
Neural Computing and Applications manuscript No.
(will be inserted by the editor)

Genetic-algorithm-optimized neural networks for gravitational
wave classification

Dwyer S. Deighan · Scott E. Field · Collin D. Capano · Gaurav Khanna

Received: date / Accepted: date

Abstract Gravitational-wave detection strategies are

based on a signal analysis technique known as matched

filtering. Despite the success of matched filtering, due

to its computational cost, there has been recent inter-

est in developing deep convolutional neural networks

(CNNs) for signal detection. Designing these networks

remains a challenge as most procedures adopt a trial

and error strategy to set the hyperparameter values. We

propose a new method for hyperparameter optimiza-

tion based on genetic algorithms (GAs). We compare
six different GA variants and explore different choices

for the GA-optimized fitness score. We show that the

GA can discover high-quality architectures when the

initial hyperparameter seed values are far from a good

solution as well as refining already good networks. For

example, when starting from the architecture proposed
by George and Huerta, the network optimized over the

20-dimensional hyperparameter space has 78% fewer

trainable parameters while obtaining an 11% increase in

accuracy for our test problem. Using genetic algorithm

Dwyer S. Deighan
Department of Mathematics, Computer & Information Science,
University of Massachusetts, Dartmouth, MA 02747 E-mail:
ddeighan@umassd.edu Dartmouth, MA 02747.

Scott E. Field
Department of Mathematics, Center for Scientific Computing &
Visualization Research, University of Massachusetts, Dartmouth,
MA 02747. E-mail: sfield@umassd.edu

Collin D. Capano
Max-Planck-Institut für Gravitationsphysik, Leibniz Uni-
versität Hannover, D-30167 Hannover, Germany E-mail:
collin.capano@aei.mpg.de

Gaurav Khanna
Department of Physics, Center for Scientific Computing & Vi-
sualization Research, University of Massachusetts, Dartmouth,
MA 02747. & Department of Physics, University of Rhode Island,
Kingston, RI 02881. E-mail: gkhanna@umassd.edu

optimization to refine an existing network should be

especially useful if the problem context (e.g. statistical

properties of the noise, signal model, etc) changes and

one needs to rebuild a network. In all of our experiments,

we find the GA discovers significantly less complicated

networks as compared to the seed network, suggesting

it can be used to prune wasteful network structures.
While we have restricted our attention to CNN classi-

fiers, our GA hyperparameter optimization strategy can

be applied within other machine learning settings.

Keywords Evolutionary algorithms · Convolutional

neural networks · Signal detection · Matched filters ·

Gravitational waves

1 Introduction

During their first and second observing runs, the ad-

vanced Laser Interferometer Gravitational-Wave Obser-

vatory (LIGO) [1] and Virgo [2] ground-based gravi-
tational wave (GW) detectors have identified several

coalescing compact binaries [3–9]. As these detectors
improve their sensitivity, GW detections [10–16] are

becoming routine [17,18]. In the current observing run,

for example, gravitational wave events are now being

detected multiple times a month [19]. Among the most

important sources for these detectors are binary black

hole (BBH) systems, in which two black holes (BHs)

radiate energy through GW emission, causing them to

inspiral, merge, and finally settle down into a single

black hole through a ringdown phase. GWs and their

strong emission from compact astrophysical objects like

binary black holes, are century-old predictions of Ein-

stein’s general relativity theory that have just recently

been directly verified by the LIGO/Virgo network of

detectors.

ar
X

iv
:2

0
1
0
.0

4
3
4
0
v
2

[g

r-
q
c]

2
0
 A

p
r

2
0
2
1

2 Dwyer S. Deighan et al.

Current BBH gravitational wave search analysis [9,

20] is based on a technique known as matched-filtering [21].
The detector’s output, i.e. time-series data of the relative

motion of the mirrors as a function of time, is correlated

(i.e. “matched”) with a set of expected signals known as

templates. These templates are generated using theory-

based models of expected GW sources. To find all signals

buried in a given dataset, a complete catalog of tem-

plates should cover all astrophysically plausible signals

we might expect to observe. Consequently, templates

must sample the BBH parameter space with sufficient
density, which results in very large catalogs and compu-

tationally expensive analysis [22]. There are currently

several low-latency pipeline configurations [23–27] that

partially reduce this expense by a combination of hard-

ware acceleration and algorithm-specific optimizations.

It is known that the matched filter is the optimal

linear filter for maximizing the chances of signal detec-

tion in the presence of an additive, Gaussian noise. Yet

despite its remarkable successes, the main drawback of

matched-filtering is its high computational expense. Fur-

thermore, this optimality result is limited by two very

strong assumptions, Gaussian noise and knowing the

expected signal precisely. Clearly, these assumptions are

not satisfied in practice, and so modern search efforts

have extended the simple matched-filter framework to

work in realistic settings [9].

Deep filtering [28] is an alternative, machine-learning-

based approach that has received significant attention

over the past two years [28–38] as a way to overcome the

aforementioned limitations of matched filtering. While

it remains to be seen if deep filtering can entirely re-

place matched filtering in realistic settings, it is pri-

marily due to its orders-of-magnitude faster perfor-

mance that makes it a very promising candidate to

complement traditional search pipelines in the context

of low-latency detection. As a first step towards this

goal, multiple researchers have demonstrated that deep

filtering can achieve accuracy comparable to that of

matched filters [33]. There has already been significant

exploration of different approaches to deep filtering,

involving recurrent neural networks [39], transfer learn-

ing [40], topological feature extraction [41], Bayesian

networks [42], binary neutron stars [43–45], and multiple

detectors [46]. In the context of gravitational-wave data

analysis, deep learning has been shown to be highly-

effective for low-latency signal searches and parameter

estimation [36,47–49], with and without Gaussian noise,

detector glitch classification [35], denoising gravitational

waves [34,50], and even to characterize the GW signal

manifold [51].

While there has been significant attention paid to

different approaches to deep filtering, one aspect of the

problem that has gone unexplored, however, is an auto-

mated approach to hyperparameter optimization. This

issue arises in two scenarios. First, when testing out a

new deep filtering network on an entirely new class of

signals or noise. In such cases, it is unknown what the hy-

perparameter values should be and a brute force search

is often used. Given the large number of hyperparame-

ters, typically around 20 for the cases we will consider,

a human tester might wish to test 10 different values for

each hyperparameter resulting in an unacceptably large

≈ 1020 different network configurations to train. Hyper-
parameter optimization may also be needed to refine an

existing network. For example, perhaps an already good
network architecture is known, but this network was

trained on a specific signal class and noise model. If, say,

the noise characteristics (due to non-stationary drifts)

or the signal model changes, one might be interested in

finding optimal network configurations using an already

reasonable network architecture as a starting guess. To

maximize a deep filter’s search sensitivity, it makes sense

to invest extra offline computational resources to identify

an improved network.

Despite the importance of hyperparameter optimiza-

tion, and numerical optimization being a well-studied

subject, to our knowledge there are no currently agreed-

upon best practices to accomplish this. Indeed, this is

an open area of inquiry taking place in many different

fields of research and industry [52–55]. Within the grav-

itational wave community, the only methods considered

have been brute force searches by trial-and-error.

In this paper, we develop a class of genetic algo-

rithms (GAs) to solve this problem. GAs are optimiza-

tion algorithms seeking to (in our case) maximize a
fitness function. GAs are built from a collection of ran-

dom walkers exploring the fitness function along with

evolution-inspired heuristic rules for these walkers to in-
teract, mutate, and move towards regions of high fitness.

Briefly, the algorithm begins with a random population

of network architectures, then iterates through 3 phases:

selection, crossover, and mutation. The selection phase

occurs when the candidates compete for survival based

on their fitness. The crossover phase is the first search

operator, where some of the surviving candidates swap
their hyperparameter values (called genes in GA litera-

ture) and replace themselves. The mutation phase is the

second search operator, where the genes may undergo
a random walk to a nearby value. These concepts will

be explored more fully, but similarities with particle

swarm optimization, which have been recently explored

in gravitational-wave contexts [56], are noteworthy.

We will show that GAs can automatically discover

new Deep Filtering networks that are both more ac-

curate and more compact, which will allow searches

Genetic-algorithm-optimized neural networks for gravitational wave classification 3

with these refined networks to detect more signals more

quickly. We also provide comparisons between GA vari-

ants and Monte Carlo. As GW detectors are excep-

tionally sensitive to very massive objects [57], and the

majority of compact binaries observed to date are pairs

of O(30M�) BBH systems [9], we will focus on such

systems.

This paper is organized as follows. In Section 2 we in-

troduce the GW detection problem and signal detection
diagnostics. In Section 3 we summarize the deep convo-

lutional neural network filter and the hyperparameters

that define its architecture. This architecture is opti-

mized for a fitness score using a family of related GAs

that are introduced in Sec. 4. Numerical experiments

on a variety of benchmark tests are considered in Sec. 5.

Our experiments focus on exploring the properties of the

genetic algorithm and its performance under different

scenarios.

2 Preliminaries

This section summarizes the gravitational-wave signal

detection problem, which provides a framework for an-

swering the question: is there a gravitational-wave signal

in the data? We review this background material to fa-

cilitate a clearer context for the convolutional neural

networks considered throughout this paper.

Signal detection in general, and gravitational wave

detection in particular, is a well established field. This

section primarily draws from [58–64], and our conven-
tions follow those of Ref. [64].

2.1 Gravitational-wave signal model

A gravitational-wave strain signal h(t) detected by a
ground-based interferometer has the form,

h(t; ϑ) =
1

r
F+ (ra,dec, ψ)h+(t; ι, φc, tc,M, q)+

1

r
F× (ra,dec, ψ)h×(t;φc, tc, ,M, q) , (1)

where r is the distance from the detector to the source,

tc is the coalescence time (time-of-arrival), φc is the

azimuthal angle between the x−axis of the source frame

and the line-of-sight to the detector (sometimes called

the orbital phase at coalescence), ι is the inclination

angle between the orbital angular momentum of the

binary and line-of-sight to the detector, and the antenna

patterns F(+,×) project the gravitational wave’s +- and

×-polarization states, h(+,×), into the detector’s frame.

The antenna patterns are simple trigonometric functions

of variables which specify the orientation of the detector

with respect to the binary: the right ascension (ra),

declination (dec), and polarization (ψ) angles. For the

non-eccentric, non-spinning BBH systems considered

here are typically parametrized by a mass ratio q =

m1/m2 ≥ 1 and total mass M = m1 + m2, where m1

and m2 are the component masses of each individual

black hole. To summarize, the measured gravitational-

wave strain signal h(t; ϑ) is described by 9 parameters,

ϑ = {r, φc, ι, ra,dec, ψ, tc,M, q} whose range of values

will be set later on.

When discussing waveform models, it is common

practice to introduce the complex gravitational wave
strain

h+(t; ι, φc, . . .) − ih×(t; ι, φc, . . .)

=

∞
∑

`=2

∑̀

m=−`

h`m(t; . . .)−2Y`m(ι, φc) ,

(2)

which can be decomposed [65,66] into a complete basis

of spin-weighted spherical harmonics −2Y`m. Here, for

brevity, we only show the model’s dependence on ι

and φc while suppressing the other 7 parameters. Most

gravitational waveform models make predictions for the

modes, h`m, from which a model of what a noise-free

detector records, h(t; ϑ), is readily recovered.

Throughout this paper we will consider a numeri-

cal relativity gravitational-wave surrogate model that

provides up to ` ≤ 8 harmonic modes and is valid for
1 ≤ q ≤ 10 [67]. We evaluate the model through the

Python package GWSurrogate [68,69].

2.2 Signal detection problem setup

Consider a single gravitational-wave detector. We sam-

ple the output of the detector at a rate 1/∆t over some

time period T . This produces a set of N = T/∆t time-

ordered samples s.1 In the absence of a signal, the detec-

tor is a stochastic processes that continually outputs ran-
dom noise n. We wish to know whether a gravitational-

wave signal h exists in the detector during the observa-

tion time, or if the detector data consist purely of noise.

