergodicity of the Bayesian graph over sampling iterations is
retained.

3. Magneto-tunneling junction-based Bayesian
network nodes: MTJs with voltage-controlled
probability generation

As apparent in the graph in figure 1, a BN is comprised of prob-
abilistic nodes. In this section we discuss a novel adaptation
of magnetic tunneling junction that can represent BN nodes
by generating probabilistic samples where the probability of
samples is programmable.

Figure 2(a) shows a p-MTJ stack with elliptical cross-
section fabricated on a poled piezoelectric thin film with a soft
layer in contact with the film. Both the soft and hard layers
have perpendicular magnetic anisotropy. A voltage Vycpyy is
applied across the MTJ, and at the same time, another voltage
Vs, is applied over the piezoelectric film via electrodes on
the surface. The latter generates compressive strain along the
major axis and tensile strain along the minor axis of the ellipse,

or vice versa, depending on the voltage polarity. The soft layer
is magnetostrictive (i.e. made of a material like Co, Terfenol-
D, or FeGa). The strain acts as an effective in-plane magnetic
field within the soft layer around which the magnetization of
the soft layer precesses when the VCMA voltage dislodges the
magnetization from its initial orientation. By timing the Vg,
pulse to one-half of the precessional period, one can make the
magnetization flip [22]. This flipping changes the resistance of
the MTJ (low resistance when the magnetizations of the hard
and soft layer are parallel and high resistance when they are
antiparallel).

It is also possible to implement a controlled probability
generator using an MTJ that has in-plane magnetic anisotropy
instead of perpendicular magnetic anisotropy. The operating
principle is the same in both cases. The perpendicular aniso-
tropy however allows one to reduce the device footprint and
makes the MTJ operation relatively tolerant of variations in
the lateral dimensions.

In the presence of thermal noise at room temperature, the
‘flipping’ is stochastic, i.e. the magnetization will precess
when Vycua is turned on and can either return back to the ori-
ginal orientation or flip to the other orientation. We can con-
trol the probability of flipping by adjusting the magnitude of
Vvema. Therefore, the voltage Vyeya provides the ‘handle’ to
control the probability of getting either ‘0’ or ‘1°.

Figure 2(b,c) show the temporal evolution of the soft layer’s
magnetization in the MTJ at two different Vycya consider-
ing 0.5 ns pulse duration of the voltage. We assumed ellipt-
ical soft and hard-layers with dimensions 60 nm major axis,
55 nm minor axis, and thickness 0.8 nm. The spacer layer
of the MTJ was assumed to be 1.4 nm thick. The time evol-
ution of the magnetization vector is tracked in the presence
of thermal noise using the stochastic Landau-Lifshitz- Gilbert
(LLG) simulations. A random white noise (magnetic) field is
also included in the LLG simulations. In figure 2(d), ten thou-
sand switching trajectories are generated, and the switching
probability is the fraction of the trajectories that end up flip-
ping. Here, the switching probability can be controlled by the
voltage of Vycya.

4. Magneto-tunneling Junction-based Bayesian
network edges: Magnetostrictive Interfaces for
Voltage-Controlled Conditional Random Bits

In figure 1, edges are needed to conditionally couple BN
nodes with another. In this section we discuss magnetostrict-
ive interfaces for voltage-controlled correlation of MTJ-based
BN nodes. MTJs are ideal for applications as computational
nodes in non-Boolean paradigms, particularly in networks
relying on collective models of computation where the col-
lective activity of many elements working in concert elicit the
computational activity, so the failure of a few (or sometimes
even a significant fraction) of the devices does not impair the
overall function. Two well-known examples of this are neur-
omorphic computation [23] and image processing where a few
erratic pixels to not degrade the image quality appreciably.
Bayesian networks fall in this category. MTJs are plagued
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Figure 1. A motivating example of BN where probablistic relationship among variables can be encoded as a graph.
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Figure 2. MTIJ-based stochastic random number generation with programmable probability: (a) MTJ where VCMA and STT (applied via
the voltage Vvcuma), and magnetostriction (strain) applied with the voltage Vi, can be co-optimized for programmable random number
generation. Simulation results for the MT]J resistance reaching the high state for bit ‘0’ (m, = +1) and low state for bit ‘1’ (m, =-1) as a
function of time for two different Vycua. (b) Vvema = 10 mV and (¢) Vyeua = 70 mV. (d) Switching probability characteristic with Vycua
simulations are based on the Landau-Lifshitz-Gilbert equation. © 2019 IEEE. Reprinted, with permission, from [21].




