
Dads: Dynamic Slicing Continuously-Running Distributed
Programs with Budget Constraints

Xiaoqin Fu
Washington State University, USA

xiaoqin.fu@wsu.edu

Haipeng Cai
Washington State University, USA

haipeng.cai@wsu.edu

Li Li
Monash University, Australia

li.li@monash.edu

ABSTRACT

We present Dads, the first distributed, online, scalable, and cost-
effective dynamic slicer for continuously-running distributed pro-
grams with respect to user-specified budget constraints. Dads is dis-
tributed by design to exploit distributed and parallel computing
resources. With an online analysis, it avoids tracing hence the as-
sociated time and space costs. Most importantly, Dads achieves
and maintains practical scalability and cost-effectiveness tradeoffs
according to a given budget on analysis time by continually and au-
tomatically adjusting the configuration of its analysis algorithm on
the fly via reinforcement learning. Against eight real-world Java dis-
tributed systems, we empirically demonstrated the scalability and
cost-effectiveness merits of Dads. The open-source tool package of
Dads with a demo video is publicly available.

CCS CONCEPTS

• Theory of computation → Program analysis; • Software

and its engineering → Maintaining software;

KEYWORDS

Distributed system, dynamic slicing, reinforcement learning

ACM Reference Format:

Xiaoqin Fu, HaipengCai, and Li Li. 2020.Dads: Dynamic Slicing Continuously-
Running Distributed Programs with Budget Constraints. In Proceedings of
the 28th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering (ESEC/FSE ’20), Novem-
ber 8–13, 2020, Virtual Event, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3368089.3417920

1 INTRODUCTION

Dynamic slicing enables much tool support for software quality
assurance. Moreover, a dynamic slicer computes slices from the exe-
cution of a program [1]; the resulting slice narrows down the search
space of dependencies of interest (e.g., those indicating faults). De-
spite these merits, applying existing dynamic slicers to distributed
systems faces major barriers. First, existing dynamic slicers require
run-time tracing before computing slices offline from the traces.
Yet distributed systems often run continuously to provide uninter-
rupted services, thus the execution traces are unbounded. Second,
distributed systems are commonly large-scale and complex, posing
tremendous scalability and cost-effectiveness challenges to dynamic
slicers against these systems.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7043-1/20/11.
https://doi.org/10.1145/3368089.3417920

Most dynamic slicers, working for sequential [2, 17, 19, 27] or
concurrent [20, 22] programs, focus on single-process software.
These slicers do not consider interprocess dependencies, thus they
do not apply to distributed programs which run in multiple pro-
cesses. Mohapatra et al. proposed a dynamic slicing algorithm and
implemented it for distributed object-oriented programs [18]. Yet
the approach suffers scalability problems with large-scale systems,
as suggested by the heavyweight nature of its analysis algorithms
and its original efficiency results against even simple programs
(≤894 lines of code). No existing dynamic slicer workswith industry-
scale continuously-running distributed systems.

Also, existing slicers do not consider practical constraints in
terms of the time budget users may be subject to. Given the limited
total time allocated for a task (e.g., regression testing), users may
only afford a certain amount of time for a particular step of the
task [14] (e.g., using a slicer to reduce the search space of code
entities that need to be regression tested). Thus, a practical dynamic
slicer should respect the maximal (response) time a user can afford,
offering useful results within the budget available.

We thus developed Dads, a distributed, online, continuous, scal-
able, and cost-effective dynamic slicer for continuously-running
distributed programs, with respect to user-specified budget con-
straints on how much time can be spent. Dads itself is designed as
a distributed system, with a number of analysis components each
running within one of the processes of the system under analysis
(SUA), so as to leverage the distributed computing resources avail-
able to the SUA. Moreover, Dads adopts an online dynamic analysis
at its core—any execution information is used only once after it oc-
curs, and is then discarded, and it answers user queries on demand.
Thus, Dads avoids tracing and, accordingly, the storage and disk
I/O costs, which is essential for dealing with continuous executions
(hence unbounded traces). Most of all, Dads automatically and con-
tinually (as opposed to manually and one-time [11, 12]) adjusts its
analysis configuration on the fly to balance its analysis cost and
effectiveness and to overcome potential scalability issues.