This is complicated by the fact that the signal depends

on the unknown value of ϑ. For now, we simplify the

problem by asking whether the data contains a signal

with fixed parameters ϑ
′ (we will relax this condition

later). In that case, our problem is reduced to finding a

statistical test that best differentiates between two sim-

ple hypotheses, the signal hypothesis H ′
1 : s = h(ϑ′)+n

and the null/noise hypothesis H0 : s = n.

1 For simplicity, we assume here that N is even. This can
always be made to be the case, since the observation time and
sampling rate are free parameters in an analysis.

4 Dwyer S. Deighan et al.

Let β be the probability of making a type II error

with our test (the false dismissal probability), so that
1 − β is its power (the probability that we reject the

noise hypothesis when the signal hypothesis is true),

and α be the probability of making a type I error with

our test (the false alarm probability). By the Neyman-

Pearson lemma [70], the most powerful test that can be

performed between two simple hypotheses at a signifi-

cance level α is the likelihood-ratio test. That is, given

the likelihood ratio,

Λ(s|ϑ′) =
p(s|ϑ′, h)

p(s|n)
, (3)

we reject the noise hypothesis if Λ(s|ϑ′) exceeds a thresh-

old value. Here the vertical bar denotes a conditional

probability. For example, p(s|ϑ′, h) is the probability of

observing the signal, s, given a gravitational waveform

model h and system parameters ϑ
′.

To proceed further, we need to assume a model for

the noise. It is standard to assume that the detector

outputs wide-sense stationary Gaussian noise such that

the Fourier coefficients of the noise, ñ(fi), satisfy

〈ñ(fi)〉 = 0 , 〈ñ(fi)ñ
∗(fj)〉 =

T

2
Sn(fi)δij , (4)

where the brackets, 〈X〉, denote the expectation value

of a random variable X, Sn(f) is the single-sided power

spectral density (PSD) computed from n(t), and δij

denotes the Kronecker delta function. In this case, the

likelihood (see Appendix B for a derivation) that the

data does not contain a signal is

p(s|n) ∝ exp

[

−
1

2
〈s, s〉

]

, (5)

and we do not need to evaluate the normalization con-

stant as it will cancel in the likelihood ratio. The inner

product is defined as

〈a,b〉 ≡ 4<







∆f

N/2−1
∑

p=p0

ã∗[p]b̃[p]

Sn[p]







, (6)

where ∗ denotes complex conjugation, ∆f = 1/T , Sn[p]

is the PSD of the noise evaluated at frequency f =

p∆f , ã[p] indicates the Fourier transform of the time

domain vector a evaluated at frequency f = p∆f , and

p0 corresponds to a low frequency cutoff, below which

the PSD is effectively infinity; for current generation

detectors, this is at ∼ 20 Hz.

Since the signal hypothesis is s = h(ϑ′) + n, the

likelihood that the data contains a signal is simply the

probability of observing n = s − h(ϑ′),

p(s|ϑ′, h) ∝ exp

[

−
1

2

〈

s − h(ϑ′), s − h(ϑ′)
〉

]

,

assuming the same noise model. The likelihood ratio is

therefore

Λ(s|ϑ′) = exp

[

〈

h(ϑ′), s
〉

−
1

2

〈

h(ϑ′),h(ϑ′)
〉

]

. (7)

Since this only depends on the data via the
〈

h(ϑ′), s
〉

term, a sufficient statistic for the simple hypothesis test

is

K =
〈

h(ϑ′), s
〉

. (8)

Note that in the literature K is often taken to be

K = |
〈

h(ϑ′), s
〉

| to account for large, negative values

that indicate that the data contains the signal, but that

it is 180◦ out of phase with the test signal. As we will see

later, K is related to the signal’s SNR whose statistical

properties, in turn, depend on this choice. In particu-

lar, in the absence of a signal the test statistic Eq. (8)

is normally distributed with zero mean and variance

σ2 =
〈

h(ϑ′),h(ϑ′)
〉

[60]. With the alternative choice,

K would have been χ-distributed with one degree of

freedom.

To indicate whether or not there is a signal in the

data, we can use the one-sided test function,

ϕ′(s) =

{

1 if
〈

h(ϑ′), s
〉

≥ K∗,

0 otherwise ,
(9)

with the threshold K∗ chosen such that the size of the

test is

EH0
ϕ′(s) =

∫

〈h(ϑ′),s〉≥K∗

exp

[

−
1

2
〈s, s〉

]

ds ≤ α. (10)

As stated above, Eq. (9) is the most powerful test

assuming fixed parameters. However, in practice, the

parameters of the signal are not known a priori. We

therefore need a test that can distinguish between the

null hypothesis H0 and a composite hypothesis H1 : s =

h(ϑ) + n, where the parameters ϑ may be in a range of

possible values.

2.3 Detecting a signal with unknown amplitude

Most of the signal parameters — such as mass, spin, etc.

— cannot be analytically maximized over, as the signal

models have non-trivial dependence on them. We can,

however, construct a uniformly most powerful test that

maximizes over the distance, r, since 1/r is simply an

overall amplitude scaling factor for the signal (1).

To construct the optimal statistic that allows for any

distance, consider a template signal h that is generated

at some fiducial distance r0 > 0 such that all possible

astrophysical signals h
′ are at a distance r′ ≥ r0. The

Genetic-algorithm-optimized neural networks for gravitational wave classification 5

signal hypothesis becomes H1 : s = Ah(ϑ) + n, where

A ≡ 1/r ∈ (0, 1]. Assume for a moment that we use the

same test statistic and function as defined in Eqs. (8)

and (9), but with hm(ϑ′) replaced with Ahm(ϑ). The

statistical power is

1 − β ≡ EH1
ϕ′(s) =

∫

A〈h(ϑ),s〉≥K∗

exp

[

A 〈h, s〉 −
1

2
A2 〈h,h〉 −

1

2
〈s, s〉

]

ds

(for simplicity of notation, from here on we will use

h to mean h(ϑ)). Since A ∈ (0, 1], the power grows

monotonically with A. Maximizing the argument, which

noting that in the exponent over A yields

A =
〈h, s〉

〈h,h〉
. (11)

This gives test statistic K = 〈h, s〉
2
/ 〈h,h〉, or, equiva-

lently,

ρ =
〈h, s〉

√

〈h,h〉
=

〈

ĥ, s
〉

, (12)

where we have defined a normalized template, ĥ, that

satisfies
〈

ĥ, ĥ
〉

= 1. The quantity ρ is known as the

signal-to-noise ratio (SNR). Let s = Cĥ + n, where

C ≥ 0 (C = 0 corresponds to the noise hypothesis),

then ρ is normally distributed with the following mean

and variance:

〈ρ〉 = C , 〈ρ2〉 − 〈ρ〉2 = 1 . (13)

To indicate whether or not there is a signal in the data,

we can use the one-sided test function,

ϕ(s) =

{

1 if ρ(s) ≥ ρ∗,

0 otherwise,
(14)

where the threshold, ρ∗, is chosen such that the size

EH0ϕ(s) ≤ α. Note that ϕ(s) has the same size and

power as ϕ′(s) for the simple hypothesis test H ′
1 in which

some fixed A is used. This is because the two functions

only differ by the factor of 1/
√

〈h,h〉, which for the

simple signal hypothesis is a constant. Consequently, ϕ is

the uniformly most powerful test for any distance r > r0.

In terms of the SNR, the matched filtering classifier

Eq. (14) will generate false alarms with a probability of

α(ρ∗) = p(ρ > ρ∗|H0) =

∫ ∞

ρ∗

p(ρ|H0)dρ , (15)

and false dismissals with a probability of

β(ρ∗) = p(ρ < ρ∗|H ′
1) =

∫ ρ∗

−∞

p(ρ|H ′
1)dρ . (16)

2.4 Matched-filter classification

In practice one will need to search over the entire model

space. We select a discrete set {ϑi}
M
i=1 of M parameter

values and a corresponding template bank of normalized

filters

B = {ĥ(ϑi) s.t. ϑi ∈ {ϑi}
M
i=1 and 〈ĥ, ĥ〉 = 1} .

The bank’s SNR is defined to be

ρ(B) = max
i
ρ (ϑi) , (17)

where ρ (ϑi) is the SNR computed with ĥ(ϑi). While

each ρ (ϑi) is normally-distributed the bank’s SNR, ρ(B),

is not. The bank’s efficacy will depend on how densely

we sample the continuum. A faithful template bank

guarantees that for any possible signal with an optimal

SNR (signal and filter are identical) of ρopt, then one

of the templates in the bank will be sufficiently close to

the optimal one such that ρ(B) ' 0.97ρopt.

To summarize, assuming a Gaussian noise model,

the matched-filter signal-detection classifier is to test if

the bank SNR is larger than a predetermined threshold

value. Sec. 3 will described the convolutional neural

network signal-detection classifier for solving the same

signal-detection problem.

2.5 Signal detection diagnostics

One goal of this paper is to compare different CNN-

based classifiers. The diagnostics we will use to facilitate

this comparison include the false alarm and dismissal

probabilities, accuracy, receiver operating characteristic

(ROC) curves, and efficiency curves.

2.5.1 False alarms, dismissals, and accuracy

Given a classifier ranking statistic, R, (for the matched

filter this is the SNR, R = ρ, and for the CNN this

is the output of the softmax layer, R = Psignal) and a

threshold, R∗, on this value, we can assign labels to our

data. We can then compare the true labels to compute

the number of false alarms and false dismissals. For

certain cases, the false alarm, α, and false dismissal,

β, probabilities can be computed analytically. However,

in many cases, in particular, for CNN classifiers, these

probabilities can only be computed empirically through

a Monte Carlo study. A true alarm is 1 − β while the

true dismissal is 1−α. These four numbers, 1−α, 1−β,

α, and β, define the confusion matrix. In Sec. 4.2.4, one

component of the GA fitness score is the accuracy, which

for a balanced testing set containing an equal number of

examples with and without a GW signal, the accuracy

is given by 1 − α/2 − β/2.

6 Dwyer S. Deighan et al.

2.5.2 Receiver operating characteristic

An ROC curve plots the true alarm probability, 1 −
β(R∗), vs the false alarm probability, α(R∗), both of

which are functions of the ranking statistic threshold

R∗. Such curves can be used to assess the classification

strategy as the detection threshold is varied. It is im-

portant to note that the shape of an ROC curve will

depend on the anticipated distribution of the ranking
statistic over a class of expected signals. For example,

we expect different ROC curves for weak and strong

signal strengths.

2.5.3 Efficiency curves

An efficiency curve plots the true alarm probability vs

signal strength at a fixed value of either the ranking

statistic threshold or false alarm probability. Such curves

can be used to assess the classification strategy as the

signal’s power is varied. For very loud signals (SNRs>

15) we find that all CNN classifiers are essentially perfect,

while for weaker signals (SNRs between 3 and 10) the

classifier’s efficacy will depend on details such as the

architecture and problem domain.

3 Deep models for time series classification

Sec. 2 summarized a classical matched-filtering approach

to signal detection: given time series data s and a tem-

plate bank of possible signals we compute the SNR (17)

whose value provides both a classification method (ex-

ceeding a threshold) as well as a measure of significance.

In this section, we summarize one commonly explored

CNN that has been successfully used for the same pur-

pose of signal detection. Our key aim will be to describe

what parameters describe the CNN and their interpre-

tation since it will be the genetic algorithm’s job to

optimize their values.

Deep networks are specified by learned parameters

and hyperparameters. Learned parameters are found

through an optimization procedure known as training.

Hyperparameters are parameters that control the net-

work’s overall design and characteristics, and unlike

learned parameters, their values are provided by the

programmer. We will distinguish between three flavors

of hyperparameter. We will refer to the parameters used

to describe the network’s structure as model hyperpa-

rameters, and the ones we consider are summarized in

Sections 3.1.1 and 3.1.2. Those parameters that control

the training process will be referred to as training hyper-

parameters are summarized in Sec. 3.1.3. Finally, since

we have control over our training set we will consider

training-set hyperparameters, summarized in Sec. 3.2

to be those parameters that control the training set

generation.

Usually, it’s not clear what values the hyperparam-

eters should be, so one must resort to trial-and-error

or random sampling of the hyperparameter space. The

main goal of our work is to automate the process of
exploring the hyperparameter space with a genetic al-

gorithm, introduced in Sec. 4, such that the resulting

network’s architecture is optimized.

