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Recent experiments at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC)
have indicated that hadrons containing strange quarks produced in noncentral heavy ion collisions can be
polarized. We investigate in detail the coupling of spin and vorticity for electrically neutral, massive vector
bosons using the Proca equation, and provide the nonrelativistic reduction of the field equations via a single
Foldy-Wouthuysen transformation. We find that the resulting Hamiltonian is not Hermitian, but PT
invariant, and involves a spin dependent term 1

2
szℏω to leading order in vorticity. We also calculate further

relativistic and quantum corrections to the Hamiltonian.
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I. INTRODUCTION

Several insightful theoretical papers suggested that the
large orbital angular momentum of the matter created in
noncentral high energy heavy ion collisions could polarize
the quarks and subsequently the hadrons observed in the
final state [1–4]. Measurements by the STAR Collaboration
at the Relativistic Heavy Ion Collider (RHIC) of the
polarization of the Λ and Λ̄ hyperons were consistent with
this idea [5–7]. The inferred vorticity ω¼ð9�1Þ×1021 s−1
is the highest ever measured. It translates to an energy of
ω ¼ 6 MeV (we use units in which ℏ ¼ c ¼ kB ¼ 1). The
observed hyperon polarization decreases with increasing
beam energy, becoming nearly zero at the maximum RHIC
energy of

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.Measurements of the hyperon
polarization by the ALICE Collaboration at the much
higher beam energies available at the Large Hadron
Collider (LHC) are consistent with zero [8]. According
to the quark model the spin of the Λ and Λ̄ hyperons is
carried by the s and s̄ quarks. The important question of
how long it takes for the strange quarks to reach and
maintain equilibrium with the vorticity was addressed in
several papers by the present authors [9–11].
Massive spin-1 vector mesons should also be polarized in

noncentral high energy heavy ion collisions [3,4,12–14].
Early, relatively low statistics measurements by the
STAR Collaboration at RHIC found no spin alignment of
the K�0ð892Þ and ϕð1020Þ vector mesons [15]. Very
surprisingly, spin alignment of these vector mesons was

measured at the much higher LHC energies by the ALICE
Collaboration [16]. (Here it should be noted that, unlike
hyperons, the statistical spin density matrix must be used to
infer the spin alignments of the vector mesons [17].) One
possible explanation of this puzzle has been proposed [18].
In addition, ALICE has found no discernable polarization of
the J=ψ meson [19].
Motivated by these experimental results we investigate in

detail the coupling of spin and vorticity for electrically
neutral, massive vector bosons using the Proca equation.
The outline of our paper is as follows. Components of the
field strength tensor for massive vector fields may be
referred to as electric and magnetic fields, even though
it is not electromagnetism. How these fields are defined,
whether it be via contravariant or covariant tensors, is
reviewed in Sec. II. The field equations of motion in a
rotating frame of reference are presented in a concrete
fashion in Sec. III. The Hamiltonian for a Schrödinger
description of the dynamics is presented in Sec. IV. The
nonrelativistic reduction of the field equations via a single
Foldy-Wouthuysen transformation is given in Sec. V. It
turns out that the energy states are split as 0;� 1

2
ω, not

0;�ω as one might have expected. Furthermore, a non-
Hermitian but PT invariant term arises in the nonrelativ-
istic reduction; it is a correction of order ℏ=c2 and so does
not appear in classical physics. It has been shown that PT
invariant Hamiltonians are not necessarily unphysical. We
explore this term specifically in Sec. VI. Conclusions are
presented in Sec. VII. Our results may also be relevant to
rapidly rotating, cold, trapped atomic gases. Some details
and elaborations are presented in the Appendices.
The description of massive vector mesons in inertial

frames of reference, including their interaction with
electromagnetic fields if they are charged, is textbook
material [20].
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II. DEFINITION OF ELECTRIC AND
MAGNETIC FIELDS

Consider a massive spin-1 vector meson. The field
strength tensors in the inertial and rotating frames of
reference are related by Gμν ¼ eμaeνbḠab and the fields
are related by ϕμ ¼ eμaϕ̄a [11]. A bar refers to that quantity
in the inertial frame, and the eμa are the tetrads [9].
A simple calculation shows that

