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ABSTRACT

Here, we study the acoustic radiation generated by the vibration of miniaturized doubly clamped and cantilever beam resonators in
viscous fluids. Acoustic radiation results in an increase in dissipation and consequently a decrease in the resonator’s quality factor.
We find that dissipation due to acoustic radiation is negligible when the acoustic wavelength in the fluid is much larger than the bending
wavelength. In this regime, dissipation is primarily due to the viscous losses in the fluid and may be predicted with the two-dimensional
cylinder approximation in the absence of axial flow and substrate effects. In contrast, when the bending wavelength approaches the length
of the acoustic wavelength, acoustic radiation becomes prominent. In this regime, dissipation due to acoustic radiation can no longer be
neglected, and the cylinder approximation inaccurately characterizes the total energy loss in the system. Experiments are performed with
microcantilevers of varying lengths in Ar and N2 to observe trends in the acoustic wavelength of the fluid and bending wavelength.
Additional experimental results from doubly clamped nanoelectromechanical system beams are also presented. Experimental results illus-
trate an increase in dissipation, which is further analyzed with the use of three-dimensional finite element models. With the numerical
simulations, we calculate the radiation efficiency of the measured devices and analyze the pressure fields generated by the vibrating reso-
nators. This analysis allows one to estimate the effects of acoustic radiation for any resonator.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0037959

I. INTRODUCTION

In the last few decades, miniaturized mechanical resonators
have gained significant attention due to their unprecedented sensing
abilities. Microelectromechanical system (MEMS) resonators, and
the even smaller nanoelectromechanical system (NEMS) resonators,
with sub-micrometer linear dimensions, have found numerous appli-
cations in sensing biological and physical quantities inside fluids,
commonly air and water, including the mass of adsorbed mole-
cules,1,2 the random motion of adsorbed bacteria,3 the added dissipa-
tion from a fluid,4 and turbulent pressure fluctuations.5 Hence,
much attention has been placed on understanding the dissipation

due to the fluid–structure coupling. Specifically, many have
studied the dissipation due to viscous losses in the fluid, which
can be predicted by solving the linearized incompressible Navier–
Stokes (NS) equations. Most notable is the two-dimensional (2D)
cylinder approximation, which approximates a slender vibrating
structure, such as a doubly clamped beam or cantilever, as an
oscillating cylinder in an infinite viscous fluid.6 An expression for
the fluid force applied to the structure is found in terms of the
hydrodynamic function derived by Stokes in 1851.7 An extension
to the 2D cylinder approximation is the 2D blade approximation,
which accounts for the rectangular cross section of a beam.
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Experimental work presented by Chon et al.8 and Yu-Hang and
Wen-Hao9 validated the 2D approximation’s accuracy in predict-
ing the resonant frequency and quality factor (Q) of resonators
vibrating in low bending modes. Limitations in the approxima-
tion were also found with experimental work and numerical
studies, where inaccuracies due to the presence of either axial
flow or squeeze film effects were found.10–13 In summary, the pre-
vious work found that the 2D cylinder approximation, derived for
an incompressible viscous fluid, accurately predicts dissipation of
a miniaturized resonator vibrating in a viscous fluid when axial
flow and squeeze film effects are negligible.

Due to the small linear dimensions of MEMS and NEMS
devices, previous work often assumed that acoustic radiation was
negligible6,14 and only considered viscous losses when predicting
dissipation. Recently, acoustic losses of circular plate resonators
have been studied. Vishwakarma et al.15 studied dissipation due
to squeeze film damping and acoustic radiation in a prestressed
drumhead resonator operating in air. Their work predicted the
total dissipation for the first 15 transverse vibration modes by
summing the dissipation due to squeeze film damping and acous-
tic losses. Their work concluded that squeeze film damping domi-
nated at low frequencies, while acoustic losses dominated at high
frequencies. Similarly, Gil-Santos et al.16 analyzed nano-
optomechanical disks vibrating in their mechanical radial breath-
ing modes. Their work analyzed dissipation due to viscous losses
and acoustic radiation for disks with varying radii operating in dif-
ferent liquids. Their work also looked at the net dissipation when
comparing predictions to experimental measurements. Although
both works presented methods for predicting dissipation due to
acoustic radiation, it remains unclear when such losses become
prominent and when they may be neglected.

In this paper, a dimensionless parameter that may be com-
puted for any resonator, the wavenumber ratio, is introduced and
used to analyze trends in dissipation for MEMS and NEMS resona-
tors. Experimental results showing dissipation due to acoustic radi-
ation from vibrating microcantilevers and doubly clamped NEMS
beams are presented. With supporting numerical simulations of
three-dimensional (3D) finite element models (FEMs), measure-
ments show that resonators radiate sound when the bending wave-
length approaches the acoustic wavelength. It is found that this
often occurs at higher bending modes and, therefore, higher fre-
quencies due to the bending and acoustic wavelengths’ dependen-
cies on frequency. The acoustic wavelength is proportional to the
inverse of frequency, whereas the bending wavelength is propor-
tional to the inverse of the square root of frequency. As a result, in
the measurements presented, acoustic radiation becomes prominent
at higher bending modes where the bending wavelength is of com-
parable magnitude to the acoustic wavelength. Here, the acoustic
and bending wavelength are compared via the wavenumber ratio.

In the present work, acoustic radiation is identified by com-
paring the measured dissipation to the dissipation predicted by the
2D viscous approximation. When acoustic radiation is negligible as
well as axial flow and substrate effects, it is found that the measured
dissipation agrees well with that predicted by the viscous approxi-
mation. However, when acoustic radiation becomes prominent, a
departure from the viscous approximation is observed. Numerical
FEM simulations are also analyzed to predict the resonators’ radiation

efficiency and the resulting pressure fields. Results show that an
increase in dissipation corresponds to an increase in radiation effi-
ciency. When radiation efficiency is relatively large, the vibrating reso-
nator is able to radiate sound and generate pressure waves in the
fluid, resulting in energy being transferred from the structure to the
compressible fluid. Analysis of the measured dissipation’s dependence
on pressure is presented to distinguish between dissipation due to
viscous losses and dissipation due to acoustic radiation. Furthermore,
various resonators with different lengths and mechanical properties
are measured and analyzed in different fluids to observe trends in the
wavenumber ratio.