3.1 Classifier network and its hyperparameters

Fig. 1 summarizes a typical classifier network consid-

ered in this paper, which is based on the original Deep

Filter discovered by George and Huerta [28]. In fact,

the overall architecture displayed in Fig. 1 is the same

as their network except for the inclusion of two extra
dropout layers that we use to reduce overfitting. The

authors of Ref. [28] tested around 80 different network

architectures, and for the best one(s) the network’s hy-

perparameters were tuned manually via a trial-and-error

procedure [28].

From Fig. 1 we see that the input is first reshaped

to match the input expected by a Keras’ Conv1D layer.

This is a trivial step that we mention only for complete-

ness. Next, a sequence of convolutional layers is applied.

In keeping with common terminology, we will refer to

a single convolutional layer as built out of three more
primitive layers: Conv1D, MaxPooling1D, and Activa-

tion, all of which are summarized in Sec. 3.1.1. From

Fig. 1 we see that the initial input vector passes through

three convolutional layers, after which it has been trans-

formed into a matrix. The Flatten layer simply “unwraps”

the matrix into a vector, which is subsequently passed

through a sequence of two fully-connected layers. We
will refer to a single fully-connected layer as built out

of Dropout layer and a Dense layer, each of which is

summarized in Sec. 3.1.2.

The output of the final layer is a vector with two

components which sum to 1. The ranking statistic, 0 ≤

Psignal ≤ 1, is a measure of the network’s confidence

that the data contains a signal. Similar to the matched

filtering case outlined in Sec. 2.2, we can use the one-

sided test function

ϕCNN(s) =

{

1 if Psignal ≥ P ∗,

0 otherwise.
(18)

to indicate whether or not there is a signal in the data.

The threshold P ∗ can be chosen such that the size of

the test satisfies EH0
ϕCNN(s) ≤ α.

The basic architecture structure enforced on our

classifier network is a sequence of Nconv alternating

8 Dwyer S. Deighan et al.

3.1.2 The fully-connected layer’s hyperparameters

The second part of the network is described by Nfull

fully-connected layers. As we will always use dropout,

we will refer to a fully-connected neural network layer

as built out of two more primitive sub-layers, which is

depicted in Fig. 1 as Dropout and Dense.

Input to the first densely-connected layer is a set

of features provided by the last convolutional layer.

The goal of the densely-connected layers is to find a
non-linear function mapping the features to the correct

classification signal vs no-signal. That this might even be

possible, in principle, one often appeals to the universal
approximation theorem [71,72]. However, neither this

theorem nor any we are aware of, provide guidance on

the number or depth of the layer that should be used

for a particular problem.

The Dropout sub-layer randomly sets a random frac-

tion, Ddrop, of the input units to zero at each training

update. As such, the network after dropout can be

viewed as a smaller layer (fewer neurons) that is forced

to train on the dataset same. This technique helps to

reduce overfitting. There are no learned weights in this

sub-layer.

The final Dense sub-layer is a neural network con-
necting all of the inputs to Dunits output units. We use

a ReLU activation function for all fully-connected layers

except the final one. The final output layer’s activation

is the softmax function, which maps a real number to

the interval [0, 1].

To summarize, the ith fully-connected layer is uniquely

defined by Di
drop and Di

units. We consider Nfull fully-

connected layers and allow different hyperparameter
values in each layer. The ith fully-connected layer is

uniquely defined by Di
drop and Di

units. So in total there

are as many as 2Nfull hyperparameters associated with

the network’s fully-connected layers.

3.1.3 Training hyperparameters

Given some value for the model and training-set hyper-

parameters we seek to learn good values for the weights

by solving an optimization problem seeking to mini-

mize a loss function. Training hyperparameters affect

the solution’s convergence properties and computational

resources.

We use the well-known ADAM optimizer [73] to solve

this optimization problem. ADAM works by estimating

the gradient on a subset of the training data known

as the batch size, Nbatch. This optimizer has three hy-

perparameters, a learning rate, εLR, and two adaptive

moment decay rates, βAdam1 and βAdam2. The optimizer

will continue until either reaching a maximum number

of iterations (or epochs), Nepochs, or the validation error

steps decreasing for a predetermined number of itera-

tions. In all of our experiments, we use the standard
categorical cross entropy loss function.

In some numerical experiments, we allow the GA

to modify a subset of training hyperparameters over a

restricted range. In some cases, like with the number

of epochs, the values are set mostly by considering the

computational cost. For other cases, as with adaptive

moment decay rates, good default values are known and

so requiring the GA to explore the enlarged dimensional-

ity of the hyperparameter space is likely not worthwhile.
We note that the ADAM optimizer already exploits au-

tomatic modification of the learning rate that changes

with the iteration.

3.2 The training set and its hyperparameters

When preparing training data we can control the over-
all number of training examples, NTS, and the fraction

of training examples containing a signal, fsignal. We

consider these training-set hyperparameters as they are

not learned yet control the final classifier model. Ide-

ally, we would like to NTS as large as possible, however

larger training sets can lead to much longer training

times and can be excessive in some cases. Indeed, we
have found that for loud signals (say, SNRs greater than

100) perfect classifier networks can be trained with just

tens of training examples while many thousands of ex-

amples are needed for weak signals at low SNRs. For

now we have not allowed the GA to modify training-set

hyperparameters.

We use a training strategy inspired by George and

Heurata’s technique of presenting the classifier network

with training data of increasing difficulty by decreasing

the SNR [28]. They found that this strategy was able

to improve the classifier’s final accuracy while reducing

the overall training time. We decrease the SNR by in-

creasing noise amplitude rather than manipulating the

distance parameter, and our target SNR is the average

SNR over the dataset, where individual signals will have

SNR values distributed around the average. In addition

to decreasing the SNR, we simultaneously increase the

parameter domain’s extent by slowly widening an ini-

tially narrow sampling distribution around the target

parameter interval’s mean to the full interval. The full

problem is thus revealed to the network over a specified

number of datasets until the parameter intervals and

SNR reach their largest extent and smallest value, re-

spectively. We provided example values in the numerical

experiments section.

The typical sizes of time-domain gravitational-wave

data are of the order 10−21. With such small values, it is

Genetic-algorithm-optimized neural networks for gravitational wave classification 9

Table 1: Hyperparameters that determine the classifier network. These parameters may control the overall network’s

architecture or properties of an individual layer. A network is uniquely specified (up to its learned weights) by

architecture and layer parameter values. The learning of the network’s weights, which are found by solving an

optimization problem, are controlled by the training parameters. The optimal network’s weights, in turn, implicitly

depend on the training set parameters. Some parameter values are fixed to reduce the dimensionality search space,

in which case we quote typical values used in our experiments. For GA-modified parameters, the Valid Range
column denotes the largest range the GA could explore (sometimes called the prior in Bayesian optimization).

However, in practice, the population of hyperparameter solutions explore regions localized around the seed network

(cf. Sec. 4.4 and Fig. 5).

Parameter Description Type GA Modifies Valid Range

Model hyperparameters

Nconv # of Conv1D layers Architecture No {3,4,5}
Nfull # of dense layers Architecture No {2,3}

Ci
filter Number of filters ith Conv1D layer Yes [1,600]

Ci
filter−size Filter size ith Conv1D layer Yes [1,600]

Ci
filter−stride Filter stride ith Conv1D layer Yes [1,600]

Ci
filter−dilation Filter dilation ith Conv1D layer Yes [1,600]

P i
size Pooling size ith Pooling layer No 4

P i
stride Pooling stride ith Pooling layer No 4

Di
drop Dropout rate ith Dropout layer Yes [0,0.5]

Di
units Output units ith Dense layer Yes [1,600]

Training hyperparameters

Nbatch Batch size Adam Optimizer Yes [32, 64]
εLR Learning Rate Adam Optimizer Yes [10−5, 10−3]

βAdam1 Moment decay Adam Optimizer Yes [0.8, 0.999]
βAdam2 Moment decay Adam Optimizer Yes [0.95, 0.999999]

Nepochs Epochs Training No [80, 600]
Npatience Patience Training No 8

Training-set hyperparameters

NTS Training examples Training set No [10, 104]
fsignal Fraction of signals Training set No [0 , 1]

well-known that deep networks require the training data

to be normalized to train correctly. A common choice is

to whiten the data by the PSD, such that after whitening

each training example has a zero mean and unit variance.
We have pursued a PSD-agnostic approach whereby a

normalization layer is the first network layer (not shown

in Fig. 1) that is used to achieve a target mean absolute

deviation (MAD) of the input signal. For example, if we

set our target MAD value to be 1000, and the training

data’s MAD is 10−19, we would multiply the input data
by 1022. Through trial and error we found a target MAD

of 1000 to work well for our problem, although we also
explored letting the GA optimize for this value. We also

tried batch normalization before the input layer but it

appeared to not work as well.

3.3 An optimization model for the hyperparameters

Table 1 summarizes the various hyperparameters that

will impact the final trained classifier network. Regard-

less of the algorithm used to solve the hyperparameter

optimization problem, it is helpful to know in advance

what parameters should be improved, how they should

be changed, and any constraints or relationships that

should be enforced between them. While there is not a

general theory applicable to our problem, our choices

are guided by insights compiled by previous efforts to

design similar classifiers [28,29,33,38] as well as our own

expectations.

For example, some parameters should not be modi-

fied by the GA. The training size (NTS), epochs (Nepochs),

and early-stopping condition (Npatience), for example,

are problem-specific numbers that can be set by avail-

able computational resources and common sense. In our

case, NTS and Nepochs is often set as large as possible

such that training a single network can be completed

in under 24 hours. We also do not allow the optimizer

to change the number of convolutional or dense layers,

which would dramatically alter the network’s behavior;

finding for good values of Nconv or Nfull are better ac-

complished through a simple grid-based search while

optimizing over the remaining set of modifiable hyper-

parameters. While the pooling-layer parameters could

be modified for some problems, in our case we do not.

Genetic-algorithm-optimized neural networks for gravitational wave classification 11

Evolutionary algorithms are a class of optimization

algorithms that meet all of the above criteria. We con-

sider one particular variant of an evolutionary algorithm

for hyperparameter optimization known as genetic al-

gorithms [77]. These algorithms have been inspired by

concepts of natural evolution and survival of the fittest.

They are stochastic optimizers drawing on familiar ideas.

Genetic algorithms due come with some drawbacks

which include they have their own hyperparameters to

set (fortunately setting these parameters is relatively

easy) and they can require significant computational
resources to evaluate many candidate models in parallel.

As with any optimization algorithm, its possible they

will get stuck in local minima. Since the optimization
of the hyperparameters is an offline cost it is reasonable

to use all available computational resources to search

for the best network configuration. In our case, many of

our numerical experiments took just a few days using

20 compute nodes with NVIDIA Tesla V100 GPUs. To

avoid local minima, a few independent GA simulations

can be performed or the mutation rate can be increased.

We first summarize the essential pieces that make
up a genetic algorithm then, later on, provide specific

configurations considered and compared throughout this

paper.

4.2 General algorithmic workflow

The algorithm’s structure is summarized in Fig. 2. One

complete iteration of the inner-loop is called a genera-

tion, and this process continues for multiple iterations

or until a sufficiently small value of the model’s fitness

score is found. A list of the top models are recorded

throughout all generations, and their hyperparameter

values and scores are returned when the algorithm is
finished.

The algorithm begins with a seed value for the hyper-

parameter, λseed, where λ is a vector of model hyperpa-

rameters. In the GA literature this vector is sometimes

called a chromosome and its components are known as

a genes. Starting from a seed, a set of, say, 20 candi-

date hyperparameter values, {λ1
i }20

i=1, are drawn from a

probability distribution as described in Sections 4.2.3

and 4.4. Here the notation λj
i means the hyperparameter

values of the ith candidate model for the jth iteration

of the genetic algorithm. At any given iteration the set

of all surviving solutions is called the population.

Next, each candidate classifier model (defined by its

value λi) is trained, validated, and an overall fitness

score is computed. The fitness score may attempt to

maximize accuracy, minimize architecture complexity,

penalize false positives, or any other desirable property.