ϕμϕμ ¼ gμνϕμϕν ¼ ηabϕ̄
aϕ̄b ¼ ϕ̄aϕ̄a: ð1Þ

Hence the functional form of the Lagrangian L ¼
− 1

4
ḠabḠab þ 1

2
m2ϕ̄aϕ̄a ¼ − 1

4
GμνGμν þ 1

2
m2ϕμϕμ

is unchanged. See Appendix A for explicit expressions for
the metric, the tetrads, the affine connection, and the
covariant derivative.
Concerning the (pseudo)electric and magnetic fields,

they can be defined via the contravariant field strength
tensor Gμν as G10 ¼ Ex and G12 ¼ −Bz, etc., or via the
covariant field strength tensor Gμν as G01 ¼ Ex and G12 ¼
−Bz, etc. where E ¼ ðEx; Ey; EzÞ and B ¼ ðBx; By; BzÞ.
When the metric is ημν it makes no difference which way
they are defined. Otherwise there is no unique definition of
the electric and magnetic fields in the noninertial frame of
reference. Long discussions can be found in Refs. [21–24]
among many others. In this paper, the electric and magnetic
fields are defined by the contravariant tensor, which results
in the covariant components

G0i ¼ ½ð1 − v2ÞEþ ðv · EÞv þ v × B�i;
1

2
ϵijkGjk ¼ −½Bþ v ×E�i: ð2Þ

Defined contravariantly, the relationships between the fields
in the two frames of reference are E ¼ Ē, B ¼ B̄ − v × Ē,
and B̄ ¼ Bþ v ×E. If instead the fields are defined in terms
of the covariant field strength tensor the relationships
between them in the two frames of reference are B ¼ B̄,
E ¼ Ēþ v × B̄, and Ē ¼ E − v ×B.

Expressions for the electric and magnetic fields in terms
of the vector potential are more complicated than in an
inertial frame, being

E ¼ −
� ∂
∂t − v · ∇

�
ϕ −

�
∇þ v

� ∂
∂t − v · ∇

��
ϕ0;

B ¼ ∇ × ϕþ v ×

� ∂
∂t − v · ∇

�
ϕ: ð3Þ

III. FIELD EQUATIONS

Consider the classical equations of motion in the inertial
frame. They are

Ḡab ¼ ∂aϕ̄b − ∂bϕ̄a;

∂aḠab ¼ −m2ϕ̄b: ð4Þ

Thus ∂bϕ̄
b ¼ 0 which is consistent with three spin degrees

of freedom. Since Ḡab is an antisymmetric tensor

∂aḠab ¼ DaḠab ¼ ∂aḠab þ Γa
acḠcb þ Γb

acḠac ð5Þ

where Da is the covariant derivative and Γa
bc is the affine

connection. Transformation to the rotating frame leads to

DμGμν ¼ ∂μGμν ¼ −m2ϕμ: ð6Þ

It is also true that

∂μϕ
μ ¼ ∂aϕ̄

a ¼ 0: ð7Þ

Equations (6) can be written in terms of the vector
electric and magnetic fields as

∇ ·E ¼ −m2ϕ0;

∇ ×B −
∂E
∂t ¼ −m2ϕ: ð8Þ

The Bianchi identity

∂αGβγ þ ∂γGαβ þ ∂βGγα ¼ 0 ð9Þ

is immediately satisfied if one uses Gμν ¼ ∂μϕν − ∂νϕμ. In
terms of the electric and magnetic fields

∇ · Bþ v ·

� ∂
∂t − v · ∇

�
B ¼ 0 ð10Þ

and

� ∂
∂t − v · ∇

�
Bþ ∇ ×Eþ v ×

� ∂
∂t − v · ∇

�
E ¼ 0: ð11Þ

Some useful relations used include

∂0 ¼ g0σ∂σ ¼ ∂0 − vx∂1 − vy∂2;

∂1 ¼ g1σ∂σ ¼ −∂1 − vx∂0 þ v2x∂1 þ vxvy∂2;

∂2 ¼ g2σ∂σ ¼ −∂2 − vy∂0 þ vxvy∂1 þ v2y∂2;

∂3 ¼ g3σ∂σ ¼ −∂3 ð12Þ

or

∂0 ¼ ∂
∂t − v · ∇;

∂i ¼ −
�
∇þ v

� ∂
∂t − v · ∇

��
i
; ð13Þ
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and

∂μð∂μXÞ ¼ gμν∂μ∂νX − ω2ðx∂1 þ y∂2ÞX: ð14Þ
Instead of transforming the equations of motion from

the inertial to the rotating frame, consider the equations of
motion that follow from the Lagrangian. Although the
Lagrangian is unchanged when expressed in terms of the
contravariant and covariant field strength tensors and
the field, that is not the case when it is expressed in terms
of derivatives of the fields. It is convenient to replace
ordinary derivatives ∂μ with covariant derivatives Dμ.
The covariant derivative commutes with the metric tensor
(covariant, contravariant, or mixed) and thus commutes
with the operation of raising or lowering indices. The
covariant curl is equal to the ordinary curl so that
Dμϕν −Dνϕμ ¼ ∂μϕν − ∂νϕμ ¼ Gμν. The covariant diver-
gence is equal to the ordinary divergence Dμϕ