The results presented in this paper show that miniaturized reso-
nators with small linear dimensions may radiate sound if the bending
wavelength approaches the acoustic wavelength. Measurements from
microcantilevers and doubly clamped NEMS beams that radiate
sounds are presented. The presence of acoustic radiation results in an
increase in dissipation that may not be predicted by approximations
that consider the fluid to be incompressible.

II. TWO-DIMENSIONAL VISCOUS DISSIPATION
APPROXIMATION

In this section, the 2D cylinder approximation is briefly
reviewed. The 2D approximation will be later used to predict the
dissipation of MEMS and NEMS beams vibrating in viscous fluids.
The approximation is derived from the incompressible linearized
NS equations and assumes the fluid is of infinite extent. For
slender bodies whose length L is much greater than its width b and
thickness h, such as microcantilevers and NEMS beams, the struc-
ture is approximated as a long cylinder with diameter b oscillating
perpendicular to its axis but in the mode shape of the structure.
The approximation predicts the force applied by the fluid to the
beam in terms of the hydrodynamic function Γcirc. The resulting
dissipation is approximated as6,17

1
Q
� Γ00

circ(α)
1
T0
þ Γ0

circ(α)
, (1)

where Q is the quality factor, and Γ0
circ and Γ00

circ are the real and
imaginary part, respectively, of the hydrodynamic function, Γcirc.
The analytical expression for the hydrodynamic function is7,18,19

Γcirc(α) ¼ 1þ 4iK1 �i
ffiffiffiffiffi
iα

p� �
ffiffiffiffiffi
iα

p
K0 �i

ffiffiffiffiffi
iα

p� � , (2)

where K0 and K1 are the zeroth and first order modified Bessel
functions of the second kind. The argument of Γcirc is in terms of
the Reynolds number

α ¼ ρ0ωb
2

4μ
, (3)

where ρ0 and μ are the density and dynamic viscosity of the
fluid, respectively, and ω is the angular frequency of oscillation.
In Eq. (1), T0 is a mass loading parameter equal to the ratio of
the mass of cylinder of fluid to the mass of the beam,20 such that
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T0 ¼ π

4
ρ0 b
ρsh

, (4)

where ρs is the density of the solid beam. For gas experiments, T0

is very small,21 such that 1=T0 * 1000 � Γ0
circ, and the dissipation

may be further approximated as

1
Q
� T0Γ

00
circ(α): (5)

To account for the rectangular cross section of a beam, one
can apply a small Reynolds number-dependent correction factor,
Ω(α), of order one to Γcirc and find the hydrodynamic function of
the so-called oscillating blade6

Γrect(α) ¼ Ω(α)Γcirc(α): (6)

The hydrodynamic function in Eq. (6) may then be used to predict
the dissipation in Eq. (1) by simply replacing Γ0

circ and Γ00
circ with

Γ0
rect and Γ00

rect.

III. EXPERIMENTAL MEASUREMENTS

A. Microcantilevers

Experiments with microcantilevers were carried out with com-
mercially available tipless silicon microcantilevers from MikroMasch
(NSC36). Three microcantilevers of varying length were used in the
experiments, resulting in varying bending wavelengths. The dimen-
sions of the three microcantilevers used in the experiments are
listed in Table I and a schematic of the microcantilever is depicted
in Fig. 1(a). There were no close-by walls or substrates in the vicin-
ity of the microcantilever to affect the flow. The cantilevers were
measured in high-purity Ar and N2. The properties of these gases at
Standard Temperature and Pressure (STP) are listed in Table II. In
the experiments, the cantilevers were excited with a sinusoidal force,
such that the cantilever would oscillate at angular frequency ω. The
driving frequencies were chosen near resonances of the cantilever to
excite different bending modes. Table III summarizes the parame-
ters of the conducted experiments.

For each experiment, the mean background pressure p0 of the gas
was changed, and the total dissipation 1=Qt was measured. To obtain
the gas dissipation, 1=Qg , we calculate 1=Qg ¼ (1=Qt)� (1=Q0),
where 1=Q0 is the intrinsic dissipation (obtained at the lowest p0).
By changing the pressure p0, the density of the gas is changed by

ρ0 ¼
p0M
RT

, (7)

where R ¼ 8:3145 J=molK is the universal gas constant, T is the
temperature, and M is the molar mass of the gas. As a result, the
Reynold number α varies with pressure by virtue of Eqs. (3) and (7).
By measuring the dissipation at different pressures and thus different
densities and Reynolds numbers, the dominant physical dissipation
mechanism may be observed. When viscous losses of the gas domi-
nate, the dissipation will vary with Reynolds number as predicted by
Eq. (5). However, when acoustic radiation is present, a different trend
in Reynolds number will be observed.

FIG. 1. Schematic of (a) a microcantilever and (b) a doubly clamped NEMS
beam with a substrate.

TABLE II. Properties of gas used in experiment.

Gas
Speed of

sound (m/s)
Molar mass
(g/mol)

Density at
STP (kg/m3)

Dynamic viscosity
at STP (Pa s)

Ar 319 39.948 1.6607 2.23 × 10−5

N2 349 28.014 1.1644 1.7436 × 10−5

Air 343 1.2043 1.8140 × 10−5

TABLE III. Description of conducted experiments with microcantilevers.

