
Evaluating Synthetic Bugs
Joshua Bundt

Northeastern University
bundt.j@northeastern.edu

Andrew Fasano
Northeastern University
MIT Lincoln Laboratory

fasano@mit.edu

Brendan Dolan-Gavitt
New York University
brendandg@nyu.edu

William Robertson
Northeastern University

w.robertson@northeastern.edu

Tim Leek
MIT Lincoln Laboratory

tleek@ll.mit.edu

ABSTRACT
Fuzz testing has been used to find bugs in programs since the 1990s,
but despite decades of dedicated research, there is still no con-
sensus on which fuzzing techniques work best. One reason for
this is the paucity of ground truth: bugs in real programs with
known root causes and triggering inputs are difficult to collect
at a meaningful scale. Bug injection technologies that add syn-
thetic bugs into real programs seem to offer a solution, but the
differences in finding these synthetic bugs versus organic bugs
have not previously been explored at a large scale. Using over 80
years of CPU time, we ran eight fuzzers across 20 targets from the
Rode0day bug-finding competition and the LAVA-M corpus. Exper-
iments were standardized with respect to compute resources and
metrics gathered. These experiments show differences in fuzzer
performance as well as the impact of various configuration options.
For instance, it is clear that integrating symbolic execution with
mutational fuzzing is very effective and that using dictionaries im-
proves performance. Other conclusions are less clear-cut; for ex-
ample, no one fuzzer beat all others on all tests. It is noteworthy
that no fuzzer found any organic bugs (i.e., one reported in a CVE),
despite 50 such bugs being available for discovery in the fuzzing
corpus. A close analysis of results revealed a possible explanation:
a dramatic difference between where synthetic and organic bugs
live with respect to the “main path” discovered by fuzzers. We find
that recent updates to bug injection systems have made synthetic
bugs more difficult to discover, but they are still significantly eas-
ier to find than organic bugs in our target programs. Finally, this
study identifies flaws in bug injection techniques and suggests a
number of axes along which synthetic bugs should be improved.

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. This ma-
terial is based upon work supported by the Department of Defense under Air Force Contract No.
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the views of the Department of Defense.
Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013
or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are
defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other
than as specifically authorized by the U.S. Government may violate any copyrights that exist in this
work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8287-8/21/06.
https://doi.org/10.1145/3433210.3453096

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering → Software defect analysis.

KEYWORDS
Fuzzing; synthetic bugs; evaluation

ACM Reference Format:
Joshua Bundt, Andrew Fasano, Brendan Dolan-Gavitt, William Robertson,
and Tim Leek. 2021. Evaluating Synthetic Bugs. In 2021 ACM Asia Con-
ference on Computer and Communications Security (ASIA CCS ’21), June
7–11, 2021, Hong Kong, Hong Kong. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3433210.3453096

1 INTRODUCTION
Fuzz testing, or fuzzing, is currently one of the best techniques for
vulnerability discovery. Since its introduction in 1990 [31], a vari-
ety of fuzzing techniques have been explored including grammar-
based fuzzing [17]; fuzzing combined with symbolic execution and
SMT solvers [42]; taint-based fuzzing [15]; and fuzzing with neural
networks [39]. Today, fuzzing is used widely and at scale in indus-
try (e.g., Sage [18], ClusterFuzz [19], and OSS-Fuzz [22]). We refer
interested readers to a recent survey on fuzzing techniques for a
comprehensive overview of the field [29].

Automated vulnerability discovery is essential to both software
developers interested in deploying secure software as well as hack-
ers interested in exploiting software. As such, there is a clear need
to understandwhat vulnerability discovery techniques actuallywork
in practice and in which contexts. Furthermore, accurately quanti-
fying and describing the performance of novel approaches to vul-
nerability discovery tools and techniques is necessary to advance
the state of the art.

Fortunately, significant prior work has laid out guidelines and
exposed pitfalls concerning how fuzzers should be evaluated [26].
A critical component of fuzzer evaluations is the “bug corpus,”which
has historically been a combination of previously-discovered bugs
and new (0-day) discoveries attributed to the technique under eval-
uation. In 2016, LAVA introduced synthetic bug generation, in part,
to overcome the limitations of relying on known vulnerabilities for
fuzzer evaluation [11].

In the years since the release of LAVA and its most well-known
benchmark corpus, LAVA-M, a large body of work has used syn-
thetic bug injection in their evaluations. However, it is unclear that
LAVA bugs are representative of organic (i.e., non-synthetic) bugs.
Since LAVA bugs are commonly found by modern fuzzers while

This work is licensed under a Creative Commons Attribution-ShareAlike International
4.0 License.

ASIA CCS ’21, June 7–11, 2021, Hong Kong, Hong Kong.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8287-8/21/06.
https://doi.org/10.1145/3433210.3453096

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

716

https://doi.org/10.1145/3433210.3453096
https://doi.org/10.1145/3433210.3453096
https://creativecommons.org/licenses/by-sa/4.0/

organic bugs remain undiscovered, perhaps these synthetic bugs
are easier to find than non-synthetic bugs, which are organically
(and unintentionally) added into programs. If there are significant
differences between the methods of discovering LAVA bugs vs. dis-
covering organic bugs, it would call into question the assumption
that a fuzzer capable of efficiently finding LAVA-injected bugs will
perform similarly with organic bugs.

We performed a large-scale measurement study to validate or
refute the conventional wisdom regarding the utility of synthetic
bug generation. We evaluated eight distinct fuzzers on 20 targets
over the course of eight experiments. These experiments test the
selected fuzzers’ ability to discover bugs injected by LAVA in its
default configuration, alternative LAVA configurations (some of
whichwe implemented), as well as bugs injected by other synthetic
bug-injection systems, and by hand. In total, we ran these fuzzers
for 733K CPU-hours, or just over 83.5 CPU-years.

Our evaluation reveals five key findings:
(1) Symbolic execution integrated with mutational fuzzing is

highly effective.
(2) Gray-box, coverage-guided fuzzers can effectively find LAVA

bugs with simple techniques such as dictionaries or compar-
ison splitting.

(3) Injected bugs are biased towards a target program’s main
path which skews analysis results.

(4) Recent updates to LAVA increase the difficulty of discover-
ing injected bugs, but synthetic bugs still differ significantly
from organic bugs.

(5) LAVA-M and a portion of the evaluated challenges exhibit
fundamental weaknesses that should preclude them from
future fuzzer evaluations.

Our experiments were not able to reproduce bugs discovered in
prior work despite investing similar resources, providing further
evidence that organic bugs are more difficult to find than LAVA
bugs. Based on these findings, we identify several promising direc-
tions for improving synthetic bug injection to more closely model
the difficulty of organic bug discovery.Thefirst is requiring attacker-
controlled data to satisfy constraints beyond simple equality checks.
Injection techniques should also aim to place bugs “far away” from
commonly executed code. These techniques should be resistant to
bug-finding based on dictionary extraction or comparison splitting.
Finally, bug injection approaches should better measure the path
constraint solving capabilities of hybrid fuzzers. In support of en-
abling scientific replication of our results, we have published our
tools and data at https://rode0day.gitlab.io/evaluation.

The remainder of this paper is structured as follows. In §2, we
present background information on fuzzing and synthetic bug gen-
eration. §3 presents our measurement methodology, and §4 out-
lines the experiments we conducted. In §5, we present our find-
ings and key takeaways from the measurement. We discuss impli-
cations of these findings in §6, and conclude the paper in §7.

2 BACKGROUND AND RELATEDWORK
Due to its effectiveness and efficiency, fuzzing is the favored tech-
nique for automated vulnerability discovery. At a high level, a fuzzer
prepares inputs, or test cases, to a program under test, observes the
program’s behavior as it executes over these test cases, and records

security violations for later examination by an analyst. White-box
fuzzers use information derived from the program to generate test
cases, for instance via symbolic execution [16, 18], while grey-box
fuzzers [21, 34, 48] use partial information such as coverage for
the same purpose. Black-box fuzzers [1, 24, 37, 44], on the other
hand, eschew program analysis for faster input generation and
thus trade off this insight into the program state space for sim-
plicity and speed. On each execution of a test case, fuzzers typi-
cally record information that influence the scheduling [7, 37, 45]
or generation of subsequent test cases. For white-box fuzzers, this
could be path constraints over test case bytes, while for grey-box
fuzzers this could be coverage metrics in terms of blocks or edges.
Test case generation itself can range from purely random muta-
tion [20, 31, 48] to model-guided [1, 25, 32, 44] input generation
parameterized by information derived from prior execution traces.
Crashes are typically used as behavioral evidence of a security vi-
olation, and specialized instrumentation such as AddressSanitizer
(ASan) [38] can be used to force subtle run-time security violations
to produce crashes when they otherwise would not.

2.1 Evaluating Fuzzers
Fuzzers are typically evaluated on their ability to generate inputs
over some period of time that increase coverage of target programs,
discover bugs, or a combination of both. Coverage can be defined
inmultipleways; block, edge, and source code coverage is common.
Although covering vulnerable code is a prerequisite to bug discov-
ery, the goal of fuzzing is to find bugs, not solely to increase cov-
erage. With this goal in mind, fuzzers are often evaluated on their
ability to find known bugs (n-days) or unknown bugs (0-days).

