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Abstract

We study hydrodynamics, heat transfer and entropy genera-
tion in pressure-driven microchannel flow of a power-law fluid.
Specifically, we address the effect of asymmetry in the slip
boundary condition at the channel walls. Constant, uniform
but unequal heat fluxes are imposed at the walls in this ther-
mally developed flow. The effect of asymmetric slip on the ve-
locity profile, on the wall shear stress, on the temperature dis-
tribution, on the Bejan number profiles, and on the average
entropy generation and the Nusselt number are established
through the numerical evaluation of exact analytical expres-
sions derived. Specifically, due to asymmetric slip, the fluid
momentum flux and thermal energy flux are enhanced along
the wall with larger slip, which in turn shifts the location of
the velocity’s maximum to an off-center location closer to the
said wall. Asymmetric slip is also shown to redistribute the
peaks and plateaus of the Bejan number profile across the mi-
crochannel, showing a sharp transition between entropy gen-
eration due to heat transfer and due to fluid flow at an off-
center-line location. In the presence of asymmetric slip, the
difference in the imposed heat fluxes leads to starkly different
Bejan number profiles depending on which wall is hotter, and
whether the fluid is shear-thinning or shear-thickening. Over-
all, slip is shown to promote uniformity in both the velocity
field and the temperature field, thereby reducing irreversibility
in this flow.

1 Introduction

Contrary to what we teach in undergraduate fluid mechanics,
the velocity of a fluid at a surface may or may not be equal
to the velocity of said surface. This discontinuity in veloc-
ity at a fluid-solid interface is known as slip. Slip flow is en-
countered in industrial hydrodynamic processes across many
length scales [1]. At the macro-scale, slip flow occurs in ex-
trusion of polymers, wherein it is caused by stress instabilities,
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and affects the quality of final product [2]. At the micro- and
nanoscale, slip flow is even more common [3]. For microscale
flow of rarefied gases, a dimensionless number, termed the
Knudsen number, which is the ratio of the mean free path of
the gas molecules to a characteristic channel dimension, deter-
mines the flow regime. When 0.001 < Kn < 0.1, the flow
can still be treated in a continuum sense as long as slip at
boundaries (“slip flow”) is allowed [4]. Here, the slip velocity
boundary condition may also be accompanied by a tempera-
ture jump boundary condition, wherein there is a discontinuity
in temperature at the fluid-solid interface [3, 5]. Although less
common than in gases, slip flow may still be observed in mi-
croflows of liquids, when the surface of the channel is made
of a hydrophobic material, or when the surface has microscale
features such as roughness [1].

At the macro-scale, on the other hand, Denn [2, 6] provides
a review of slip flows of non-Newtonian fluids, specifically
polymer melts, while Kalyon [7] discusses the apparent slip of
concentrated suspensions. On the basis of molecular dynamics
simulations, Thompson and Troian [8] substantiated a general-
ized nonlinear slip boundary condition in which the slip length
is a function of the shear rate, thereby generalizing the original
slip law of Navier [9]. More recently, Cloitre and Bonnecaze
[10] summarized the experimental approaches and evidence
for nonlinear slip in flows of soft materials. Mathews and Hill
[11] initiated the theoretical work on Newtonian fluids subject
to a nonlinear slip boundary condition by finding, analytically,
the velocity profile for three canonical pressure-driven flows:
in a pipe, in an annulus and in a channel.

From the early works of Bird, Acrivos et al. [12, 13] on flow
and heat transfer of non-Newtonian fluids to the more “exotic”
modern applications such as flow in self-affine subsurface
fractures [14], the power-law fluid model (also known as the
Ostwald—de Waele model) is a good starting point for model-
ing non-Newtonian fluid behavior, in part due to the power-law
fluid’s well-characterized material properties. Therefore, we
restrict ourselves to this class of non-Newtonian fluids, which
Bird featured as one of several selected “useful non-Newtonian
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models” [15]. Thus, relevant to our present work is the ana-
Iytical and semi-analytical study by Ferras et al. [16] of the
Couette—Poiseuille flow of Newtonian and generalized New-
tonian fluids. Specifically, they obtained mathematical ex-
pressions for the velocity profiles for different types of inelas-
tic fluids (e.g., power-law and Bingham fluids), for pressure-
driven flows with either imposed pressure drop or imposed
flow rate. Meanwhile, Pritchard et al. [17] provide an overview
and some new results regarding the development of unsteady
unidirectional flow of power-law fluids, specifically Stokes’
second problem of the oscillating plate. More recently, Wei
and Jordan [18] derived exact solutions for various traveling
wave forms in compressible power-law fluids.

Transport in microchannels is an active area of research, es-
pecially in the heat transfer community, in particular due to
the numerous applications related to the cooling of microelec-
tronics [19]. However, much of the research summarized in
the authoritative reviews [19, 20] is on Newtonian working
fluids, though slip effects are mentioned to be important in
some flow regimes. On the other hand, though non-Newtonian
fluids play a critical role in unconventional energy applica-
tions such as hydraulic fracturing [21], wherein slip and shear-
thinning/thickening can be observed, thermal effects have not
been addressed in detail. As for the heat transfer characteris-
tics of non-Newtonian fluids, Barletta [22] proposed a new ex-
pression for the Brinkman number for power-law fluids, which
is a dimensionless number that quantifies viscous dissipation,
in his study of fully developed laminar convection of a power-
law fluid with viscous dissipation. The Nusselt number cor-
relations (and their method of computation) in laminar heat
transfer of non-Newtonian fluids is of practical interest [23].
Jambal et al. [24] incorporated the effect of axial wall con-
duction in laminar convection of a power-law fluid with uni-
form wall temperature, deriving scalings for the Nusselt and
Brinkman numbers in the thermal entrance region. Tso et
al. [25] considered the effect of asymmetric heat flux and vis-
cous dissipation on heat transfer characteristics of fully de-
veloped flow of power-law fluids, showing that, for the case
of unequal heat fluxes on the microchannel walls, the Nusselt
number depends the Brinkman number. Meanwhile, Sheela-
Fransisca et al. [26] derived mathematical expressions relat-
ing the Nusselt number to the Brinkman number in the asym-
metric thermal viscous-dissipative Couette—Poiseuille flow of
a pseudo-plastic fluid. Additionally, Straughan [27, Chap. 9]
provides an excellent overview of the effects of the Navier slip
condition on various heat transfer phenomena in Newtonian
fluids. Kaushik et al. [28] studied numerically the fluid dy-
namics, heat transfer and entropy generation characteristics of
extrusion flows of power-law fluids between parallel plates un-
der the lubrication approximation in quasi-steady state. They
concluded that Nusselt number increases/decreases with time
for shear-thinning/thickening fluids. For shear-thickening flu-
ids, they observed unusual negative values of the Nusselt num-
ber. Sefid et al. [29] presented numerical results on the thermal
characteristics of developing and developed flow of power-law
fluids in concentric annuli, demonstrating the entrance length’s
increases with the power-law index.