Nanotechnology 31 (2020) 484001

S Nasrin et al

by significant device-to-device variablity and large switch-
ing error probability compared to CMOS devices, which
makes them perhaps non-viable for Boolean logic that has
stringent reliability requirements [24]. Non-Boolean applic-
ations are much more forgiving of variability and errors,
where MTJs may find an appropriate niche. There are sev-
eral recent reviews expounding the use of MTJs for computa-
tional nodes [25-28]. MTJs have also been proposed for image
processing [29].

Figure 3(a) shows the integration of two MTJs to make the
random bit generation in one MTJ conditionally dependent
on the bit state of the other. The hard layers are composed
of synthetic anti-ferromagnets that produce negligible dipole
coupling field. The soft layers are composed of magnetostrict-
ive ferromagnets. The MTJs are fabricated on a poled piezo-
electric film deposited on a conducting substrate. Two elec-
trodes are delineated on the piezoelectric film with appropriate
dimensions and spacing. With an applied voltage of appro-
priate polarity, the electrodes generate biaxial strain under-
neath the magnetostrictive soft layer of MTJ-B. By vary-
ing the voltage at the electrodes, we can vary the magnitude
of strain experienced by the magnetostrictive soft layer of
MT]I-B. The soft layer of MTJ-A also experiences strain effect,
but its magnetization will be determined by the voltage applied
across it, which will override any strain effect. No voltage is
applied across MTJ-B. The spacing between the MTJs is made
sufficiently small to have significant dipole coupling between
the two soft layers.

The random bit ‘A’ is generated using VCMA and STT-
based operating principles discussed before. To generate the
random bit ‘B’ that is conditionally dependent on ‘A, we rely
on the dipole coupling between the soft layers of MTJ-A and
MTJ-B. One would expect that dipole coupling would always
make the magnetization of the soft layer of MTJ-B become
antiparallel to the magnetization of the soft layer of MTJ-A,
but this does not happen in practice. There is a shape aniso-
tropy energy barrier within the soft layer of MTJ-B, which will
have to be overcome by dipole coupling to make its magnetiza-
tion rotate from its initial orientation to become antiparallel. If
the energy barrier cannot be overcome, then bit ‘B’ will remain
in its previous state and not be anti-correlated with bit ‘A.” We
elucidate this in figure 3(b). Dipole coupling makes the poten-
tial asymmetric, with a barrier between them. The asymmetry
depends on the bit state of MTJ-A. For example if bit A = 1,
then the minimum at # = 0° is higher than the minimum at
f = 180°. In this case, the magnetization of MTJ-B should
prefer to orient along # = 180° (which is the ground
state), resulting in anti-correlation between bits A and B.
However, this only happens probablistically under thermal
noise because of the potential barrier in figure 3(b). With
stress, we can modulate/depress the barrier height and there-
fore control the likelihood of the magnetization of MTJ-B
switching.

We have simulated the magneto-dynamics within the soft
layers of both MTJ-A and MTJ-B in the presence of thermal
noise by solving coupled LLG equations in the presence of a
random noise field [30]. In figure 3(c), we plot the correlation
parameter as a function of the stress applied to the soft layer of

MTIJ-B. The results are shown at varying separations between
the soft layers of MTJ-A and MTJ-B. Note that we can vary
the correlation parameter from 0 (no correlation) to -1 (perfect
anti-correlation) by varying the stress applied locally to the
soft layer of MTJ-B with the voltage impressed between the
shorted electrodes. We can also do this for any pair of bits by
additional dipole-coupled MT]Js.