Unfortunately, fuzzer evaluations are severely limited by a small
supply of known bugs. Public bug reports and CVE entries often
lack sufficient detail to determine if a fuzzer has rediscovered a
given bug. Some high-quality, manually-curated bug corpora (e.g.,
Magma [23]), aim to rectify this, but these are still fairly small. Fur-
thermore, using known bugs to evaluate fuzzers may bias evalua-
tions towards incremental improvements on the approaches that
previously discovered those bugs.

Automated synthetic bug-injection frameworks such as LAVA [11],
Apocalypse [35], and EvilCoder [33] provide an alternative path to
evaluating fuzzers. These frameworks automatically insert a large
number of synthetically-generated bugs into existing programswhich
can then be used to evaluate fuzzers.When a fuzzer fails to find any
new vulnerabilities in an application with no known bugs, it can
only be evaluated in terms of coverage. However, if a program has
known synthetic bugs, fuzzers can be evaluated on their ability to
find these bugs.

2.2 LAVA-based Bug Injection
Of the three synthetic bug-injection systemsmentioned above, LAVA
was the only one to release publicly available corpora of buggy
programs: LAVA-M and LAVA-1.The LAVA-M corpus is commonly
used for fuzzing evaluation in the literature [12]. LAVA builds off of
the PANDA [10] whole-system dynamic analysis platform to con-
duct a dynamic taint analysis on input files ingested by target ap-
plications.The system begins with preprocessed C source code and
uses source code rewriting and a dynamic taint analysis to identify

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

717

https://rode0day.gitlab.io/evaluation

Figure 1: tcpdumpB bug 252466. Example of a multi-DUA, lava_set() bug. Dead, unused, and available (DUA) bytes of the input are stored
in global variables (highlighted in green). Later, these values are retrieved and conditionally trigger a crashing bug (highlighted in red).

attacker-controlled data referred to as DUAs1 that can be modified
without affecting the behavior of the target application. During its
analysis, LAVA also identifies source locations where bugs can be
injected. After the analysis concludes, LAVA injects memory cor-
ruption bugs at these locations which are triggered depending on
a DUA value. The modified program is then tested to ensure the
bugs can be triggered and that benign inputs do not cause crashes.
In the LAVA-M/LAVA-1 data set, each bug triggered is a simple
comparison of a constant value to a single DUA value. Each DUA
is assigned and retrieved using the lava_set() and lava_get() func-
tions respectively which store and load DUAs from a global array.

To address concerns about LAVA bug realism, Sridhar [41] up-
dated LAVA to support “dataflow mode” where a local array of
DUAs is passed by reference between functions. Inspired by this
work, we extended LAVA to support a “multi-DUA mode” where
injected bugs are triggered by one of the following expressions re-
lating three DUAs (𝑥,𝑦, 𝑧) and a per-bug random constant (𝐶):

𝐶 (𝑥 + 𝑦) = 𝑧

𝑥𝑦 − 𝑧 = 𝐶

(𝑥 + 2)(𝑦 + 3)(𝑧 + 1) = 𝐶

If the expression is satisfied, the DUA values will control howmem-
ory is corrupted. An example multi-DUA bug is shown in Fig. 1.

LAVA also has limited support for coverage bugs where uncondi-
tional bugs are injected on a coverage frontier.2 These bugs are in-
jected after analyzing a corpus of inputs (e.g., those from a fuzzing
campaign) and combining the coverage from the provided inputs.
Unlike traditional LAVA bugs, coverage bugs are not accompanied
with crashing inputs and may be impossible to trigger.

2.3 Limitations of Synthetic Bug Injection
Although there are strong arguments in favor of automated syn-
thetic bug injection, existing work is known to suffer from several
1Dead (not used in many branches), Uncomplicated (not a complex function of input
bytes), and Available at this point in the program trace
2https://github.com/panda-re/lava/tree/covbugs/covbugs

important shortcomings. (We investigate the effect of these limita-
tions on bug discoverability and fuzzer evaluations in §5.)

Injection coverage vs. reachability trade-off. Systems that inject
bugs along a path recorded using dynamic analysis and a concrete
input are unable to inject bugs into uncovered code. On the other
hand, systems that inject bugs at arbitrary program points without
concretely evaluating the bug are unable to determine if injected
bugs can actually be triggered.

Limited bug types. Existing bug injection systems support a lim-
ited number of bug types (e.g., out-of-bounds array indexing) and
adding new types is non-trivial. While this shortcoming is not fun-
damental to the approach, it does practically limit the degree of
insight that can be gained into fuzzers using synthetic bugs.

Bug realism and over-fitting. Injected bugs do not necessarily ap-
pear similar to organic bugs authored by humans. This “realism
gap” can take several forms. For instance, in source code, injected
bugs might use variable names that are clearly auto-generated or
that are in some other way atypical of human naming. At a se-
mantic level, injected bugs might introduce control or data flows
that are incongruent with the rest of the program.This gap in turn
opens the door for fuzzers to “optimize for the benchmark,” which
can frustrate efforts to improve real-world performance.

To mitigate these shortcomings, fuzzer evaluations typically re-
port detection performance on both synthetic benchmarks such as
LAVA-M as well as a test set composed of real programs. Neverthe-
less, use of synthetic benchmarks is eliciting increasing criticism
from the security community, raising the question: Is synthetic bug
generation an ecologically valid approach to fuzzer evaluation? We
endeavor to answer this question in the remainder of this paper.

3 TEST CORPORA AND METHODOLOGY
The primary aim of this work is to answer the question of whether
synthetic bug injection is an ecologically valid approach to fuzzer
evaluation—that is, whether conclusions drawn from a fuzzer’s
synthetic bug discovery performance can be reliably generalized

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

718

https://github.com/panda-re/lava/tree/covbugs/covbugs

Table 1: Rode0day challenge programs selected for evaluation.

Challenge BT1 BF1 BI2 S-DUA3 M-DUA3 Date Version CVEs POCs SLOC Description

duktape 17 15 L 17 2018.11 v2.3.0 60K JavaScript interpreter
fileB3 72 72 D 31 31 2019.02 v5.35 4 4 16K File type indentifier
fileS3 133 132 L 103 31 2019.09
fileS4 103 103 L 77 26 2019.10
grepB2 45 45 L 31 14 2019.09 v3.1 101K Pattern matcher
jpegS3 97 1 C 2019.07 v9c 29K JPEG image decoder
jqB 33 33 D 30 3 2019.01 v1.6 40K JSON parser
jqB2 137 137 D 135 2 2019.03
jqS3 29 28 D 26 3 2019.07
jqS4 21 21 L 21 2019.09
newgrepS 4 4 A 2018.10 v2.16 Pattern matcher
pcreB 106 106 D 73 33 2018.10 v10.33-RC1 84K Regex library
sqliteB 56 24 L 56 2019.05 v3.29.0 18 14 160K SQL database
tcpdumpB 76 59 L 74 2 2019.06 v4.9.2 28 17 129K Packet analyzer
tinyexprB2 4 3 M 2019.07 master 682 Math expression parser
yamlB2 45 45 L 45 2019.07 v0.1.7 10K YAML parser
1BT is total injected bugs. BF is total bugs found in all experiments.
2BI is bug injection type: data-flow (D); lava_get (L); manual (M); coverage (C); Apocalypse (A).
3#DUAs/bug: single-DUA (S-DUA); multi-DUA (M-DUA).

to a real-world setting. To answer this question, we devised a com-
prehensive experimental methodology to conduct experiments in
support of this inquiry shown in Fig. 2. In this section, we outline
the challenge corpus, the fuzzers under test, and the nature of the
data we collected to support the evaluation described in Sec. 5.

3.1 Challenge Corpus
Conducting an empirical evaluation of the utility of synthetic bugs
for fuzzing evaluations requires obtaining a data set of challenges
injected with synthetic bugs. We define a challenge as a software
artifact that has been injected with bugs; one original artifact can
be injected multiple times to produce distinct challenges.

Similar to prior work [23], we seek a data set consisting of a
diverse set of challenges in terms of functionality, the type of in-
put, and code complexity. In addition, the challenges should be
amenable to fuzz testing by popular fuzzers. Finally, the injection
procedure(s) should represent the current state of the art.

Luckily, the Rode0day corpus satisfies each of these criteria. Rode-
0day [12] is a continuous bug-finding competition that uses syn-
thetic bugs. The Rode0day corpus3 is a collection of 55 challenges
built from 12 programs deployed in previous competitions. Syn-
thetic bugs were injected into these challenges primarily using
LAVA [11] in various configurations, although the corpus also con-
tains a challenge generated by Apocalypse [35] and several chal-
lenges with manually-injected bugs.

In order to distill a feasible set of challenges from the Rode0-
day corpus, we conducted a short evaluation of all 55 challenges
with a representative subset of available fuzzers. During this chal-
lenge evaluation, we ensured that each fuzzer’s compiler instru-
mentation toolchain could successfully compile the target, that the
compiled challenge executed without error on the initial seed(s),

3https://rode0day.mit.edu/archive

and that the solution inputs for each injected bug caused the bi-
nary to crash as intended. Finally, we ran the subset of fuzzers for
a 15 minute fuzzing campaign with the default options to ensure
that each fuzzer would successfully generate new, mutated inputs.
From this pool of feasible challenges, we selected a final set of eval-
uation challenges that varied along the following dimensions:

(1) bug injection method (distinct LAVA configurations, Apoc-
alypse, or manual);

(2) program functionality and input type;
(3) percentage of bugs found during the Rode0day competition;
(4) type of LAVA bug trigger (lava_set() vs. dataflow); and,
(5) number of DUAs per LAVA bug (multi- vs. single-DUA).