Beyond the heat transfer, it is of interest to also quantify
the amount of entropy generated in a fluid system because,
according to the Gouy—Studola theorem, the latter determines
the work lost in the thermomechanical process [30]. At the mi-
croscale, the velocity and temperature gradients encountered
are larger than at the macroscale, which motivates us to addi-
tionally undertake the analysis of entropy generation of such
thermal systems [30]. Previously, Mahmud and Fraser [31, 32]
minimized the entropy generated as a function of the power-
law index in the flow between parallel plates [31] and in a
circular tube [32]. Hung [33] extended the latter to include
viscous dissipation, showing that the rate of entropy genera-
tion increases with the Brinkman number, and this enhance-
ment is more pronounced for shear-thickening fluids. Sho-
jaeian et al. [34] studied the effect of slip flow (under the
linear Navier slip wall) on heat transfer and entropy genera-
tion characteristics of Newtonian and power-law fluids in mi-
crochannels. They found that the Nusselt number increases
with slip, and this increase is, once again, more prominent for
shear-thickening than shear-thinning fluids. Anand [35] stud-
ied how the choice of a slip law influences the entropy gener-
ation and heat transfer characteristics of pressure-driven flow
of a power-law fluid. He considered three slip laws for his
study, namely, Navier’s slip law, Hatzikiriakos’ slip law, and
the asymptotic slip law. He showed that, for the same slip co-
efficient, the Hatzikiriakos slip law predicts a higher Nusselt
number and less entropy generation compared to the asymp-
totic slip law. Goswami et al. [36] studied the entropy gener-
ation minimization of an electrosmotic flow of a power-law
fluid taking into account the conjugate heat transfer. They
derived approximate analytical solutions and concluded that
the entropy generation has an optimum (minimum) value for
a certain combination of wall thickness, wall thermal conduc-
tivity, and Biot number. Meanwhile, Mondal [37] studied en-
tropy generation in the combined Poiseuille-Couette flow of
a power-law fluid between two asymmetrically heated plates.
He found that irreversibility in shear-thinning fluids is primar-
ily due to fluid friction, while it is primarily due to heat trans-
fer in shear-thickening fluids. Viscous heating was also con-
sidered, finding that the Nusselt number suffers a singularity
for negative Brinkman numbers due to a balance between the
viscous dissipation in the fluid by heat transfer from the walls.

The existing literature dealing with slip flows assumes that
the slip is identical on both walls of a channel. However, such
symmetry is not necessarily always present. If the two channel
walls are made from different materials (e.g., one is made from
a polymer such as polydimethylsiloxane (PDMS), while the
other is made from glass) or each has a different surface rough-
ness, then asymmetric slip occurs. A similar situation occurs
in the subsurface, wherein non-Newtonian fluids are pumped
through complex fractured rocks with highly heterogeneous
surface properties [21]. Vayssade et al. [38] performed an ex-
perimental study of suspension flow in a microchannel, pro-
viding evidence for asymmetric slip velocities along the chan-
nel walls. Panaseti et al. [39] extended the latter approach,
which was based on the Herschel-Bulkley (HB) fluid model,
to account for slip via Navier’s nonlinear slip condition. How-
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ever, thermal effects in such flows have not been considered.

The present work aims to address the latter apparent gap in
the archival literature. Here, we address the effect of asym-
metric slip boundary conditions on the hydrodynamics, heat
transfer and the entropy generation characteristics of thermally
fully developed flow of a power-law fluid in a microchannel
under uniform heat flux thermal boundary conditions. Follow-
ing [16, 35], we implement the slip boundary condition using
Navier’s nonlinear slip law [11]. We show, through a compara-
tive analysis in Sect. 3, that asymmetry in the slip velocities at
the channel walls has a significant influence on the fluid flow
and the heat transfer characteristics of the problem, specifi-
cally on the enhancement of heat transfer and the reduction of
irreversibility as compared to the usual case of symmetric slip
boundary conditions. Our approach is analytical, based on the
exact results that we first obtain in Sect. 2 for the fluid flow,
heat transfer and entropy generation in a microchannel with
asymmetric imposed heat fluxes and unequal wall slip coeffi-
cients.

2 Problem statement and mathematical analy-
sis

As Stone notes, “the equations [of fluid mechanics] are gener-
ally difficult to solve, (rational) approximations are necessary
and frequently the interplay of physical arguments, mathemat-
ical simplifications, and experimental insights are crucial to
progress and understanding” [40]. To this end, we would like
to pose a tractable problem of non-Newtonian fluid flow and
heat transfer in the presence of asymmetric wall slip. Specifi-
cally, we consider the pressure-driven flow in a microchannel
as shown in Fig. 1. Although a “model flow” from the engi-
neering point-of-view, understanding this basic flow is of fun-
damental interest as it is relevant to any context in which there
is a separation of scales between a “small” cross-sectional and
a “long” flow-wise direction (see, e.g., the discussion in [40,
Sect. 1.8.2]).

In Fig. 1, the microchannel is of height H, the lower wall
is labeled “1,” and the upper wall is labeled “2.” The flow is
maintained by constant pressure gradient G.! The lower and
upper walls are each subject to a uniform and constant heat
flux ¢g; and gy, respectively. The slip coefficient, the mean-
ing of which will be made clear through Eq. (6) below, on the
lower wall is Kj, while on the upper wall it is K. The x-axis
is along the lower wall of the channel, in the flow-wise direc-
tion, while the y-axis is perpendicular to the lower wall, in the
span-wise direction.

2.1 Stress distribution

For a steady unidirectional flow in the x-direction, specifi-
cally v = (u(y),0,0), the conservation of linear momentum
becomes [41]:

dtyy

= -G,
dy

ey

ITo be precise, G is the inlet-outlet pressure difference per unit length of
channel.

uniform heat flux g,

/_‘74—, wall“2"
H| | |
slip coeff. K,
y slip coeff. K|
wall“1”

R
T T

uniform heat flux g,

Figure 1: Schematic of the physical model, coordinates and
notation. We work the problem per unit width out of the page
(i.e., the +z-direction).

where G is the pressure gradient and 7y, is the relevant com-
ponent of the shear stress tensor 7. Alternatively, restricting
to flow in a microchannel, the inertial forces can be neglected
in comparison to the viscous and pressure forces, which once
again yields Eq. (1).

Integrating Eq. (1) with respect to y, we obtain

Tyx = -Gy +C, (2)

where C is an integration constant to be determined. At the
lower wall (wall “1” at y = 0), the shear stress is given by 7,1,
i.e., Tyxly=0 = 1v1. Then, C = 7,1 and Eq. (2) becomes

3)

whence the shear stress on the top wall (wall “2” aty = H) is
found to be

Tyx = =Gy + Ty,

“)

In what follows, it will be necessary to know the vertical loca-
tion, y = yp, in the span-wise direction of the channel at which
Tyx = 0 (i.e., where the shear stress vanishes and the velocity
gradient changes sign). This location is obtained by setting the
right-hand side of Eq. (3) to zero, which yields

Tw2 = Tyxly=0 = ~GH + 7y,1.