In particular, it need not be the loss function used for

training. Our particular choice (cf. Sec. 4.2.4) defines
the fitness score as a weighted sum of the validation

accuracy and an estimate of the model’s complexity.

In this way, the population of classifier models will be

nudged towards simpler models.

A key aspect of any genetic algorithm is to contin-

ually update the population so that it moves toward

higher values of the fitness score. This is achieved by

applying a sequence of three operators to the popula-
tion {λ1

i }20
i=1. These are referred to as a selection opera-

tor, crossover operator, and finally a mutation operator.

Taken together, these three operators will generate new

candidate hyperparameter values sometimes referred

to as children, which are subsequently added to the
population.

Next, we will describe in more detail these three

operators as they are defined for one particular variant

of the (µ + λ)-evolutionary algorithm, which in turn
is one particular class of genetic algorithms we will

consider.

4.2.1 Selection operator

Our first step in this process is to select a subset of top-

performing models. The best two can be automatically

selected (known as the elitism selection rule, which we

will sometimes use), while from the remaining models
we randomly pair off in subsets of 2 and select the best

one of the subset. This procedure, known as tournament-

style (or arena) selection rules, continues until we are

left with µ models in total. Tournament selection is

performed with replacement and can be generalized to

have subsets of more than 2 competing for selection.

Note that our selection rule does not simply pick the

best µ models, but rather randomly selects µ models

that are biased towards the fittest while inferior solutions

are removed with a higher probability.

The remaining µ models function as parents. The

parent model seed λ new models (known as children)

according to a set of operations described below. Conse-

quently, after this step, there will be λ children models

and µ parent models. The (µ+λ)-evolutionary algorithm

allows both parent and children models to continue to

the next iteration giving a population size of λ+µ candi-

date models. Despite the increased population size, there

are only µ new models to train. In a variant strategy,

which we will refer to as the “standard” evolutionary

algorithm, only the λ children models will be part of

the next generation.

12 Dwyer S. Deighan et al.

4.2.2 Crossover operator

We pair off randomly selected candidate models and

swap their hyperparameter values with some probability

known as the crossover rate, pcross. This is sometimes re-

ferred to as breeding in the GA literature. Two popular
options are the one-point and two-point crossover oper-

ators. Each randomly selects position(s) in the hyperpa-

rameter vector where two solutions’ content is spliced

into each other. This operation allows for the generation

of new candidate models. An example of a one-point

crossover is shown in Fig. 2. Our genetic algorithms use

both 1-point and 2-point crossover rules. Note that the
order in which hyperparameters are stacked will impact

the solution after crossover. We group hyperparame-

ters that describe larger units together, which preserve

higher-level structures. For example, parameters that

specify each convolutional layer are grouped together in

the hyperparameter vector.

4.2.3 Mutation operator

After crossover there is the mutation phase, this is where

randomly selected solutions undergo mutation on ran-

domly selected genes. We associate with each model

some probability of changing its hyperparameter values
known as the mutation rate, pmutate. If its selected for

mutation, we then associate with each gene some proba-

bility of changing its value known as the gene-mutation

rate, pgene. For the experiments used in this paper, we

typically set pgene = 1/NCNN, where NCNN denotes the

dimensionality of the hyperparameter search space. We
tried larger values of pgene but they performed worst

on the problems we considered. If a hyperparameter is

selected for mutation its value is modified according to

a Gaussian mutation: we draw the new value from a
normal distribution whose mean is the current value

and whose variance is 0.2 ×
(

Ihigh
m − I low

m

)

, where the

parameter-specific interval Im is defined in Eq. (20) and

Ihigh
m and I low

m are the upper and lower boundaries of

this interval, respectively.

4.2.4 Fitness evaluation

At the end of the modification steps we have a new
set of µ candidate hyperparameter values, {λj

i }µ
i=1, to

add to the population. Each new candidate classifier

model is trained, validated, and an overall fitness score

is computed. The fitness score can be flexibly selected

to encourage networks with desirable properties and, in

particular, need not be related to the loss function used

for training the network. We choose our fitness score to

be

Sj
i = 0.975Jj

i + 0.025Cj
i , (19)

where Jj
i is the ith classifier’s accuracy at generation j,

evaluated on the validation dataset, and Cj
i is network’s

size (or complexity) fitness. The weighting factors are

selected such that Sj
i ≤ 1.

The accuracy is computed using a simple formula

as the number of correctly classified examples divided

by the total number of examples. To assign a label

to each testing example, we use a threshold of P ∗ =

0.5 in our one-sided test function (18); we will return
to the choice of threshold in Sec. 5.4. The complexity

fitness is computed as the ratio of the total number of

trainable parameters (the network’s degrees of freedom)

computed relative to the seed network. As an example,

Cj
i obtains a maximum value of 1 if there are no learned

parameters, is 0 if there are as many learned parameters

as the seed network, and can be negative if there are

more learned parameters than the seed network. Note

that there are many possible alternative measures for

complexity one could consider, such as the Rademacher

complexity or Vapnik-Chervonenkis dimension. In all

cases, the complexity fitness measure should result in

more compact networks (hence faster training times) and

might lead to better performing networks by reducing

generalization error or adversarial attack examples [78].

The genetic algorithm’s goal is to maximize the

fitness score, which is a weighted sum of the accuracy

and an estimate of the model’s complexity. Table 1

provides typical ranges we allow our hyperparameters

to vary over.

4.3 Genetic algorithm variants

To summarize, a completely specified genetic algorithm
will specify a selection, crossover, and mutation operator.

We mainly consider the following 6 variations in this

paper:

– Standard: The selection rule does not use elitism

and only children comprise the next generation. We

use a 1-point crossover with pcross = 0.4 and a mu-

tation rate of pmutate = 0.1. The evolutionary algo-

rithm used is the simple one described in Chapter 7

of Ref. [77].

– µ+λ: This variant has the same settings as the stan-

dard one above, except that the previous generation

of µ parents competes with the offspring for a place

in the next generation. This is expected to help sta-

bilize the evolution by protecting against offspring

models with low fitness scores.

Genetic-algorithm-optimized neural networks for gravitational wave classification 13

– Elitist µ+ λ: This variant has the same settings as

the (µ+λ) algorithm above, but the best 2 solutions

in a population are guaranteed to survive, which

helps to stabilize the evolution by always retaining

the fittest solutions in the population.

– Erratic: We also consider all three versions men-
tioned above, but now setting pcross = 0.55 and

pmutate = 0.25. This allows the population to more

aggressively move around the hyperparameter space.

4.4 Hyperparameter intervals

Given a seed network architecture, the GA optimizer

will explore the hyperparameter space around this seed

value. Each hyperparameter’s value will be restricted to
a valid interval, and the tensor product of these intervals

defines the optimization problem’s domain.
Let λseed be the seed hyperparameter for the tem-

plate network, then the hyperparameter’s interval is

given by

Im = [λseed(1 − Sm), λseed(1 + Sm)] (20)

where Sm is a parameter used to create an interval

surrounding λseed. We typically set its value to 0.65. For

certain hyperparameters, we modify the lower and upper

bounds of Im to comply with valid ranges (“hard limits”)

as well as performing other necessary adjustments. For

example, the ADAM optimizer’s moment decay values

must lie between 0 and 1. Similarly, for discrete variables,
we would move the upper and lower limits to the nearest

positive integer.

The hyperparameter’s domain, Im, determines both

the Gaussian mutation strength and the search space of

the initial population. Note that the initial population is

selected from a uniform distribution on the interval Im,

which allows the candidate solutions to initially explore

a large portion of the search space.

4.5 Libraries and computational hardware

Our hyperparameter optimization algorithm (cf. Sec. 4)

is implemented using the Distributed Evolutionary Algo-

rithms in Python (DEAP) framework [79]. This frame-

work provides for customizable classes which control

the mutation, cross-over, and selection rules applied
to the population of candidate models. One of the ad-

vantages of genetic algorithms is that they are easily

parallelized, and we use the Mpi4py library to distribute

the population over available GPU-enabled compute

nodes.

We setup the model’s architecture using Keras’ API

to the Tensorflow library. Tensorflow allows for training

on GPU devices, which we make extensive use of here.

Our GA simulations have typically been performed on

our local cluster, CARNiE, which has 20 nodes with

NVIDIA Tesla V100 GPUs. As GA optimization requires

significant computational resources, having access to a

GPU cluster proved to be crucial for our studies.

5 Numerical experiments: Training and

optimizing the network

Our numerical experiments will focus on exploring the
properties of the genetic algorithm. We consider its

performance under different scenarios and between GA

variants. The goal here is not to compare with tradi-

tional matched filtering searches but rather explore the

viability of hyperparameter optimization using a genetic

algorithm.

5.1 Discovering networks from scratch

In our first example, we consider starting hyperparam-

eter values for which the network cannot learn at all.

Most of these values are depicted in Fig. 1, and we also

select Di
drop = 0.2, Nbatch = 50, and εLR = 0.001 as the

seed values. As is well known, the ADAM optimizer can

fail when the learning rate is either too high or too low.

We have purposefully specified a large value to show

how the GA can overcome poor starting values.

Our classification problem is defined by M ∈ [40, 60],

q ∈ [1, 3], T = 1 s, fs = 2048Hz, Gaussian noise, SNR ∼

15, and fsignal = 0.5. Our training data is comprised of a

few thousand examples with 20% held out for validation.
We restrict to high SNRs to facilitate a comparison to

a dense grid-based search on unreasonably large grids

to challenge the evolutionary algorithm.

To get a better sense of the search subspace, we first

perform a brute-force, grid-based search for optimal

parameter values by fixing all of the hyperparameter
values except for the batch size and learning rate. A

total of 1740 unique training runs are performed on

the grid depicted in Fig. 3a, and for each run, we stop

the training sequence if the network fails to improve

after 10 epochs. As the network’s learned parameters are

randomly initialized, sometimes the ADAM optimizer

will fail simply due to unlucky initial values. And so we

also retry training a failed network with new initialized

values up to 4 times. Fig. 3a also shows how the resulting

network’s accuracy varies with these two parameters,

where the accuracy is computed as the mean of the
diagonal entries of the confusion matrix as 1−α/2−β/2.

As expected, there is a region of equally valid solutions

where the classifier obtains perfect accuracy along with

16 Dwyer S. Deighan et al.

problem is gradually more challenging, which is achieved

by gradually lowering the SNR from 1828.272 to 2.711

at a decelerating rate (cf. Sec. 3.2). The last 4 datasets

in this sequence have signals with average SNR values

of 14.7961, 9.9239, 6.9361, and 2.711. From these four

datasets we hold out 20% of the training examples to

compute the accuracy fitness score (19).

Gravitational-wave signals are simulated using a non-

spinning numerical relativity surrogate model [67]. We

simulate systems by sampling a uniform distribution

with the total mass from 22.5 to 67.5 solar masses, the

mass ratio from 1 to 5, and the distance from 0.5 to 1.5

megaparsecs. The binary system is oriented such that

ι = φc = π/3, and we choose values of right ascension

(ra), declination (dec), and polarization (ψ) such that

the antenna patterns satisfy F+ = 1 and F× = 0. Half

of the training examples are pure noise and half contain

a signal. Signals are added to the noise with random

time shifts such that the signal’s peak amplitude occurs

at different times.

In general, optimization algorithms will tend to con-

verge to a local minima. In the case of the GA, there

are a variety of strategies to overcome this problem

including simulated annealing [80,81], dual population

algorithms [82], and others. We instead follow a more

brute-force approach by rerunning the algorithm 5 times,

with each run using the same seed network but 20 with

distinct candidates in the initial population. All 5 popu-

lations are advanced forwards over 25 generations. We

then aggregate these 5 distinct (non-interacting) sub-

populations into a single population of size 100. As there

are 6 distinct GA variants plus Monte Carlo tested here,

we have trained a total of 17,500 CNNs to compile the

results of this subsection.

Figures 5 and 4 show the evolution of these 100 can-

didates over all 25 generations. This provides us with

an overview of how each GA algorithm is performing at
the expense of a more detailed view of each of the 5 sub-

populations. Note that since each sub-population may

be converging towards a local minima, large hyperparam-

eter spreads should be interpreted as sub-populations
converging to different parts of the parameter space.