Cantilever Mode number Gas Frequency (kHz)

A 3 Ar 2439.15
A 4 Ar 4673.20
A 5 Ar 7520.00
A 1 N2 143.00
A 3 N2 2438.00
A 4 N2 4670.00
A 5 N2 7520.00
B 2 Ar 1311.41
B 3 Ar 3564.26
B 4 Ar 6737.80
C 3 Ar 1762.39
C 4 Ar 3397.05
C 5 Ar 5516.00
C 1 N2 103.00
C 2 N2 638.00
C 3 N2 1762.00
C 4 N2 3396.00
C 5 N2 5512.00

TABLE I. Dimensions of microcantilevers used in experiment.

Length (μm) Width (μm) Thickness (μm)

Cantilever A 130 32.5 1.2
Cantilever B 90 32.5 1.2
Cantilever C 110 32.5 1.2
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B. Nanomechanical beams

Experiments were also performed on nanomechanical silicon
nitride Doubly clamped beam resonators with tension in air at
atmospheric pressure. Figure 1(b) shows a schematic of the beam
with length L, width b, thickness h, and a gap distance g between
the beam and substrate. In the experiment, measurements were
taken at discrete frequencies near resonance, and a modal fit was
performed to find the natural frequencies and dissipation of the
beam.22 More details on the device and measurement process may
be found in work published by Ari et al.23

Two NEMS beam resonators were measured. The two beams
mainly differed by the magnitude of tension. The first beam, which
will be referred to as the low tension beam, has a tension force of
P ¼ 8:7 μN, and linear dimensions L� b� h � 50 μm� 950 nm
�93 nm. The second beam, which will be referred to as the high
tension beam, has a tension force of P ¼ 71:3 μN and linear dimen-
sions L� b� h � 50 μm� 900 nm� 100 nm. Both beams have a
g � 2 μm gap between the beam and the substrate. The first ten
modes of the low tension beam were measured, and the first five
modes of the high tension beam were measured. Table IV lists the
natural frequencies of the low tension and high tension beams.

IV. NUMERICAL METHODS

A. Three-dimensional finite element model

In the present work, the response and dissipation of the
microcantilevers will also be predicted with 3D FEMs. All FEMs
are constructed and analyzed using commercial software COMSOL
Multiphysics®.24 In order to separate dissipation mechanisms, two
FEMs, FEM1 and FEM2, are analyzed in the present work and
are depicted in Fig. 2. FEM1 will include and model all linear dis-
sipation mechanisms, whereas FEM2 models the fluid as lossless

and will only include dissipation due to acoustic radiation. It will
be shown that FEM1 offers the most accurate model of the physi-
cal problem, where the resonator is indeed vibrating in a viscous
fluid. However, FEM2 will be used to compute the radiation effi-
ciency of the resonator and estimate when acoustic radiation will
be significant.

In both FEMs depicted in Fig. 2, only half of the resonator
and spherical fluid domain are shown and analyzed due the sym-
metry about the x–z plane. The resonator is modeled identically
in both models, with the length L, width b, and thickness h of
the resonator taken to be about the x, y, and z axis, respectively.
The resonator vibrates in the z-direction, and the resonator’s
velocity in the z-direction is denoted by v, as depicted in Fig. 2.
The two models differ in the governing equations used to model
the fluid surrounding the resonator. FEM1, depicted in Fig. 2(a),
models all linear fluidic dissipation mechanisms. Here, the fluid
is modeled with two concentric spheres surrounding the resona-
tor. The fluid domain within the sphere of radius R1 is modeled
with a Thermoviscous Acoustics solver to capture all the thermal
and viscous losses that occur in the boundary layers. In this
domain, the fluid is modeled as a viscous compressible
Newtonian fluid with the compressible linearized NS equations.
In the outer spherical layer between R1 and R2, the fluid is
modeled as a compressible lossless fluid and is governed by the
Helmholtz equation. FEM2, depicted in Fig. 2(b), models the
fluid as lossless and, therefore, only accounts for dissipation due
to acoustic radiation. Here, the resonator is surrounded by a
single sphere of fluid. In this domain, the fluid is modeled as a
compressible lossless fluid and is governed by the Helmholtz
equation. In both FEMs, the fluid is modeled as an infinite
medium by imposing a spherical wave radiation boundary condi-
tion at the outer spherical boundary. This boundary condition

FIG. 2. Illustration of two 3D FEMs, FEM1 and FEM2, of resonator immersed
in an infinite fluid medium. Fluid immediately surrounding the resonator is
modeled with (a) compressible linearized NS equations in FEM1 and (b)
Helmholtz equation in FEM2.

TABLE IV. Measured natural frequencies of doubly clamped NEMS beams. The low
tension beam data were taken from experimental results published by Liem et al.13

NEMS beam
Mode
number

Frequency
(MHz)

Wave
number ratio

Low tension 1 1.8710 0.5024
Low tension 2 3.7825 0.5099
Low tension 3 5.7848 0.5220
Low tension 4 7.8971 0.5381
Low tension 5 10.1414 0.5575
Low tension 6 12.5296 0.5796
Low tension 7 15.0589 0.6037
Low tension 8 17.7743 0.6297
Low tension 9 20.6923 0.6574
Low tension 10 23.9318 0.6876
High tension 1 5.1400 1.5999
High tension 2 10.3000 1.6013
High tension 3 15.5000 1.6036
High tension 4 20.7000 1.6067
High tension 5 25.9000 1.6107
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allows an outgoing spherical wave to leave the domain with
minimal reflection. More details on the governing equations and
boundary conditions may be found in the COMSOL Acoustics
User’s Manual.25

To simulate the response of the microcantilever, the left end
of the resonator is fixed, and an external harmonic force of fre-
quency ω is applied to the right end. While keeping frequency
constant, the mean background pressure p0, also referred to as the
static ambient pressure, is swept. The mean background density
of the gas is then computed with Eq. (7) using properties listed
in Table II. The resonator is modeled to have dimensions listed
in Table I with material properties of silicon:26 elastic modulus
E ¼ 170GPa and density ρs ¼ 2329 kg=m3.