We developed Dads for Java and applied it against eight real-
world Java distributed systems with continuous executions. Dads
successfully worked with all these systems with different architec-
tures, application domains, and scales. Our results revealed notice-
able scalability and cost-effectiveness (65–140% higher) advantages
of Dads over a similar slicer without the ability to adjust the algo-
rithm for better cost-effectiveness balance.

Dads serves varied audiences. Distributed system developers
may query dynamic slices of program points of interest to identify
faults during testing and debugging. Tool developers may leverage
Dads to build practical tools for security and performance diagnosis.
Researchers may use Dads to develop advanced client/application
analyses underlying those practical tools.

To the best of our knowledge, Dads is the first online dynamic
slicer particularly working with real-world, continuously-running

https://github.com/ToolsWorld/dads
https://youtu.be/pRR-us9puSw
https://doi.org/10.1145/3368089.3417920
https://doi.org/10.1145/3368089.3417920

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Fu, et al.

User Interaction
Responding to the user

Instrumentation
Inserting probes for events

Time

Network

Adjustment
Adjusting

configurations
Querying
Interface

Arbitration
Triggering

computations & adjustments
and computing slices

Instrumented System D’
①

②

③

Distributed System D

Configurations
User budget B

Query Slices

Slicing Query Q

DADS Input DADS Output

②

Figure 1: An overview of Dads architecture.

Java distributed software with respect to user-specified budget con-
straints. It is also the first dynamic slicer in general that automati-
cally adjusts its algorithm to maintain practical scalability and cost-
effectiveness tradeoffs via reinforcement learning.

2 ARCHITECTURE

Figure 1 shows the Dads design, as detailed in [15]. It takes three
inputs: a distributed system 𝐷 , a slicing query 𝑄 (i.e., a method
name), and a user budget 𝐵. This budget is a query response time
upper bound. With these inputs, Dads continually computes dy-
namic dependencies and answers slice queries on demand while
adjusting its configuration when necessary, in three phases:

In the first phase (instrumentation), Dads creates an instru-
mented version 𝐷 ′ of 𝐷 , by inserting probes to monitor executed
statements and the entry (i.e., program control entering a method)
and returned-into (i.e., program control returning from a callee
into a caller) events of each executed method. In the second phase
(arbitration & adjustment), Dads continuously runs along with
𝐷 ′, and continually arbitrates for intraprocess slice (dependence)
computations and adjusts its configuration to balance the cost and
effectiveness—all the intraprocess analyses by Dads, each in one
of the 𝐷 ′ processes, run in parallel hence the distributed work-
ings of Dads. When every intraprocess slicing of 𝑄 is finished, the
slice is delivered to the querying_interface for the corresponding
process. In the third phase (user interaction), through these query-
ing_interfaces via the computer network, all relevant intraprocess
slices are gathered and used to compute interprocess dependencies.
All of the intraprocess and interprocess dependencies then consti-
tute the final dynamic slice of𝑄 as Dads’s output presented to the
user.

The key novelty of Dads lies in its ability to maintain practical
cost-effectiveness tradeoffs via automatic adjustment of its (hybrid)
analysis algorithm’s configuration, consisting of six parameters.
Three parameters control the static analysis part of the slicing algo-
rithm: staticGraph indicating if the static analysis is performed (to
construct the static dependence graph for each component of 𝐷),
while contextSensitivity and flowSensitivity indicating if the static
analysis is context- and flow-sensitive, respectively. The other three
parameters control the dynamic analysis part: methodEvent and
statementCoverage indicating if Dads uses method execution (i.e.,
entry/returned-into) events and statement coverage data, respec-
tively, whilemethodInstanceLevel indicating the granularity of those
events (i.e., for each method, using all event instances or only the
first entry and last returned-into events). Due to interdependencies
among some of these parameters, certain combinations are invalid
(e.g., with staticGraph disabled, neither of context-sensitivity and
flow-sensitivity should be enabled). As a result, Dads uses 26 valid
configurations. It starts with the most precise yet least efficient
configuration (i.e., with all of the six parameters enabled).