(&)

The slip boundary condition can be understood as “cou-
pling between the local velocity and the surface stresses” [40,
Sect. 1.4.1]. Specifically, the slip velocity at a given wall can
be expressed in terms of the shear stress at that wall. Fol-
lowing [11, 16], we employ Navier’s nonlinear slip law. The
slip velocity at wall “1” and wall “2” are then denoted by u,,;
and u,,7, respectively. Thus, the velocity—stress relation at the
channel walls takes the form (see also [10, Eq. (5)] and the
discussion thereof):

Yo = Tw1/G.

uw1 = (Tw1)" K1,
U2 = (=14w2)" K2 = (GH — 1,,1)"' K>,

(6a)
(6b)

where K| and K are the slip coefficients and m is the slip ex-
ponent. For m = 1, Navier’s (linear) slip law [9, 1] is obtained.
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The slip coefficients and the slip exponent depend on various
physical factors such as dissolved phases in the fluid, wall sur-
face roughness and wetting properties, electro-rheological be-
havior of the fluid, etc. [1]. In the present work, we consider
the slip to be asymmetric, i.e., K; # K3, but we assume that
the slip exponent m is the same on both walls (see, e.g., [38]).

2.2 Velocity distribution

Next, we seek to determine the velocity distribution across the
microchannel, which is sketched representatively in Fig. 1. To
that end, we first need to prescribe the constitutive equation for
the fluid. In the present work, following [35, 16, 42], we con-
sider the fluid to be non-Newtonian and its shear stress—strain
rate relationship to be well-described by the power-law model
[43]. For unidirectional flow, the latter relationship takes the
form
du|"" du
dy| dy
Here, a is the consistency factor, while n is the power-law
index. According to the power-law model, when n < 1, the
apparent viscosity, 7 = a|du/dy|""", of the fluid decreases
with the shear rate-of-strain, and such a fluid is termed shear-
thinning. On the other hand, when n > 1, the apparent vis-
cosity of the fluid increases with the shear rate-of-strain, and
such a fluid is termed shear-thickening. The power-law model
in Eq. (7) reduces to Newton’s law of viscosity for n = 1, in
which case a becomes the usual shear viscosity.

In the lower portion of the microchannel, y < yo and
du/dy > 0, which allows us to write Eq. (7) for shear stress as

du\"
Tyxzad—y .

Substituting the latter into Eq. (3), yields the following first-
order ordinary differential equation (ODE) for u(y):

(N

Tyx = a

®)

d n
a(—u) = -Gy + 11, )
dy
The latter ODE is easily integrated to give
-G 1/n+1
u(y) = € - T =) (10)

(1/n+ Dal/nG’

where C is an arbitrary constant of integration. The boundary
condition u#(0) = u,,; allows us to solve for the integration

constant:
(Tw 1 )l/n+l

_ 11
(1/n+ Dal/"G an
Thus, the expression for velocity distribution in the strip 0 <

y < Yo is
1/n+1
1—(1—ﬂ) l (12)

Twl

C] = Uy +

(Twl)l/n+1

= Uy + -
u(y) = st (1/n+ Da'/"G

In the upper portion of the microchannel, y > yo and
du/dy < 0, which allows us to, now, write Eq. (7) for the
shear stress as

13)

Substituting the latter into Eq. (3), again yields a first-order
ODE for u(y):

du\"
a _d_y = Gy — Twl, (14)
which is easily integrated to obtain
Gv — - 1/n+1
u(yy = G ) (15)

(1/n+ Dal/"G

The integration constant C; is set by the boundary condition at

wall 2, i.e., u(H) = uy»:

. (GH _ Twl)l/n+l
(1/n+ a'i"G

Thus, the expression for velocity distribution in the strip yp <

y< His

G = uwn (16)

1/n+1 H 1/n+1
M(y)ZMWZ+L G__l
(1/n+ Dal/"G | \ w1
1/n+1
G
_ (T_yl - 1) l (17)

All quantities of interest have been written in terms of 7,1,
which is the only unknown remaining now. To find an expres-
sion for 7,1, we must require that the velocity profile u(y) be
continuous across y = yo:

lim u(y) = lim u(y). (18)
Y=Y, -y

0
Thus, upon substituting Eq. (5) for yg and Egs. (6) for u,,; and
Uy into Egs. (12) and (17), we obtain

» 1/n+1 GH m
(Twl)mKl + (T l) = (Twl)m (T_ - 1) K

(1/n+ Dal/"G wi

1/n+1 1/n+1
L (ﬂ - 1) . (19)
(I/n+1)a'/"G \ 11

Equation (19) is an implicit, nonlinear algebraic equation for
Ty given Ky, Kz, G, a, n and H. In practice, it must be in-
verted numerically. Nevertheless, this completes the deriva-
tion of the unidirectional velocity profile u(y) of a power-law
fluid in a microchannel with asymmetric slip. To summarize:
u(y) is piecewise defined by Eqs. (12) and (17) and 1, is
found by solving Eq. (19) numerically.

From the above equations, some characteristic physical
scales are evident. The characteristic length scale in the prob-
lem is {. = H. The pressure gradient then sets a character
stress scale 7. = G¢. = GH and a characteristic velocity scale
is evident from Eqs. (12) and (17): V. = 7./ [(1/n +
1)a'/"G]. Hence, we are led to introduce the following di-
mensionless variables:

y=y/l = y/H, (20)
Tw(¥) =7(y)/7e =1(y)/(GH), 21
o : (1/n+ Da'"G
a(y) =u(y)/Ve  =uly) (G (22)
1/n
Kip =Kol Ve) = Kip (fn+ Da G (23)

(GH)l/n+l—m :
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Using the latter set of dimensionless variables, we obtain a set
of dimensionless, coupled nonlinear algebraic equations that
fully specify the velocity profile:

o i + (fwl)l/n+1 _ (.1—.W1 _ )—})l/n+1, § < Twl,
S TS AR WIS S
(24)
where Navier’s nonlinear slip law gives
w1 = Ki(fw1)™s (25a)
Uyo = 122(1 - Tw)™, (25b)

and T, satisfies
Ki(F0)"™ + @)™ = Kop(1 =)™ + (1= 7)™ (26)

As a consistency check, note that, for the special case of sym-
metric slip with K| = K>, T,,; = 1/2 is obviously a solution of
Eq. (26). Therefore, for symmetric slip, the velocity gradient
vanishes exactly along the channel’s centerline.

Note that the velocity profile for a power-law fluid with
asymmetric slip developed above, i.e., Eqs. (24)—(26), was
also considered in [39, Eq. (23)—(25)], wherein the power-law
fluid is a special case of a derivation for HB fluids. Of course,
in showing an equivalence, one has to take into account the
different characteristic scales employed in [39].