The final challenge set was selected with the competing prior-
ities of providing overall diversity while also supporting compar-
isons of specific aspects of synthetic bug injection. In total, 16 chal-
lenges from 10 different open-source programs across 10 Rode0-
day competitions comprise this set. As these challenges are based
on slightly outdated programs, limited number of CVEs describing
organic bugs in these challenges are available. An overview of the
final Rode0day challenge set is shown in Table 1.

3.2 Fuzzer Test Corpus
An overview of the eightmutational fuzzers selected for evaluation
in this paper are shown in Table 2. These fuzzers were selected for
evaluation using the following criteria.

State-of-the-art. Fuzzers that are widely regarded as representa-
tive of the state-of-the-art in mutational fuzzing were considered
for inclusion in the evaluation. This determination was made on
the basis of published work and frequent inclusion in prior fuzzing
evaluations.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

719

https://rode0day.mit.edu/archive

Table 2: Fuzzers evaluated.

Fuzzer Version Year Binary Source

AFL [48] v2.56b 2016 Y Y
AFLplusplus [13] (AFL++) v2.62c 2020 Y Y
FairFuzz [27] (AFL-rb) v2.52 2017 Y Y
Angora [8] v1.2.2 2018 N Y
Eclipser [9] v1.0 2019 Y N
Ankou [28] v1.0 2020 Y Y
Honggfuzz [43] v2.1 – Y Y
QSYM [47] #89a761d 2018 Y Y

Publicly available. Unfortunately, some fuzzers do not release
their source code, which hinders replication and validation of pub-
lished results. We chose to reduce the risk of unexplainable exper-
imental anomalies by only considering fuzzers with source code
available.

Testbed compatibility. The fuzzer must be compatible with the
constraints of the HPC environment used in the evaluation (de-
scribed in Sec. 4.2). Unfortunately, this excluded some fuzzers from
consideration in this work. For instance, REDQUEEN [5] reported
excellent performance on the LAVA-Mdata set. However, that fuzzer
requires Intel Processor Trace support and root privileges, neither
of which were available in our evaluation environment.

Challenge corpus compatibility.Theadvantages of the fuzzermust
be generally applicable to Rode0day target challenges, or else it
was excluded from consideration. For instance, AFLNET is a net-
work protocol fuzzer which does not apply to any of the selected
Rode0day challenges.

Minimal preparation overhead. Some fuzzers focus on a specific
domain of inputs or program functionality. For instance, AFL-smart
requires a Peach fuzzer definition (i.e., a grammar describing the
input language) for each challenge and was thus excluded.

Diversity of implementation. The fuzzer corpus should manifest
diversity of implementation. In particular, although evaluating sev-
eral AFL derivatives is almost unavoidable due to the popularity of
AFL within the research community, we made an effort to include
fuzzers without direct AFL lineage.

3.3 Coverage Measurement
Collecting unbiased coverage metrics during a fuzzing experiment
is a non-trivial and under-discussed task. Previous research varies
wildly in the metrics collected, the collection methods used, and
the granularity of the metrics themselves. Many studies prefer to
report the AFL statistic of paths, others report basic block or edge
coverage, and some report source code line coverage. Empirical
research has shown the pitfalls of poor coveragemeasures [40], but
even when block or edge coverage is used, rarely is the method for
measuring coverage reported.

For these reasons, we adopted the binary coverage tool used to
evaluate REDQUEEN [4]. We extended the QEMU-based coverage
tool to execute concurrently with the fuzzer, capturing coverage
and statistics in real time. We found that methods that measured
coverage post-experiment suffered a loss of fidelity due to differ-
ences in fuzzer queue management behavior. By running the mon-
itor concurrently with the fuzzer and utilizing the Linux inotify

Table 3: Experiment parameters.

ID Desc Hrs D Tr Fz Tg CPU/h HPC

e1 Default options 24 Y 25 5 R 96K 1
e2 No dictionary 24 N 5 8 R 35K 1,2
e3 Binary only 24 N 5 4 R 15K 1
e4 64-bit binaries 24 Y 5 6 R 23K 1
e5 LAVA-M 24 Y 5 8 L 77K 1
e6 x4 threads/CPUs 24 Y 10 5 R 8K 1
e7 7 days 168 Y 9 6 R∗ 218K 3
e8 28 days 672 Y 3 5 R∗ 262K 3

Totals 5,323 733K
Default options: 32-bit binaries, w/dictionary, x2 threads/CPUs, w/source
Columns: D: fuzzing dictionary, Tr: # of trials, Fz: # of fuzzers, Tg: targets fuzzed
Targets fuzzed: R: Rode0day challenges, R∗ : R minus some duplicates, L: LAVA-M.

API, we collected accurate timestamps when every edge or bug
was discovered. Additionally, by utilizing the same set of binaries
to record coverage for all experiments, there is no discrepancy in
coverage and bug reporting between different compiled versions
of the same source program.

Our monitor logged block coverage, edge coverage, and trig-
gered bugs in real time to a SQLite database that recorded test cases
and crash inputs as the files were written to the file-system. Af-
ter the experiments were complete all experiment databases were
merged into one relational database for analysis.

3.4 Bug Reporting
By utilizing a synthetic bug corpus, our experiments use ground
truth in found bug accounting.Without synthetic bugs, researchers
must rely on a method of crash triaging to determine unique bug
counts. As Klees et al. [26] pointed out, even the best available
heuristics (e.g., stack hashing) perform quite poorly in determin-
ing unique bugs. In addition to unique bug counts, some research
also reports the AFL metric of unique crashes which can suffer
from bias and over-counting of distinct source code flaws.

4 EXPERIMENTAL SETUP
To answer research questions about the utility of synthetic bugs,
we conducted eight distinct experiments with various fuzzer con-
figurations, computational resources, time resources, and target
types. To conduct these experiments at the required scale, we de-
veloped a fuzzer-agnostic orchestration framework to run on High
Performance Computing (HPC) environments. Here, we describe
those experiments and the infrastructure we created.

4.1 Fuzzing Experiments
Table 3 shows the eight experiments we designed to explore param-
eter trade-offs and to reduce the potential for accidentally intro-
ducing biases into the evaluation. Due to individual fuzzer limita-
tions, not every fuzzer was run in every experiment. As a resource
optimization, some of the challenges based on the same original
program were limited to just one version for long-running experi-
ments. Details on these exclusions are presented in Appendix A.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

720

Figure 2: Overview of the experimental setup. Components in bold were developed, contributed, or collected by the authors.

4.1.1 Default Options. The default options for our experiments
follow recommendations from previous research [26] where pos-
sible. Fuzzers were launched with two CPUs/threads except where
otherwise specified. Two additional CPUs were allocated for our
real-time analysis process. Fuzzers designed to run in a hybrid
mode such as QSYM andAngora were runwith one QSYM/Angora
process synchronizing with one AFL instance in accordance with
author recommendations. All AFL instances were run with the
-S option which prevents deterministic mode fuzzing and enables
AFL to sync progress with another fuzzer or itself. Eclipser was the
only fuzzer which did not support specifying multi-threaded exe-
cution or multi-process synchronization at the time of writing. We
used the same seed input files, execution timeouts, and compiler
options for each target across all experiments as described below.

Seed input files.Weused the seeds provided during the Rode0day
competition for nearly all challenges as they were well-formed in-
put files.The only exception was for tcpdump as the provided seed
violated Angora’s input size restriction. To resolve this, an alterna-
tive seed was selected and used for all fuzzers.

Execution timeouts. The creators of Rode0day provided recom-
mended timeout values for slow targets which we used. When no
such recommendation was provided, the default timeout of each
fuzzer was used.

Compiler options. Targets were compiled as 32-bit binaries with
default options. They were also compiled with coverage sanitizers
as required by the various fuzzers, but without memory or unde-
fined behavior sanitizers since LAVA-injected bugs cause segmen-
tation fault-induced crashes without the need for sanitizers. An-
gora lacks support for 32-bit binaries, so it was evaluated across
all experiments on 64-bit versions of the challenges.

4.1.2 Parameters Evaluated. Across the experiments, we evaluated
how dictionary availability, source code availability, and architec-
ture affect fuzzer performance.

Dictionary availability. A fuzzing dictionary is a set of tokens
that can be used to mutate an input. AFL added dictionary support

in version 0.96b (January 2015).4 The source code release for AFL
contains dictionaries for many common file formats and others
have created large collections of dictionaries.5 libFuzzer and Hong-
gfuzz support AFL-style dictionaries [21], and OSS-Fuzz integrates
dictionaries into many of its fuzzing projects. Despite nearly uni-
versal support for this feature and the prevailing belief that fuzzing
dictionaries can have a dramatic positive effect on fuzzer efficiency,
most fuzzing papers do not report whether or not a dictionary was
used in experiments or if one is even available.6

Fuzzing dictionaries are designed to increase coverage, but for
single-DUA LAVA-injected bugs (which compare input against a
4-byte magic value), a dictionary of constants parsed from a dis-
assembly of the fuzzing target can be very effective in improving
bug finding. This method of extracting constants from a compiled
binary was reported by the LAVA authors, but was never used in
a LAVA-M evaluation.7 We conducted experiments with and with-
out (e2) a dictionary of constants extracted from the challenge bi-
nary to measure its impact on bug finding and coverage.