3 PHASE 1: INSTRUMENTATION

In this phase, Dads inserts probes into 𝐷 that will monitor covered
branches and entry & returned-into events of all executed methods,
to create an instrumented version 𝐷 ′. For implementation, Dads
reused a Java dynamic analyzer Diver [10] (which probes for the
same events for single-process programs), and invokes it for each
distributed component of𝐷 .Dadsworks at purely application level
through static instrumentation. Thus, it does not handle native code
or dynamically loaded code. Instead of dealing with these common
limitations of traditional slicers, Dads targets better portability—it
works without any customization of the run-time platforms (e.g.,
JVM or OS), while focusing on addressing scalability and cost-
effectiveness challenges to existing peer tools.

4 PHASE 2: ARBITRATION & ADJUSTMENT

During the continuous execution of 𝐷 ′, Dads performs continual
arbitrations to determine when to compute slices and when to
adjust the configuration of the hybrid analysis for slicing.

4.1 Arbitration

Once launched along with 𝐷 ′, Dads continuously monitors the
system execution. When a method entry or returned-into event oc-
curs, Dads records the event and its cumulative count. In particular,
upon each returned-into event, Dads checks the counter and the
time that lapsed since the previous round of slice computation:
when the former exceeds a threshold (e.g., 100) and latter is longer
than another threshold (e.g., 1 minute), Dads triggers a new round
of slice computation. If the cost of any static or dynamic analysis
step, such as constructing/loading the static dependence graph or
computing slices, exceeds the corresponding time constraint as-
signed as per the user budget 𝐵, Dads would cancel the analysis
and record that there is a timeout. When a timeout happens, Dads
records the cost (i.e., that of the analysis at the current configu-
ration) and triggers the configuration adjustment—choosing the
next configuration via Q-learning. Then, Dads resets all relevant
counters and timers, starting another iteration of arbitration.

Next, we elaborate on how the slices are computed and how the
next configuration is determined.

4.2 Computing Slices

When a round of slice computation is triggered (at time 𝑡), Dads
computes/updates the (intraprocess) slice for every executedmethod
(i.e., every possible query) with respect to the entire 𝐷 ′ execution
up to time 𝑡 . This is because Dads does not know user queries in
advance and works online—the dynamic data needed are processed
as they come and are not stored accumulatively.

During the computation, Dads first reads the current config-
uration. If staticGraph is enabled and one of the static analysis
parameters (i.e., context-sensitivity or flow-sensitivity) varies (be-
tween the previous and the new configurations), Dads constructs a

Dads: Dynamic Slicing Continuously-Running Distributed Programs ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

new static dependence graph. If statementCoverage is enabled, the
static graph is then pruned according to the statement coverage
(inferred from covered branches) for more precise slicing. Then,
from the resulting static dependence graph and method events,
forward dynamic dependencies are computed to form the slice of
each query using the online version of Diver [8].

If methodInstanceLevel is disabled, Dads retrieves the first entry
and last return-into events from the full sequence of (i.e., instance-
level) method events for faster but less precise slicing. If staticGraph
is disabled, Dads uses only the method events to compute the slices
based on the execution order of methods as in EAS [7], which
reduces slicing cost and precision at the same time.

In this way, Dads uses different kinds of data at different granu-
larity/sensitivity levels for the dependence analysis (which under-
lies the slicing) with different cost-effectiveness tradeoffs. This is
also why the six parameters are chosen specifically: each of them
contributes to the cost and effectiveness of the slicing in Dads in
unique ways. As mentioned earlier, only intraprocess slices are
computed in this phase. The interprocess dependencies are inferred
from these slices at little cost during Phase 3.

4.3 Adjusting Configurations

When configuration adjustment is triggered,Dads uses aQ-learning
(a type of reinforcement learning) [26] method to choose the next
configuration. Other machine learning techniques, such as super-
vised learning, need a large training dataset, which is not available
to Dads when it starts. Also, the execution dynamics may vary
widely across different SUAs, thus learning from other subjects be-
forehandmay not be effective. Reinforcement learning is not subject
to such constraints and is able to adapt. Moreover, the model of the
environment (i.e., the dynamic analysis algorithm in Dads), which
changes unpredictably along with the SUA execution, is unknown,
so is an existing policy for configuration adjustment here. Thus,
Q-learning as a model-free and off-policy reinforcement learning
method is appropriate for Dads.