2.3 Temperature distribution

The energy equation for the thermally developed flow of a
power-law fluid in a microchannel (see, e.g., [33, 35] and the
references therein) is given by

0T
dy?

oT

du
pepu(n’5- = k

+ E—
ady

n—1 (dl/l

2

where viscous dissipation cannot be neglected for microflows,
as discussed by Koo and Kleinstreuer [44]. Here p, ¢, k are
respectively the density, specific heat and thermal conductivity
of the fluid, which are assumed constant for this problem, and
T(x,y) is the temperature profile in the microchannel. Let us
introduce the dimensionless temperature

05) = = [10) =T )], (8)

where, following our convention for the velocity profile, we
denote the temperature profiles on the lower and upper channel
walls as Ty,1(x) = T(x,0) and T,yo(x) = T(x, H), respectively.
We also note that although 97 /dx # 0 [see Eqgs. (31) and (35)
below], d0/0x = 0, i.e., 8 = 6(y) only, because of the as-
sumption of thermally developed flow under uniform heat flux
boundary conditions (see also [45, Chap. 8]). Then, the energy
equation (27) becomes:

920

o dii
uy) = 6_)72 + Br

dy

’

(pc,,(VCH 6T)

U di
q1 ox

2

where recall that V.. is the characteristic fluid velocity as in
Eq. (22) above, and Br’ is a modified Brinkman number for
power-law fluids [22]:

_((Vc)n+la
- qHY

Br’ (30)
Br’ is a measure of the relative importance of viscous dissipa-
tion in the flow compared to the imposed (constant) heat flux.

Next, note that the quantity in the parentheses on the left-
hand side of Eq. (29) is, in fact, dimensionless. Under our
assumption of uniform heat flux being supplied through the
upper and lower walls of the microchannel (recall Fig. 1 and
the attendant discussion), we shall show that this quantity is,
additionally, constant. First, let

3 pc, Ve H 0T

a Ox ey

At this stage in the analysis y is unknown but will be deter-
mined shortly. Nevertheless, let us write Eq. (29) as

820 di|"™" (dii\*

yi=—+Br |2l (2] (32)
07?2 dy dy

The pertinent boundary conditions for Eq. (32) are
6 =0, y=0, (33a)

06
—==-1L y=0 (33b)
9y
06
—=2 5= (330)
9y @

Although Eq. (32) is of second order in y, we need the three
boundary conditions in Eqgs. (33) to fully specify the problem
because, at this point, y is still unknown.

Now, we are in a position to solve for y by integrating
Eq. (32) with respect to y across the channel height:

1 1 92 1 n-1 _\2
0-6 dii
ﬁ(_)d_Z/ —_d'+Br'/ (—_) dy.
y‘/o »e 0 05° Y 0 dy g
(34)

Solving for y and using the boundary conditions from

Eqgs. (33), we obtain:
1 n—1 —\2 1
2+1+Br’/ (d—7) dy /[/ ﬁ(y)dy].
Q1 0 dy 0
(35)

The definite integrals in Eq. (35) can be evaluated exactly
based on the velocity profile given in Eq. (24); the resulting
expressions are given in A. Now, v is substituted into Eq. (32),
reducing the latter equation to an ODE in 6, which can be eas-
ily solved via standard numerical integration techniques.

dii
dy

dii

Y = d_)_)

2.4 Nusselt number

The literature on convective heat transfer and fluid mechanics
is full of important dimensionless parameters [45]. Amongst
the more useful ones in convection heat transfer, and the first
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one we encounter herein, is the Nusselt number. In fully de-
veloped flow, it is customary to utilize the mean temperature
T, as opposed to the centerline temperature for the definition
of the Nusselt number. The mean temperature is given by

H
/ uT dy
o

T, = 7 . (36)
/ udy
0
Thus, the dimensionless mean temperature is
1
/ a0 dy
_Jo
O = 7
/ i dy
0
H
/ i+ (T = Tyr) dy (37)
kJo

= _H 7]
9 / udy
0
k
= _(Tm - Twl),
qH

which is, again, independent of x based on the foregoing dis-
cussion.

Now, the heat transfer coefficient (HT C) based on the mean
temperature of the fluid can be defined as

q1

HTC = ——.
Twl _Tm

(38)
Finally, the Nusselt number (for flow between parallel plates)

is simply the dimensionless heat transfer coefficient:

HTC
k/(2H)

_ @ \2H
Toi—T, | k

Nu =

(39)

Using the temperature profile obtained by numerically in-
tegrating the ODE (32) and the analytical velocity profile
from Eq. (24), Nu can be evaluated numerically directly from
Eq. (39).

2.5 Entropy generation

The expression for volumetric entropy generation due to con-
vection heat transfer with viscous dissipation included (see,
e.g., [35]) in a power-law fluid is given by
oT\*  (oT\*] .
ox dy

n+l

k

a
ﬁ —

T

du

ay (40)

Sgen =

The dimensionless form of Eq. (40) is

_ Sgcn
2 2 2 0 2
A " A
(00 + 1)2 Pe2 (46 + 1)2 \ 9y
Br’ da|™!
+ =
PO+ 1" |dy
Here,
q1
= — 42
¢ TE (42)
is the dimensionless heat flux, and
YV.H
Pe = 'OC”T 43)

is the Péclet number.

We are interested in the limit Pe > 1, hence the first term
in Eq. (40) can be neglected, consistent with our assumption
of a fully developed thermal field. Then, we obtain the follow-
ing simplified expression for the dimensionless entropy gener-

Br’

ation:
¢*  [06)
00+ 17 (6&) Too+1"|dy
The first term on the right-hand side of Eq. (44) stands for
entropy generation due to heat transfer, while the second term
stands for entropy generation due to fluid flow.

The entropy generation rate Ny, defined in Eq. (45) for our
flow, is a function of the cross-sectional coordinate y and, thus,
will vary across the cross-section. However, unlike the tem-
perature and velocity distributions, but like the flow rate and
the total energy, entropy can also be expressed as an exten-
sive property. Thus, it is more insightful to study its behavior
on an average basis, as opposed to studying its behavior as a
field, i.e., a distribution, in y. To this end, we define the aver-
age (dimensionless) entropy generation rate across the channel
height:

dii n+l

Ns(§) = (44)

1
<Ns‘>=/ Ny dy. (45)
0

2.6 Bejan number

The expression for entropy generation rate does not convey
which of the two entropy generation mechanisms—fluid flow
and heat transfer—dominates. Another dimensionless number,
termed the Bejan number, can be defined to ascertain which
mechanism of entropy generation is more significant [46] (see
also the discussion in [47]). The Bejan number Be is the ratio
of entropy generated due to heat transfer to the total entropy

generated:
_# (99)
o _ (@0 +1)> |0y
Be(y) = N .

Notice that, just as Ny in Eq. (44), Be varies across the chan-
nel width, suggesting that the relative proportion of entropy
generation due to heat transfer is different at different vertical
locations in the channel.