Later on in Sec. 5.3 we explore a more detailed view of

one particular genetic algorithm.

We first consider how well each GA performs its

primary task, which is to optimize the weighted fitness

objective function given in Eq. (19). Fig. 4 compares 6

GA variants for this problem by plotting the change in

the highest achieved fitness for any individual network

(i.e. the current best solution) versus generation. Due

to the random starting values of the initial population

there is already some spread amongst GA variants at the

first generation. To account for this we monitor the rel-

ative percentage change, 100 × | maxi S
j
i − Sseed|/Sseed,

from the initial weighted fitness value, Sseed = maxi S
0
i .

To assess the algorithm’s performance, we consider how

quickly the algorithms can achieve higher fitness scores.

While all of the variants provide good performance on

this challenging (low SNR) case, it is clear that GAs

that more aggressively explore the parameter space (“er-

ratic" versions) offer better performance. In particular,

we see that erratic µ+ λ with elitism continues to find

refined hyperparameter values throughout the simula-

tion. Non-erratic versions, for example the standard and
µ+ λ variants, are less effective at exploring the space

and are characterized by no improvement for multiple

generations. Monte Carlo sampling approach also fails

to find better candidates for most of the simulation.

Next we turn our attention to how the hyperpa-

rameter values evolve. If the optimization problem has

neither local minima nor degeneracies then we would

expect to see the population converge to a unique point

in parameter space. Consequently, under this scenario,

we would expect the average spread of hyperparameter

values to converge towards zero. For the complicated

problem considered here, however, we instead expect

potentially many local minima and degeneracies. Addi-

tionally, as described above, we have combined results

from 5 non-interacting populations each of which might

converge to different local minima. Nevertheless, it is

still useful to monitor the diversity of the entire popula-

tion over generations. Fig. 5 shows the average (over all

20 hyperparamters) standard deviation of the (normal-

ized) hyperparameter values in top 10 best solutions. We

find that all of the genetic algorithm variants show some

form of convergence that tends to slow with generation.

The µ+ λ/elitism/erratic GA variant shows the fastest

convergence of the 6 variants, which was also seen in

the fitness plot Fig. 4. Due to Monte Carlo’s global,

uncoordinated sampling, there is very little similarity
seen among the best solutions for this case.

One common measure of algorithm performance is

the rate at which it converges toward the solution, in

this case, the maximum value of the fitness function.

For genetic algorithms there are some theoretical results

on convergence [83–85], but its not clear how applicable

these results are to our case. For this problem, empirical

evidence from Fig. 4 indicated that erratic µ+ λ with

elitism performs at least as good as the other GA vari-

ants, and in some cases much better. This is possibly

due to the synergy between the stabilizing properties

of µ + λ with elitism combined with the aggressively

explorative search rates used in erratic variants. We did

find, however, that for small populations sizes (less than

10) genetic algorithms with elitism are more susceptible

to local minima, and so in this regime the stabilizing fea-

Genetic-algorithm-optimized neural networks for gravitational wave classification 17

tures are counterproductive. We also tested erratic µ+λ

with elitism using a two-point crossover and mutation

operators, but these more aggressive search operators

had little effect and so these results were not included

here.

It is worth noting that certain algorithms are more

computationally challenging to run. For example, at each

generation the Monte-Carlo algorithm, the most costly
of the algorithms we considered, selects an entirely new

set of individuals all of which need to be retrained. By

comparison, the fittest individuals in the GA population

are carried over to the next iteration and do not need to
be trained. However, this difference is more significant

for cpu- or gpu-time than walltime since training a

population of networks is embarrassingly parallel, unlike

generations that proceed sequentially.

5.3 Network refinement using erratic µ+ λ with elitism

In Sec. 5.2 we found that the GA variant erratic µ+ λ

with elitism was a top performer for this problem. Here

we explore this GA variant in a bit more detail while

scaling up the search to use a population size of 50, 50
generations, and 5 elites (the elites have been scaled

proportionally to the population). We continue to use

the same training and testing data as in Sec. 5.2. Also as

before, to avoid local minima we use 5 non-interacting

populations (called trials below) with different seeds,

however they are now displayed separately rather than

aggregated.

In Fig. 6 shows the evolution of the best solution for

each trial. We see that by about 35 generations each

trial has converged to a solution that has improved upon

the seed network, whose fitness values are shown in each

subfigure. It should be noted that although our GA will

guarantee improvements in weighted fitness (cf. Fig. 6d),

accuracy and complexity fitness have no such guarantee

since the algorithm is optimizing the weighted fitness.

Figure 6 shows that both fitness measures increase.

From Fig. 6a we see that trial 3 found the network

with the best overall accuracy, whose accuracy fitness

improved from .71 (accuracy of the seed network) to
.79, an 11% increase. The accuracy baseline of the seed

network was computed by taking the best score after re-

training 10 times from scratch to guard against unlucky
weight initializations. By comparison, due to compu-

tational cost considerations, each member of the GA’s

population was only evaluated once with a randomized

seed. Due to a large number of generations and popu-

lation size the GA effectively explores many possible

seed choices to make the impact of an unlucky seed

unimportant.

Fig. 6b shows that this network also has 78% fewer

learned parameters as compared to the seed network.
Note that in our definition of complexity, a value of 0

means the network has as many learned parameters as

the seed network while a value of 1 is a trivial network

with no trainable parameters. We remind the readers
that our seed network architecture was taken to be

the best network with 3 CNN layers from Ref. [28],
and so we see here the ability of the GA to improve

upon already good networks, which will be important

for maximizing the efficacy of machine-learning based
gravitational wave searches.

Finally, in Fig. 7 we show the evolution of (normal-

ized) hyperparameter values across generations. This

provides some insight into the influence of a given hyper-

parameter for this problem. For example, the 2nd and

3rd convolutional layers’ dilation rates benefited from

being smaller. The dense units also moved to notably

smaller sizes while higher dropout rates were preferred.
We also observe a decrease in Conv1D kernel sizes from

layers 1 to 3, perhaps since the maxout layers reduce the
activation areas between each convolutional layer. There
also appears to be degeneracy among the first two filter

values, where the population wanders between many

plausible values even at later generations, however, the

last filter value tends to become smaller.

5.4 Comparing seed and optimized architectures

In Sec. 5.3 a genetic algorithm was used to improve

George and Huerta’s proposed architecture (our seed net-

work) for the classification problem described in Sec. 5.2.

We now consider a more detailed comparison between

the George and Huerta (GH) and GA-optimized archi-

tectures by considering diagnostics discussed in Sec. 2.5.

Our testing data is comprised of 400, 000 examples with

half containing signals with SNRs between 2 and 30.

Recall that the output of a classier is a number,
the ranking statistic, that assigns a measure of confi-

dence that the dataset contains a signal. For traditional

matched filtering this number, ρ, is the signal-to-noise

ratio. For the CNN classifier the network outputs a num-

ber, 0 ≤ Psignal ≤ 1, which we would like to interpret

as the significance of a signal: when Psignal = (0)1 the

network is absolutely certain is (no) signal. The inset of

Fig. 8d shows the distribution of Psignal over 200, 000

datasets that contain a signal. Two peaks are evident.

The largest one, located at Psignal = 1, corresponds to

high SNR events. A secondary peak, comprised of mod-

erate SNR events, lies just above 0.5. The distribution

of Psignal over 200, 000 noise-only datasets also shows a

large peak just below 0.5.

18 Dwyer S. Deighan et al.

l l l

l l l

l l l l l l

l l l l

l l

l l

l l l l l l l

l l l

l ll

l

l

l

l l l l

l

l

l l l l l
l l l l l l l l

l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

l

l l

l l

l l l

l l l l l l l

l l l l

l l

l

l l

l

l l

l l l

l l l l l l l l l l l l

l l l l l l l

l l

0.75

0.76

0.77

0.78

0 10 20 30 40 50

generation

F
it
n
e
s
s

trial l l l l l0 1 2 3 4

(a) Weighted fitness (seed value = 0.68)

l l l

l l l

l l l l l l

l l l l

l l

l l

l l l l l l l

l l l

l ll

l

l

l

l l l l

l

l

l l l l l l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

l

l l

l l

l l l

l l l l l l l

l l l l

l l

l

l l

l

l l

l l l

l l l l l l l l l l l l

l l l l l l l

l l

0.75

0.76

0.77

0.78

0 10 20 30 40 50

generation

F
it
n
e
s
s

trial l l l l l0 1 2 3 4

(b) Accuracy fitness (seed value = 0.7)

l l l
l l l

l l l l l l

l l l l

l l

l l

l l l l l l l

l l l

l ll

l

l

l
l l l l

l

l

l l l l l

l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l l l l l l l l

l

l l

l l

l l l

l l l l l l l

l l l l

l l

l

l l
l

l l

l l l

l l l l l l l l l l l l
l l

0.2

0.4

0.6

0.8

0 10 20 30 40 50

generation

F
it
n
e
s
s

trial l l l l l0 1 2 3 4

(c) Complexity fitness (seed value = 0)

l

l

l

l
l

l

l

l
l

l
l

l

l
l

l l l

l l l

l
l l l l l

l l

l l
l l l l l l l l l l l l l l l l l l l l

l

l

l

l

l

l

l

l

l

l
l

l

l l

l

l
l

l

l

l l l l

l l

l l l l l l l l l l

l l l l l l l l l l l l

l l
l

l

l

l

l

l

l

l

l

l
l

l l

l

l

l l l
l

l l

l

l l
l l l l l l l

l

l

l l

l l l

l l l

l l

l l l l l l l l

l

l

l

l

l

l
l

l

l

l
l

l

l l

l

l

l l

l

l l l

l
l l l l l l l l

l

l

l l l l

l l l l l
l l l l

l l

l l

l

l

l

l

l
l

l

l

l

l l

l l l

l l

l l l

l l l

l l

l l
l

l l

l l l l l

l l l l l l l
l l l l l l l l l

0.4

0.8

1.2

0 10 20 30 40 50

generation

h
y
p
e
rp

a
ra

m
e
te

r_
s
p
re

a
d

trial l l l l l0 1 2 3 4

(d) Hyperparamter spread vs generation

Fig. 6: These figures summarize the experiment described in Sec. 5.3, where we perform hyperparameter optimization

with the erratic µ+ λ with elitism GA variant using five distinct runs (labeled trials) to help guard against local

minima. In all trials, the populations appear to have converged to a local minima by about 35 generations. This is

most evident by monitoring the spread in the (normalized) hyperparameter values in the top 10 solutions (bottom

right). The genetic algorithm finds a region of high weighted fitness (upper left panel) and the resulting network

is both more accurate (upper right panel) and more compact (lower than panel) than the George and Huerta

small classifier (our seed network), whose values are shown in the subfigure’s caption. The GA made significant

improvements in network complexity, which had about 80% fewer learned parameters as compared to the seed

network. We have included extremely weak signals in our validation set with SNRs as low as 2, which is why our

accuracy fitness obtains a maximum of ≈ 79%; Sec. 5.4 explores network properties as the SNR is varied.

Following Gabbard et al. [33] our next comparison

between the GH and GA-optimized networks consid-
ers the true alarm probability versus the optimized

matched-filter SNR of the signal. Fig.8a shows that the

GA-optimized network (solid blue line) outperforms the

seed network (dash blue like) at the threshold value of

P ∗
signal = 0.5 used in the computation of the accuracy

when computing the GA’s fitness score. However, from

Figs. 8b and 8c we see that at this threshold value the
networks have different false alarm probabilities. At a

fixed FAP of 10−3 (green) both networks show compa-

rable performance. We believe this is a consequence of

using a threshold of P ∗
signal = 0.5 in the computation of

the fitness score, which, as we have empirically shown,

does not control the FAP. In future work we hope to

explore different loss functions or GA fitness scores to

directly control and optimize for target FAPs.