In Dads, the agent (the configuration adjustment module) re-
ceives a state (the current configuration) from the environment and
takes an action (selecting a new configuration) according to the
state while referencing either the maximal value in the Q-table or a
random exploration. As a consequence, the agent receives feedback
in terms of a reward computed from the action performance. We
define the reward for a special configuration as 1/(the user budget 𝐵
- the slice computation time cost with the configuration) * 1000. The
Q-learning algorithm encourages positive rewards and discourages
negative rewards. Thus, configurations with larger rewards have a
greater chance to be selected. This means that when a slice com-
putation time cost is lower than 𝐵, the closer the cost is to 𝐵, the
more likely the analysis configuration, which corresponds to the
cost, is selected.

5 PHASE 3: USER INTERACTION

Dads may have one or more user clients, called querying_client(s),
to interact with the user(s). Using a querying_client, the user sends
the slicing query 𝑄 to all querying_interfaces in separate processes
of the instrumented system 𝐷 ′, through the network, and waits for
responses. When 𝑄 arrives at a process, if intraprocess analyses
have been finished and there are already slices (dependence sets)
computed, Dads would directly deliver the corresponding intrapro-
cess slices to the querying_interface in the same process of 𝐷 ′ and

0%

1000%

2000%

3000%

4000%

5000%

Netty Z. I. Z. L. Z. S.

Chart Title

DODA DADS

0

100

200

300

400

Netty Z. I. Z. L. Z. S.

Chart Title

DODA DADS

Figure 2: The overhead (𝑦 axis, left) and response time (sec-

onds) (𝑦 axis, right) of Doda versus Dads for Netty and

ZooKeeper per execution (𝑥 axis).

then to the querying_client. Otherwise, the querying_client must
wait until all intraprocess analyses in Dads complete.

Once all the intraprocess slices are received, the querying_client
computes the interprocess slice. This is done by first partially or-
dering the execution events of methods in the intraprocess slices
according to the time stamp associated with each event, Then, it
infers dynamic dependencies among methods across all the pro-
cesses of the SUA based on the happens-before relations among
corresponding events as revealed in the global partial ordering of
those events, similar to DistIa [13]. The resulting slice is the union
of all these intraprocess and interprocess dependencies.

6 EVALUATION

We have successfully applied Dads against eight real-world dis-
tributed Java systems, most of which are at industry scale. These
systems cover different architectures, application domains, and
scales, including a peer-to-peer system OpenChord [24], a popular
distributed coordination service ZooKeeper [4] (used by Apache
Hadoop and Yahoo), and a distributed key-value store Voldemort [3]
(used by LinkedIn). To drive run-time executions, we used three
types of (integration, load, and system) tests that were downloaded
with these subjects. Our experiments were all performed on Ubuntu
16.04 workstations with four 2.67GHz processors, 512GB DRAM,
and 2TB HDD.

We are not aware of an existing dynamic slicer available that
works with industry-scale distributed systems. Thus, we used the
online version of a state-of-the-art dynamic analyzer D2Abs [9],
called Doda, as the baseline, which uses a fixated configuration.
ComparingDads andDoda then suffices for evaluating the scalabil-
ity and cost-effectiveness merits of automatically adjusting analysis
configurations, the key novelty of Dads.

While both the subjects and Dads would run continuously in
real settings, for evaluation purposes, we only ran each subject
for as long as 10 random queries were answered by Dads. These
queries were sent at random intervals between 5 to 15 seconds.
Considering various size and complexity levels of these subjects,
the budget was set between 14 to 200 seconds.

6.1 Scalability and Efficiency

Dads took 40 seconds on average for each query over all the subject
executions, with a minimum of 1.53 seconds on MultiChat [16] for
its simplicity and a maximum of 87 seconds on Voldemort due to its
greatest complexity. For the same queries, Doda took 140 seconds
by average over the seven subjects it worked with, ranging from
1.86 seconds onMultiChat to 307.17 seconds on the ZooKeeper-load.
In short, Dads was over 3x faster than the baseline to respond to
the user. The run-time overheads (slowdown) of Dads ranged from
31% (NioEcho [23]-integration) to 226% (Voldemort-integration),
for 83% on average, versus those of the baseline ranging from 36%

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Fu, et al.