To simulate the response of the NEMS beams, the left and
right ends of the resonator are fixed. The substrate is modeled in
the FEMs by including a wall with a zero velocity boundary con-
dition at a gap distance of g ¼ 2 μm away from the beam. The
fluid is modeled with properties of air at atmospheric pressure
listed in Table II. The resonator is modeled to have dimensions
given in Sec. III B. Material properties found with the optimiza-
tion search presented by Liem et al.,27 which minimizes the error
between measured and predicted natural frequencies, are used in
the FEMs. The free response of the NEMS beams is computed
with an eigenfrequency analysis to find the natural frequencies
and quality factors Q of the beam, as well as the mode shape of
the beam and fluid.

For both the microcantilevers and NEMS beams, the resona-
tors are modeled to have no material damping. Therefore, the com-
puted dissipation is attributed to the losses in the gas.

B. Evaluating dissipation

With the evaluated FEMs, the dissipation for a forced response
is evaluated with28

1
Q
¼ Pdis

ωEstored
, (8)

where Pdis is the time-averaged power dissipated and Estored is the
time-averaged energy stored. As mentioned in Sec. IV, FEM1 and
FEM2 differ in the governing equations of the near-field fluid. The
total power dissipated in FEM1, which models the fluid with the
compressible linearized NS equations, is

Pdis ¼ Pvisc þ Ptherm þ Prad, (9)

where Pvisc and Ptherm are the time-averaged power dissipated due
to viscous and thermal losses in the fluid, and Prad is the time-
averaged power radiated. The total dissipated power in FEM2,
which models the fluid with the Helmholtz equation, is

Pdis ¼ Prad: (10)

From Eq. (9), FEM1 accounts for viscous and thermal losses of the
fluid, as well as the energy loss due to acoustic radiation. FEM2
models the fluid to be lossless, resulting in a dissipation that is only
dependent on the energy loss due to acoustic radiation.

C. Evaluating radiation efficiency

To predict when acoustic radiation will be significant, the radi-
ation efficiency28 σ of a resonator is computed from

σ ¼ Prad

ρ0cSs v2
� � , (11)

where c is the speed of sound in the fluid, Ss is the area of the struc-
tural surface for which sound is radiated, and v2

� �
is the space-

averaged value of the time-averaged squared vibrating velocity
defined as

v2
� � ¼ 1

Ss

ð
Ss

1
2
Re vv*

� �
dS, (12)

where (�)* indicates the complex-conjugate of the complex-valued
argument. For the present work, the spatial average is taken about the
top surface of the resonator, such that Ss is the surface area L� b
of the resonator, and v is the velocity in the z-direction at the
resonator’s top surface. The acoustic power radiated is computed from

Prad ¼
ð
Sf

I � n̂ dS, (13)

where n̂ is the unit normal vector and I is the time-averaged intensity
vector found from

I ¼ 1
2
Re pu*f

n o
, (14)

where p is the acoustic pressure in the fluid and uf is the fluid velocity
vector. Note that the acoustic pressure p is the pressure deviation from
the ambient mean background pressure p0 caused by sound waves.
From Eq. (13), the power radiated is computed by integrating the dot
product of the intensity vector and normal vector on the fluid surface
Sf . For the present work, Sf is taken to be the outer spherical surface
of the fluid domain. In the analyses that follow, the spherical surface is
modeled at R2 ¼ 3λac, where λac is the acoustic wavelength in the
fluid. Note that although the acoustic wave amplitude diminishes with
radius,29 the total power radiated remains constant due to the conser-
vation of energy in the lossless fluid. Consequently, the power radiated
evaluated with Eq. (13) is independent of the spherical surface, Sf .

The radiation efficiency in Eq. (11) characterizes the effective-
ness of a vibrating surface to radiate sound. Small values of σ indi-
cate that a relatively small amount of sound is radiated. By
definition, a radiation efficiency of σ ¼ 1 indicates that the vibrat-
ing surface has the same efficiency as a circular baffled piston
whose circumference greatly exceeds the acoustic wavelength.28 For
the present work, the radiation efficiency in Eq. (11) is computed
with results from FEM2, which models the fluid to be lossless. In
this model, no energy is lost due to viscous or thermal losses, and
all dissipation is due to acoustic radiation.
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V. MEMS RESULTS

A. Measured normalized dissipation

The results from the experimental measurements discussed in
Sec. III are plotted in Fig. 3. Here, all measurements are in the con-
tinuum viscous limit. This limit is based on the criteria presented
in the work by Kara et al.21 Specifically, the measurements plotted
are at pressures above the transition pressure pc, which is depen-
dent on the generalized Knudsen number Wiþ Knl .

In Fig. 3, the measured dissipation, which was taken as a func-
tion of pressure, is normalized by the inverse of the mass loading
parameter, T0, such that the plotted quantity is 1=(QT0). The nor-
malized dissipation is plotted against the dimensionless Reynolds
number, which is related to the pressure dependent gas density ρ0
by Eq. (3). This results in a collapse plot of normalized dissipation
1=(QT0) vs Reynolds number α. The normalized dissipation pre-
dicted by the 2D viscous blade approximation is also plotted and is
depicted by the black solid line. For the blade approximation, the
normalized dissipation simplifies to 1=(QT0) � Γ00

rect.
From Fig. 3, the viscous blade approximation accurately predicts

the normalized dissipation for a few measurement sets. These mea-
surements are depicted with gray markers and are seen to lie very
near the black solid line. This indicates that dissipation is dominated
by viscous losses in the fluid and acoustic radiation may be neglected,
as the blade approximation models the fluid as incompressible. From
Fig. 3, this is not true for all measurements, as deviation from the
blade approximation is also observed. Measurements where the nor-
malized dissipation differs from the blade approximation by more
than 7.5% are indicated by the colored makers. For these measure-
ments, the measured dissipation is larger than that predicted by the
blade approximation, suggesting that additional energy is dissipated

due to a different physical mechanism. In Sec. V B, it will be shown
that these measurements are taken from resonators with a relatively
large radiation efficiency σ, suggesting that the additional dissipation
is due to acoustic radiation.

