
Scaling Application-Level Dynamic Taint Analysis to
Enterprise-Scale Distributed Systems

Xiaoqin Fu
Washington State University

Pullman, WA, USA

xiaoqin.fu@wsu.edu

Haipeng Cai
Washington State University

Pullman, WA, USA

haipeng.cai@wsu.edu

ABSTRACT

With the increasing deployment of enterprise-scale distributed

systems, effective and practical defenses for such systems against

various security vulnerabilities such as sensitive data leaks are

urgently needed. However, most existing solutions are limited to

centralized programs. For real-world distributed systems which are

of large scales, current solutions commonly face one or more of

scalability, applicability, and portability challenges. To overcome

these challenges, we develop a novel dynamic taint analysis for

enterprise-scale distributed systems. To achieve scalability, we use

a multi-phase analysis strategy to reduce the overall cost. We infer

implicit dependencies via partial-ordering method events in dis-

tributed programs to address the applicability challenge. To achieve

greater portability, the analysis is designed to work at an applica-

tion level without customizing platforms. Empirical results have

shown promising scalability and capabilities of our approach.

CCS CONCEPTS

• Security and privacy→ Distributed systems security; Soft-

ware security engineering.

KEYWORDS

Distributed systems, dynamic taint analysis, scalability, new bugs

ACM Reference Format:

Xiaoqin Fu and Haipeng Cai. 2020. Scaling Application-Level Dynamic Taint

Analysis to Enterprise-Scale Distributed Systems. In 42nd International Con-

ference on Software Engineering Companion (ICSE ’20 Companion), October

5–11, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3377812.3390910

1 PROBLEM AND MOTIVATION

With increasing demands for various computational tasks, more and

more enterprise-scale software systems are becoming distributed.

These systems suffer from peculiar security vulnerabilities (e.g.,

data leaks across processes) due to their great complexity, large

scale, and distributed design. For instance, if sensitive data (e.g.,

username and password) leak, there may be serious resulting losses

and damages. In this context, we need an appropriate technique,

such as a taint analysis, to detect sensitive information flows across

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390910

multiple decoupled processes of a distributed program to defend

distributed software against security vulnerabilities. However, there

are multiple challenges to most existing taint analyses when ap-

plied to real-world, enterprise-scale distributed software systems,

including (1) scalability challenge because of the high complexity

and large code size of those systems, (2) applicability challenge due

to the implicit dependencies among their decoupled (distributed)

processes as in common distributed programs, and (3) portability

challenge resulting from the platform customizations often required

by the analyses.

2 BACKGROUND AND RELATEDWORK

Most early taint analyses [12, 14–16] are static and suffer from

imprecision because of the nature of static analysis. They are also

unsound for modern languages with dynamic features [11]. In ad-

dition, traditional static analyses can hardly apply to distributed

programs because of exacerbated inaccuracies due to implicit de-

pendencies among decoupled components of distributed programs,

and thus these static analyses face applicability challenges. On the

other hand, since most existing dynamic analyses [8, 9, 17] need cus-

tomized platforms or architecture-specific emulators/frameworks,

they face portability challenges. In particular, while the approach

in [3] could compute inter-process dependencies, it has not been

implemented nor evaluated on enterprise-scale distributed systems,

and its (heavyweight) design implies scalability challenges. Several

other dynamic approaches [1, 2] target JavaScript programs and do

not work with common distributed systems either.

3 APPROACH

Based on Soot [10], we have developed an application-level dynamic

taint analysis scalable to enterprise-scale distributed programs. Our

approach computes statement-level taint paths as the final results

after a rapid but rough computation of method-level results in a

pre-analysis phase to balance the analysis precision and overheads

while attaining high scalability. The overall workflow of our solu-

tion is depicted in Figure 1. It takes three inputs from the user:

a distributed programD under analysis, the program input I for

D, and a user configuration C including two message-passing API

lists of sources and sinks.

Our technique works in three phases. In the first phase (pre-

analysis), it computes approximated method-level taint paths ac-

cording to the source/sink pairs in C . Then, in the second phase

(coverage-analysis), it creates a statement coverage only for exe-

cuted methods on the method-level taint paths from the first phase.

Finally, in the third phase (refinement), the technique derives all

valid statement-level taint paths, where the statements are covered

and on associated method-level paths, as the final results.

268

2020 IEEE/ACM 42nd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



Figure 1: The overall workflow of the proposed technique for dynamic taint analysis of enterprise-scale distributed software.

Our tool reuses relevant code from previous work [4–7, 13]

for method execution profiling, hybrid dependence abstraction,

and threading-induced dependence analysis. It greatly reduces

the overall cost by narrowing down the scope of the fine-grained

(statement-level) analysis according to the intermediate results,

hence overcoming the scalability challenge. To solve the applica-

bility challenge, it computes implicit inter-process dependencies

derived from happens-before relations among executed method

events. To achieve portability, it is designed as an application-level

solution without any platform customizations.

4 EVALUATION

We implemented our technique as an open-source tool and applied

it to eight Java distributed system subjects of various application

domains, architectures, and scales. The executions analyzed were

driven by integration, load, system tests coming along with these

systems. All possible pairs of (24) sources and (39) sinks manually

curated were considered as taint-flow queries. With this setup, we

assessed the scalability and effectiveness of our approach.