Finally, in Fig. 8b we compute ROC curves for three

representative optimal matched-filter SNR values. We

see that the GA outperforms the seed network for weaker

Genetic-algorithm-optimized neural networks for gravitational wave classification 19

l

l

l

l

l

l

l

l

l

l

lllll

lllllllllllllll

ll

l

l

l
l

l

l

l

ll

l

l
l

ll

l

lll
ll
llllll
ll

ll

l

l

l

l

l

l

ll

l

l

ll

l

l

l

l

l

ll

l

llllll

l

l

l

l

l

l

ll

l

l
l

l

l
l

l

l
l

l

l
l

l

ll

l
ll

l
ll
l

ll

l

l

l

l

l

l

l

l

ll

l

l
l

l

l
l

l

l

l

ll

llll

lll

ll

l

l

l

l

l

l

ll

lll

ll
lllll
l
lll
ll
llllll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

lll

l
lll

ll

l

l

l

l

l

l
l

l

l

l

l

lll

l

l

l

l

l

ll

l

ll

lll

l

ll

l

l

l

l

l

l

l
l

l

ll

l

l

l

l

l

l
l

l

ll

l

lllll

l

ll

l

l

l

l

l

l

l

l

ll

l

l
ll

lllll
lll
lllllll
l

l

l

l

l

l

l

l

l

l

l

l
l
l

l

ll

ll
l
lll
llllllll

l

l

l

l

l

l

l

l

l

l

l

l

l
llll

l
l

l

l
llll
llll

l

−4

−2

0

2

4

6

C
o
n
v
1
D

.d
ila

ti
o
n
_
ra

te

C
o
n
v
1
D

.d
ila

ti
o
n
_
ra

te
1

C
o
n
v
1
D

.d
ila

ti
o
n
_
ra

te
2

C
o
n
v
1
D

.f
ilt

e
rs

C
o
n
v
1
D

.f
ilt

e
rs

1

C
o
n
v
1
D

.f
ilt

e
rs

2

C
o
n
v
1
D

.k
e
rn

e
l_

s
iz

e

C
o
n
v
1
D

.k
e
rn

e
l_

s
iz

e
1

C
o
n
v
1
D

.k
e
rn

e
l_

s
iz

e
2

D
e
n
s
e
.u

n
it
s

D
ro

p
o
u
t.
ra

te

D
ro

p
o
u
t.
ra

te
1

n
o
rm

a
liz

e
d
_
va

lu
e

0

1

2

3

log(generation)

Fig. 7: Parallel coordinate plot of hyperparameter evo-

lution over 30 generations of architecture optimization

using the GA-variant described in Sec. 5.3. The gener-

ations are shown logarithmically to better distinguish

earlier generations from one another. Each generation

is represented as a color-coded, connected line showing

the best performing architectures averaged over the 5

sub-populations. Hyperparameter values are normalized

such that a value of 0 corresponds to value of the George

& Huerta seed architecture, thus allowing us to com-

pare GA’s solution to the seed network as well as the
evolution the population took to arrive at the optimized

architecture.

signals at FAPs corresponding to thresholds near 0.5,

while at higher SNR values and/or different FAPs neither

network has a clear advantage. We note that despite

both networks having comparable effectiveness in some

of our tests, the optimized architecture is able to achieve

these results with 79% fewer learned parameters.

6 Discussion & Conclusion

We have presented a novel method for optimizing the hy-

perparameter values of a deep convolutional neural net-

work classifier based on genetic algorithms. We have ap-

plied our method to optimize deep filtering [28] networks,

a special kind of convolutional neural network classifier

designed to rapidly identify the presence of weak signals

in noisy, time-series data streams. For example, deep

filtering has been used to search for gravitational-wave

signals [28,28–38] as an alternative to more traditional

(and computationally expensive) matched filtering. All
previous attempts to optimize deep filtering hyperpa-

Table 2: Genetic algorithm optimized architecture for

the gravitational-wave classification problem defined in

Sec. 5.3. For comparison, we also show the values used

for the seed network, which is essentially the classifier

discovered by George and Huerta [28] and shown in

Fig. 1. Interestingly, the GA was able to find a sig-
nificantly more compact network that simultaneously

achieves better accuracy. It is surprising how few filters

and neurons the network needs; the largest number of

filters and neurons per layer being only 30 and 38 respec-

tively. It is also noticeable that the kernels in the early

layers need to be very wide and relatively dense, while

later kernels shrink and become sparse (as indicated

by dilation) rather quickly. This is somewhat contrary

to the conventional wisdom of CNN architectures and

underscores the potential benefits of automated hyper-

parameter tuning.

Quantity Seed GA
Weighted Fitness 0.6830484375 0.7825329
Accuracy Fitness 0.7005625 0.7837500

Size Fitness 0 0.7350671
CNN-1 Filters 16 20

CNN-1 Size 16 14
CNN-1 Dilation 1 1
CNN-2 Filters 32 14

CNN-2 Size 8 6
CNN-2 Dilation 4 3
CNN-3 Filters 64 30

CNN-3 Size 8 4
CNN-3 Dilation 4 2
Dropout-1 Rate 0.1 0.1948836

Dense Units 64 38
Dropout-2 Rate 0.1 0.1058403

GW comparisons Sec. 5.4

rameter values have relied on trial and error strategies

to set the hyperparameter values.

The principal contribution of our work is to assess

the benefits of genetic algorithms for hyperparameter

optimization. Our work also constitutes the first attempt

to automate the hyperparameter optimization procedure

for such networks. We have specifically focused on (i)
assessing the effectiveness of different genetic algorithm

variants for our problem, (ii) quantifying the genetic

algorithm’s ability to improve upon state-of-the-art ar-

chitectures, and (iii) considering the genetic algorithm’s

ability to discover new architectures from scratch. We

also provide a detailed comparison of our fully optimized

network with the network described in Ref. [28]. Our

main findings include:

– (i) In Sec. 5.2 we compared six different GA algo-

rithms, differing in their choice of selection, mutation,

and crossover operators. While many performed com-

parably well, the variant erratic µ+ λ with elitism
was generally found to work the best. This is possibly

Genetic-algorithm-optimized neural networks for gravitational wave classification 21

parameters while obtaining an 11% increase in accu-

racy for our test problem. This showcases the GA’s

ability to refine state-of-the-art convolutional neu-

ral networks to simultaneously achieve both more

compact networks and higher accuracy. In all of our

experiments, we find the GA discovers significantly

less complicated networks as compared to the seed

network, suggesting it can be used to prune wasteful

network structures.

High dimensional hyperparameter optimization is

challenging. Based on considerations of the problem, evo-

lutionary algorithms in general, and genetic algorithms

in particular, are one possible solution to this problem.

Future work should include exploring and comparing

to alternative algorithms, such as particle swarm opti-
mization or Bayesian optimization, as well as different

forms of the GA fitness score. Indeed, due to the choice

of fitness score, the GA optimizes the network at a fixed

threshold of the ranking statistic, P ∗
signal, instead of a

fixed false alarm probability. In Sec. 5.4 we see that at a

fixed false alarm probability the GA-optimized network

does not have a clear accuracy advantage, although it

is significantly more compact. In future work we hope

to explore different loss functions or GA fitness scores

to directly control and optimize for target FAPs. Fur-

thermore, as the complexity of the neural network is
high, one might consider designing fitness functions for

individual layers of the classifier thereby reducing one

high dimensional optimization problem to a handful of

lower-dimensional optimization problems. While this

approach is computationally attractive, it would require

access to layer-specific fitness functions that, at least

at present, do not have an obvious choice. However, if

such fitness functions can be found (perhaps for specific

problems) this would provide for faster optimization.

To facilitate comprehensive studies of the GA’s be-

havior, we have focused on signals from non-spinning

binary black hole systems. One important extension of

our work is to consider GA optimized networks in the

context of signals from spinning and precessing binary

black hole systems, which is the more realistic case of

interest. Finally, while we have restricted our attention

to deep CNN classifiers, genetic algorithm optimization

can be applied to any other machine learning setting

where hyperparameter values need to be set, includ-

ing alternative architectures for signal classification or

parameter estimation.

GA-optimized networks should prove useful in a va-

riety of contexts. Most importantly, they provide some

assurance that the most accurate, compact networks

are being found and used in realistic gravitational-wave

searches. GA-optimizations should be especially when

exploring new architectures or refining an existing one.

For example, if the detector’s noise properties or signal

model might change, a GA can make automated hyper-

parameter refinements while the network is retrained.

GA optimizations may also be useful when comparing

different machine learning algorithms. In such compar-

isons it is often unclear if the better performing model

is genuinely better or its hyperparameters are better op-

timized; automating the hyperparameter selection will

remove some of this ambiguity. Finally, the evolution of

hyperparameter values over generations might provide

insight into the network by elucidating degeneracies and
patterns in network’s structure.

7 Acknowledgments

We would like to thank Prayush Kumar, Jun Li, Caroline
Mallary, Eamonn O’Shea, and Matthew Wise for helpful

discussions, and Vishal Tiwari for writing scripts used

to compute efficiency curves. S. E. F. and D. S. D. are

partially supported by NSF grant PHY-1806665 and

DMS-1912716. G.K. acknowledges research support from

NSF Grants No. PHY-1701284, PHY-2010685 and DMS-

1912716. All authors acknowledge research support from

ONR/DURIP Grant No. N00014181255, which funds

the computational resources used in our work. D. S. D.

is partially supported by the Massachusetts Space Grant
Consortium.

Conflict of interest

The authors declare that they have no conflict of interest.

A Fourier transform and inner product

conventions

We summarize our conventions, which vary somewhat in the
literature. Given a time domain vector, a, the discrete version
of the Fourier transform of a evaluated at frequency fp = p/T
is given by

ã(fp) = ã[p] = ∆t
N−1
∑

n=0

a(tn)e−2πifpn∆t = ∆t
N−1
∑

n=0

a(tn)e−2πin p

N ,

(21)

where 0 ≤ p ≤ N − 1. Notice that the zero frequency (fp = 0)
corresponds to p = 0, positive frequencies (0 < fp < fs/2)
to values in the range 0 < p ≤ N/2, and negative frequencies
(−fs/2 ≤ f < 0) correspond to values in the range N/2 < p < N .
This follows from the usual assumptions that the signal is both
periodic in the observation duration, a(t) = a(t ± T), and
compactly supported, ã(f) = 0 for |f | ≥ fs/2, where fs =
1/∆t is the sampling rate and fs/2 is the Nyquist frequency.
Consequently, the Fourier transformed signal is periodic in k
with a period of N , ã(fk) = ã(fk ± N∆f). The value p = N/2

22 Dwyer S. Deighan et al.

corresponds to the Fourier transform at the maximum resolvable
frequencies, −fs/2 and fs/2, for a given choice of ∆t.

Given the Fourier transformed data, ã and b̃, the noise-
weighted inner product 〈·, ·〉 between ã and b̃ is defined as

〈a, b〉 = 2∆f
N−1
∑

i=0

a(fi)b
∗(fi)

Sn(fi)
≈ 2

∫ fs/2

−fs/2

a(f)b∗(f)

Sn(f)
df . (22)

Notice that by convention the inner product is defined with an
overall factor of 2, but unlike Eq. 6 the full set of positive and
negative frequencies are used. The continuum limit (∆f → 0)
of the summation makes clear that this is a (discretized) inner
product between a(f) and b(f) over the domain |f | ≤ fs/2.
Note that because the time-domain signal is real the Fourier
transformed signal satisfies ã∗(f) = ã(−f). As a result, the
inner product expression can be “folded-over"

〈a, b〉 = 4<
N/2−1
∑

i=0

a(fi)b
∗(fi)

Sn(fi)
≈ 4<

∫ fs/2

0

a(f)b∗(f)

Sn(f)
df , (23)

which now features an integral over the positive frequencies and
shows the inner product to be manifestly real. We then arrive
at Eq. 6. This motivates the use of the term “inner product"
when discussing Eq. 6 despite the fact that when taken at face
value it does not satisfy the usual properties of an inner product
while Eq. (22) does. Finally, some authors set the noise at the
Nyquist frequency to 0 (see, for example, Ref. [64] discussion
after Eq. 7.1.) frequency.

B Derivation of conditional probabilities used

in likelihood-ratio test

A derivation of the standard inner product used in gravitational-
wave analyses can be found in Ref. [86], which makes use of
methods laid out in Ref. [63]. Here, we provide a brief derivation
to highlight some of the assumptions that go into the classical
filter.