Binary vs. source. Many of the Rode0day challenges were de-
ployed in the competitions as binary-only challenges,meaning that
fuzzers that rely on source code instrumentation or analysis were
not able to compete on those challenges. The source code for those
binary-only challenges was subsequently released after the com-
petitions. In order to evaluate more fuzzers, we chose to only run
one set of experiments with binary-only challenges (e3).

32-bit vs. 64-bit. LAVA is currently only capable of injecting bugs
within a 32-bit binary. Most Rode0day challenges were deployed
as 32-bit challenges, with a small handful deployed as 64-bit bina-
ries. Due to the preprocessing that occurs before LAVA bugs are
injected, compiling LAVA challenges for 64-bit architectures is not
always a straightforward task. To support our evaluation, we man-
ually patched the Rode0day challenges used in this evaluation so

4https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
5https://github.com/google/fuzzing/tree/master/dictionaries
6One exception is ProFuzzer [46] which attempts to identify the location of fields and
their types within the program input.
7https://moyix.blogspot.com/2016/07/fuzzing-with-afl-is-an-art.html

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

721

https://lcamtuf.blogspot.com/2015/01/afl-fuzz-making-up-grammar-with.html
https://github.com/google/fuzzing/tree/master/dictionaries
https://moyix.blogspot.com/2016/07/fuzzing-with-afl-is-an-art.html

Table 4: HPC specifications.

HPC Host OS CPU (Intel) CPU Speed Root Limitations

1 CentOS 7 Xeon E5-2690 v3 2.60GHz 7 Job duration
CentOS 7 Xeon E5-2680 v4 2.40GHz 7

2 Ubuntu 18 Xeon Gold 6248 2.50GHz 7 Job count
3 Ubuntu 18 Xeon E5-2683 v3 2.00GHz 7 CPU limits

that they would compile for 32-bit or 64-bit architectures. Addi-
tionally, Angora only operates on 64-bit binaries, so to provide a
unbiased comparison, we conducted one experiment with 64-bit
binaries for all fuzzers (e4).

4.2 Fuzzing Infrastructure
We utilized three different High Performance Computing environ-
ments in order to conduct our experiments. HPC resources are not
often used for fuzzing experiments, but they provide substantial
resources if the experiments are compatible with the restrictions
of the computing environment. For this reason, we chose not to
evaluate fuzzers that required root permissions or a modified ker-
nel to execute correctly. The specifications of the HPCs and their
restrictions are shown in Table 4.

HPC-1 was the only environment running Linux kernel version
3 which was required for QSYM but incompatible with Angora. As
this environment allowed for a significant number jobs to run in
parallel, it was used for all the 24 h experiments with the exception
of Angorawhich ran onHPC-2. Policies enforced by the operator of
HPC-3 made access to data generated in the environment challeng-
ing. As such, it was used only for the long-running experiments
when the other environments were unsuitable.

As described in Section 3.3, we ran amonitor process concurrent
with each fuzzer to track coverage and bugs discovered over time.
In all HPC environments, Linux cgroups were used to limit the
fuzzer and monitor to the necessary number of CPUs. To ensure
the monitor did not affect the fuzzer performance, two additional
CPUs were allocated for the monitor process which the fuzzer was
configured not to use.

5 EVALUATING SYNTHETIC BUG INJECTION
Weconducted eight experiments totaling approximately 733KCPU-
hours. The merged coverage database reports the coverage for ap-
proximately 60M test case inputswhich correspond to 226K unique
edges from the 16 challenges. 7.3 million test case inputs triggered
crashes for 3,421 unique bugs.

We here report an analysis of the data collected in these exper-
iments. With this analysis, our goal is to answer several research
questions: (i) What can synthetic bugs tell us about relative per-
formance between popular fuzzers? (ii) Do different bug injection
techniques yield bugs of differing difficulty to discover? (iii) How
difficult are synthetic bugs to discover compared to organic bugs?

5.1 Evaluation Metrics
Before presenting the results of the evaluation, we consider and
justify the choice of evaluation metrics used herein. A topic first
addressed by Klees et al. [26], many subsequent fuzzing studies

Figure 3: Example top five rankings for sqliteB.
The white triangle in all box and whisker plots represents the mean.

have attempted to follow the Arcuri and Briand [2, 3] recommen-
dations regarding statistical tests for assessing randomized algo-
rithms. Despite these guidelines, reporting sound statistical mea-
sures on fuzzing experiments is a challenging task. The data often
contains outliers and the variance of the distributions is unknown,
differing significantly between fuzzer-target combinations. Unfor-
tunately, many papers still report performance metrics like unique
crashes and unique paths which can be wildly misleading. Data re-
garding bugs found is overwhelmingly sparse since many fuzzers
may not find any bugs and the total number found normally re-
mains in the single digits.

Case Study:Measure of centrality.Theamount of variance present
in most experimental data makes an arbitrary choice of the mea-
sure of centrality semi-dangerous. Choosing to report median vs.
mean or vice-versa could change reported rankings and/or percent
improvement by a non-trivial amount.The sqliteB challenge repre-
sents this data analysis dilemma well, shown in Fig. 3. If medians
are chosen to represent data, Honggfuzz attained the most edge
coverage; however, AFL takes the top spot when means are cho-
sen. Additionally, AFL++ falls from a 14% increase in coverage over
QSYM to 5.7% increase using median vs. mean respectively. The
presence of outliers combined with highly dispersed distributions
makes both the mean and median a poor summary representation
of the data and underlying distributions.

Our Evaluation Metrics. In Table 5, we report the Vargha and
Delaney 𝐴12 measure to rank results combined with the Mann-
WhitneyU test (using the exactmethod to determine the distribution)
to provide a statistical test of the null hypothesis that the distribu-
tions are equal. The 𝐴12 measure provides an intuitive value that,
given fuzzer 𝐹1 and fuzzer 𝐹2, quantifies stochastic dominance, or
the probability that fuzzer 𝐹1 will perform better than 𝐹2. An 𝐴12
value of 0.95 would indicate that in 95% of the experiments 𝐹1 will
perform better than 𝐹2, or alternatively, that in the next experi-
ment, 𝐹1 is 95% likely to outperform fuzzer 𝐹2. We furthermore use
R’s Mann-Whitney implementation which is considered robust as
opposed to the SciPy implementation which is badly broken [36].8

8SciPy’s implementation is incorrect for 𝑛 < 20 as the normal approximation that
it relies to compute the Mann-Whitney U test on is invalid in these cases. We note
that the fuzzing community’s reliance on a broken statistical test implementation for
many of its evaluations has implications beyond this work.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

722

Table 5: Fuzzer performance summary.

Edge Coverage Bugs Found
Challenge First 𝐴12 Second First 𝐴12 Second

duktape AFL-rb 0.850 AFL++ QSYM 0.611 AFL
fileB3 QSYM 0.950 AFL++ QSYM 0.950 AFL-rb
fileS3 QSYM 0.658 Angora QSYM 0.753 Angora
fileS4 Angora 0.616 QSYM Angora 0.768 QSYM
grepB2 AFL++ 0.876 AFL Eclipser 0.842 AFL-rb
jpegS3 QSYM 0.942 AFL++ Eclipser 0.528 QSYM
jqB QSYM 0.567 Angora QSYM 0.886 Angora
jqB2 QSYM 0.903 AFL++ QSYM 0.926 AFL++
jqS3 QSYM 0.803 AFL++ QSYM 0.947 AFL++
jqS4 QSYM 0.735 AFL-rb QSYM 0.950 Honggf.
newgrepS Ankou 0.822 Honggf. Ankou 0.578 Honggf.
pcreB QSYM 0.722 AFL QSYM 0.891 Eclipser
sqliteB AFL 0.589 Honggf. QSYM 0.917 Honggf.
tcpdumpB QSYM 0.541 AFL-rb Angora 1.000 Eclipser
tinyexprB2 Honggf. 0.978 Angora Honggf. 0.850 Angora
yamlB2 Angora 0.800 Honggf. QSYM 0.610 AFL-rb
𝐴12 values in bold indicate distributions are not equal (p-value < 0.05).
Fuzzer names in bold indicate fuzzer first in both coverage and bug finding.

Figure 4: Overall bug finding stats. Results are taken from a rep-
resentative selection of 10 experiments for each fuzzer. total is the
percentage of the total bugs found. avg/tgt is the average of the per-
cent bugs found per target. >90% is a measure of consistency; the
percentage of bugs found in 9/10 experiments. The number above
each total bar is the raw number of bugs found by each fuzzer.

5.2 Fuzzer Performance on Synthetic Bugs
We first turn to the question of how fuzzers perform on the syn-
thetic bug challenge set, and whether they have utility in distin-
guishing the strengths and weaknesses of fuzzers under test. Fig. 4
presents an overview of relative fuzzer performance on the chal-
lenge set. From this, one can glean some larger trends. QSYMclearly
outperforms the field overall in absolute numbers of bugs found
as well as average bugs per target. Other fuzzers, such as AFL-
rb, Honggfuzz, and Angora have skewed performance across the
challenge set since their average bug discovery rate per target is
higher than the number of bugs found. Finally, some fuzzers show
inconsistent behavior. Honggfuzz, for instance, shows a substan-
tially lower number of bugs found in 90% of experiments than the

Figure 5: Find times for tcpdumpB bug 252466.
n: is the number of trials where the bug was discovered

total number of bugs found. Inconsistency suggests that average
bug-finding performance might be far away from the “best” possi-
ble performance reported over many repeated trials.