μ ¼ ∂μϕ
μ

because det gμν ¼ −1 is a constant. Specifically

L ¼ 1

2
ð∂αϕ

βÞð∂βϕ
αÞ − 1

2
gαβgγρð∂γϕ

αÞð∂ρϕ
βÞ

þ 1

2
m2gαβϕαϕβ: ð15Þ

The momentum conjugate to ϕμ is

πμ ¼ gμν
∂L

∂ð∂0ϕ
νÞ : ð16Þ

As usual one finds that π0 ¼ 0 so that ϕ0 is not an
independent field. Also π1 ¼ Ex etc. with E as given in
(3). Thus E is the momentum conjugate to ϕ.

The field equations

gσν
�
Dμ

∂L
∂ð∂μϕ

νÞ −
∂L
∂ϕν

�

¼ gσν½Dμð∂νϕ
μ − gαν∂μϕαÞ −m2gανϕα� ¼ 0 ð17Þ

can be put in the form

Dμð∂μϕσ − ∂σϕμÞ þm2ϕσ

¼ ∂μð∂μϕσ − ∂σϕμÞ þm2ϕσ ¼ 0 ð18Þ
consistent with Eq. (6). Note that the constraint (7) is
automatically satisfied. Using Eqs. (12) and (14) the results
of the Lagrangian approach are

gμν∂μ∂νϕ
0þm2ϕ0¼ω2ðx∂1þy∂2Þϕ0þωð∂1ϕ

2−∂2ϕ
1Þ;

gμν∂μ∂νϕ
1þm2ϕ1¼ω2ðx∂1þy∂2Þϕ1þω∂0ϕ

2

þω2yð∂1ϕ
2−∂2ϕ

1Þ−ω2ðx∂2−y∂1Þϕ2;

gμν∂μ∂νϕ
2þm2ϕ2¼ω2ðx∂1þy∂2Þϕ2−ω∂0ϕ

1

−ω2xð∂1ϕ
2−∂2ϕ

1Þþω2ðx∂2−y∂1Þϕ1;

gμν∂μ∂νϕ
3þm2ϕ3¼ω2ðx∂1þy∂2Þϕ3 ð19Þ

with

gμν∂μ∂ν ¼ ∂2
t −∇2 þ v2x∂2

x þ v2y∂2
y

− 2ðvx∂x þ vy∂yÞ∂t þ 2vxvy∂x∂y: ð20Þ

Notice the rotational symmetry about the z axis in the
equations for the field: ðx; yÞ → ðy;−xÞ and ðϕ1;ϕ2Þ →
ðϕ2;−ϕ1Þ. It can be verified that these equations are
consistent with the constraint Eq. (7).
Consider plane wave solutions to Eq. (19) close to the

origin where jvxj, jvyj ≪ 1. Then it is only necessary to
keep the terms of order ω on the right side of these
equations. Considering the equations for the dynamical
components of the field, there is one mode with E2 ¼
p2 þm2 ≡ E2

p and a pair of modes with E2 ¼ E2
p þ 1

2
ω2�

ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ 1

4
ω2

q
, for which the positive energies are

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
p þ 1

4
ω2

q
� 1

2
ω.

IV. DETERMINATION OF THE HAMILTONIAN

In this section we consider a Schrödinger-like formu-
lation which involves a Hamiltonian and wave equations
with only first order derivatives in time. For this one
needs to make a choice of how to define the wave func-
tions in terms of the fields. This choice ought to be
informed by the requirement that the positive and negative
energy states be clearly separated for a particle at rest and,
perhaps, with zero vorticity. There are three natural choices.
The first one is

ψ i� ¼ 1

2

�
ϕi � i

m
∂ϕi

∂t
�

ð21Þ

where i ¼ 1, 2, 3 since, for a particle at rest and with zero
vorticity, the fields would have the time dependence e−imt

for positive energy states and eimt for negative energy
states. However, with vorticity this choice is not the most
natural and we do not report on it here. The second one is

ψ i� ¼ 1

2

�
ϕi∓ i

m
Ei

�
¼ 1

2

�
ϕi∓ i

m
ð∂iϕ0−∂0ϕiÞ

�
ð22Þ

which has the same benefits as the first one with the added
bonus that it is a linear combination of the fields and their
conjugate momenta [25]. The resulting Hamiltonian is
presented in Appendix B. The third one is

ψ i� ¼ 1

2

�
ϕi � i

m
ð∂t − v · ∇Þϕi

�
ð23Þ

which is motivated by the expressions for the electric and
magnetic fields (3) and the appearance of the contravariant
derivatives (13). Although in the end it should not matter