0

0.5

1

1.5

2

2.5

3

3.5

DODA for overhead DADS for overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

NioEcho MC. OC. Thrift xSocket Netty Z I. Z L. Z S. Average

DODA for request time DADS for request time

Figure 3: The cost-effectiveness expressed as ratios of preci-

sion to overhead (𝑦 axis, left) and response time (𝑦 axis, right)

of Doda versus Dads per subject execution (𝑥 axis).

(NioEcho-integration) to 4,624% (Netty [21]-integration), for 2,355%
on average over all subject executions.

Notably, the baseline Doda did not scale to (not finish in 12 hours
for) Voldemort against any of its three tests. In contrast, for each
query, Dads took 47.37, 46.47, and 46.39 seconds, with 87%, 226%,
and 87% run-time slowdown, for Voldemort integration, load, and
system test, respectively.

Dads also scaled to all other enterprise-scale distributed systems,
such as Netty and ZooKeeper, with acceptable response time and
overheads. To illustrate, Figure 2 shows the contrasts between our
tool and the baseline for these two subjects (with abbreviations of
Z for ZooKeeper, I. for integration test, L. for load test, and S. for
system test). As shown, Dadswas much more scalable and efficient.

Storage costs ofDads and the baselineDodawere close, ranging
from 2MB to 200MB for 88MB on average.

6.2 Cost-Effectiveness

Without ground-truth slices (nor any automated tools to compute
them), we manually created the ground truth for 10 random queries
for each subject execution. Due to the tedious nature of this process,
we limited the queries to those whose Doda slice size was ≤30.
Against the ground truth, we calculated the precision and recall of
both tools. Specially, considering the changing configurations of
Dads, we sent each query to it at five different times with random
intervals and measured all the five returned slices.

Our results showed that, on average, Doda and Dads had 97.7%
and 80% precision, respectively, while both had 100% recall with
respect to the executions considered. Despite the expected higher
accuracy of Doda, it is noteworthy that this accuracy may not be
always applicable due to its scalability barriers: for instance, it did
not scale to Voldemort; for other subjects, it was much slower.

To measure the cost-effectiveness tradeoffs of the two tools, we
computed the ratios of the effectiveness (precision) to the costs
(in terms of response time and overhead, separately) for each slice
computed by each tool. Figure 3 shows these ratios (𝑦 axis) as a
holistic cost-effectiveness metric for the subject executions (𝑥 axis)
that both tools scaled to, with abbreviations of MC. for MultiChat,
OC. for OpenChord, Z for ZooKeeper, I. for integration test, L.
for load test, and S. for system test. The figure shows that Dads
was substantially more cost-effective than the baseline Doda (on
average, 0.96 vs. 0.4 for the overhead and 0.02 vs. 0.007 for the
response time), especially for real-world industry-scale distributed
systems (e.g., Thrift [5], xSocket [25], Netty, and Zookeeper).

For the three smallest subjects (i.e., NioEcho, MultiChat, and
OpenChord), Dads and the baseline had close cost-effectiveness
because slice computations for these systems were very fast; thus,
configuration adjustments hardly affect the cost-effectiveness of
the dynamic dependence analyses. Yet, for other systems, the cost-
effectiveness differences were significant. This indicates that the

merits of Dads over the baseline (i.e., the automatic analysis con-
figuration learning and adjustments) were even more prominent
for larger and more complex systems and executions.

6.3 Applying Dads

As an example use case, we illustrate the application of Dads in a
maintenance task for Apache ZooKeeper [4] during continuous inte-
gration (CI). The task concerns fixing the bug ZOOKEEPER-3758 [6]:
"Update from 3.5.7 to 3.6.0 does not work". Suppose the developer
has made a few code changes in the method main(String[] args) of the
class ZookeeperServer when trying to fix the bug. As a key requirement
of CI, the developer needs to quickly test the system against this
change. Accordingly, the developer should select/prioritize regres-
sion tests or develop new tests as per the impact of the changed
method in a short time.