5. Architecture of MTJ-based Bayesian Reasoning
Machine

Figure 4(a) shows our grid-based architecture of coupled MTJs
for Bayesian reasoning. In the topological order execution of a
Bayesian graph on the grid, the parent nodes are generated in
the middle column. In the first half of the clock cycle, Vycpa
of the respective MTJ is generated by a PMOS passing cur-
rent to non-volatile memory (NVM) (figure 4(b)). The NVM
can be realized using memristors or magnetic domain-wall
memories. Since the proposed MTJs are realized on the top of
the piezoelectric layers, the integration complexity of mem-
ristors and MTJs is low, especially for the memristor config-
urations discussed in [31, 32]. Additionally, since piezoelec-
tric materials have a high dielectric constant and low leakage,
dynamic charge (analog voltage) storage by realizing capa-
citors on the piezoelectric layer can also be explored. In the
second half of the clock cycle, the parent variables evolve
self-consistently in the column based on the dipole coupling
voltages.

In the successive clock cycles for the evolution of child
nodes, the first half of the cycle generates the coupling
voltage in the piezoelectric couplers and the second half
cycle generates the child nodes. With increasing clock cycles,
the sampling progresses away from the parent column and
samples child nodes hierarchically down in a Bayesian graph.
In figure 4(a), the potential of piezoelectric couplers can be
similarly generated using NVMs or dynamic charge storage.
The bias current to NVMs in a column is turned off as the
sampling moves to the next column. The output of a random
node can be read as in typical MTJ-based memory arrays using
select transistors and row/column peripherals [33]. Note that
typical BN applications read posterior probability at only a few
variables. Therefore, only a few nodes in the MTJ grid need to
be read after each sampling iteration, and the reading over-
heads are low in the MTJ grid.

5.1. Mapping general Bayesian graphs on 2D MTJ grid

Our MTJ grid only enables the nearest neighbor correla-
tion, where each node can only have binary states. Therefore,
new mapping and graph partitioning/restructuring algorithms
are needed to compile a general Bayesian graph on the 2D
grid. Nodes with more than two states can be split by bin-
ary coding. To execute general edges in a graph, in figure 5,
an example mapping strategy is shown where graph nodes
are duplicated by setting the coupling voltages for perfect
anti-correlation (and swapping ‘1’ and ‘O’ convention at
the interleaved rows). The key objectives for an optimal
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Figure 3. (a) MTJ integration where the effect of dipole coupling, controlled with local stress applied to one MTJ, can be utilized to
stochastically couple the switching probability of one MTJ depending on the state of the other. This results electrically tunable correlation
between the bits ‘A’ and ‘B’ encoded in the resistance states of the two MTJs. (b) Potential energy in MTJ-B as a function of its free layer
magnetization orientation depicted by the angle 6. The potential energy barrier can be modulated by strain which then controls the
likelihood of MTJ-B switching in response to the bit state of MTJ-A. (c) Correlation of two MTJ random bits at varying stress level. The
correlation also depends on the center to center separation between MTJ disks. Reproduced with permission from [30].
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Figure 5. An example mapping of Bayesian graph on 2D nanomagnet grid.

mapping algorithm are: (i) minimize replication of graph 5.2. Mapping different sampling algorithms on the grid
nodes and (ii) minimize the distance of the farthest node

from the central column (to maximize sampling iteration Independent sampling can be implemented on the MTJ-grid
speed). by mapping the parent variables on the parent MTJ column
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Figure 6. Different non-idealities arise in MTJ-based Bayeasian network implementation. (a) Impact of number of samples on the
probability of node F. Higher number of samples results in stable probability estimation. (b) Non-ideality in the parent node A encoding
causes error in the probability approximation. Here, we studied non-ideality for two different cases: P(A) = 0.5 and P(A) = .1. (c¢) Error
arises from the non-ideality in child node C encoding. (d). Effect of variability in self correlation encoding on the probability approximation.

and then mapping the children on the successive columns.
Rejection and likelihood sampling can be implemented by
programming the read peripherals, and unlikely samples can
be discarded or weighted lower. Importance sampling can be
implemented by reprogramming the voltages of piezoelec-
tric couplers to tweak the correlation parameters as sampling
iterations proceed. Markov chain-based sampling algorithms
update edge correlation value as the sampling chain evolves.