SPIN-VORTICITY COUPLING FOR MASSIVE VECTOR MESONS PHYS. REV. D 102, 125028 (2020)

125028-3



what choice is made, we have found that the third one is the
simplest and easiest to work with.
The equations for the independent fields can be written

compactly in matrix form as

0
B@
D−ωvx∂y −Tþωvx∂x 0

T−ωvy∂y Dþωvy∂x 0

0 0 D

1
CA
0
B@
ϕ1

ϕ2

ϕ3

1
CA¼ 0 ð24Þ

where

D ¼ gμν∂μ∂ν þm2 − ω2ðx∂x þ y∂yÞ
¼ ð∂t − v · ∇Þ2 −∇2 þm2;

T ¼ ωð∂t − v · ∇Þ: ð25Þ

Note that the field ϕ3 decouples from the other two.
We focus on the transverse directions first. Combining

Eqs. (23)–(25) we can easily write the exact equations of
motion in the form

i
∂
∂t

0
BBBB@

ψxþ
ψyþ
ψx−

ψy−

1
CCCCA ¼ H⊥

0
BBBB@

ψxþ
ψyþ
ψx−

ψy−

1
CCCCA ð26Þ

with

H⊥ ¼ mβþ iv ·∇þ

0
BB@

−
∇2

2m
−
ω

2
σ2 −

∇2

2m
þω

2
σ2

∇2

2m
þω

2
σ2

∇2

2m
−
ω

2
σ2

1
CCAþW:

ð27Þ
Here β ¼ γ0 is the usual 4 × 4 Dirac matrix,

W ¼
�

w w

−w −w

�
ð28Þ

and

w ¼ ω2

2m

�
y∂y −y∂x

−x∂y x∂x

�
: ð29Þ

Making the identification p ¼ −i∇ we see that the entries
in W are

�i
ℏω2

2mc2
xipj

where i, j ¼ 1, 2 and factors of Planck’s constant and the
speed of light have been inserted. The factor of i is puzzling
but, due to the factor of ℏ, this term does not enter a
classical Hamiltonian. Due to the factor of 1=c2 it vanishes
in the nonrelativistic limit.

The Hamiltonian is not Hermitian. However, one can
develop a physical quantum theory from a non-Hermitian
Hamiltonian if it possesses combined parity P and time
reversal T symmetry. See [26,27] and references therein.
Specifically, the energy spectrum of such a Hamiltonian is
real and bounded below, the Hilbert space of state vectors is
endowed with an inner product having a positive norm, and
it generates a unitary time evolution. In order to define a
positive and time independent norm for the wave function,
an additional symmetry must introduced, represented by a
linear operator C [26], not to be confused with charge
conjugation. In addition, to correctly identify the energy
spectrum, special care must be taken in specifying the
boundary conditions when solving the Schrödinger equa-
tion. Under the combined PT symmetry x → −x, p → p,
ω → −ω, and i → −i. The above Hamiltonian does have
this symmetry. Hence a physical quantum theory can be
constructed in a rotating frame.
With a view towards applications to heavy ion collisions,

rapidly rotating neutron stars, and rotating atomic gases,
we consider an expansion in powers of ω. One might wish
to eliminate the 2 × 2 block diagonal terms of the non-
Hermitian term W, relegating them to higher order in the
vorticity, with the transformation ψ 0 ¼ eiMψ where in this
case M will be time independent. Then

H0 ¼eiMHe−iM¼Hþ i½M;H�−1

2
½M; ½M;H��þ · · ·: ð30Þ

We assume

M ¼
�
M2 þM1 0

0 M2 −M1

�
ð31Þ

where

M1 ¼
ω

2m

�
A B

C D

�
ð32Þ

with A ¼ Axxx∂x þ Axyx∂y þ Ayxy∂x þ Ayyy∂y, and simi-
larly for B, C, D, a form suggested by Eq. (29), and where

M2 ¼ −i
ω2

2

�
a b

c d

�
ð33Þ

with a ¼ a1ðx2 − y2Þ þ a2xy, and similarly for b, c, d.
The reason for the latter choice is that 1