While these larger trends are suggestive, attaining deeper in-
sight requires individual discussion of each fuzzer. In the following,
we highlight results for several fuzzers.

AFL.As previouslymentioned, dictionaries can be very effective
in boosting AFL’s performance on a per-target basis. Without the
aid of symbolic execution, dynamic taint analysis, or even compar-
ison byte-splitting, AFL-based fuzzers are mostly useless at finding
LAVA-injected bugs. This is due to the nature of how LAVA bugs
are triggered which often requires matching a 32-bit magic value.
However, supplied with a simple dictionary of constants extracted
from a challenge (e.g., parsed by objdump) AFL can be very effec-
tive at finding LAVA bugs. In the subset of 24 h experiments, AFL
without a dictionary only found 15/861 bugs (2.74%) while AFL as-
sisted with a dictionary found 655/861 bugs (74.07%).

QSYM. In our experiments, QSYM consistently achieves the best
performance, discovering the most edge coverage on eight chal-
lenges and the most bugs on 10 challenges. QSYM’s main distin-
guishing feature is its use of concolic execution to assist in path
constraint satisfaction. As such, the results strongly suggest that
this capability is very useful for achieving greater coverage and, in
turn, discovering more bugs.

Angora. While Angora demonstrated remarkably fast and thor-
ough bug finding on fileS4, it failed to generate new inputs on four
challenges, which makes it clear that reliance on DFSan for taint
tracking makes it more brittle than other fuzzers in this evaluation.

Honggfuzz. Honggfuzz outperforms all other fuzzers on exactly
one challenge, tinyexprB2. Honggfuzz explores the most edges and
finds three of the four bugs (the remaining bug was never found by
any fuzzer). We ascribe this to Honggfuzz’s unique stringmutation
strategies combined with its comparison operator analysis; these
give it an edge for certain types of input parsers.

Ankou. Ankou covers the most edges and discovered the most
bugs on the newgrepS challenge, highlighting that its distance-based
fitness function can be effective under certain circumstances.

tcpdumpB bug 252466. Looking at the example LAVA bug previ-
ously shown in Fig. 1, we see it highlights the circumstances under
which some tested fuzzers outperform the rest of the field. The rel-
ative discovery times from all experiments for this bug are shown
in Fig. 5. Angora has the best median relative discovery times of

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

723

Figure 6: Discovery times of LAVA-M vs. Rode0day bugs.
N: is the number of challenges of the specified type.

approximately 100 s. Eclipser and QSYM are also effective and con-
sistent at finding this particular bug, but need more time (~8,000 s)
to solve the necessary constraints. Eclipser reports the lower min-
imum discovery time of 652 s while QSYM has the better median
discovery time of 7,961 s.

AFL only found this shallow bug in seven-day experiments with
a median discovery time of 265,082 s, or about 3.1 d. Multi-DUA
LAVA bugs like this one renders a dictionary of constants mostly
ineffective in finding LAVA bugs with AFL-based fuzzers. Similarly,
multi-DUA bugs mitigate the effectiveness of Honggfuzz’s split-
memory comparisons. However, this bug is still quickly and reli-
ably foundwith concolic execution or data-flowmethods, since the
constraints are not deeply nested in the program control flow.

5.3 Discovery Difficulty: Synthetic Bugs
Have Rode0day’s advancements in bug injection led to more diffi-
cult to discover synthetic bugs? Our experimental results show that
LAVA-M bugs are not particularly “difficult” to find. We define bug
difficulty as the median time required to find a bug across all runs.
Using this metric, we find that Angora, Eclipser, and even AFL are
able to find the majority of LAVA-M bugs within two hours.

Given the more sophisticated bug injection techniques used to
produce the Rode0day corpus, we hypothesize that Rode0day bugs
aremore difficult to find.This does appear to be the case: while four
challenges in the Rode0day corpus (duktape, yamlB2, pcreB and
grepB2) approximate the LAVA-M difficulty closely, the remainder
of the evaluated Rode0day challenges show increasing bug diffi-
culty using the median bug find time metric. For instance, consider
the various file challenges, where only Angora is able to find the
majority of injected bugs in two of the targets within the first two
hours of fuzzing. Other fuzzers take longer to find bugs in file chal-
lenges and fail to find all the bugs consistently.

Despite the existence of an increase in difficulty between the
LAVA-M and Rode0day corpora, it is unclear that this represents
a substantial increase in difficulty. In order to better understand
the difference in difficulty between single- (LAVA-M) and multi-
DUA (Rode0day) bugs, we examined several solution inputs that
the fuzzers generated for bug 252466 in tcpdumpB whose results
are described above. This multi-DUA bug is triggered when the

following equation is satisfied:

ether_dhost · ether_shost − ndo_snapend = 0xe2d6e451

The intended solution input uses three 4-byte values that arewithin
the ASCII range of printable characters. Several fuzzers simplify
this equation by setting two of the values to identity elements (0
or 1 for addition and multiplication, respectively). The simplified
equation then becomes linear, which is substantially easier for an
SMT solver to satisfy:

0 · 0 − ndo_snapend = 0xe2d6e451, or
ether_shost · 1 − 0 = 0xe2d6e451

This demonstrates aweakness of the currentmulti-DUA implemen-
tation in that the intended non-linear equation can be trivially sim-
plified to the complexity of a single-DUA bug. This is also likely
why AFL was able to discover this bug, as the provided dictionary
of constants includes the comparison value 0xe2d6e451.

Fig. 6 shows the distributions of median bug discovery times per
trial split by bug-injection technique. Note that the x-axis is log-
scale. The labels, “easy” and “hard” correspond to whether chal-
lenges had a median relative find time greater or less than 5 m.
These distributions suggest that while the various categories of
Rode0day bugs (LAVA, Apocalpyse, Manual, Coverage) are harder
than LAVA-M bugs, the absolute increase in difficulty is not large.
For instance, “LAVA-M easy” bugs can be discovered with a me-
dian time of 60 s, while “Rode0day easy” bugs take around 240 s.
Even “Rode0day hard” bugs only require a median time of around
3 h, which is well within the computational budget of most fuzzing
campaigns. Although few challenges of other bug types are avail-
able, it appears that manually injected bugs were of similar diffi-
culty to those added by the improved LAVA. “Apocalypse” bugs
were more challenging to find, but only a single target was eval-
uated with just four bugs. Finally, the “Coverage” category sub-
stantiates the claim that finding new, or previously undiscovered,
coverage is exponentially difficult.

Figure 6 highlights another important finding. “LAVA-M” and
the “Rode0day easy” challenges represent poor choices to use as
benchmarks for fuzzers due to the ease and consistency that mod-
ern fuzzers discover those bugs.

5.4 Discovery Difficulty: Rode0day vs. Organic
Do Rode0day bugs approximate the discovery difficulty of organic
bugs? This research question directly bears on the ecological valid-
ity of synthetic bugs; that is, if a fuzzer performs well on synthetic
bugs, will that behavior generalize to organic bugs in real-world us-
age? One method of estimating the difficulty of finding organic
bugs vs. Rode0day bugs is to compare the median find times for or-
ganic bugs to those for Rode0day bugs. While we cannot know a
priori the entire set of organic bugs that are latent in the challenge
corpus, we can rely on prior bug reports as a lower bound. There
are in fact at least 50 publicly reported bugs (35 with POC inputs
available) that exist in the versions of the software artifacts used
to create the Rode0day challenges, and thus we expected to trigger
some subset of these.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

724

Figure 7: Blocks covered by fuzzers vs. blocks observed in POCs that trigger organic bugs.

Unfortunately, none of these existing bugs were found during
our experiments9.Thiswas a counter-intuitive result; after all, most
bugs are now found via fuzzing,10 and the fuzzers included in our
experiments are all considered (to varying degrees) state-of-the-
art. The fuzzers had also been run on the challenge corpus many
times over hundreds of thousands of CPU-hours (see Table 3).

In investigating this phenomenon further, we uncovered several
immediate reasons why some of these bugs were not found. One
such reason is that the majority of the bugs require ASan [38] to be
enabled in order to detectmemory corruption.Without such a “fail-
fast” memory corruption detector in use, it is unlikely that those
bugs would be rediscovered, or that if they were triggered that
they would manifest in a recognizable way such that they could be
linked to the original report. Another reason is that of the 17 bugs
that exist in tcpdump v4.9.2, all require different command line
arguments than those used in the Rode0day competitions.Without
the presence of those arguments, the vulnerable code would never
be executed regardless of the fuzzing inputs.

We also conducted a coverage analysis of 35 organic bugs to de-
termine if the basic blocks related to triggering them were discov-
ered during fuzzing. To do so, we first collected proof-of-concept
(POC) inputs corresponding to each bug.Then,we verifiedwhether
or not the POCs would trigger the same fault in the Rode0day ver-
sion of the program. Finally, we used the same coverage binaries
from our experiments and recorded the basic blocks covered by all
the POC inputs. Comparing the coverage achieved by the fuzzers
in our evaluation to the coverage required to trigger the bugs us-
ing the POCs would provide a measure of how “close” the fuzzers
had come to rediscovering the organic bugs.