In the absence of a signal, we assume that the detector is a
stochastic process that outputs Gaussian noise with zero mean.
The likelihood that some observed output s is purely noise
is therefore given by a N−dimensional multivariate normal
distribution

p(s|n) =
exp

[

− 1

2
s

T
Σ

−1
s

]

√

(2π)N det Σ
, (24)

where Σ is the covariance matrix of the noise and det Σ is its
determinant.

It is also common to assume that the noise is wide-sense
stationary and ergodic. This is generally true on the time scales
that a gravitational-wave from a compact binary merger passes
through the sensitive band of the detector (∼ max O(100 s)). In
that case, Σ is a real symmetric Toeplitz matrix with elements

Σ[j, k] =
1

2
Rss[k − j]

where

Rss[k] ≡ lim
n→∞

1

n

n−1
∑

l=−n

s[l]s[l + k] (25)

is the autocorrelation function of the data.
There is no general, analytic solution for Σ

−1. However, if
Rss → 0 in finite time τmax and the observation time T > 2τmax

(i.e., dN/2e > dτmax/∆te), then Σ is nearly a circulant matrix;
it only differs in the upper-right and lower-left corners. All
circulant matrices, regardless of the values of their elements,
have the same eigenvectors [87]

up[k] =
1√
N

e−2πikp/N . (26)

We make the approximation that Σ is circulant, and use these
eigenvectors to solve the eigenvalue equation, yielding

λp =
1

2
<







N/2−1
∑

l=−N/2

Rss[l]e−2πipl/N







. (27)

(The < arises because the covariance is real and symmetric.)
The error in this approximation decreases with increasing obser-
vation time; indeed, the eigenvalues of Σ asymptote to Eq. 27
as N → ∞ [87]. The autocorrelation function of ground-based
gravitational-wave detectors ≈ 0 for τ > O(10 ms). Since the
observation time for a gravitational wave is > O(s), this approx-
imation is valid in practice.

We recognize Eq. 27 as 1/∆t times the real part of the
discrete Fourier transform of Rss[p].2 Therefore, via the Wiener-
Khinchin theorem,

λp =
Sn[p]

2∆t
(28)

where Sn[p] is the discrete approximation of the power spectral
density (PSD) of the noise at frequency p/T ≡ p∆f . Since the
matrix of eigenvectors U are unitary, we have

Σ−1[j, k] ≈
[

UΛ
−1

U
†
]

[j, k]

≈ 2∆t

N

N−1
∑

p=0

e−2πijp/N e2πikp/N

Sn[p]

= cjk + 4∆f(∆t)2

N/2−1
∑

p=1

cos (2π(j − k)p/N)

Sn[p]
, (29)

To go from the second to the third line, we have substituted
1/N = ∆f∆t and have made use of the fact that Sn[p] is
symmetric about N/2; cjk depends only on the p = 0 and
p = N/2 terms, which correspond to the DC and Nyquist
frequencies, respectively.

Gravitational-wave detectors have peak sensitivity within
a particular frequency band [f0, fmax] (for current generation
detectors, this is f ∼ [20, 2000] Hz). Outside of this range we
can effectively treat the PSD as being infinite, making all terms
in Eq. (29) with p < bf0/∆fc ≡ p0 zero. Likewise, if we choose
a sample rate 1/∆t > 2fmax, then the Nyquist term is also effec-
tively zero. The exponential term in the likelihood is therefore

[

s
T

Σ
−1

s

]

≈ 4∆f

N/2−1
∑

p=p0

(∆t)2

N−1
∑

j,k=0

s[j]s[k]
cos (2π(j − k)p/N)

Sn[p]

≈ 4∆f

N/2−1
∑

p=p0

|s̃|2 [p]

Sn[p]
.

In going from the first to the second line we have again recognized
the sums over j, k as the discrete Fourier transforms over the
real time-series data. We can further simplify this by defining
the inner product Eq. (6), yielding Eq. (5) for the likelihood.

2 We use the same convention for the Fourier transform as in
Ref. [88].

Genetic-algorithm-optimized neural networks for gravitational wave classification 23

C How to generate Gaussian Noise

Somewhat surprisingly, we are unaware of a resource that de-
scribes how to implement Eq. (4) to generate time-domain noise
realizations. When implementing this expression one encounters
sufficiently many subtleties that we will summarize our recipe
here.

Eq. (4) specifies the statistical properties satisfied by the
Fourier coefficients of the noise. Note that in the literature
similar expressions for the discrete Fourier transform coefficients
are sometimes given, which differs from ours.

Since the frequency-domain noise, ñ(fi), is complex, we need
to be careful when sampling the real and imaginary parts. For
example, if the desired property is 〈ñ∗(fi)ñ(fj)〉 = δij , then

<(ñ(fi)) ∼ N (0,
1

2
) , =(ñ(fi)) ∼ N (0,

1

2
) , (30)

which gives

〈ñ∗(fi)ñ(fj)〉 = 〈<(ñ(fi))
2 + =(ñ(fi))

2〉 =
1

2
+

1

2
= 1 . (31)

Furthermore, for real time-domain functions we have ñ∗(f) =
n(−f) and so only the non-negative frequencies are indepen-
dently sampled. When f = 0, this condition implies that n(0)
is real, whence ñ(0) ∼ N (0, 1). A similar property holds at the
Nyquist frequency.

The neural networks considered in this paper use time-
domain data. Synthetic time-domain noise realizations are con-
structed by taking an inverse Fourier transform of our frequency
domain noise. In the time-domain, Eq. (4) becomes,

〈n(ti)〉 = 0 , 〈n2(ti)〉 =
∆f

2

N−1
∑

i=0

Sn(fi) , (32)

which follows directly from Eq. (4) and properties of the Fourier
transform. We found Eq. (32) to be an indispensable sanity test
of our time-domain noise realizations.

References

1. J. Aasi et al., “Advanced LIGO,” Class. Quant. Grav.,
vol. 32, p. 074001, 2015.

2. T. Accadia et al., “Virgo: a laser interferometer to detect
gravitational waves,” JINST, vol. 7, p. P03012, 2012.

3. B. P. Abbott et al., “Observation of Gravitational Waves
from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116,
no. 6, p. 061102, 2016.

4. B. P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Ac-
ernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Ad-
hikari, et al., “Binary black hole mergers in the first ad-
vanced ligo observing run,” Physical Review X, vol. 6, no. 4,
p. 041015, 2016.

5. B. P. Abbott et al., “GW170104: Observation of a 50-Solar-
Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys.
Rev. Lett., vol. 118, no. 22, p. 221101, 2017. [Erratum: Phys.
Rev. Lett. 121, no.12, 129901(2018)].

6. B. P. Abbott et al., “GW170814: A Three-Detector Obser-
vation of Gravitational Waves from a Binary Black Hole
Coalescence,” Phys. Rev. Lett., vol. 119, no. 14, p. 141101,
2017.

7. B. P. Abbott et al., “GW170608: Observation of a 19-
solar-mass Binary Black Hole Coalescence,” Astrophys. J.,
vol. 851, no. 2, p. L35, 2017.

8. B. P. Abbott et al., “GW170817: Observation of Gravita-
tional Waves from a Binary Neutron Star Inspiral,” Phys.
Rev. Lett., vol. 119, no. 16, p. 161101, 2017.

9. B. P. Abbott et al., “GWTC-1: A Gravitational-Wave Tran-
sient Catalog of Compact Binary Mergers Observed by
LIGO and Virgo during the First and Second Observing
Runs,” Phys. Rev., vol. X9, no. 3, p. 031040, 2019.

10. B. P. Abbott et al., “Observation of Gravitational Waves
from a Binary Black Hole Merger,” Phys. Rev. Lett., vol. 116,
no. 6, p. 061102, 2016.

11. B. P. Abbott et al., “GW170817: Observation of Gravita-
tional Waves from a Binary Neutron Star Inspiral,” Phys.
Rev. Lett., vol. 119, no. 16, p. 161101, 2017.

12. B. P. Abbott et al., “GW151226: Observation of Gravi-
tational Waves from a 22-Solar-Mass Binary Black Hole
Coalescence,” Phys. Rev. Lett., vol. 116, no. 24, p. 241103,
2016.

13. B. P. Abbott et al., “GW170104: Observation of a 50-Solar-
Mass Binary Black Hole Coalescence at Redshift 0.2,” Phys.
Rev. Lett., vol. 118, no. 22, p. 221101, 2017. [Erratum: Phys.
Rev. Lett.121,no.12,129901(2018)].

14. B. P. Abbott et al., “GW170608: Observation of a 19-
solar-mass Binary Black Hole Coalescence,” Astrophys. J.,
vol. 851, no. 2, p. L35, 2017.

15. B. P. Abbott et al., “GW170814: A Three-Detector Obser-
vation of Gravitational Waves from a Binary Black Hole
Coalescence,” Phys. Rev. Lett., vol. 119, no. 14, p. 141101,
2017.

16. B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. Adhikari, V. Adya, C. Affeldt,
et al., “Gwtc-1: a gravitational-wave transient catalog of
compact binary mergers observed by ligo and virgo during
the first and second observing runs,” Physical Review X,
vol. 9, no. 3, p. 031040, 2019.

17. B. P. Abbott et al., “Prospects for Observing and Localiz-
ing Gravitational-Wave Transients with Advanced LIGO,
Advanced Virgo and KAGRA,” Living Rev. Rel., vol. 21,
no. 1, p. 3, 2018.

18. B. Abbott, R. Abbott, T. Abbott, S. Abraham, F. Acernese,
K. Ackley, C. Adams, R. X. Adhikari, V. Adya, C. Affeldt,
et al., “Binary black hole population properties inferred
from the first and second observing runs of advanced ligo
and advanced virgo,” The Astrophysical Journal Letters,
vol. 882, no. 2, p. L24, 2019.

19. “Ligo/virgo public alerts.” https://gracedb.ligo.org/

superevents/public/O3/.
20. P. Jaranowski and A. Krolak, “Gravitational-Wave Data

Analysis. Formalism and Sample Applications: The Gaus-
sian Case,” Living Reviews in Relativity, vol. 15, p. 4, 2012.

21. G. Turin, “An introduction to matched filters,” Information
Theory, IRE Transactions on, vol. 6, no. 3, pp. 311–329,
1960.

22. I. Harry, S. Privitera, A. Bohé, and A. Buonanno, “Searching
for gravitational waves from compact binaries with precess-
ing spins,” Physical Review D, vol. 94, no. 2, p. 024012,
2016.

23. C. Messick and et al., “Analysis framework for the prompt
discovery of compact binary mergers in gravitational-wave
data,” Phys. Rev. D, vol. 95, p. 042001, 2017.

24. Q. Chu, “Low-latency detection and localization of gravi-
tational waves from compact binary coalescences,” Ph.D.
thesis, University of Western Australia, 2017.

25. S. Klimenko and et al., “Method for detection and recon-
struction of gravitational wave transients with networks of
advanced detectors,” Phys. Rev. D, vol. 93, p. 042004, 2016.

26. T. Adams and et al., “Low-latency analysis pipeline for
compact binary coalescences in the advanced gravitational

24 Dwyer S. Deighan et al.

wave detector era,” Class. Quantum Grav., vol. 33, p. 175012,
2016.

27. A. Nitz and et al., “Rapid detection of gravitational waves
from compact binary mergers with PyCBC Live,” Phys.
Rev. D, vol. 98, p. 024050, 2018.

28. D. George and E. A. Huerta, “Deep neural networks to
enable real-time multimessenger astrophysics,” Phys. Rev.
D, vol. 97, p. 044039, Feb 2018.

29. H. Shen, E. Huerta, and Z. Zhao, “Deep learning at scale
for gravitational wave parameter estimation of binary black
hole mergers,” arXiv preprint arXiv:1903.01998, 2019.

30. Y. D. Hezaveh, L. P. Levasseur, and P. J. Marshall, “Fast
automated analysis of strong gravitational lenses with convo-
lutional neural networks,” Nature, vol. 548, no. 7669, p. 555,
2017.