Scalability. Our technique was shown as promisingly scalable and

efficient for enterprise-scale distributed systems. It took, on average

per subject execution, 7 seconds to answer each individual query

beyond a 15-minute one-time cost for all possible queries, with an

almost-negligible storage cost (only 81MB) and an acceptable (less

than 1x) run-time overhead.

Table 1: New vulnerabilities discovered by our technique

Subject Vulnerability Status #Cases #Confirmed

Netty Issue 9456 Fixed 1 1

Thrift

Issue 4924 Confirmed

5 4

Issue 4926 Confirmed

Issue 4928 Confirmed

Issue 4929 Pending

Issue 4930 Confirmed

Voldemort

Issue 505 Pending

4 0
Issue 506 Pending

Issue 507 Pending

Issue 508 Pending

xSocket Bug 25 Pending 1 0

Effectiveness. Our empirical results also revealed promising capa-

bilities of the proposed solution in terms of effectiveness. Beyond

finding 16 out of 22 existing real-world information flow vulnerabili-

ties (that are documented as publicly disclosed CVEs), our approach

successfully discovered 11 new security vulnerabilities, as outlined

in Table 1. These new bugs are related to several enterprise-scale

distributed systems (e.g., Netty, Thrift, Voldemort, and xSocket).

All of these 11 cases have been confirmed by our own manual

inspection. Furthermore, 5 of these have been confirmed by the

developers/maintenainers of respective systems, including one case

(on Netty) already fixed after a new branch, including the fixed

code, was merged to the master branch of the project’s repository.

5 CONCLUSION

We developed a scalable application-level dynamic taint analysis for

enterprise-scale distributed systems, addressing several challenges

faced by existing peer techniques via a multi-phase, refinement-

based analysis strategy working purely at application level (hence

avoiding any platform customizations). We implemented our tech-

nique for Java and applied it to eight distributed systems against

diverse executions. Our empirical results demonstrated its promis-

ing scalability for enterprise-scale distributed systems and the ca-

pability of finding both existing and new security vulnerabilities.

ACKNOWLEDGEMENT

This work is supported by NSF grant CCF-1936522.

REFERENCES
[1] Thomas H Austin and Cormac Flanagan. 2009. Efficient purely-dynamic infor-

mation flow analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security. ACM, 113–124.

[2] Thomas H Austin and Cormac Flanagan. 2010. Permissive dynamic information
flow analysis. In Proceedings of the 5th ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security. ACM, 3.

[3] Soubhagya Sankar Barpanda and Durga PrasadMohapatra. 2011. Dynamic slicing
of distributed object-oriented programs. IET software 5, 5 (2011), 425–433.

[4] Haipeng Cai. 2018. Hybrid Program Dependence Approximation for Effective
Dynamic Impact Prediction. IEEE Transactions on Software Engineering 44, 4
(2018), 334–364.

[5] Haipeng Cai and Raul Santelices. 2014. DIVER: Precise Dynamic Impact Analysis
Using Dependence-based Trace Pruning. In Proceedings of International Confer-
ence on Automated Software Engineering. 343–348.

[6] Haipeng Cai, Raul Santelices, and DouglasThain. 2016. DiaPro: Unifying Dynamic
Impact Analyses for Improved and Variable Cost-Effectiveness. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 2 (2016), 18.

[7] Haipeng Cai and Douglas Thain. 2016. DistIA: A cost-effective dynamic impact
analysis for distributed programs. In Proceedings of the 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering. 344–355.

[8] James Clause, Wanchun Li, and Alessandro Orso. 2007. Dytan: a generic dynamic
taint analysis framework. In Proceedings of the 2007 international symposium on
Software testing and analysis. ACM, 196–206.

[9] William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon
Chun, Landon P Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. 2014.
TaintDroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32, 2 (2014), 5.

[10] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren. 2011. Soot - a Java
Bytecode Optimization Framework. In Cetus Users and Compiler Infrastructure
Workshop.

[11] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták, J Nelson
Amaral, Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller,
and Dimitrios Vardoulakis. 2015. In defense of soundiness: a manifesto. Commun.
ACM 58, 2 (2015), 44–46.

[12] Andrew C Myers. 1999. JFlow: Practical mostly-static information flow control.
In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. ACM, 228–241.

[13] Venkatesh Prasad Ranganath and John Hatcliff. 2007. Slicing concurrent Java
programs using Indus and Kaveri. International Journal on Software Tools for
Technology Transfer 9, 5-6 (2007), 489–504.

[14] Sanjay Rawat, Laurent Mounier, andMarie-Laure Potet. 2011. Static taint-analysis
on binary executables.

[15] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based information-flow
security. IEEE Journal on selected areas in communications 21, 1 (2003), 5–19.

[16] Xinran Wang, Yoon-Chan Jhi, Sencun Zhu, and Peng Liu. 2008. Still: Exploit code
detection via static taint and initialization analyses. In 2008 Annual Computer
Security Applications Conference (ACSAC). IEEE, 289–298.

[17] David Yu Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
2011. TaintEraser: Protecting sensitive data leaks using application-level taint
tracking. ACM SIGOPS Operating Systems Review 45, 1 (2011), 142–154.

269