(46)
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3 Results and discussion

The equations for momentum transfer, heat transfer and en-
tropy generation have been derived, solved exactly or reduced
to quadratures in Sec. 2. In this section, we would like to dis-
cuss the fluid mechanics, heat transfer, and thermodynamics
of power-law fluids in heated microchannels with asymmetric
slip for particular/illustrative values of the parameters, as tab-
ulated in Table 1. In doing so, we present some novel aspects
to the physics of this system.

Parameter Symbol  Value(s)
Brinkman number Br’ 0.2

Dim’less slip coeff., wall 1 Kl 0.5,0.75, 1.0, 1.25
Dim’less slip coeff., wall 2 K, 1.0

Slip exponent m 0.7

Power-law index n 0.5, 1.5

Ratio of heat fluxes Dlq 0.5,2.0
Dimensionless heat flux ¢ 0.4

Table 1: Numerical values assigned/considered in our analysis
for the various parameters arising in the model under consid-
eration.

Note that we have kept Br’ constant. The reason is that the
effects of Br’ on heat transfer and entropy generation charac-
teristics of power-law fluid have already been addressed in de-
tail by Tso et al. [25] and Hung [33]. The value of power-law
index n has been taken to be either 0.5 or 1.5 to cover both the
shear-thinning and shear-thickening aspects of non-Newtonian
fluids. The dimensionless slip coefficient on upper wall is con-
stant, K, = 1, while the corresponding one on the lower wall,
K\, is given four different values. This is in agreement with
the theme of the paper, which is to study the effect of such
asymmetric slip on the posed thermofluids problem. We have
also allowed asymmetry in imposed uniform heat fluxes on the
channel walls through the ratio ¢»/¢; .

The results in the figures discussed below were generated
by first solving numerically the non-linear algebraic Eq. (26)
for 7, given K, K, = 1, n and m. Then, this value of
T,1, together with Eqgs. (24) and (25), fully specifies the ve-
locity profile. The numerical solution is obtained using stan-
dard subroutines from SciPy [48]. The dimensionless veloc-
ity profile thus obtained is used to determine the dimension-
less temperature profile across the channel by solving Eq. (32)
numerically, after first evaluating y via Eq. (35). To this
end, we use the interleaved 4(5) Dormand-Prince pair explicit
Runge—Kutta method, namely the scipy.integrate.ode function
dopris, with a relative error tolerance of 1073, The Nusselt
number is obtained by substituting the dimensionless mean
temperature into Eq. (39). The dimensionless velocity and
temperature profiles are finally also substituted into Eqs. (45)
and (46), and numerical integration is used to obtain the aver-
age entropy generation rate (Ny) and the Bejan number distri-
bution Be(y).

1.0

0.8 1

0.6 1

0

0.4 1

0.2 1

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: (Color online.) Dimensionless velocity profiles i(7)
across the channel for different values of the dimensionless
slip coefficient K;. Dashed curves correspond to n = 0.5
(shear-thinning fluid), while solid curves correspond to n =
1.5 (shear-thickening fluid). The gray curve on the left corre-
sponds to a Newtonian fluid subject to no slip boundary condi-
tions. Filled circles denote the vertical location of the velocity
maximum.

3.1 Velocity profile

Figure 2 shows the velocity profile across the channel, as de-
termined by Eqgs. (24)—(26), for different values of the slip co-
efficient K. The velocity profiles for shear-thinning (n < 1)
and shear-thickening (n > 1) fluids are shown by the dashed
and solid curves in the plot, respectively. This convention is
followed throughout this paper with the exception of Fig. 3.
For the sake of comparison, the velocity profile of a Newto-
nian fluid satisfying no slip at the walls is also shown in gray.
The vertical location at which the velocity gradient changes
sign, which is the point of zero shear stress in the channel, is
denoted by a filled circle on each curve.

As can be seen immediately from the graph, the presence of
slip increases the maximum velocity of both shear-shinning
and shear-thickening fluids. However, shear-thinning fluids
(n < 1) (dashed curves) exhibit significantly less steep ve-
locity profiles than shear-thickening fluids (n > 1) (solid
curves). This observation can be explained by noting that
shear-thinning fluids will support a smaller shear stress and,
consequently by Eq. (7), smaller velocity gradients.

We also see that, for a fixed value of n, the velocity pro-
file and its gradient are both affected by the asymmetric slip
coefficient’s magnitude. This is a new result due to asymmet-
ric slip because, as shown in [35], the velocity profile of a
power-law fluid subject to symmetric slip will have the same
slope for all values of the slip coefficient, which is also well
known for Newtonian microflow [49, Sect. 24.4]. Therefore,
for symmetric slip boundary conditions, slip affects only the
advection of momentum but not its diffusion. Specifically, if
iip(y) is the solution for the velocity profile without slip, then
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Figure 3: (Color online.) Dimensionless shear stress at the
channel walls 7,, versus the power-law index n for different
values of the slip coefficient K;. The dashed lines show the
shear stress on the upper wall, 7,2, while the solid curves show
the shear stress on the lower wall, 7, .

the velocity profile with symmetric slip can always be written
as i(y) = io(y) + 4, where i is some constant. In such a sym-
metric slip flow, one could thus model the problem simply as
a shear-driven Couette flow, i.e., as the flow in a channel with
walls moving at some appropriate velocities, as done in [34].
However, for the case of asymmetric slip treated herein, slip
affects both the diffusion and advection of fluid momentum.
Thus, a flow with asymmetric slip cannot simply be modeled
as a Couette flow with moving walls, which should also be
clear from the derivation in Sect. 2.2, specifically the form of
the solution given in Eq. (24).

We also observe that the vertical location of the maximum
velocity, yo = yo/H = 7,1, depends on the relative values
of the slip coefficients (as parametrized by K in the present
work). But, 7,1 does not depend on the shear-thinning or
shear-thickening aspect of the fluid, as made clear by the lack
of n in Eq. (26). For the cases of equal slip coefficients (labeled
as K; = 1 in Fig. 2), the velocity reaches a maximum at mid-
height of the channel, i.e., at ¥y = 7,1 = 1/2, as mentioned
in the discussion following Eq. (26). However, for the case of
asymmetric slip, the location of the maximum is closer to the
wall on which the slip is larger (the upper wall for blue and
red curves and the lower wall for yellow curves). Addition-
ally, the velocity gradients are larger near the wall on which
K is smaller. To understand this aspect, note that slip reduces
friction on the walls. Consequently, the shear stress (and the
velocity gradient) will be smaller on the wall where the slip is
larger. Thus, the point of maximum velocity (i.e., zero velocity
gradient) must be closer to the wall with larger K.