Fig. 7 shows Venn diagrams of the basic blocks found during our
experiments vs. the basic blocks covered by the POC inputs for the
challenges containing known bugs: sqliteB, tcpdumpB, and fileB3.
Interestingly, each of these challenges represent a range of “close-
ness” to triggering known bugs. Using proportion of block cover-
age as a proxy metric for distance, we find that fully 3,507 (34%) of
the 10,454 blocks covered by POCs for known bugs in sqliteBwere
not covered by a fuzzer in any experiment we conducted. This sug-
gests that, on average, fuzzers did not come close to rediscovering

9In a recent FuzzBench experiment[30] 3 of 4 fileB3 organic bugs were found occa-
sionally by significantly improved versions of AFL++ and Honggfuzz; each finding a
max of one bug per 24hr trial.
10In fact, academic fuzzers were responsible for finding the organic bugs in
sqliteB [49] and fileB3 [14].

Figure 8: CDF of distance as the shortest-path number of
edges between the main path and injected bugs. The main
path is defined as those edges with median discovery times < 1 h
in each challenge across all fuzzers and experiments.

the 14 known bugs in sqliteB. Moreover, given the exponential cost
of covering new code [6], it is unlikely that the fuzzers would have
found all of these bugs even given considerably more time.

fileB3 represents the other end of the spectrum. In this case, the
fuzzers were unable to cover only 13 (0.71%) of the 1,831 blocks cov-
ered by four POCs, two of which did not require ASan to trigger.
This suggests that satisfying the path constraints to reach those last
13 blocks was exceedingly difficult for the fuzzers we tested. It is
possible that these two discoverable bugs were gated behind “hard”
path constraints: since file has been continuously fuzzed as part of
OSS-Fuzz [22] for years, it can be expected that most of the low-
hanging fruit, or easy-to-discover bugs, has already been picked,
leaving only those bugs that are more difficult to reach. This exam-
ple certainly indicates that not all basic blocks are equally difficult
to cover, and that path constraint difficulty plays a significant role
in achieving coverage.Thus, it also gives further empirical support
for a power-law distribution of block and edge coverage.

5.5 Bug Injection and the “Main Path”
Despite the small number of organic bugs in relation to the LAVA-
M and Rode0day data sets, the data strongly suggests that organic
bugs are strictlymore difficult to discover for state-of-the-art fuzzers.
To better understand this phenomenon, we examined the place-
ment of injected bugs vs. organic bugs in the challenge programs.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

725

https://www.fuzzbench.com/reports/2021-02-17-bug-paper/index.html

Figure 9: Partial call-graph of fileB3

Due to its dependency on dynamic taint analysis, LAVA only in-
serts bugs along an execution path provided by a concrete input.
Since the bugs themselves are only separated from covered code
by a triggering predicate that can be as simple as testing for equal-
ity with a magic value, LAVA bugs are very close to covered code
and thus the difficulty of discovering them scales linearly with the
computational resources invested [6].

Fig. 8 demonstrates this phenomenon well. This graph plots a
CDF of shortest path distances between themain path of the evalu-
ation challenges containing organic bugs (sqliteB, tcpdumpB, and
fileB3) and LAVA bugs. Here, we define the “main path” as those
edges with a median discovery time < 1 h in each challenge across
all fuzzers and experiments. The main path threshold was empir-
ically chosen to represent a common inflection point in new cov-
erage over time from linear to logarithmic behavior—or, alterna-
tively, the approximate transition from linear to exponential diffi-
culty in attaining new coverage. The shortest path distance repre-
sents a lower bound for how many edges a fuzzer would need to
cover in order to trigger a bug.

For all three challenges, 85%, or 172 of all 204 injected bugs were
≤ 1 edge away from the respective main path. That is, most LAVA
bugs are indeed empirically very close to covered code.The remain-
ing 15% of bugs injected into sqliteB tail off to a maximum distance
of ≈ 200 edges, which coincides with the large number of POC
blocks that were never covered by fuzzers as shown in Fig. 7. On
the other end of the spectrum, 100% of LAVA bugs in fileB3 were
merely ≤ 1 edge away from easily covered code.

Contrast this with the two known organic bugs in fileB3 men-
tioned in §5.4. A manual analysis of these two bugs revealed that
the shortest path between the main path and their respective trig-
ger points required fuzzers to traverse at least two functions that
were not on the main path (see Fig 9). This is despite the fact that
only 13 POC blocks were never covered by any fuzzer, and pro-
vides a more nuanced explanation for why fuzzers were unable to
discover these bugs. That is, distance from easily covered code is

characteristic of organic bugs,11 and synthetic bugs should more
closely match this distance in order to accurately model (contem-
porary) organic bug discovery difficulty.

5.6 Key Findings
To summarize the key findings of our synthetic bug evaluation:

(1) QSYM outperforms all other fuzzers on the Rode0day eval-
uation corpus. This is likely due to its use of path constraint
solving leading to higher program coverage. (§5.2)

(2) Dictionaries can drastically affect howwell AFL-based fuzzers
perform, and their use (or absence) should be reported in fu-
ture fuzzing experiments. (§5.2)

(3) Some fuzzers can produce near-best bug discovery perfor-
mance, but are inconsistent in doing so. (§5.2)

(4) Rode0day bugs are not substantially harder to discover than
LAVA-M bugs, suggesting that further work is necessary to
generate synthetic bug challenges with better discrimina-
tory power for future fuzzing evaluations. (§5.3)

(5) Rode0day bugs are likely to be much easier to find than or-
ganic bugs, especially in programs that have been exposed
to extensive security testing. We posit that organic bugs
in these programs tend to be “far away” from fuzzing seed
paths, leading to an exponential cost in bug discovery time.
Since synthetic bugs are currently injected close to fuzzing
seed paths, their discovery time remains linear. (§5.4-5.5)

6 FUTURE DIRECTIONS FOR BUG INJECTION
Amajor finding of our evaluation is that synthetic bugs are signifi-
cantly easier to discover than organic bugs when using median dis-
covery time as a metric. A possible conclusion from this is that syn-
thetic bugs are fundamentally unsuitable for fuzzing evaluations.
However, we believe that this would be a simplistic conclusion
to adopt. There are clear and substantial benefits to synthetic bug
corpora in enabling scalable benchmark generation and low-cost
comparative evaluation. The community’s swift adoption of LAVA-
M also serves as empirical evidence of the utility of synthetic bugs.
Thus, rather than recommending that the concept of synthetic bugs
be discarded wholesale, we instead consider how could they be im-
proved to more accurately reveal real-world fuzzer performance.

Modeling organic bugs. One immediate direction for improving
the discriminatory and predictive power of synthetic bugs is to
more closely model them on organic bugs. Recall for example that
the initial version of LAVA bugs manifests as simple equality com-
parisons against data stored in a global array using a simple helper
function (lava_set()). In contrast, organic bugs usually do not have
such a direct dependence on literal values that appear in one spe-
cific contiguous set of bytes in an input. Rather, organic bugs tend
to be triggered by conditions derived from non-trivial computation
on multiple, non-contiguous bytes from an input. Similarly, while
early LAVA bugs relied on data flow to a global variable, inputs
leading to the triggering of organic bugs often do not have such a
simple, direct flow. Both of these unique characteristics of LAVA

11We note that this can be explained in part by the challenge’s significant exposure to
security testing. This is, however, a common situation for security-relevant software
today.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

726

bugs have been addressed to a degree in subsequent refinements
of the technique (i.e., data-flow and multi-DUA injection).

However, these refinements were used in several of the eval-
uated programs and our results show that they still fail to suf-
ficiently reflect the complexity of real bug data flows and input
dependence. For instance, the finding that SMT solvers can triv-
ially convert non-linear path constraints arising from multi-DUA
injection to simple linear constraints (§5.3) implies that more com-
plex constraints would better match organic bug path constraints.
Hence, a potential direction to bridge this gap would be to examine
the path constraints and data flows associated with organic bugs,
and develop techniques to closely model the complexity of those
constraints and data flows when injecting synthetic bugs.

Diversifying injection points. The current state of the art in syn-
thetic bug injection is rooted in dynamic analysis. As such, syn-
thetic bugs are injected along a path that the injector knows how
to reach. While this technique is effective in ensuring that injected
bugs can be triggered, it also biases injection towards bugs that
are close to code that is “easy” to cover (§5.5). There is building
consensus that bug discovery becomes exponentially more diffi-
cult the farther away those bugs are from code that has already
been covered [6]. Thus, the differing distance distributions from
covered code between organic and synthetic bugs has a substan-
tial impact on relative difficulty and, in turn, the predictive power
of synthetic bug injection.

In our view, addressing this injection point bias is important for
the viability of synthetic bug injection but also represents a major
intellectual challenge. Simply selecting arbitrary injection points
does not solve the problem, as this does not guarantee that injected
bugs can be triggered. Potential solutions might involve static anal-
yses or concolic execution tomore evenly distribute synthetic bugs
across a program without requiring (close) seed inputs. However,
since these program analysis techniques are also used in various
ways by fuzzing tools, this inherently couples bug discovery diffi-
culty to the capabilities of fuzzers under test. Thus, there remains
the risk that these bugs would nevertheless inaccurately model or-
ganic bug distributions and furthermore would not expose weak
points of tested fuzzers. Despite this risk, we believe that static or
concolic bug injection is a worthwhile research direction.

Resisting dictionary and comparison splitting. As our evaluation
demonstrated, dictionaries and comparison splitting are extremely
effective techniques for boosting the performance of baseline mu-
tational fuzzers like AFL and derivatives. If synthetic bugs make
use of injection techniques that are susceptible to these optimiza-
tions, then this again might render synthetic bugs easier to find
and thus less indicative of true fuzzer performance. Thus, future
bug injection techniques should ensure that trigger conditions can-
not be trivially satisfied from per-target dictionaries or split such
that satisfying the trigger becomes logarithmic in the size of the
value domain.