B. Computed radiation efficiency

The radiation efficiency σ computed from Eq. (11) with FEM2
discussed in Sec. IV is plotted in Fig. 4. The radiation efficiency was
computed for each resonator and frequency listed in Table III at a
mean background pressure of p0 ¼ 101 325Pa. In Fig. 4, the radia-
tion efficiency is plotted vs the wavenumber ratio κ defined as

κ ¼ kac
kb

, (15)

where kac is the acoustic wavenumber defined as

kac ¼ ω

c
, (16)

where ω is the angular frequency and c is the speed of the sound in
the fluid. In Eq. (15), kb is the bending wavenumber defined as

kb ¼ ρsAω
2

EI

	 
1=4

, (17)

where A is the cross-sectional area and I is the moment of inertia of
the beam’s cross section. A wavenumber k is also related to the wave-
length λ by

k ¼ 2π
λ
: (18)

FIG. 3. Normalized dissipation, 1=(QT0), vs Reynolds number α, for experimen-
tal measurements of microcantilevers in Ar and N2. Measurements are com-
pared to the normalized dissipation predicted by the blade approximation, where
1=(QT0) � Γ00

rect. Inset compares measurements for cantilever C vibrating in
mode 5 in Ar and N2.

FIG. 4. Radiation efficiency σ plotted vs wavenumber ratio κ for the measured
microcantilevers.
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From Eq. (18), the wavenumber ratio κ is also related to the acoustic
and bending wavelength, λac and λb, respectively, by

κ ¼ λb
λac

: (19)

The acoustic wavenumber, bending wavenumber, and wavenumber
ratio for the measured microcantilevers are listed in Table V.

From Fig. 4, the measurements that agreed well with the
viscous blade approximation correspond to a low radiation effi-
ciency. This supports the previous claim that acoustic radiation
is negligible for these measurements, and the dissipation may be
accurately predicted by only considering viscous losses. Furthermore,
results in Figs. 3 and 4 show that measurements that disagree with
the blade approximation have a relatively large radiation effi-
ciency. For these measurements, the vibration of the microcanti-
lever resulted in radiated sound, and consequently an observed
increase in dissipation.

An increase in radiation efficiency σ with increase in ratio of
wavenumbers κ is observed in Fig. 4. From Eq. (19), when κ is less
than unity, the acoustic wavelength in the fluid is greater than the
bending wavelength, such that λac . λb. For small values of κ, the
microcantilever is unable to radiate a significant amount of sound
and the radiation efficiency σ is relatively small. However, as κ
increases and the bending wavelength approaches the length of the
acoustic wavelength, the radiation efficiency increases. This increase
in radiation efficiency corresponds to an increase in acoustic power
radiated, as predicted by Eq. (11), attributed to pressure waves gen-
erated by the vibrating microcantilever. From analyses presented by
Fahy and Gardonio28 the radiation efficiency is maximum near a
wavenumber ratio equal to unity. Specifically, Fahy et al. computed
the radiation efficiency of a vibrating plate and showed that the
radiation efficiency increases as the wavenumber ratio increases
and approaches unity. Additionally, they showed that the radiation
efficiency is at a maximum when the wave number ratio is slightly
greater than unity, and asymptotes for large wavenumber ratios.
Note that a wavenumber ratio of κ � 1 corresponds to λac � λb.
Although results in Fig. 4 correspond to relatively small wavenum-
ber ratios and a well defined maximum is not observed, the results
follow the general trends presented by Fahy et al..28 In particular,
the radiation efficiency increases as the wavenumber ratio increases
and approaches unity.

To further interpret the results in Figs. 3 and 4, Fig. 5 illus-
trates how pressure fields depend on the wavenumber ratio κ.
Specifically, Fig. 5 plots results from FEM2 that simulated cantile-
ver B in Ar at p0 ¼ 101 325 Pa. Results from a simulation that
excited the second mode at ω=2π ¼ 1:311MHz and fourth mode at
ω=2π ¼ 6:738MHz, are plotted in Figs. 5(a) and 5(b), respectively.
For both simulations, the spherical fluid domain was set to
R2 ¼ 3λac, where the acoustic wavelength in the fluid, λac ¼ 2πc=ω,
varied between simulations due to the varying frequencies. In
Fig. 5, color on the outer spherical surface of the 3D plot represents

the normalized intensity magnitude kIk
.

ρ0cSs v2
� �� �

. The isosur-

faces in the 3D plot and color in the 2D plot represent normalized

acoustic pressure, Re pf g
.

ρ0cSs v2
� �� �

. Recall that acousticTA
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pressure is the deviation from the mean background pressure
caused by the generated sound wave. The 2D plot is of the x � z
plane taken at the middle of the microcantilever width.

From Table V, the wavenumber ratio κ for cantilever B vibrat-
ing in Ar is 0:489 54 and 1:109 60 for modes 2 and 4, respectively.
Additionally, the radiation efficiency for modes 2 and 4 is
6:733� 10�3 and 2:152, respectively, suggesting that mode 4 radi-
ates more sound than mode 2. This is observed in Fig. 5, where the
normalized intensity magnitude for mode 2 is significantly less
than that for mode 4. From Eq. (13), a relatively large intensity
results in a relatively large power radiated and thus a greater
amount of energy dissipated. The observed difference in intensity
between modes 2 and 4 is due to the difference in generated pres-
sure fields. From Fig. 5(a), when the microcantilever vibrates in its
second mode, the pressure field is mostly localized to the field close
to the vibrating surface. This is due to the fact that the acoustic
wavelength in the fluid λac is much larger than the bending wave-
length λb. In contrast, when the microcantilever vibrates in its
fourth mode, the wavenumber ratio is greater than unity and
λb . λac. From Fig. 5(b), the vibrating microcantilever generates
pressure waves that radiate throughout the fluid.