To buttress the above point, in Fig. 3 we plot the shear stress
at the walls 7,, (1,2} (as solid and dashed curves, respectively)
as a function of the power-law index n for different values of
the slip coefficient K. Due to the choice of coordinate system,
Ty, 1S positive on the lower wall (solid curves) but negative on

g2/q1=0.5

1.0
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Figure 4: (Color online.) Dimensionless temperature distri-
bution 6 across the height y of the channel with a larger im-
posed heat flux at the lower wall (¢2/g; = 0.5 < 1), for differ-
ent values of the slip coefficient K|. The dashed curves show
the profiles of a shear-thinning fluid with power-law exponent
n = 0.5, while the solid curves show the profiles of a shear-
thickening fluid with n = 1.5.

the upper wall (dashed curves). Consequently, Fig. 3 shows
that enhanced slip reduces the shear stress at the wall since
7,1 decreases with K;. However, a decrease in T7,, is accom-
panied by an increase in the (absolute value of the) shear stress
at the upper wall, 7,2, even though the slip coefficient at the
upper wall is constant. This observation is explained by not-
ing that 7,0 = Ty1 — 1 (0 < 7,1 < 1), after making Eq. (4)
dimensionless, thus the two wall shear stresses are coupled.

3.2 Temperature distribution

There are three modes of heat transfer in the problem that we
posed in Sect. 1, namely: axial advection, vertical conduc-
tion, and viscous dissipation. Axial advection is represented
by the term on the left-hand side of Eq. (27), vertical con-
duction is represented by the first term on its right-hand side,
while viscous dissipation is represented by the second term on
the right-hand side of Eq. (27). Consequently, the temperature
distribution is intimately coupled to the velocity field through
the axial advection and viscous dissipation terms. Clearly, the
fluid flow problem needs to be solved prior to attacking the
heat transfer (and entropy generation) problem. This ordering
is also the reflected in the history of convection heat transfer
research: the Blasius solution for the laminar hydrodynamic
boundary layer [50] preceded the Pohlhausen solution for the
corresponding thermal boundary layer [51] by thirteen years
(see also the discussion in [52]).

Likewise, we solved the fluid mechanical problem in
Sect. 2.2 and the temperature distribution was analyzed in
Sect. 2.3. In this subsection, we first analyze the tempera-
ture profile across the channel height for different values of
the slip coefficient K; in Figs. 4 and 5, for ¢2/q; = 0.5 and
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Figure 5: (Color online.) Dimensionless temperature distri-
bution 6 across the height y of the channel with a larger im-
posed heat flux at the upper wall (¢2/¢g; = 2.0 > 1), for differ-
ent values of the slip coefficient K;. The dashed curves show
the profiles of a shear-thinning fluid with power-law exponent
n = 0.5, while the solid curves show the profiles of a shear-
thickening fluid with n = 1.5.

q2/q1 = 2.0, respectively. To highlight the physics studied
herein, the temperature profile corresponding to a Newtonian
fluid subject to no slip (K; = K, = 0) and with equal applied
heat fluxes (g2/g; = 1) on the walls is shown as a gray curve.
Observe that, from Eq. (28), 8 = 0 at y = 0 while the imposed
wall heat flux is into the fluid, so the temperature in the inte-
rior must be lower than that of wall “1,” resulting in negative
values of 6§ as depicted in Figs. 4 and 5.

Next, we observe that the overall temperature distribution
inside of the channel is damped out (becomes less negative)
with increasing K. This nontrivial effect can be rationalized
by noting that an increase in slip leads to an increase in the
fluid velocity and a concomitant increase in the ability of the
fluid to carry heat, resulting in higher temperatures. Thus, for
a fixed heat flux ratio ¢»2/¢, we see that the minimum of 6 de-
creases with K. In both cases (¢2/q1 = 0.5 and g2/q; = 2.0),
the vertical y-location of the minimum (i.e., where 96/9y = 0)
moves closer to the lower wall as the slip coefficient increases.

Now, comparing Fig. 4 to Fig. 5, we further understand that
the location at which d0/9y = 0 is closer to the cooler wall
(specifically, the upper wall in Fig. 4 and the lower wall in
Fig. 5), where the heat flux is smaller. This effect is attributed
to the fact that a higher heat flux at the wall drives a higher
temperature gradient into the fluid, owing to Fourier’s law of
heat conduction.

The final observation that we would like to make about
Figs. 4 and 5 is that the effect of increasing the slip coeffi-
cient is more pronounced when the lower wall is hotter (i.e.,
q2/q1 < 1). This is because the two phenomena discussed
above—higher heat flux and larger slip at the lower wall—now
work in tandem to increase the temperature at the lower wall.
Conceivably, this synergy between asymmetric slip and asym-

g2/q1=0.5
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Figure 6: (Color online.) The Nusselt number along the lower
wall (y = 0) for different values of the power-law exponent n
and the slip coefficient K. The ratio of imposed heat fluxes is

q2/q1 =0.5.

metric imposed heat flux could be exploited in microscale heat
transfer applications.

3.3 Nusselt number

Recall that the Nusselt number is the dimensionless heat trans-
fer coefficient (HT C), as given by Eq. (39), which is the ratio
of the heat flux to the temperature difference between the fluid
and the lower channel wall. Although a corollary of New-
ton’s law of cooling, as discussed by Bejan [53] the concept
of a heat transfer coefficient is, in fact, inherently ambiguous.
For example, in natural convection the heat transfer coefficient
is necessarily a function of the temperature difference and is,
thus, not constant [45]. On the other hand, the widespread
use of computational fluid dynamics (CFD), wherein the en-
ergy balance at the surface is enforced explicitly by mapping
the temperatures or heat fluxes directly from one domain to
another [54], has allowed for more general analyses of ther-
mofluids problems, often obviating the need for the Nusselt
number as a fundamental physical quantity. We also under-
stand that the Nusselt number is completely defined only by
specifying a reference temperature, see Eq. (39), which itself
depends on the rate of heat transfer—a quantity that we are
trying to predict in the first place! This makes the definition of
the Nusselt number a circular one.

Nevertheless, for forced convection in unidirectional flows,
as in the present study, the Nusselt number remains a relevant
quantity that can be used to understand the thermal character-
istics of heat transfer in the flow. Indeed, this has been the
quantity of interest in a large number of scientific works on
heat transfer in microchannel flows [19, 20, 25, 26, 35, 34].

In the present work, we have imposed uniform heat fluxes
(independent of the axial coordinate, x) on the channel walls.
However, we have allowed the uniform heat flux on the lower
wall, g1, to be different from the uniform heat flux on the up-
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Figure 7: (Color online.) The Nusselt number along the lower
wall (y = 0) for different values of the power-law exponent n
and the slip coefficient K. The ratio of imposed heat fluxes is

q2/q1 = 2.0.

per wall, go. Consequently, Nu along the lower wall (y = 0)
necessarily differs from Nu along the upper wall (y = 1). Still,
Nu is independent of x. This result has been shown with due
mathematical rigor by Tso et. al. [25]. Thus, in Figs. 6 and 7,
we only plot the Nusselt number Nu along the lower wall as a
function of the power-law index n of the fluid and for differ-
ent values of the slip coefficient K. Specifically, Fig. 6 shows
the Nu dependence on n for a heat flux ratio ¢2/q1 = 0.5,
while Fig. 7 shows the Nu dependence on n for a heat flux
ratio ¢2/q1 = 2.0.