2
½∇2; a� ¼

2a1ðx∂x − y∂yÞ þ a2ðy∂x þ x∂yÞ. It is to be understood
that all coefficients are dimensionless and independent of
ω. This is a similarity transformation, not a unitary trans-
formation, because we are trying to eliminate a non-
Hermitian (but still PT symmetric) term in H. Despite
having 24 free parameters and 16 equations to solve, no
solution can be found as these equations are inconsistent;
see Appendix C. We have not discovered any other way to
cancel the block diagonal terms in W, hence they remain.
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Similarly we may derive the Hamiltonian for the z
component

i
∂
∂t

�
ψ zþ
ψ z−

�
¼ Hjj

�
ψ zþ
ψ z−

�
ð34Þ

to be

Hjj ¼ mσ3 þ iv · ∇þ

0
BB@

−
∇2

2m
−
∇2

2m
∇2

2m
∇2

2m

1
CCA: ð35Þ

Note the lack of terms that had appeared in the x and
y components of the wave function. This is because the
z component represents zero projection of the spin along
the vorticity axis. In principle this Hamiltonian is not
Hermitian in the sense thatH† ¼ ðH�ÞT ≠ H on account of
the ∇2 terms. But this is unrelated to vorticity and always
arises with bosons, as has been mentioned many times in
the literature.

V. FOLDY-WOUTHUYSEN NONRELATIVISTIC
REDUCTION

The leading order spin dependent term calculated at the
end of the Sec. III is 1

2
szω where sz may be identified with

the z component of the spin with values 0;�1. This was
derived under the assumptions that the orbital angular
momentum is zero and that the vorticity is small, namely,
ω ≪ Ep. In this section we perform a Foldy-Wouthuysen
nonrelativistic reduction of the field equations. Such a
nonrelativistic reduction for electrically charged vector
mesons interacting with the electromagnetic field has been
done before; perhaps the first was Ref. [28], while a more
recent one is Ref. [25]. The tetrads used in our earlier
papers [9,11] are still valid if the vorticity is time, but not
space, dependent. Allowing for a time dependence would
add additional terms in what we calculate below. The
transformation ψ 0 ¼ eiSψ , when S is time independent,
leads to

H0 ¼ eiSHe−iS ¼ H þ i½S;H� − 1

2
½S; ½S;H�� þ · · ·: ð36Þ

A. Centrifugal and Coriolis forces

Consider the nonrelativistic reduction for ψz�. The exact
Hamiltonian can be written as Hjj ¼ mσ3 þ E þ Ω where

E ¼

0
BB@

iv · ∇ −
∇2

2m
0

0 iv · ∇þ ∇2

2m

1
CCA ð37Þ

and

Ω ¼

0
BB@

0 −
∇2

2m
∇2

2m
0

1
CCA: ð38Þ

Now make a unitary transformation with S ¼ − i
2m σ3Ω in

order to cancel the off-diagonal terms to first order. Then

i½S;mσ3� ¼ −Ω;

i½S; E þ Ω� ¼ −
ð∇2Þ2
4m3

ðσ3 þ iσ2Þ;

−
1

2
½S; ½S;mσ3�� ¼

ð∇2Þ2
8m3

σ3: ð39Þ

These make use of the fact that ½v · ∇;∇2� ¼ 0. This leads
to the Hamiltonian for the positive energy states,

H0
jjþ ¼ m −

∇2

2m
þ iv · ∇ −

ð∇2Þ2
8m3

: ð40Þ

Making the replacement p ¼ −i∇ and v ¼ ω × r we find

H0
jjþ ¼ mc2 þ p2

2m
− ω × r · p −

ðp2Þ2
8m3c2

¼ mc2 þ p2

2m
− ω ·L −

ðp2Þ2
8m3c2

: ð41Þ

The third term on the right-hand side exactly reproduces the
centrifugal and Coriolis forces when using this Hamiltonian
to write the classical equations of motion, while the last term
is the relativistic correction to the kinetic energy.

B. Spin effects

Consider the nonrelativistic reduction for ψx� and ψy�.
The 4 × 4 Hamiltonian can be written as H⊥ ¼ mβ þ E þ
Ω where

E¼

0
BB@
iv ·∇−

∇2

2m
−
1

2
ωσ2þw 0

0 iv ·∇þ∇2

2m
−
1

2
ωσ2−w

1
CCA

ð42Þ
and

Ω ¼

0
BB@

0 −
∇2

2m
þ 1

2
ωσ2 þ w

∇2

2m
þ 1

2
ωσ2 − w 0

1
CCA: ð43Þ

As usual we choose S ¼ − i
2m βΩ in order to cancel the off-

diagonal block terms in H⊥ to order 1=m. To this order the
term w is not involved. Then
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i½S;mβ� ¼ −Ω;

i½S; E þΩ� ¼ ∇2

2m2
Ω −

1

m

�ð∇2Þ2
4m2

−
1

4
ω2

�
β þ � � � ;

−
1

2
½S; ½S;mβ�� ¼ 1

2m

�ð∇2Þ2
4m2

−
1

4
ω2

�
β þ � � � : ð44Þ

This leads to

H0⊥ ¼
�
m −

∇2

2m
−
ð∇2Þ2
8m3

þ ω2

8m

�
β þ iv · ∇ −

1

2
ωσ2

þ ∇2

2m2
ΩþW þ � � � : ð45Þ

Thus the Hamiltonian to this order for the positive energy
states in the given basis is

H0⊥þ ¼mc2þ p2

2m
−ω ·L−

ðp2Þ2
8m3c2

−
1

2
ℏωσ2þ

ðℏωÞ2
8mc2

þw

ð46Þ

where w is non-Hermitian but PT symmetric.