When the bending wavelength is comparable to the acoustic
wavelength, the vibrating microcantilever efficiently radiates sound.
This is evident by the results presented in Figs. 4 and 5. Furthermore,
an increase in acoustic radiation gives rise to an increase in dissipa-
tion. In the inset of Fig. 3, the normalized dissipation for cantilever C
vibrating in mode 5 in Ar and N2 is plotted. Although the measure-
ments were taken for the same cantilever vibrating in the same mode,
the normalized dissipation’s dependence on Reynold’s number varied
between gases. This is due to the difference in the speed of sound in

Ar and N2, and consequently the difference in the acoustic wave-
length and wavenumber ratio. From Table II, the sound speed in Ar
is less than that in N2, resulting in a smaller acoustic wavelength, and
larger wavenumber ratio. From Fig. 4, this gives rise to a larger radia-
tion efficiency and thus an increase in acoustic radiation and dissipa-
tion, as observed in Fig. 3. From Fig. 3, when acoustic radiation is
significant, the dissipation may no longer be predicted by the viscous
blade approximation. Additionally, the dissipation is no longer solely
dependent on the Reynolds number α, but also dependent on the
acoustic and bending wavelengths.

C. Computed dissipation

To observe the dissipation’s dependence on the ambient
mean background pressure p0, the measured dissipation 1=Q for
cantilever C in N2 is plotted in Fig. 6 for each measured mode.
The dissipation is plotted vs the mean background pressure p0 of
the gas. Here, all measurements, including those in the kinetic
regime are plotted. The kinetic and continuum regimes are indi-
cated by the blue and red shaded regions respectively. The transi-
tion pressure defined by Kara et al.21 is also depicted with the
vertical dashed line. Here, the transition pressure was computed
by finding the generalized Knudsen number Wiþ Knl � 1. In
Fig. 6, the measured dissipation is compared to the dissipation
computed from FEM1 at pressures above the transition pressure.
Recall that FEM1 solves the compressible linearized NS equations
and accounts for all the losses in the fluid. Additionally, the mea-
surements are compared to the dissipation predicted by the
viscous blade approximation and Eq. (5).

From Fig. 6, the dissipation predicted by FEM1 agrees well
with the data in the continuum regime for every mode. This is due
to the fact that FEM1 accounts for all the losses in the system,
namely, viscous and thermal losses of the fluid and any acoustic
radiation. As previously observed, the blade approximation accu-
rately predicts the dissipation for modes 1–3, where the wavenum-
ber ratio is relatively small. At these frequencies, dissipation due to
acoustic radiation may be neglected. However, for modes 4 and 5,
disagreement between the measured and predicted dissipation is
observed. Here, the blade approximation underpredicts the dissipa-
tion by not accounting for compressibility of the fluid and thus any
acoustic radiation.

The presence of acoustic radiation is also evident by the pres-
sure dependence of the dissipation. In the kinetic regime, dissipa-
tion depends linearly with ambient pressure, such that 1=Q/ p0.
In the continuum regime, the physical dissipation mechanism
changes, giving rise to a change in pressure dependence and slope
of the dissipation curve. For modes 1–3, where acoustic radiation
is negligible, the slope in the dissipation curves for data, FEM1,
and blade approximation are very similar. For these modes, the
dissipation is dominated by viscous losses in the continuum
regime. Beginning at mode 4, the slope in the dissipation curves
for data and FEM1 begins to differ from that of the blade approxi-
mation in the continuum regime. This is best observed in mode 5,
where the slope of the data and FEM1 dissipation curves is notice-
ably larger than that of the blade approximation. This change in
pressure dependence is due to the additional losses attributed to
acoustic radiation. As viscous dissipation and acoustic radiation

FIG. 5. Results from 3D FEM which simulated cantilever B in Ar at
p0 ¼ 101 325 Pa vibrating in its (a) second and (b) fourth mode. Color on outer
spherical surface of 3D plot represents normalized intensity magnitude

kIk
.

ρ0cSs v2
D E� �

. Isosurfaces in 3D plot and color in 2D plot represent nor-

malized acoustic pressure, Re pf g
.

ρ0cSs v2
D E� �

.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 064304 (2021); doi: 10.1063/5.0037959 129, 064304-8

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


have different pressure dependencies, the change in slope repre-
sents a transition from dissipation dominated by viscous losses,
to that which also has acoustic radiation. Results from Fig. 6
may be better interpreted by analyzing dissipation for two
canonical models.

Here, we consider the dissipation of a vibrating piston in an
infinite lossless fluid and an oscillating cylinder in a viscous
incompressible fluid. The former dissipates energy due to acoustic
radiation, whereas the latter dissipates energy due to viscous
losses. It is important to note that the two canonical models vary
drastically in geometry and make different simplifications to the
fluid, resulting in very different quality factors. However, in the
following results, we are primarily focused on comparing the
asymptotic behavior of the two dissipation models. Figure 7 plots
the dissipation 1=Q vs mean background pressure p0 predicted
from two the two canonical models. The first model is of a vibrat-
ing piston in an infinite lossless fluid. The 1D plane waves gener-
ated by the oscillating piston result in energy loss due to acoustic
radiation, as no waves are reflected back. For this model, the fluid
is considered to be inviscid, resulting in no dissipation due to
viscous losses. From Eq. (9), the dissipation due to acoustic radia-
tion of an oscillating piston is

1
Qac

¼ ρ0c
ωρsd

, (20)

where ρs is the density of the piston, and d is the linear dimension
of the piston in the direction of oscillation. The second model is of
a solid cylinder oscillating in a viscous incompressible fluid. In this
model, the dissipation is due to viscous losses in the fluid and is6

FIG. 6. Dissipation 1=Q plotted vs mean background pressure p0 for cantilever C in N2 for modes 1–5. Vertical dashed line indicates transition pressure from kinetic
regime to continuum regime. Inset compares measured dissipation to dissipation predicted by blade approximation, FEM1, and FEM2 at pressures above transition
pressure.