From Figs. 6 and 7, we immediately conclude that the Nus-
selt number increases with the amount of slip. From our earlier
discussion of the temperature profile: an increase in the wall
slip increases the fluid’s ability to advect heat near the walls,
leading to enhanced heat transfer. On the other hand, Nu de-
creases with the power-law index n, consistent with previous
studies [34, 35]. For small values of n, the shear-thinning as-
pect of the fluid is more prominent, reducing resistance to flow
and increasing the velocity. Consequently, the flow’s ability to
transport heat is enhanced.

Finally, we see that Nu increases significantly with the ratio
q2/q1 (as can be obviously inferred by comparing the vertical
axes scales between Figs. 6 and 7). On one hand, this depen-
dence is in stark contrast to the case of equal imposed heat
fluxes (when ¢g»/q; = 1), in which the Nusselt number is inde-
pendent of the value of g» = g1 [35]. On the other hand, this
dependence is consonant with previous studies with unequal
imposed heat fluxes in which Nu depends on ¢,/q; [25, 26].2
This again suggests that such an enhancement of heat transfer
due to asymmetric slip and asymmetric imposed heat fluxes
could be exploited in the design of microscale heat transfer

2Asa consistency check, note that the Nusselt number for the special case
of a Newtonian fluid subject to no slip and equal imposed heat fluxes was
found to be 4.1176 based on our mathematical results, which agrees with the
value reported in literature [25] to four decimals.
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Figure 8: (Color online.) Average entropy generation rate (Ny)
as a function of the power-law index n for different values of
the slip coefficient K. The ratio of imposed heat fluxes is

q2/q1 =0.5.

equipment.

3.4 Average entropy generation

We have defined the average entropy generation rate (Ns) in
Eq. (45). In this subsection, the average entropy generation
rate has been plotted as a function of the power-law index n
of the fluid in Figs. 8 and 9 for ¢2/¢1 = 0.5 and ¢2/¢1 = 2.0,
respectively.

First, it is seen from Figs. 8 and 9 that (Ny) increases with
the power-law index n. This observation is attributed to the
fact that an increase in n leads to higher velocity and tempera-
ture gradients inside the channel, as already explained in Sec-
tions 3.1 and 3.2. Consequently, more entropy is generated by
both heat transfer and viscous friction.

Second, it is evident from Figs. 8 and 9 that (N;) decreases
with the slip coefficient at the walls. As we have already seen
in Sections 3.1 and 3.2, a larger slip leads to more thorough
mixing and more uniform temperature and velocity distribu-
tions inside the flow. Thus, the inherent thermodynamic irre-
versibility of the flow (as measured by the entropy generation
rate) is diminished as slip increases.

Lastly, (Ny) increases with the ratio of imposed heat fluxes,
q2/q1. This trend is expected because imposing larger heat
fluxes leads to larger temperature gradients in the channel, and
hence to further thermodynamic irreversibility.

3.5 Bejan number

In thermal engineering, researchers concern themselves with
more than just the amount of entropy generated. Their im-
perative is to make the system more efficient by minimizing
the entropy generated inside it [30]. To that end, they need to
understand the various modes by which entropy is generated
inside the physical system under investigation. The question
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Figure 9: (Color online.) Average entropy generation rate (Ng)
as a function of the power-law index n for different values of
the slip coefficient K;. The ratio of imposed heat fluxes is

q2/q1 = 2.0.

“How is entropy minimized?” then begets the question “How
is entropy generated?”. Paoletti et al. [46] defined the Bejan
number to address this issue.

The Bejan number Be is the ratio of the entropy generated
due to heat transfer to the total entropy generated, as given in
Eq. (46). It follows that an increase in fluid flow irreversibil-
ity (velocity gradients) causes the Bejan number to decrease,
while an increase in heat transfer irreversibility (temperature
gradients) causes the Bejan number to increase. By this defi-
nition, it is obvious that for y such that Be(y) > 1/2, the en-
tropy generation is primarily due to heat transfer irreversibil-
ity, and conversely, fluid friction irreversibility dominates in
the region(s) where Be(y) < 1/2. The two entropy generation
mechanisms are of equal “importance” when/where Be = 1/2.

The distribution of the Bejan number Be(y) across the chan-
nel width for different slip coefficientsis shown in Figs. 10 and
11 for g2/q1 = 0.5 and g2/q1 = 2.0, respectively. The global
maximum (here, at Be = 1 for all cases shown) of each curve
corresponds to the point at which the velocity gradient van-
ishes (di1/dy = 0), while the global minimum (here, at Be = 0
for all cases shown) corresponds to the point at which the tem-
perature gradient vanishes (06/dy = 0). For a flow with sym-
metric slip (K; = 1) and equal heat flux boundary conditions
(g2/q1 = 1), both the temperature and velocity gradients van-
ish exactly at the centerline (y = 1/2), making it a point of
singularity for the Be profile [35]. The vertical line Be = 1/2
denotes the line of demarcation for a trade-off in the relative
importance of the two entropy generation mechanisms. We
observe from both Figs. 10 and 11 that a particular trade-off
point exists near the centerline of the channel (between the
global maximum and the global minimum of Be heretofore
described) for both shear-thinning and shear-thickening fluids
and for all values of the slip coefficient, unlike the case of sym-
metric slip [35].

For the same value of ¢2/¢1, i.e., restricting to either Fig. 10
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Figure 10: (Color online.) Distribution of Bejan number Be(7)
across the channel width for different values of the slip coeffi-
cient K| and g2/q; = 0.5. The dashed curves correspond to a
shear-thinning fluid with n» = 0.5, while the solid curves cor-
respond to a shear-thickening fluid with n = 1.5. The black
vertical denotes Be = 1/2.

or Fig. 11, it is seen that the global maximum of the Be curve
shifts towards the lower wall when the slip coefficient on the
lower wall, namely K, increases. This trend is explained by
recalling the velocity profiles in Fig. 2, in which the location
of the maximum of the velocity profile shifts towards the lower
wall as K| increases.

In both Figs. 10 and 11, we see that the behavior of the Be
curves is different at each wall. At the lower wall, the Bejan
number is smaller for smaller slip, i.e., the blue curve (smaller
K1) is to the left of the yellow curve (larger K;). However, the
situation is reversed where the curves terminate on the upper
wall. The spanwise location at which this reversal or “switch”
occurs, i.e., the ¥ value at which the curves cross each other, is
shown with a filled circle in each figure. This circle is closer
to the cooler wall in each of Figs. 10 and 11. We understand
from our discussion of the velocity distribution in Sect. 3.1
that as the slip coefficient K, increases, the shear stress 7,,; on
the lower wall decreases; this leads to an increase in Be near
said wall. However, the reverse holds true at the upper wall,
where an increase in K; leads to a corresponding increase in
Tw2 and a decrease in Be. The location at which this reversal
occurs is closer to the cooler wall because the temperature gra-
dients there are smaller, i.e., the relative influence of velocity
gradients is more pronounced.