C. Complete spin and relativistic corrections

Finally we can write the nonrelativistic Hamiltonian
for the three independent degrees of freedom, including
relativistic corrections, as a 3 × 3 matrix in the form

H0þ ¼ mc2 þ p2

2m
− ω ·L −

ðp2Þ2
8m3c2

−
1

2
ℏωS3

þ ðℏωÞ2
8mc2

S23 þ
�
w 0

0 0

�
ð47Þ

with the spin matrices

S1 ¼

0
BB@

0 0 0

0 0 −i
0 i 0

1
CCA ¼

�
0 0

0 σ2

�
; ð48Þ

S2 ¼

0
BB@

0 0 i

0 0 0

−i 0 0

1
CCA; ð49Þ

S3 ¼

0
BB@

0 −i 0

i 0 0

0 0 0

1
CCA ¼

�
σ2 0

0 0

�
; ð50Þ

which satisfy ½Si; Sj� ¼ iϵijkSk in a standard representa-
tion [28].

VI. SOLUTION TO A TRUNCATED
NON-HERMITIAN BUT PT SYMMETRIC

HAMILTONIAN

In this section we solve several truncated versions of the
2 × 2 Hamiltonian derived in Sec. V B to investigate any
obvious problems with the non-Hermitian term w. First we
treat a Hermitian and a non-Hermitian Hamiltonian sepa-
rately, then we add them together to see if that introduces
any complications.
Consider the Hermitian Hamiltonian H ¼ − 1

2
ωσ2 with

wave function components ψx and ψy. The energy eigen-
values are E ¼ � 1

2
ω. The eigenfunctions are related by

iEψy ¼ − 1
2
ωψx, but are otherwise unrestricted. This is

elementary quantum mechanics.
Next consider the non-Hermitian but PT symmetric

Hamiltonian H ¼ w. We look for a solution which has
rotational symmetry and which is normalizable at
x ¼ y ¼ 0. The functional form is

ψx ¼ yfðρ2Þ;
ψy ¼ −xfðρ2Þ; ð51Þ

where ρ2 ¼ x2 þ y2. The pair of coupled scalar equations
reduces to

ρ2f0 ¼
�
mE
ω2

− 1

�
f ð52Þ

which has solution

fðρ2Þ ¼
�
ρ2

ρ20

�
n

ð53Þ

with

n ¼ mE
ω2

− 1: ð54Þ

As the integration measure is dϕρdρ, the wave function is
normalizable at the origin for E > 0. This means the energy
spectrum is real and bounded from below. Of course,
appropriate boundary conditions must be used at large ρ to
avoid the speed of the surface of the rotating cylinder
exceeding the speed of light.
Finally we consider the Hamiltonian H ¼ iv · ∇ −

1
2
ωσ2 þ w to see if the combination of the non-Hermitian

with the Hermitian terms causes any problems. In this case
the solution takes the form

ψx ¼
�
Eyþ iω

2
x

�
fðρ2Þ;

ψy ¼ −
�
Ex −

iω
2
y

�
fðρ2Þ; ð55Þ
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where f satisfies the differential equation

E2f ¼ ω2

�
E
m
þ 1

4

�
f þ ω2E

m
ρ2f0: ð56Þ

The solution is

fðρ2Þ ¼
�
ρ2

ρ20

�
n

ð57Þ

with

n ¼ mE
ω2

−
m
4E

− 1: ð58Þ

The solution is normalizable at the origin if either − 1
2
ω <

E < 0 or if E > 1
2
ω. It is interesting that there is a gap in the

spectrum. Nevertheless, it seems that the non-Hermitian but
PT symmetric term w results in real energy eigenvalues
bounded from below.