Quantifying the limits of hybrid fuzzers. Hybrid fuzzers such as
QSYM that integrate concolic execution to solve path constraints
clearly outperform approaches that adopt a brute-force strategy.
So long as constraint solving costs are kept in check, hybrid fuzzing
turns out to be an overall win. What is comparatively less under-
stood is where these approaches fail. For instance, are there partic-
ular value domains or forms that constraints take that degrade the

effectiveness of constraint solvers? As one example in this vein,
recall the case of fileB3 where fuzzers were unable to solve path
constraints involving strncmp in order to trigger two organic bugs.
We believe that synthetic bugs could be used to systematically ex-
plore program features and constructs that hybrid fuzzers struggle
with, providing valuable nuance to the analysis of hybrid fuzzers
and directions for future innovation.

7 CONCLUSIONS
In this paper, we presented a methodology for evaluating the effi-
cacy of synthetic bug injection for comparative fuzzer evaluations.
Using this methodology, we conducted extensive experiments to-
taling over 733K CPU-hours, 36M test cases, 23M unique crashes,
and 13 GB of block and edge coverage data from 16 challenge pro-
grams and eight fuzzers. Our findings show that while synthetic
bugs do not approximate the difficulty of recently discovered bugs,
they can provide useful insights into the strengths and weaknesses
of different state-of-the-art fuzzing approaches. We also point out
several pitfalls of conducting fair fuzzing evaluations that have not
been reported in the literature.

We find that synthetic bugs are quantitatively easier to find than
organic bugs using amedian discovery timemetric. Since synthetic
bugs do have substantial utility and distinct scalability advantages
over organic bug benchmarks, we highlight several complemen-
tary directions for improving future synthetic bug injection tech-
niques: modeling organic bugs, injection point diversification, dic-
tionary and comparison splitting resistance, and quantifying the
limits of hybrid fuzzers.

ACKNOWLEDGMENTS
Theauthorswould like to thankNortheasternUniversity’s Research
Computing team, the MIT SuperCloud and Lincoln Laboratory Su-
percomputingCenter and the InformationDirectorate’s AFRL/RITB
High Performance Systems Branch for providing HPC resources
that contributed to the research reported within this paper.
This material is based upon work supported by the National Sci-
ence Foundation under GrantNo. CNS-1916398. Any opinions, find-
ings, and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.
This material is based upon work supported by the Office of Naval
Research under Grant No. N00014-19-1-2364. Any opinions, find-
ings, and conclusions or recommendations expressed in this ma-
terial are those of the author(s) and do not necessarily reflect the
views of the Office of Naval Research.

REFERENCES
[1] Dave Aitel. 2002. An Introduction to SPIKE, the Fuzzer Creation Kit. (2002).
[2] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical

tests to assess randomized algorithms in software engineering. In International
Conference on Software Engineering. ACM Press, New York, New York, USA, 1–
10.

[3] Andrea Arcuri and Lionel Briand. 2014. A Hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software Testing
Verification and Reliability 24, 3 (2014), 219–250.

[4] Cornelius Aschermann. 2020. eqv/aflq_fast_cov: A fast binary coverage mea-
surement tool based on AFL’s Qemu mode. https://github.com/eqv/aflq_fast_
cov

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

727

https://github.com/eqv/aflq_fast_cov
https://github.com/eqv/aflq_fast_cov

[5] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In NDSS, Vol. 19. Internet Society, 1–15.

[6] Marcel Böhme and Brandon Falk. 2020. Fuzzing: On the Exponential Cost of Vul-
nerability Discovery. In Proceedings of the ACM Symposium on the Foundations
of Software Engineering. ACM, 11.

[7] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
Based Greybox Fuzzing as Markov Chain. In Proceedings of the ACM Conference
on Computer and Communications Security. ACM, 1032–1043.

[8] Peng Chen and Hao Chen. 2018. Angora: Efficient Fuzzing by Principled Search.
In IEEE Symposium on Security and Privacy, Vol. 2018-May. IEEE, 711–725.

[9] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-
Box Concolic Testing on Binary Code. In International Conference on Software
Engineering, Vol. 2019-May. IEEE, 736–747.

[10] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and RyanWhelan.
2015. Repeatable reverse engineering with PANDA. In Proceedings of the 5th
Program Protection and Reverse Engineering Workshop. ACM, 1–11.

[11] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Timothy Leek, Andrea Mam-
bretti, William Robertson, Frederick Ulrich, and Ryan Whelan. 2016. LAVA:
Large-Scale Automated Vulnerability Addition. In Proceedings of the IEEE Sym-
posium on Security and Privacy. IEEE, 110–121.

[12] A. Fasano, T. Leek, B. Dolan-Gavitt, and J. Bundt. 2019. The Rode0day to Less-
Buggy Programs. IEEE Security Privacy 17, 6 (2019), 84–88.

[13] Andrea Fioraldi, DominikMaier, Heiko Eißfeldt, andMarc Heuse. 2020. AFLplus-
plus. https://github.com/AFLplusplus/AFLplusplus

[14] Shuitao Gan, Chao Zhang, Peng Chen, Bodong Zhao, Xiaojun Qin, Dong Wu,
and Zuoning Chen. 2020. GREYONE: Data flow sensitive fuzzing. In Proceedings
of the 29th USENIX Security Symposium. USENIX Association, 2577–2594.

[15] Vijay Ganesh, Tim Leek, andMartin Rinard. 2009. Taint-based directedwhitebox
fuzzing. In International Conference on Software Engineering. IEEE, 474–484.

[16] Patrice Godefroid. 2007. Random Testing for Security: Blackbox vs. Whitebox
Fuzzing. In Proceedings of the International Workshop on Random Testing (RT ’07).
Association for Computing Machinery, 1.

[17] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based
Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’08). Association for Com-
puting Machinery, New York, NY, USA, 206–215.

[18] Patrice Godefroid, Michael Y. Levin, and David Molnar. 2008. AutomatedWhite-
box Fuzz Testing. In Proceedings of the ISOC Network and Distributed System Se-
curity Symposium. Internet Society, 16.

[19] Google. 2020. ClusterFuzz. ClusterFuzz. https://google.github.io/clusterfuzz/
[20] Google. 2020. Google/Honggfuzz. Google. https://github.com/google/honggfuzz
[21] Google. 2020. libFuzzer – a Library for Coverage-Guided Fuzz Testing. — LLVM

10 Documentation. https://llvm.org/docs/LibFuzzer.html
[22] Google. 2020. OSS-Fuzz. OSS-Fuzz. https://google.github.io/oss-fuzz/
[23] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-

Truth Fuzzing Benchmark. Proc. ACM Meas. Anal. Comput. Syst. 4, 3 (2020).
[24] Sam Hocevar. 2020. Samhocevar/Zzuf. https://github.com/samhocevar/zzuf
[25] Christian Holler, Kim Herzig, and Andreas Zeller. 2012. Fuzzing with Code Frag-

ments. In Proceedings of the USENIX Security Symposium. USENIX Association,
14.

[26] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating Fuzz Testing. In Proceedings of the ACM Conference on Computer and
Communications Security. ACM, 2123–2138.

[27] Caroline Lemieux and Koushik Sen. 2018. Fairfuzz: A targeted mutation strat-
egy for increasing Greybox fuzz testing coverage. In ASE 2018 - Proceedings of
the 33rd ACM/IEEE International Conference on Automated Software Engineering.
ACM, 475–485.

[28] Valentin J MManès, Soomin Kim, and Sang Kil Cha. 2020. Ankou: Guiding Grey-
box Fuzzing towards Combinatorial Difference. In International Conference on

Software Engineering. ACM.
[29] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,

Manuel Egele, Edward J. Schwartz, and Maverick Woo. 2019. The Art, Science,
and Engineering of Fuzzing: A Survey. (2019).

[30] Jonathan Metzman, Abhishek Arya, and Laszlo Szekeres. 2020. FuzzBench:
Fuzzer Benchmarking as a Service. https://security.googleblog.com/2020/03/
fuzzbench-fuzzer-benchmarking-as-service.html

[31] Barton P. Miller, Louis Fredriksen, and Bryan So. 1990. An Empirical Study of
the Reliability of UNIX Utilities. 33, 12 (1990), 32–44. https://minds.wisconsin.
edu/bitstream/handle/1793/59090/TR830.pdf?sequence=1

[32] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. 2018. T-Fuzz: Fuzzing by Pro-
gram Transformation. In IEEE Symposium on Security and Privacy. IEEE, 697–
710.

[33] Jannik Pewny and Thorsten Holz. 2016. EvilCoder: automated bug insertion.
In Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 214–225.

[34] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,
and Herbert Bos. 2017. VUzzer: Application-Aware Evolutionary Fuzzing. In
Proceedings of the ISOC Network and Distributed System Security Symposium. In-
ternet Society.

[35] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. 2018. Bug
synthesis: Challenging bug-finding tools with deep faults. In Proceedings of the
2018 26th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, 224–234.

[36] SciPy. 2019. Sparse data with mannwhitneyu · Issue #11035 · scipy/scipy. https:
//github.com/scipy/scipy/issues/11035{#}issuecomment-552508317

[37] CMU SEI. 2020. CERTCC/Certfuzz. CERT Coordination Center (CERT/CC).
https://github.com/CERTCC/certfuzz

[38] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. 2012. AddressSanitizer: A Fast Address Sanity Checker. In Proceedings
of the USENIX Annual Technical Conference. USENIX Association, 10.