Thus, the developer sets a budget constraint (as per the over-
all time budget for integrating the change) for getting the impact
set (i.e., the forward dynamic slice) of the method ZookeeperServer:

main(String[] args). With this constraint and slicing criteria, the devel-
oper uses Dads to obtain the slice: {NIOServerCnxn: long getSessionId(),

NIOServerCnxnFactory: void run(), ZooKeeperServer: void startdata(), TxnHeader:

int getCxid(),}. Then, the developer or an automated tool uses
this slice to determine which parts (i.e., the methods in the slice)
should be tested, and generate/select tests accordingly, while meet-
ing the budget constraint in the CI process.

6.4 Limitations

Dads is currently subject to several technical/implementation limi-
tations. First, Dads needs to insert probes into the bytecode of a
software system during the instrumentation. If the user does not
allow to modify the software, Dads cannot work. Second, while
Dads tries to constantly provide slicing results with a practical
cost-effectiveness tradeoff with respect to a given budget constraint
on response time, the cost-effectiveness it actually achieves may not
be optimal. The reason is that it uses a generic learning algorithm
that is not optimized for individual systems. Third, the performance
of Dads can be affected by how the budget is set, while the default
budget may not fit well with all systems and executions. Finally,
Dads as a purely application-level analyzer does not handle native
and dynamically-loaded code.

7 CONCLUSION

We developed Dads, a distributed, online, continuous dynamic
slicer for common, continuously-running Java distributed systems
with respect to user-specified budget constraints. Dads features
an internal decision-making module that enables it to achieve and
maintain practical scalability and cost-effectiveness tradeoffs, by
continually learning and adjusting its algorithmic configuration
on the fly via a reinforcement learning method. Our empirical
evaluation demonstrated that Dads is scalable and cost-effective,
substantially outperforming a similar slicer that does not have the
capability of configuration learning and adjustment. Through the
dynamic slices it offers within the given budget, Dads can enable
applications in maintenance, testing, and security tasks that are
subject to time budget constraints.

ACKNOWLEDGMENTS

This work was supported by NSF through grant CCF-1936522.

Dads: Dynamic Slicing Continuously-Running Distributed Programs ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES

[1] Hiralal Agrawal and Joseph R Horgan. 1990. Dynamic program slicing. In ACM
SIGPlan Notices, Vol. 25. ACM, 246–256.

[2] Hiralal Agrawal and Joseph R. Horgan. 1990. Dynamic program slicing. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation. 246–256.

[3] Apache. 2015. Voldemort. https://github.com/voldemort.
[4] Apache. 2015. ZooKeeper. https://zookeeper.apache.org/.
[5] Apache. 2018. Thrift. https://thrift.apache.org/.
[6] Apache. 2020. ZooKeeper / ZOOKEEPER-3758. https://issues.apache.org/jira/

browse/ZOOKEEPER-3758.
[7] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2005.

Efficient and Precise Dynamic Impact Analysis Using Execute-After Sequences.
In Proceedings of IEEE/ACM International Conference on Software Engineering.
432–441.

[8] Haipeng Cai. 2018. Hybrid Program Dependence Approximation for Effective
Dynamic Impact Prediction. IEEE Transactions on Software Engineering 44, 4
(2018), 334–364.

[9] Haipeng Cai and Xiaoqin Fu. 2019. D2ABS: A Framework for Dynamic Depen-
dency Abstraction of Distributed Programs. Technical Report. Washington State
University, Pullman, WA, 99163.

[10] Haipeng Cai and Raul Santelices. 2014. DIVER: Precise Dynamic Impact Analysis
Using Dependence-based Trace Pruning. In Proceedings of International Confer-
ence on Automated Software Engineering. 343–348.

[11] Haipeng Cai and Raul Santelices. 2015. A Framework for Cost-effective
Dependence-based Dynamic Impact Analysis. In Proceedings of International
Conference on Software Analysis, Evolution, and Reengineering. 231–240.

[12] Haipeng Cai, Raul Santelices, andDouglas Thain. 2016. DiaPro: UnifyingDynamic
Impact Analyses for Improved and Variable Cost-Effectiveness. 25, 2, Article 18
(2016).

[13] Haipeng Cai and Douglas Thain. 2016. DistIA: a cost-effective dynamic im-
pact analysis for distributed programs. In Proceedings of IEEE/ACM International
Conference on Automated Software Engineering. 344–355.