VII. CONCLUSION

In this paper, motivated by the observation of vorticity
in the quark-gluon plasma produced in noncentral heavy
ion collisions at RHIC and LHC, we investigated the
coupling of spin and vorticity of massive vector mesons
in a rotating frame of reference. Starting from the Proca
equations of motion in noninertial frames, we derived the
Hamiltonian in a Schrödinger-like formulation. We found
this Hamiltonian to be non-Hermitian but PT invariant. We
found the vorticity dependent non-Hermitian term in the
Hamiltonian to be both a relativistic and quantum correc-
tion Oðℏ=c2Þ. We recover the nonrelativistic Coriolis and
centrifugal forces from the Foldy-Wouthuysen transforma-
tion, and obtained the Hamiltonian for the positive energy
states, including leading relativistic corrections. There is a
splitting of 1

2
szω to leading order in the vorticity.
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APPENDIX A: METRIC

Consider a region of space where a fluid element is
rotating in an anticlockwise sense around the z axis with
angular speed ω which may be considered constant within
that region. We choose the tetrad as the 4 × 4 matrix

eaμðxÞ ¼

0
BBB@

1 vx vy 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA ðA1Þ

where vx ≡ −ωy and vy ≡ ωx. From this is it straight-
forward to find the metric

gμνðxÞ ¼

0
BBB@

1 − v2 −vx −vy 0

−vx −1 0 0

−vy 0 −1 0

0 0 0 −1

1
CCCA; ðA2Þ

the inverse metric

gμνðxÞ ¼

0
BBBBB@

1 −vx −vy 0

−vx −1þ v2x vxvy 0

−vy vxvy −1þ v2y 0

0 0 0 −1

1
CCCCCA
; ðA3Þ

and the inverse tetrad

eμaðxÞ ¼

0
BBBBB@

1 0 0 0

−vx 1 0 0

−vy 0 1 0

0 0 0 1

1
CCCCCA
: ðA4Þ

The sign convention for the affine connection is

Γλ
μν ¼

1

2
gσλð∂νgμσ þ ∂μgνσ − ∂σgμνÞ: ðA5Þ

The nonzero components are

Γ1
00 ¼ ωvy;

Γ2
00 ¼ −ωvx;

Γ2
01 ¼ ω;

Γ1
02 ¼ −ω: ðA6Þ

The covariant derivative acting on a second rank tensor has
the usual form

DμTαβ ¼ ∂μTαβ þ Γα
μνTνβ þ Γβ

μνTαν: ðA7Þ

If Tαβ is antisymmetric then the action of the covariant
derivative is the same as the ordinary derivative because of
the symmetry of the affine connection. Similarly
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Dμϕ
μ ¼ 1ffiffiffi

g
p ∂μð

ffiffiffi
g

p
ϕμÞ ðA8Þ

where g ¼ j det gμνj. Covariant differentiation commutes
with the metric. In an inertial frame and Cartesian coor-
dinates the affine connection vanishes, and so the covariant
derivative is the same as the ordinary derivative.

APPENDIX B: HAMILTONIAN FOR AN
ALTERNATE CHOICE OF WAVE FUNCTION

As the Hamiltonian derived in this work is non-
Hermitian one is left to ponder whether alternative wave
functions can be found that lead to the usual quantum
theory we are familiar with. In this Appendix we consider
the choice made in Ref. [25], namely

ψ i� ¼ 1

2

�
ϕi∓ i

m
Ei

�
¼ 1

2

�
ϕi∓ i

m
ð∂iϕ0−∂0ϕiÞ

�
ðB1Þ

which is a linear combination of the fields and their
conjugate momenta. The resulting Hamiltonian is the
6 × 6 matrix operator

H ¼
�
mþ h0 þ h2 h1 þ h3

h1 − h3 −mþ h0 − h2

�
ðB2Þ

where

h0¼
i
2

�
2ðv ·∇Þ− ½S · ðS ·vÞ∇�þðS ·∇ÞðS ·vÞ

−
1

m2
ðS ·∇ÞðS ·vÞ½1þðS ·vÞ2−v2�½∇2− ðS ·∇Þ2�

�
;

h1¼
i
2

�
2ðv ·∇Þ− ½S · ðS ·vÞ∇�− ðS ·∇ÞðS ·vÞ

þ 1

m2
ðS ·∇ÞðS ·vÞ½1þðS ·vÞ2−v2�½∇2− ðS ·∇Þ2�

�
;

h2¼
1

2m
½ðS ·∇ÞðS ·vÞ½S · ðS ·vÞ∇�− ðS ·∇Þ2

− ½1þðS ·vÞ2−v2�½∇2− ðS ·∇Þ2�− ðS ·∇ÞðS ·vÞðv ·∇Þ�;

h3¼
1

2m
½ðS ·∇ÞðS ·vÞ½S · ðS ·vÞ∇�− ðS ·∇Þ2

þ½1þðS ·vÞ2−v2�½∇2− ðS ·∇Þ2�− ðS ·∇ÞðS ·vÞðv ·∇Þ�:
ðB3Þ

The S are the 3 × 3 spin matrices as given in the text. The
block off-diagonal terms h1 � h3 couple the positive and
negative energy states. The term h3 makes this Hamiltonian
non-Hermitian. This Hamiltonian does possess PT sym-
metry and therefore is acceptable. However, we found the
Hamiltonian for this choice of wave function more com-
plicated because it is third order in derivatives and it

couples the x and y components of the wave function to
the z component. We do not pursue it in this paper.