31. L. P. Levasseur, Y. D. Hezaveh, and R. H. Wechsler, “Un-
certainties in parameters estimated with neural networks:
Application to strong gravitational lensing,” The Astrophys-
ical Journal Letters, vol. 850, no. 1, p. L7, 2017.

32. R. Ciuca, O. F. Hernández, and M. Wolman, “A convolu-
tional neural network for cosmic string detection in cmb
temperature maps,” Monthly Notices of the Royal Astro-
nomical Society, vol. 485, no. 1, pp. 1377–1383, 2019.

33. H. Gabbard, M. Williams, F. Hayes, and C. Messen-
ger, “Matching matched filtering with deep networks
for gravitational-wave astronomy,” Physical review letters,
vol. 120, no. 14, p. 141103, 2018.

34. H. Shen, D. George, E. Huerta, and Z. Zhao, “Denoising
gravitational waves using deep learning with recurrent de-
noising autoencoders,” arXiv preprint arXiv:1711.09919,
2017.

35. D. George, H. Shen, and E. Huerta, “Glitch classification
and clustering for ligo with deep transfer learning,” arXiv
preprint arXiv:1711.07468, 2017.

36. D. George and E. Huerta, “Deep learning for real-time
gravitational wave detection and parameter estimation: Re-
sults with advanced ligo data,” Physics Letters B, vol. 778,
pp. 64–70, 2018.

37. S. Fort, “Towards understanding feedback from supermas-
sive black holes using convolutional neural networks,” arXiv
preprint arXiv:1712.00523, 2017.

38. T. D. Gebhard, N. Kilbertus, I. Harry, and B. Schölkopf,
“Convolutional neural networks: A magic bullet for
gravitational-wave detection?,” Physical Review D, vol. 100,
no. 6, p. 063015, 2019.

39. H. Shen, D. George, E. Huerta, and Z. Zhao, “Denois-
ing gravitational waves using deep learning with recur-
rent denoising autoencoders.(2017),” arXiv preprint arXiv,
vol. 1711.

40. D. George, H. Shen, and E. Huerta, “Classification and unsu-
pervised clustering of ligo data with deep transfer learning,”
Physical Review D, vol. 97, no. 10, p. 101501, 2018.

41. C. Bresten and J.-H. Jung, “Detection of gravitational
waves using topological data analysis and convolutional
neural network: An improved approach,” arXiv preprint
arXiv:1910.08245, 2019.

42. Y.-C. Lin and J.-H. P. Wu, “Detection of gravitational
waves using bayesian neural networks,” arXiv preprint
arXiv:2007.04176, 2020.

43. P. G. Krastev, “Real-time detection of gravitational waves
from binary neutron stars using artificial neural networks,”
Physics Letters B, p. 135330, 2020.

44. M. B. Schäfer, F. Ohme, and A. H. Nitz, “Detection of
gravitational-wave signals from binary neutron star mergers
using machine learning,” arXiv preprint arXiv:2006.01509,
2020.

45. B.-J. Lin, X.-R. Li, and W.-L. Yu, “Binary neutron stars
gravitational wave detection based on wavelet packet analy-
sis and convolutional neural networks,” Frontiers of Physics,
vol. 15, no. 2, p. 24602, 2020.

46. X. Fan, J. Li, X. Li, Y. Zhong, and J. Cao, “Applying
deep neural networks to the detection and space parameter
estimation of compact binary coalescence with a network of
gravitational wave detectors,” SCIENCE CHINA Physics,
Mechanics & Astronomy, vol. 62, no. 6, p. 969512, 2019.

47. A. J. Chua and M. Vallisneri, “Learning bayesian posteri-
ors with neural networks for gravitational-wave inference,”
Physical Review Letters, vol. 124, no. 4, p. 041102, 2020.

48. H. Gabbard, C. Messenger, I. S. Heng, F. Tonolini, and
R. Murray-Smith, “Bayesian parameter estimation using
conditional variational autoencoders for gravitational-wave
astronomy,” arXiv preprint arXiv:1909.06296, 2019.

49. S. R. Green, C. Simpson, and J. Gair, “Gravitational-wave
parameter estimation with autoregressive neural network
flows,” arXiv preprint arXiv:2002.07656, 2020.

50. W. Wei and E. Huerta, “Gravitational Wave Denoising of
Binary Black Hole Mergers with Deep Learning,” Physics
Letters B, vol. 800, p. 135081, 2020.

51. A. Khan, E. Huerta, and A. Das, “Physics-inspired deep
learning to characterize the signal manifold of quasi-circular,
spinning, non-precessing binary black hole mergers,” Physics
Letters B, vol. 808, p. 135628, 2020.

52. B. ul Islam, Z. Baharudin, M. Q. Raza, and P. Nallagownden,
“Optimization of neural network architecture using genetic
algorithm for load forecasting,” in 2014 5th International
Conference on Intelligent and Advanced Systems (ICIAS),
pp. 1–6, IEEE, 2014.

53. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

54. “SageMaker.” https://docs.aws.amazon.com/sagemaker/

latest/dg/automatic-model-tuning-how-it-works.

html.
55. K. M. Hamdia, X. Zhuang, and T. Rabczuk, “An efficient

optimization approach for designing machine learning mod-
els based on genetic algorithm,” Neural Computing and
Applications, pp. 1–11, 2020.

56. M. E. Normandin, S. Mohanty, and T. S. Weerathunga,
“Particle swarm optimization based search for gravitational
waves from compact binary coalescences: Performance im-
provements,” Phys. Rev. D, vol. 98, p. 044029, 2018.

57. B. P. Abbott et al., “Astrophysical Implications of the Bi-
nary Black-Hole Merger GW150914,” Astrophys. J., vol. 818,
no. 2, p. L22, 2016.

58. M. Maggiore, Gravitational Waves - Volume 1. New York,
NY: Oxford University Press, first ed., 2008.

59. B. J. Owen, “Search templates for gravitational waves from
inspiraling binaries: Choice of template spacing,” Phys. Rev.
D, vol. 53, pp. 6749–6761, Jun 1996.

60. D. Brown, Searching for Gravitational Radiation from Bi-
nary Black Hole MACHOs in the Galactic Halo. PhD thesis,
University of Wisconsin–Milwaukee, 2004.

61. C. Cutler and E. E. Flanagan, “Gravitational waves from
merging compact binaries: How accurately can one extract
the binary’s parameters from the inspiral wave form?,” Phys.
Rev. D, vol. 49, p. 2658, 1994.

62. J. D. Romano and N. J. Cornish, “Detection methods for
stochastic gravitational-wave backgrounds: a unified treat-
ment,” Living reviews in relativity, vol. 20, no. 1, p. 2, 2017.

63. L. A. Wainstein and V. D. Zubakov, Extraction of signals
from noise. Englewood Cliffs, NJ: Prentice-Hall, 1962.

64. B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. Creighton, “FINDCHIRP: An Algorithm for detection
of gravitational waves from inspiraling compact binaries,”
Phys. Rev. D, vol. 85, p. 122006, 2012.

Genetic-algorithm-optimized neural networks for gravitational wave classification 25

65. E. T. Newman and R. Penrose, “Note on the Bondi–Metzner–
Sachs group,” J. Math. Phys., vol. 7, pp. 863–870, 1966.

66. J. N. Goldberg, A. J. Macfarlane, E. T. Newman,
F. Rohrlich, and E. C. G. Sudarshan, “Spin-s spherical
harmonics and ð,” Journal of Mathematical Physics, vol. 8,
no. 11, pp. 2155–2161, 1967.

67. J. Blackman, S. E. Field, C. R. Galley, B. Szilágyi, M. A.
Scheel, M. Tiglio, and D. A. Hemberger, “Fast and Accurate
Prediction of Numerical Relativity Waveforms from Binary
Black Hole Coalescences Using Surrogate Models,” Phys.
Rev. Lett., vol. 115, p. 121102, Sept. 2015.

68. “Gwsurrogate.” https://pypi.python.org/pypi/

gwsurrogate/.
69. S. E. Field, C. R. Galley, J. S. Hesthaven, J. Kaye, and

M. Tiglio, “Fast Prediction and Evaluation of Gravitational
Waveforms Using Surrogate Models,” Phys. Rev. X, vol. 4,
p. 031006, July 2014.

70. J. Neyman and E. S. Pearson, “On the Problem of the Most
Efficient Tests of Statistical Hypotheses,” Phil. Trans. Roy.
Soc. Lond. A, vol. 231, no. 694-706, pp. 289–337, 1933.

71. K. Hornik, M. Stinchcombe, and H. White, “Multilayer
feedforward networks are universal approximators,” Neural
networks, vol. 2, no. 5, pp. 359–366, 1989.

72. G. Cybenko, “Approximation by superpositions of a sig-
moidal function,” Mathematics of control, signals and sys-
tems, vol. 2, no. 4, pp. 303–314, 1989.

73. D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2014.

74. E. Hoffer, I. Hubara, and D. Soudry, “Train longer, general-
ize better: closing the generalization gap in large batch train-
ing of neural networks,” arXiv preprint arXiv:1705.08741,
2017.

75. S. L. Smith, P.-J. Kindermans, C. Ying, and Q. V. Le,
“Don’t decay the learning rate, increase the batch size,”
arXiv preprint arXiv:1711.00489, 2017.

76. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
“Accurate, large minibatch sgd: Training imagenet in 1 hour,”
arXiv preprint arXiv:1706.02677, 2017.

77. T. Bäck, D. B. Fogel, and Z. Michalewicz, Evolutionary
computation 1: Basic algorithms and operators. CRC press,
2018.

78. D. Yin, R. Kannan, and P. Bartlett, “Rademacher complex-
ity for adversarially robust generalization,” in International
Conference on Machine Learning, pp. 7085–7094, 2019.

79. F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner,
M. Parizeau, and C. Gagné, “DEAP: Evolutionary algo-
rithms made easy,” Journal of Machine Learning Research,
vol. 13, pp. 2171–2175, jul 2012.

80. S. R. Thangiah, I. H. Osman, and T. Sun, “Hybrid genetic
algorithm, simulated annealing and tabu search methods
for vehicle routing problems with time windows,” Computer
Science Department, Slippery Rock University, Technical
Report SRU CpSc-TR-94-27, vol. 69, 1994.

81. M. Gandomkar, M. Vakilian, and M. Ehsan, “A combi-
nation of genetic algorithm and simulated annealing for
optimal dg allocation in distribution networks,” in Cana-
dian Conference on Electrical and Computer Engineering,
2005., pp. 645–648, Ieee, 2005.

82. T. Park and K. R. Ryu, “A dual-population genetic algo-
rithm for adaptive diversity control,” IEEE transactions on
evolutionary computation, vol. 14, no. 6, pp. 865–884, 2010.

83. R. Sharapov and A. Lapshin, “Convergence of genetic al-
gorithms,” Pattern recognition and image analysis, vol. 16,
no. 3, pp. 392–397, 2006.

84. A. E. Eiben, E. H. Aarts, and K. M. Van Hee, “Global
convergence of genetic algorithms: A markov chain analysis,”

in International Conference on Parallel Problem Solving
from Nature, pp. 3–12, Springer, 1990.

85. R. Cerf, “Asymptotic convergence of genetic algorithms,”
Advances in Applied Probability, vol. 30, no. 2, pp. 521–550,
1998.

86. L. S. Finn, “Detection, measurement, and gravitational
radiation,” Phys. Rev. D, vol. 46, p. 5236, Dec. 1992.

87. R. M. Gray, “Toeplitz and circulant matrices: A review,”
Foundations and Trends in Communications and Informa-
tion Theory, vol. 2, no. 3, pp. 155–239, 2006.

88. B. Allen, “A chi**2 time-frequency discriminator for gravi-
tational wave detection,” Phys. Rev., vol. D71, p. 062001,
2005.

	1 Introduction
	2 Preliminaries
	3 Deep models for time series classification
	4 Hyperparameter optimization with genetic algorithms
	5 Numerical experiments: Training and optimizing the network
	6 Discussion & Conclusion
	7 Acknowledgments
	A Fourier transform and inner product conventions
	B Derivation of conditional probabilities used in likelihood-ratio test
	C How to generate Gaussian Noise