[14] Cleidson RB de Souza and David F Redmiles. 2008. An empirical study of software
developers’ management of dependencies and changes. In Proceedings of the 30th
international conference on Software engineering. 241–250.

[15] Xiaoqin Fu, Haipeng Cai, Wen Li, and Li Li. 2020. Seads: Scalable and Cost-
Effective Dynamic Dependence Analysis of Distributed Systems via Reinforce-
ment Learning. ACM Transactions on Software Engineering and Methodology
(TOSEM) (2020).

[16] GoogleCode. 2015. MultiChat. https://code.google.com/p/
multithread-chat-server/.

[17] Bogdan Korel and Janusz Laski. 1988. Dynamic program slicing. Information
processing letters 29, 3 (1988), 155–163.

[18] Durga P Mohapatra, Rajeev Kumar, Rajib Mall, DS Kumar, and Mayank Bhasin.
2006. Distributed dynamic slicing of Java programs. Journal of Systems and
Software 79, 12 (2006), 1661–1678.

[19] GB Mund and Rajib Mall. 2006. An efficient interprocedural dynamic slicing
method. Journal of Systems and Software 79, 6 (2006), 791–806.

[20] Mangala Gowri Nanda and S. Ramesh. 2006. Interprocedural Slicing of Multi-
threaded Programs with Applications to Java. 28, 6 (2006), 1088–1144.

[21] Netty. 2020. Netty. https://github.com/netty/netty.
[22] Venkatesh Prasad Ranganath and John Hatcliff. 2007. Slicing concurrent Java

programs using Indus and Kaveri. International Journal on Software Tools for
Technology Transfer 9, 5-6 (2007), 489–504.

[23] SourceForge. 2015. NioEcho. http://rox-xmlrpc.sourceforge.net/niotut/index.
html#Thecode.

[24] Bamberg University. 2015. Open Chord. http://sourceforge.net/projects/
open-chord/.

[25] Vice. 2018. xSocket. http://xsocket.org/.
[26] Christopher JCH Watkins and Peter Dayan. 1992. Q-learning. Machine learning

8, 3-4 (1992), 279–292.
[27] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. 2004. Efficient Forward Com-

putation of Dynamic Slices Using Reduced Ordered Binary Decision Diagrams.
In Proceedings of IEEE/ACM International Conference on Software Engineering.
502–511.

https://github.com/voldemort
https://zookeeper.apache.org/
https://thrift.apache.org/
https://issues.apache.org/jira/browse/ZOOKEEPER-3758
https://issues.apache.org/jira/browse/ZOOKEEPER-3758
https://code.google.com/p/multithread-chat-server/
https://code.google.com/p/multithread-chat-server/
https://github.com/netty/netty
http://rox-xmlrpc.sourceforge.net/niotut/index.html#The code
http://rox-xmlrpc.sourceforge.net/niotut/index.html#The code
http://sourceforge.net/projects/open-chord/
http://sourceforge.net/projects/open-chord/
http://xsocket.org/

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Fu, et al.

APPENDIX: DADS DEMONSTRATION

WALKTHROUGH

In this section, we walk through our demonstration (video), cover-
ing the complete steps for installing and using our tool in a clean
environment. To run through our demo, the user can download
the virtual machine as the DADSVM.rar file found here. Then, the
user can launch the virtual machine in Virtualbox, open a terminal,
and go to the /home/xqfu/thrift directory. Next, the user can start
from Step 4 below—the first three steps are described below for
the completeness purpose, as users who would like to start from
scratch in their fresh environment would need those steps to set up
before they can run what we show in the demo. For more details,
please refer to the README document mentioned in Step 2 below.

Note that in this demo we show that we ran the example subject
to clearly illustrate the three-phase design of our tool.

1. Check prerequisites (Step 1)

First, please make sure the following environments are configured
properly:

• Ubuntu workstation (We used Ubuntu 16.04 LTS)
• JDK 1.8 (We used java-1.8.0-openjdk-adm64)

2. Download the Dads tool (Step 2)

To obtain and install our tool, please follow the steps below:
• Download the open-source tool package.
• Confirm that there is a "tool" directory that contains several
jars (these are all the libraries required), and a "data/Thrift/-
java" directory that contains the (calculator) application de-
veloped using Thrift.