APPENDIX C: AN ATTEMPT TO REMOVE THE
NON-HERMITIAN TERM

In this Appendix we present some details of the results
mentioned in Sec. IV for the attempt at removing the non-
Hermitian part of the Hamiltonian with a similarity trans-
formation. The terms needed are

i½M1; iv · ∇�11 ¼
ω2

2m
fðAxy þ AyxÞðx∂x − y∂yÞ

þ ðAyy − AxxÞðx∂y þ y∂xÞg;

i½M1; iv · ∇�12 ¼
ω2

2m
fðBxy þ ByxÞðx∂x − y∂yÞ

þ ðByy − BxxÞðx∂y þ y∂xÞg;

i½M1; iv · ∇�21 ¼
ω2

2m
fðCxy þ CyxÞðx∂x − y∂yÞ

þ ðCyy − CxxÞðx∂y þ y∂xÞg;

i½M1; iv · ∇�22 ¼
ω2

2m
fðDxy þDyxÞðx∂x − y∂yÞ

þ ðDyy −DxxÞðx∂y þ y∂xÞg; ðC1Þ

i

�
M1;−

1

2
ωσ2

�
11

¼ ω2

2m

�
1

2
ðBþ CÞ

�
;

i

�
M1;−

1

2
ωσ2

�
12

¼ ω2

2m

�
1

2
ðD − AÞ

�
;

i

�
M1;−

1

2
ωσ2

�
21

¼ ω2

2m

�
1

2
ðD − AÞ

�
;

i

�
M1;−

1

2
ωσ2

�
22

¼ ω2

2m

�
−
1

2
ðBþ CÞ

�
; ðC2Þ

i

�
M2;−

∇2

2m

�
11

¼ ω2

2m
f2a1ðx∂x − y∂yÞ þ a2ðy∂x þ x∂yÞg;

i

�
M2;−

∇2

2m

�
12

¼ ω2

2m
f2b1ðx∂x − y∂yÞ þ b2ðy∂x þ x∂yÞg;

i

�
M2;−

∇2

2m

�
21

¼ ω2

2m
f2c1ðx∂x − y∂yÞ þ c2ðy∂x þ x∂yÞg;

i

�
M2;−

∇2

2m

�
22

¼ ω2

2m
f2d1ðx∂x − y∂yÞ þ d2ðy∂x þ x∂yÞg:

ðC3Þ

To cancel the non-Hermitian, order ω2, term in the original
Hamiltonian we need the following equations to hold.
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From the 12 component�
BxyþByxþ

1

2
Dxx−

1

2
Axxþ2b1

�
x∂x

þ
�
Byy−Bxxþ

1

2
Dxy−

1

2
Axyþb2

�
x∂y

þ
�
Byy−Bxxþ

1

2
Dyx−

1

2
Ayxþb2−1

�
y∂x

þ
�
−Bxy−Byxþ

1

2
Dyy−

1

2
Ayy−2b1

�
y∂y ¼ 0: ðC4Þ

From the 21 component�
CxyþCyxþ

1

2
Dxx−

1

2
Axxþ2c1

�
x∂x

þ
�
Cyy−Cxxþ

1

2
Dxy−

1

2
Axyþc2−1

�
x∂y

þ
�
Cyy−Cxxþ

1

2
Dyx−

1

2
Ayxþc2

�
y∂x

þ
�
−Cxy−Cyxþ

1

2
Dyy−

1

2
Ayy−2c1

�
y∂y ¼ 0: ðC5Þ

The same derivations can be performed for the other
components, resulting in 16 scalar equations and 24
parameters. Let us focus on the x∂y and y∂x terms in
Eqs. (C4) and (C5), which are

Byy − Bxx þ
1

2
Dxy −

1

2
Axy þ b2 ¼ 0;

Byy − Bxx þ
1

2
Dyx −

1

2
Ayx þ b2 − 1 ¼ 0;

Cyy − Cxx þ
1

2
Dxy −

1

2
Axy þ c2 − 1 ¼ 0;

Cyy − Cxx þ
1

2
Dyx −

1

2
Ayx þ c2 ¼ 0: ðC6Þ

The fourth equation leads to

Ayx ¼ 2c2 − 2Cxx þ 2Cyy þDyx ðC7Þ

while a combination of the first three equations leads to

Ayx ¼ 2c2 − 2Cxx þ 2Cyy þDyx − 4 ðC8Þ

which are clearly inconsistent.
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