FIG. 7. Dissipation 1=Q plotted vs pressure p0 for a piston vibrating in an infinite
lossless fluid, and a cylinder oscillating in an infinite incompressible viscous fluid.
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1
Qvisc

¼ ρ0Γ
00
circ(α)
ρs

, (21)

where ρs is the density of the cylinder. From Sec. II, α is the
Reynolds number defined in Eq. (3) and Γ00

circ is the imaginary part
of the hydrodynamic function defined in Eq. (2).

The dissipation predicted in Eqs. (20) and (21) is plotted in
Fig. 7 vs mean background pressure p0. The frequency of oscillation
was taken to be ω=2π ¼ 1MHz, the density of the solid was
ρs ¼ 2, 329 kg=m3, and the linear dimension of the piston and the
diameter of the cylinder was taken to be d ¼ 32:5 μm. The fluid
was taken to be N2. Based on the frequency of oscillation and
linear dimension, the pressure range plotted in Fig. 7 is above the
transition pressure. Here, the results plotted are in the continuum
limit such that the generalized Knudsen number is Wiþ Knl � 1.
From Eq. (20), the dissipation due to acoustic radiation varies with
the pressure dependent gas density ρ0. From Eq. (7), density depends
linearly with pressure. Consequently, the dissipation in Eq. (20)
depends linearly with pressure, such that 1=Q/ p0. This is observed
in Fig. 7, where dissipation vs pressure is plotted in log–log, and the
resulting curve has a slope of mac ¼ 1. From Eq. (21), the dissipation
due to viscous losses of an oscillating cylinder is more complex. Here,
dissipation varies linearly with ρ0Γ

00
circ(α), where the hydrodynamic

function is computed from Bessel functions in Eq. (2) with the pres-
sure dependent Reynolds number α. This gives rise to the approxi-
mate pressure dependence21,30 of 1=Q/ p1=20 , which is reflected in
Fig. 7 through the smaller slope of the viscous dissipation curve.

Observing Fig. 6 again, a clear change in slope for data in
the kinetic and continuum regime is observed for modes 1–3, as
dissipation is dominated by viscous losses in the continuum
regime. Consequently, the dissipation’s pressure dependence
changes from 1=Q/ p0 to 1=Q/ p1=20 , when changing from the
kinetic to continuum regime. In contrast, the slope change in
modes 4 and 5 is more subtle. This is due to the presence of
acoustic radiation and the resulting increase in slope in the con-
tinuum regime. The increase in slope suggests that acoustic radia-
tion contributes to the total measured dissipation, which is no
longer dominated by viscous losses.

The dissipation predicted by FEM2, which solved the Helmholtz
equation, may also be observed in the inset of each plot. The inset
plots the measured dissipation, and the dissipation predicted by the
blade approximation, FEM1, and FEM2 for pressures above the tran-
sition pressure. In general, when the fluid is modeled to be lossless, as
in FEM2, the predicted dissipation greatly underpredicts the mea-
sured dissipation because it does not account for any viscous losses.
The largest disagreement between data and FEM2 occurs at the first
mode, where the viscous boundary layer is relatively large due to the
low frequency, resulting in relatively large viscous losses.
Furthermore, the acoustic radiation is small due to the large acoustic
wavelength. In contrast, it is observed that the difference between
measured and predicted dissipation from FEM2 is smaller for mode
5. This decrease in disagreement is due to the decrease in viscous
losses and the increase in acoustic radiation. The results from FEM2
show that dissipation attributed to acoustic radiation increases with
mode number due to the resulting decrease in acoustic wavelength in
the fluid and increase in wavenumber ratio.

VI. NEMS RESULTS

In Fig. 8, the measured normalized dissipation 1=(QT0) for
each mode of the low tension and high tension doubly clamped
NEMS beam is plotted vs Reynolds number α. Here, the Reynolds
number in Eq. (3) varies due to the change in frequency at each
mode. The measured dissipation is compared to the predicted dissi-
pation from FEM2, which solves the Helmholtz equation. Recalling
Sec. IV, FEM2 modeled the fluid to be compressible and inviscid,
resulting in dissipation solely attributed to acoustic radiation. In
Fig. 8, the normalized dissipation predicted by the 2D viscous
blade approximation is also plotted and is depicted by the solid
black line. We note that the generalized Knudsen number for all
the beams remain below 1, KnþWi , 1. However, especially for
the high frequency modes, the flow may not be fully continuum,
necessitating the incorporation of a slip boundary condition31 for a
more accurate description. Regardless, the close agreement between
experiment and continuum theory indicates that the rarefaction
effects may be ignored.

From Fig. 8, the dissipation predicted by FEM2 underpredicts
the measured dissipation. While the acoustic wave equation may
need small corrections for the high frequency modes of these
devices due to rarefaction in the gas,32 our results show the main
trends. These results imply that the measurements have a signifi-
cant amount of viscous dissipation, which is not accounted for in
the numerical model. Instead, the dissipation predicted by FEM2
only computes losses due to acoustic radiation. Consequently, the
results in Fig. 8 indicate that acoustic radiation increases with an
increase in mode number. The dissipation due to acoustic radiation
is observed to increase by four orders of magnitude from mode 1
to mode 10 for the low tension beam, and three orders of

FIG. 8. Normalized dissipation, 1=(QT0), vs Reynolds number α for experimen-
tal measurements of doubly clamped NEMS beams with tension in air at atmo-
spheric pressure. Measurements are compared to numerical predication from
FEM2, and the normalized dissipation predicted by the blade approximation,
where 1=(QT0) � Γ00

rect.
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magnitude from mode 1 to mode 5 for the high tension beam. This
increase is due to the decrease in acoustic wavelength in the fluid,
and resulting increase in wavenumber ratio. The wavenumber ratios
for the low tension and high tension beams are listed in Table IV.
Note that the expression for the bending wavenumber for a beam
with axial loading is different from that expressed in Eq. (17).
Particularly, the wavenumber of the propagating bending wave is dif-
ferent in magnitude than that of the evanescent bending wave.33 The
wavenumber ratios listed in Table IV are evaluated with Eq. (15) and
the computed bending wavenumber for the forward propagating
bending wave. Expressions for the bending wavenumber for a beam
with axial loading may be found in the work by Bokaian.33

From Fig. 8, it is observed that the high tension beam radiates
more sound than the low tension beam. Specifically, the numerically
predicted dissipation for mode 5 of the high tension beam is larger
than that for mode 10 of the Low Tension beam. Although the two
modes have similar Reynolds number and, therefore, similar natural
frequencies, a considerable difference in dissipation is observed.
This observation may be better interpreted with Fig. 9, which plots

the normalized acoustic pressure field, Re pf g
.