We also see that, overall, Be(y;n < 1) > Be(y;n > 1), i.e.,
the Bejan number for shear-thinning fluids is higher than that
for shear-thickening fluids, in most parts of the microchannel.
To explain this observation, note that shear-thinning fluids ex-
hibit smaller velocity gradients compared to shear-thickening
fluids (i.e., less resistance to flow), which translates means that
a larger portion of the entropy generation is due to heat trans-
fer.

Next, we observe that in Figs. 10 and 11 there is a second
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Figure 11: (Color online.) Distribution of Bejan number Be(7)
across the channel width for different values of the slip coeffi-
cient K| and g2/q; = 2.0. The dashed curves correspond to a
shear-thinning fluid with » = 0.5, while the solid curves cor-
respond to a shear-thickening fluid with n = 1.5. The black
vertical denotes Be = 1/2.

(local) maximum in the Be(y) profile near the cooler wall for
shear-thinning fluids for all values of slip coefficients (and also
for shear-thickening fluids with K; < 1). This second (local)
maximum is absent in the case of symmetric slip [35]. To un-
derstand this observation, note that the velocity gradients in
a shear-thinning fluid quickly diminish away from the walls,
while the temperature gradients do not drop-off so steeply (re-
call the discussion in Sects. 3.1 and 3.2). This discrepancy in
how fast velocity and temperature gradients are dissipated in
this microflow leads to the presence of the local maximum in
the Be profile.

Finally, we note that some of the curves corresponding to
shear-thinning fluids with K; > 1 in Fig. 10, and all the curves
in Fig. 11, cross the vertical line Be = 1/2 twice: near the
channel centerline (as discussed previously) and again close
to the cooler wall.> Thus the trade-off between the relative
importance of the two entropy generation mechanisms hap-
pens at two locations for these specific flows. This novel effect
also appears to be entirely due to asymmetric slip. Evidently,
non-Newtonian rheology, asymmetric slip and asymmetric im-
posed heat fluxes can be used to fune how entropy is generated
across the channel in a microflow.

4 Conclusion

We studied the effect of asymmetric slip on the hydrodynam-
ics, heat transfer and entropy generation of a thermally devel-
oped flow of a non-Newtonian fluid in a microchannel sub-
ject to asymmetric nonlinear slip and unequal heat fluxes at

3To be precise, however, we also note that, in Fig. 10, some of the shear-
thickening curves with K < 1 appear to approach Be = 1/2 again near the
hotter wall, suggesting a highly nontrivial dependence on the model parame-
ters.

the walls. Under a power-law rheological model, the govern-
ing equations were specialized to viscous unidirectional flow,
yielding an exact but implicit solution for the velocity pro-
file. The heat transfer and entropy generation characteristics
(specifically, Nusselt number, average entropy generation rate
and Bejan number) were reduced quadratures.

In summary, we have established the following. First, slip
reduces the shear stress acting on the channel walls, especially
at the wall with “larger” slip. Second, slip promotes unifor-
mity in the temperature field. The temperature in the fluid
increases with slip asymmetry, in particular because of its en-
hanced capacity to transfer heat by advection. Third, flows
with larger slip induce less entropy generation, specifically the
Bejan number Be is larger near the hotter wall in the case of
unequal imposed heat fluxes. Overall, slip reduces both heat
transfer irreversibility and fluid flow irreversibility, however,
it has a more pronounced effect on fluid flow irreversibility
by directly influencing the velocity profile. Unlike the case
of symmetric slip, we found that, for certain combinations of
the power-law index 7, the dimensionless slip asymmetry pa-
rameter K, and the imposed heat flux asymmetry ¢»/q; at the
channel walls, a second trade-off point between the entropy
generation mechanisms exists, apart from the trade-off point
closer to the channel’s centerline.

We believe that our theoretical analysis will be useful in
thermal engineering. Specifically, our conclusions could be
used to tailor heat transfer in microchannel flows of com-
plex fluids (such as blood or dense polymeric suspensions) to
minimize thermal irreversibility, for example, by tuning the
channel’s surface properties so that the complex fluid’s flow
exhibits asymmetric slip. Likewise, in the case of unequal
boundary heat fluxes, imposing the higher flux on the wall with
larger slip leads to enhanced heat transfer into the fluid.

In future work, heat transfer and entropy generation in the
asymmetric slip microflows of gases could be attacked along
on the lines of [55, 56, 57]. In such flows, a temperature jump
boundary condition emerges at the boundaries, as originally
discussed by Smoluchowski [58]. However, as noted in [5],
it is currently an open question whether the temperature jump
boundary conditions derived for slip flow of gasses can ap-
ply to complex liquids (such as the example dense suspension,
e.g., [38, 39], considered in this work).
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Nomenclature

a consistency index, N-s"*! /m"+!
Br’ modified Brinkman number

C, Cy, C, constants of integration
cp specific heat capacity, kJ/(kg-K)
G pressure gradient, Pa/m
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H

height of the channel, m

HTC heat transfer coefficient, W/ (mz-K)

K
k
l
m
n

Ny

Nu
Pe

q

slip coefficient, m-Pa™""/s
thermal conductivity, W/(m-K)
characteristic length scale, m
slip exponent
power-law index
entropy generation number
Nusselt number
Péclet number
imposed heat flux along a wall, W/m?

Seen  volumetric entropy generation rate W/m?3-K

T temperature, K

9. characteristic stress scale, Pa

u velocity, m/s

V. characteristic aial velocity scale, m/s

x axial coordinate, m

y transverse/spanwise coordinate, m
Greek Symbols

T shear stress, Pa

v dimensionless constant

p density, kg/m?

6 dimensionless temperature

¢ dimensionless heat flux
Subscripts

1 bottom wall “1”

2 top wall *“2”

0 point at which the shear stress is zero

w wall

m mean
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A Explicit expressions for some integrals

Although it can be accomplished by hand, using MATHEMAT-
ICA, we find from Eq. (24) that the dimensionless flow rate ¢

in the channel is
! 1
q=[:mwdy=5;j{a—nn”"
- 2n+ D)(Tw1 — Ditwn

+ fwl [fyl‘)/ln+1 + (fwl - 2)(1 - fwl)l/n + ’/_lwl]
wl

+n [‘Fl/"+2 + (1= Fw)/"2 + 2‘FW1L2W1] } 47)

As before, iy, and i, are given by Egs. (25), while 7, is
the solution to Eq. (26). Similarly, it can be shown that

LT e
o |dy dy
I/n+1)'(mn+1)[_1/m _
e el IR L] e
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