[39] Dongdong She, Kexin Pei, Dave Epstein, Junfeng Yang, Baishakhi Ray, and
Suman Jana. 2019. NEUZZ: Efficient Fuzzing with Neural Program Smoothing.
In Proceedings of the IEEE Symposium on Security and Privacy. IEEE, 15.

[40] Laurent Simon and Akash Verma. 2020. Improving Fuzzing through Controlled
Compilation. In IEEE European Symposium on Security and Privacy. IEEE.

[41] Rahul Sridhar. 2018. Adding diversity and realism to LAVA, a vulnerability addi-
tion system. Master’s thesis. Massachusetts Institute of Technology.

[42] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In
Proceedings of the ISOC Network and Distributed System Security Symposium. In-
ternet Society.

[43] Robert Świȩcki. 2016. honggfuzz. https://github.com/google/honggfuzz
[44] Peach Tech. 2020. Peach Fuzzer. Peach Tech. https://www.peach.tech/
[45] Maverick Woo, Sang Kil Cha, Samantha Gottlieb, and David Brumley. 2013.

Scheduling Black-BoxMutational Fuzzing. In Proceedings of the ACM Conference
on Computer and Communications Security. ACM Press, 511–522.

[46] Wei You, XueqiangWang, ShiqingMa, JianjunHuang, Xiangyu Zhang, Xiaofeng
Wang, and Bin Liang. 2019. ProFuzzer: On-the-fly Input Type Probing for Bet-
ter Zero-Day Vulnerability Discovery. In 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 769–786.

[47] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM: A
Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings
of the USENIX Security Symposium. USENIX Association, 18.

[48] Michael Zalewski. 2020. American Fuzzy Lop. https://lcamtuf.coredump.cx/afl/
[49] Rui Zhong, Yongheng Chen, Hong Hu, Hangfan Zhang, Wenke Lee, and Ding-

hao Wu. 2020. Squirrel: Testing Database Management Systems with Language
Validity and Coverage Feedback. In Proceedings of the ACM Conference on Com-
puter and Communications Security. ACM, New York, NY, USA, 16.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

728

https://github.com/AFLplusplus/AFLplusplus
https://google.github.io/clusterfuzz/
https://github.com/google/honggfuzz
https://llvm.org/docs/LibFuzzer.html
https://google.github.io/oss-fuzz/
https://github.com/samhocevar/zzuf
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://security.googleblog.com/2020/03/fuzzbench-fuzzer-benchmarking-as-service.html
https://minds.wisconsin.edu/bitstream/handle/1793/59090/ TR830.pdf?sequence=1
https://minds.wisconsin.edu/bitstream/handle/1793/59090/ TR830.pdf?sequence=1
https://github.com/scipy/scipy/issues/11035{#}issuecomment- 552508317
https://github.com/scipy/scipy/issues/11035{#}issuecomment- 552508317
https://github.com/CERTCC/certfuzz
https://github.com/google/honggfuzz
https://www.peach.tech/
https://lcamtuf.coredump.cx/afl/

Table 6: Fuzzers run per experiment.

Fuzzer e1 e2 e3 e4 e5 e6 e7 e8
AFL 3 3 3 3 3 3 3 3

AFL++ 3 3 3 3 3 3 3 3

AFL-rb 3 3 3

Angora ★ ★ ★ ★
Ankou 3 3 3 3

Eclipser 3 3 3 3 3

Honggfuzz 3 3 3 3 3 3 3 3

QSYM 3 3 3 3 3 3 3

★ indicates fuzzer required (non standard) 64-bit targets

Table 7: Targets fuzzed per experiment.

Target(s) e1 e2 e3 e4 e5 e6 e7
LAVA-M (all) 3

duktape 3 3 3 3 3 3

fileB3 3 3 3 3 3 3

fileS3 3 3 3 3 3 3

fileS4 3 3 3 3

grepB2 3 3 3 3 3 3

jpegS3 3 3 3 3 3 3

jqB 3 3 3 3 3 3

jqB2 3 3 3 3

jqS3 3 3 3 3

jqS4 3 3 3 3 3 3

newgrepS 3 3 3 3 3 3

pcreB 3 3 3 3 3 3

sqliteB 3 3 3 3 3 3

tcpdumpB 3 3 3 3 3 3

tinyexprB2 3 3 3 3 3 3

yamlB2 3 3 3 3 3 3

A EXPERIMENT EXCLUSIONS
As shown in Table 6, not every fuzzer was able to run for every
experiment. Although Angora was run on many experiments, it
required building target binaries as 64-bit which sets it apart from
the other fuzzers.

For themulti-day experiments, we chose to skip some challenges
due to resource limitations. For each of the skipped, two alterna-
tive versions of the same software (but with different bugs injected)
were analyzed. The mapping of targets per fuzzing experiment are
shown in Table 7.

B OVERALL FUZZER PERFORMANCE
Tables 8 and 9 show the top two fuzzers per challenge in terms
of edges covered and bugs found. The “First to Second” columns
show the summary statistics and the changes between them.The p-
value column is theMann-Whitney U statistic, the Vargha-Delaney
𝐴12 measure indicates the effect size, and finally the % Δ shows
the percent change between median values. The last two columns
report the median number of edges (or bugs) attained by the first
fuzzer for each challenge and the number of trials considered.

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

729

Table 8: Fuzzer performance summary (edges)

Challenge First Second First to Second First
p-value 𝐴12 % Δ edges N trials

duktape AFL-rb AFL++ 0.015 0.850 6.87% 16789 5
fileB3 QSYM AFL++ 0.000 0.950 13.57% 6048 20
fileS3 QSYM Angora 0.179 0.658 2.54% 7862 19
fileS4 Angora QSYM 0.330 0.616 2.28% 7464 10
grepB2 AFL++ AFL 0.000 0.876 1.37% 2334 20
jpegS3 QSYM AFL++ 0.000 0.942 13.77% 4708 19
jqB QSYM Angora 0.588 0.567 0.10% 6807 18
jqB2 QSYM AFL++ 0.000 0.903 2.86% 6934 18
jqS3 QSYM AFL++ 0.001 0.803 0.65% 6805 19
jqS4 QSYM AFL-rb 0.118 0.735 0.20% 6987 20
newgrepS Ankou Honggfuzz 0.060 0.822 0.59% 6617 5
pcreB QSYM AFL 0.025 0.722 1.54% 8765 17
sqliteB AFL Honggfuzz 0.472 0.589 -0.78% 11842 20
tcpdumpB QSYM AFL-rb 0.820 0.541 5.94% 26338 17
tinyexprB2 Honggfuzz Angora 0.001 0.978 6.32% 656 9
yamlB2 Angora Honggfuzz 0.028 0.800 0.93% 7849 10

Table 9: Fuzzer performance summary (bugs)

Challenge First Second First to Second First
p-value 𝐴12 % Δ bugs N trials

duktape QSYM AFL 0.151 0.611 0.00% 13 20
fileB3 QSYM AFL-rb 0.002 0.950 91.67% 69 20
fileS3 QSYM Angora 0.029 0.753 8.41% 116 19
fileS4 Angora QSYM 0.020 0.768 11.18% 94 10
grepB2 Eclipser AFL-rb 0.013 0.842 2.94% 35 19
jpegS3 Eclipser QSYM 0.330 0.528 nan% 0 18
jqB QSYM Angora 0.001 0.886 68.75% 27 18
jqB2 QSYM AFL++ 0.000 0.926 95.19% 102 18
jqS3 QSYM AFL++ 0.000 0.947 91.67% 23 19
jqS4 QSYM Honggfuzz 0.000 0.950 50.00% 21 20
newgrepS Ankou Honggfuzz 0.649 0.578 0.00% 2 5
pcreB QSYM Eclipser 0.000 0.891 30.38% 103 17
sqliteB QSYM Honggfuzz 0.000 0.917 22.22% 22 18
tcpdumpB Angora Eclipser 0.000 1.000 102.86% 36 10
tinyexprB2 Honggfuzz Angora 0.002 0.850 50.00% 3 9
yamlB2 QSYM AFL-rb 0.450 0.610 0.00% 44 21

Session 7B: Software Security and Vulnerability Analysis (II) ASIA CCS ’21, June 7–11, 2021, Virtual Event, Hong Kong

730

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Evaluating Fuzzers
	2.2 LAVA-based Bug Injection
	2.3 Limitations of Synthetic Bug Injection

	3 Test Corpora and Methodology
	3.1 Challenge Corpus
	3.2 Fuzzer Test Corpus
	3.3 Coverage Measurement
	3.4 Bug Reporting

	4 Experimental Setup
	4.1 Fuzzing Experiments
	4.2 Fuzzing Infrastructure

	5 Evaluating Synthetic Bug Injection
	5.1 Evaluation Metrics
	5.2 Fuzzer Performance on Synthetic Bugs
	5.3 Discovery Difficulty: Synthetic Bugs
	5.4 Discovery Difficulty: Rode0day vs. Organic
	5.5 Bug Injection and the ``Main Path''
	5.6 Key Findings

	6 Future Directions for Bug Injection
	7 Conclusions
	Acknowledgments
	References
	A Experiment Exclusions
	B Overall Fuzzer Performance