6. Simulation results

Considering the graph shown in figure 5 as a test-case. In
this section, we study the impact of various non-idealities on
inference accuracy. In figure 6 for our MTJ-based Bayesian

network implementation, the non-idealities arise due to: (1)
imprecise gate-controlled probabilistic switching in the parent
node MT]J, (2) imprecise dipole coupling between MTIJs, and
(3) imprecise non-volatile memory resistance. We consider a
forward sampling flow to compute P(F) to characterize the
above non-ideality sources. The designed probability paramet-
ers for the parent node and conditional dependence on child
nodes are also shown in figure 5.

In figure 6(a), we show the evaluated P(F) at the increasing
number of samples from the graph. Note that an adequately
high sample size is needed for high confidence (low vari-
ance) prediction. Moreover, in more complex and larger
graph structures, the number of samples for high confidence
inference also increases dramatically. Therefore, software-
based approaches do not scale for inference in complex
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and larger graph structures under real-time constraints. Our
approach allows sub-ns sample generation; therefore, it can
operate on much larger graph structures under performance
constraints.

In figure 6(b), we study the impact of variability in par-
ent node probability encoding. In figure 4(b), the parent node
probability is encoded by biasing the parent MTJ through a
resistive memory and current bias. Under process imperfec-
tions, resistive memory resistance, as well as bias current,
may vary; moreover, the characteristics of the parent MTJ
itself can deviate. As a result, the encoded probability para-
meter varies under process variation. We lump different pro-
cess variability sources and treat the parent node probability
parameter as A (Pp,a,%). Here, P, is the programmed parent
node probability, and o3 is the expected variance due to pro-
cess variability sources discussed earlier. Figure 6(b) shows
that with higher degree of process variability (high 03), pre-
diction error for P(F) increases. Tolerance to process variab-
ility in our design can be increased by upsizing the compon-
ents (resistive memory, current biasing transistor, etc) as well
as post-fabrication calibration (which we plan to address in a
future work).

In figure 6(c), we study the impact of variability in child
node probability encoding. In figure 4(b), the conditional prob-
ability of child nodes is encoded by the dipole coupling of par-
ent and child node MTJ. The dipole coupling strength is pro-
grammed by applying the potential to piezoelectric film, and
thereby, by programming stress fields. Under process imper-
fections, the applied potential and potential-induced stress
fields can vary. Similar to the parent nodes, we lump differ-
ent process variability sources and treat child node probability
parameter as N (Pc,a%). Here, P, is the programmed parent
node probability and o2 is the expected variance. Figure 6(c)
shows that with higher degree of process variability (high
oé), prediction error for P(F) increases. Therefore, effective
mechanisms to contain process variability impact is neces-
sary. Figure 6(d) shows a similar study as in figure 6(c)
but for node duplication. In the considered test-case, we see
a strong dependence between graph probability parameters
and process variability. Notably, the case where P(A)=0.1
is a lot more sensitive to process variability than P(A) =0.5.
The result also highlights the potential to co-design graph
structure and parameters considering process variability
sources.

7. Conclusions

We have discussed principled approaches to co-optimize
VCMA, STT, and magnetostrictivity effects in an MTJ to
engineer useful stochasticity and probabilistic interaction
among MT]Js. Co-adapted MTJs are quite suited for sub-
ns sampling as well as encoding conditional probabilistic
dependences. Based on the novel adaptation of MTJ, a vari-
ety of Bayesian inference-based algorithms can be accelerated.
Specifically for Bayesian networks, we have also discussed
2D grid-based mapping strategy and peripheral circuits to map
arbitrary-shaped graphs on the proposed MTJ grid. This work

has also studied the sources and impact of various process vari-
ability mechanisms on inference accuracy.
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