ρ0cSs v2
� �� �

, for

mode 10 of the low tension beam and mode 5 of the high tension

beam. The pressure field is plotted in the x � z plane taken at the
middle of the beam width. Comparing Figs. 9(a) and 9(b), it is clear
that the high tension beam radiates more sound resulting in larger
dissipation due to acoustic radiation. In contrast to the high tension
beam, which generates pressure waves throughout the fluid, vibra-
tion of the low tension beam results in localized pressure fields.
Although the high tension beam radiates more sound than the low
tension beam, it is important to note that both beams follow the
same trend of an increase in acoustic radiation with increase in
mode number and thus wavenumber ratio.

VII. RADIATION OF ARBITRARY RESONATING BEAMS

From the results presented in Secs. V and VI, acoustic radia-
tion becomes prominent when the bending wavelength
approaches the length of the acoustic wavelength. Furthermore,
when the acoustic wavelength is much larger than the bending
wavelength such that κ is relatively small, acoustic radiation is
negligible and viscous dissipation dominates. Substituting the
expressions for the acoustic and bending wavenumber in Eqs. (16)
and (17), respectively, into Eq. (15), results in the following
expression for wavenumber ratio:

κ ¼ ω

c

� � Eh2

12ρsω2

	 
1=4

: (22)

With Eq. (22), one may estimate if acoustic radiation will be negli-
gible by computing the wavenumber ratio for a given frequency of
oscillation ω, and properties of the beam and fluid. Furthermore,
Eq. (22) may be used as a tool when designing miniaturized reso-
nators when in the continuum limit. As most resonators are
driven at resonance to excite a bending mode, it is helpful to con-
sider the nth natural frequency of a beam

ωn ¼
k4b,nEI

ρsA

	 
1=2

, (23)

where kb,n are the discrete modal bending wavenumbers given by

kb,n ¼ βn
L
, (24)

and βn are the normalized modal bending wavenumbers that satisfy
the characteristic frequency equation for the boundary conditions of
the beam. Values of βn for a beam with fixed–free (cantilever) and
fixed–fixed boundary conditions are listed in Table VI. Substituting
the expression for the discrete natural frequencies of a beam in
Eq. (24) into Eq. (22) and simplifying results in

κn ¼ βnffiffiffiffiffi
12

p h
L

	 

cs
c

� �
, (25)

where cs is the longitudinal sound speed in a bar given by

cs ¼
ffiffiffiffi
E
ρs

s
: (26)

FIG. 9. Normalized acoustic pressure, Re pf g
.

ρ0cSs v2
D E� �

, plotted in
x–z plane for (a) mode 10 of low tension beam and (b) mode 5 of high
tension beam.
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From Eq. (25), the wavenumber ratio for a bending mode κn

depends on the thickness to length aspect ratio h=L and ratio of
the longitudinal sound speed in the solid to the speed of sound
in the fluid cs=c. This implies that miniaturized resonators with
small linear dimensions, such as MEMS and NEMS resonators,
may radiate sound provided that the aspect ratio gives rise to a
wavenumber ratio κ � 1. Furthermore, the expression in Eq. (25)
shows that the wavenumber ratio increases with increasing mode
number due to the increase in βn with mode number. This
increases is implicitly due to the frequency dependencies of the
acoustic and bending wavelengths. Since the acoustic wavelength
depends on frequency with λac / 1=ω, and the bending wave-
length depends on frequency with λb / 1=

ffiffiffi
ω

p
, the wavenumber

ratio in Eq. (19) increases with frequency and thus mode number.
From Eq. (26) and observed in the results in Secs. V and VI,
although κ may be small for lower modes, it quickly increases with
mode number, giving rise to an increase in acoustic radiation. If a
high quality factor Q resonator is desired, one should design a reso-
nator with a small thickness to length aspect ratio, h=L, to limit the
dissipation due to acoustic radiation.

VIII. CONCLUSION

Measurements from microcantilevers and NEMS beams are
presented and show an increase in dissipation due to acoustic radi-
ation. Numerical simulations show that the increase in acoustic
radiation is due to an increase in radiation efficiency, which is
dependent on the ratio of acoustic wavelength in the fluid to
bending wavelength. When the bending wavelength is comparable
to the acoustic wavelength, acoustic radiation becomes prominent
and the 2D viscous approximations can no longer accurately
predict the total dissipation. Due to the frequency dependence of
the acoustic and bending wavelength, the wavenumber ratio will
increase with increasing mode number. To limit the amount of dis-
sipation due to acoustic radiation, resonators should be designed
with small thickness to length aspect ratios in order to decrease the
wavenumber ratio. Results presented here also give insight and
design guidance beyond dissipation effects. If, instead, acoustic
radiation is desired for the sensing of resonators, one would design
resonators such that the wavenumber ratio would be near unity.

More research is needed for developing an appropriate acoustic
wave equation applicable to small and high frequency devices.
Navier–Stokes equations have been shown to break down both at the
limit when the mean free path or the relaxation time in the fluid

becomes large.21 Similar considerations should emerge when describ-
ing acoustic radiation from small and high frequency oscillators.
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