• Check a "code" directory, which includes the source code of
Dads and convenience scripts for running our tool against
Apache Thrift as used in our evaluation study.

• Finally, view a detailed README document, which includes
all the information here in this appendix, and more.

3. Download and install an example subject (Step

3)

We demonstrate the use of our tool against a subject Apache Thrift,
for which the following steps can be followed:

• In a terminal, create a directory for the subject, say "thrift",
and a subdirectory "0110".

• Download Thrift file thrift-0.11.0.tar.gz from here to the
"thrift/0110" directory.

• Unzip Thrift file: tar -zxf thrift-0.11.0.tar.gz
• Copy all shell script files from the sub-directory "code/shel-
l/Thrift" of the tool package obtained in Step 1 above to the
"thrift" directory.

• Check inside each of the scripts to make sure that the "libs"
related directories actually contain all the required libraries
(jars) as mentioned in Step 2 above with respect to the user’s
actual environment. In particular, set the ROOT variable
to the right directory (in this case, it should be the parent
directory of the "thrift" directory).

• Copy the entire "data/Thrift/java" directory from the tool
package to the "thrift" directory.

The following steps show how to run Dads against the installed
Apache Thrift subject.

4. Run Dads (Step 4)

4.1 Dads phase 1: Instrumentation. In phase 1 of Dads, we exe-
cute "./DADSInstr.sh" to instrument Thrift for monitoring first/last
events of all executed methods. After the execution, the instru-
mented program files are in the sub-folder "DADSInstrumented",
shown in Figure 4.

Figure 4: The results of Dads phase 1: Instrumented pro-

gram files

4.2.Dads phase 2: Arbitration and Adjustment. In phase 2 ofDads,
we first set milliseconds (e.g., 4,000) for a user-specified budget
constraint in the file budget.txt, shown in Figure 5.

Figure 5: The operations ofDads phase 2: The setting for the

user-specified budget constraint

Then, we execute "./serverDADS.sh" and "./clientDADS.sh" sepa-
rately, to launch the server and client component of Thrift, respec-
tively, as shown in Figure 6.

Figure 6: The operations ofDads phase 2: starting the server

(top) and client (bottom) component of the example subject

system Thrift.

Next, the client automatically sends computation information
(operands and basic arithmetic operations such as addition, sub-
traction, multiplication, and division) to the server and gets the
computation results from the server, as shown in Figure 7.

We see that analysis configurations are changing during the
execution according to a Q-learning strategy, shown in Figure 8.

https://drive.google.com/drive/folders/1SD0G65ZKC_HtZZsqZG_DVwBSw7oV81AM?usp=sharing
https://github.com/ToolsWorld/dads
http://archive.apache.org/dist/thrift/

Dads: Dynamic Slicing Continuously-Running Distributed Programs ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

Figure 7: The operations of Dads phase 2: The operations in

the client

Figure 8: The results ofDads phase 2: The changing analysis

configurations

Figure 9: The operations of Dads phase 3: The operations in

the query client

Figure 10: The results of Dads phase 3: The returned slice

(method-level dependencies) in the query client

4.3. Dads phase 3: User Interaction. In phase 3 of Dads, we start
a query client to connect the Thrift server and client, and send a
method name as a slicing query, shown in Figure 9.

Then, we get the result, the method-level dependencies as the
slice, shown in Figure 10. These dependencies are used as impact
set as in an impact analysis supporting other tasks like regression
testing. Furthermore, these dynamic dependencies can be used for
any other applications based on such dependencies. We also note
that the user received the dependence results in 2016 ms (as shown
at the last line of Figure 10), which is within 4 seconds (4,000 ms),
the budget constraint set earlier.

	Abstract
	1 Introduction
	2 Architecture
	3 Phase 1: instrumentation
	4 Phase 2: Arbitration & Adjustment
	4.1 Arbitration
	4.2 Computing Slices
	4.3 Adjusting Configurations

	5 Phase 3: User Interaction
	6 Evaluation
	6.1 Scalability and Efficiency
	6.2 Cost-Effectiveness
	6.3 Applying Dads
	6.4 Limitations

	7 Conclusion
	Acknowledgments
	References

